Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/403
Files in This Item:
File Description SizeFormat 
elizamariaferreira.pdf2.71 MBAdobe PDFThumbnail
View/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.advisor1Takahashi, Lucy Tiemi-
dc.contributor.advisor1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4791507J2pt_BR
dc.contributor.referee1D'Afonseca, Luis Alberto-
dc.contributor.referee1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4703299T5pt_BR
dc.contributor.referee2Sabeti, Mehran-
dc.contributor.referee2Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4218056P9pt_BR
dc.creatorFerreira, Eliza Maria-
dc.creator.Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4367182A3pt_BR
dc.date.accessioned2016-01-25T17:29:48Z-
dc.date.available2016-01-13-
dc.date.available2016-01-25T17:29:48Z-
dc.date.issued2015-02-27-
dc.identifier.urihttps://repositorio.ufjf.br/jspui/handle/ufjf/403-
dc.description.abstractThe goal of this work is to study some applications of the theory of optimal control for biological problems. Thus, initially we present the study of two different models: “Optimal Control of Biological Invasions in Lake Network” proposed by Potapov et al. [13], and “Simulating optimal Vaccination Times During Cholera Outbreaks” proposed by Modnak et al. [9]. The models have their dynamics based on ordinary differential equations and are minimizing the functional with a single and with several restrictions, respectively. The first model uses optimal control theory to minimize costs with prevention and together with the costs generated by the damage of the invasion, the second model applies optimal control to minimize costs in the vaccination and treatment of infected individuals during cholera outbreak. Based on models proposed by Vieira and Takahashi on “The Virus Survival varicella-zoster”, [16], and by Shulgin et al. in “Pulse vaccination strategy in the SIR epidemic model”, [14], we propose a mathematical model that considers a vaccination of the population as a varicella control strategy. We use the optimal control theory to define necessary conditions to minimize the costs of vaccination and treatment of infected individuals with chickenpox or with herpes zoster. The dynamics is based on ordinary differential equations which are the constraints under which we want to minimize the functional in the optimal control theory.pt_BR
dc.description.resumoO objetivo deste trabalho é estudar algumas aplicações da teoria de controle ótimo para problemas biológicos. Assim, apresentamos inicialmente o estudo de dois modelos diferentes: “Optimal Control of Biological Invasions in Lake Network”, proposto por Potapov et al. [13], e “Simulating Optimal Vaccination Times during Cholera Outbreaks” proposto por Modnak et al. [9]. Os modelos têm suas dinâmicas baseadas em equações diferenciais ordinárias e neles foi minimizado um funcional, com uma única e com várias restrições, respectivamente. No primeiro modelo a teoria de controle ótimo é usada para minimizar os custos com a prevenção juntamente com os custos gerados pelos danos da invasão biológica em estudo, e no segundo modelo aplica-se o controle ótimo para minimizar os custos da vacinação e tratamento dos indivíduos infectados durante um surto de cólera. Com base nos modelos propostos por Vieira e Takahashi em “A Sobrevivência do Vírus varicelazoster”, [16], e por Shulgin et al. em “Pulse vaccination strategy in the SIR epidemic model”, [14], propomos um modelo matemático que considera a vacinação da população como uma estratégia de controle da varicela. Nós usamos a teoria de controle ótimo para definir as condições necessárias para minimizar os custos da vacinação e tratamento dos indivíduos infectados com catapora ou com herpes zoster. A dinâmica é baseada em equações diferenciais ordinárias, que são as restrições sob as quais queremos minimizar o funcional utilizando a teoria de controle ótimo.pt_BR
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Juiz de Forapt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICE – Instituto de Ciências Exataspt_BR
dc.publisher.programMestrado Acadêmico em Matemáticapt_BR
dc.publisher.initialsUFJFpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectControle Ótimopt_BR
dc.subjectDinâmica Populacionalpt_BR
dc.subjectVaricelapt_BR
dc.subjectVacinaçãopt_BR
dc.subjectOptimal Controlpt_BR
dc.subjectPopulation Dynamicspt_BR
dc.subjectVaricellapt_BR
dc.subjectVaccinationpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICApt_BR
dc.titleControle ótimo: custos no controle de propagações populacionaispt_BR
dc.typeDissertaçãopt_BR
Appears in Collections:Mestrado Acadêmico em Matemática (Dissertações)



Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.