Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufjf.br/jspui/handle/ufjf/14227
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
juliocesarlanazcavargas.pdfPDF/A2.08 MBAdobe PDFVista previa
Visualizar/Abrir
Clase: Dissertação
Título : Um teorema de linking abstrato aplicado a uma equação assintoticamente linear
Autor(es): Vargas, Julio Lanazca
Orientador: Toon, Eduard
Miembros Examinadores: Pereira, Fábio Rodrigues
Miembros Examinadores: Ercole, Grey
Resumo: Neste trabalho, apresentamos um teorema de linking abstrato para sequências de Cerami, porém sem usar a condição de Cerami. Este teorema será usado para obter solução não trivial para problemas indefinidos. Aplicaremos o teorema mencionado para obter uma solução não trivial, para a equação de Schrödinger, −∆u + V (x)u = g(x, u), em que g(x, s) = h(x)f(s), na qual, a não linearidade f é assintoticamente linear e V é um potencial muito geral. Aplicando este resultado, será obtido um ponto crítico de um funcional associado ao problema. Este ponto crítico será uma solução fraca do problema. A teoria espectral será uma ferramenta fundamental para obter uma estrutura de linking do funcional associado ao problema mencionado
Resumen : In this work, we present an abstract linking theorem for Cerami sequences, but without using the Cerami condition. This theorem will be used to obtain nontrivial solution to indefinite problems. We will apply the mentioned theorem to obtain a nontrivial solution for the Schrödinger equation, −∆u + V (x)u = g(x, u), where g(x, s) = h(x)f(s), wherein the nonlinearity f is asymptotically linear and V is a very general potential. By applying this result, a critical point of a functional associated with the problem will be obtained. This critical point will be a weak solution to the problem. Spectral theory will be a fundamental tool for obtaining a linking structure to the functional associated with the mentioned problem.
Palabras clave : Estrutura de linking
Métodos variacionais
Teoria espectral
Equação de Schrödinger
Assintoticamente linear
Linking structure
Variational methods
Spectral theory
Schrödinger equation
Asymptotically linear
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Idioma: por
País: Brasil
Editorial : Universidade Federal de Juiz de Fora (UFJF)
Sigla de la Instituición: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Mestrado Acadêmico em Matemática
Clase de Acesso: Acesso Aberto
Attribution-NoDerivs 3.0 Brazil
Licenças Creative Commons: http://creativecommons.org/licenses/by-nd/3.0/br/
URI : https://repositorio.ufjf.br/jspui/handle/ufjf/14227
Fecha de publicación : 2-mar-2020
Aparece en las colecciones: Mestrado Acadêmico em Matemática (Dissertações)



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons