Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufjf.br/jspui/handle/ufjf/403
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
elizamariaferreira.pdf2.71 MBAdobe PDFVista previa
Visualizar/Abrir
Clase: Dissertação
Título : Controle ótimo: custos no controle de propagações populacionais
Autor(es): Ferreira, Eliza Maria
Orientador: Takahashi, Lucy Tiemi
Miembros Examinadores: D'Afonseca, Luis Alberto
Miembros Examinadores: Sabeti, Mehran
Resumo: O objetivo deste trabalho é estudar algumas aplicações da teoria de controle ótimo para problemas biológicos. Assim, apresentamos inicialmente o estudo de dois modelos diferentes: “Optimal Control of Biological Invasions in Lake Network”, proposto por Potapov et al. [13], e “Simulating Optimal Vaccination Times during Cholera Outbreaks” proposto por Modnak et al. [9]. Os modelos têm suas dinâmicas baseadas em equações diferenciais ordinárias e neles foi minimizado um funcional, com uma única e com várias restrições, respectivamente. No primeiro modelo a teoria de controle ótimo é usada para minimizar os custos com a prevenção juntamente com os custos gerados pelos danos da invasão biológica em estudo, e no segundo modelo aplica-se o controle ótimo para minimizar os custos da vacinação e tratamento dos indivíduos infectados durante um surto de cólera. Com base nos modelos propostos por Vieira e Takahashi em “A Sobrevivência do Vírus varicelazoster”, [16], e por Shulgin et al. em “Pulse vaccination strategy in the SIR epidemic model”, [14], propomos um modelo matemático que considera a vacinação da população como uma estratégia de controle da varicela. Nós usamos a teoria de controle ótimo para definir as condições necessárias para minimizar os custos da vacinação e tratamento dos indivíduos infectados com catapora ou com herpes zoster. A dinâmica é baseada em equações diferenciais ordinárias, que são as restrições sob as quais queremos minimizar o funcional utilizando a teoria de controle ótimo.
Resumen : The goal of this work is to study some applications of the theory of optimal control for biological problems. Thus, initially we present the study of two different models: “Optimal Control of Biological Invasions in Lake Network” proposed by Potapov et al. [13], and “Simulating optimal Vaccination Times During Cholera Outbreaks” proposed by Modnak et al. [9]. The models have their dynamics based on ordinary differential equations and are minimizing the functional with a single and with several restrictions, respectively. The first model uses optimal control theory to minimize costs with prevention and together with the costs generated by the damage of the invasion, the second model applies optimal control to minimize costs in the vaccination and treatment of infected individuals during cholera outbreak. Based on models proposed by Vieira and Takahashi on “The Virus Survival varicella-zoster”, [16], and by Shulgin et al. in “Pulse vaccination strategy in the SIR epidemic model”, [14], we propose a mathematical model that considers a vaccination of the population as a varicella control strategy. We use the optimal control theory to define necessary conditions to minimize the costs of vaccination and treatment of infected individuals with chickenpox or with herpes zoster. The dynamics is based on ordinary differential equations which are the constraints under which we want to minimize the functional in the optimal control theory.
Palabras clave : Controle Ótimo
Dinâmica Populacional
Varicela
Vacinação
Optimal Control
Population Dynamics
Varicella
Vaccination
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Idioma: por
País: Brasil
Editorial : Universidade Federal de Juiz de Fora
Sigla de la Instituición: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Mestrado Acadêmico em Matemática
Clase de Acesso: Acesso Aberto
URI : https://repositorio.ufjf.br/jspui/handle/ufjf/403
Fecha de publicación : 27-feb-2015
Aparece en las colecciones: Mestrado Acadêmico em Matemática (Dissertações)



Los ítems de DSpace están protegidos por licencias Creative Commons, con todos los derechos reservados, a menos que se indique lo contrario.