Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/12675
Files in This Item:
File Description SizeFormat 
alandepaivaloures.pdfalandepaivaloures1.56 MBAdobe PDFThumbnail
View/Open
Type: Trabalho de Conclusão de Curso
Title: Abordagens Paramétricas e Não Paramétricas para Monitoramento de Parâmetro de Locação – Caso Univariado
Author: Loures, Alan de Paiva
First Advisor: Bessegato, Lupércio França
Referee Member: Bessegato, Lupércio França
Referee Member: Zeller, Camila Borelli
Referee Member: Oliveira, Márcio de
Resumo: O gráfico de controle de Shewhart é uma poderosa ferramenta em controle estatístico de processos. A operação desses gráficos de controle consiste na coleta periódica de itens produzidos, analisando-os de acordo com alguma característica de interesse. A característica de qualidade pode ser um atributo ou uma variável. O gráfico contém duas linhas horizontais, denominadas limites superior e inferior de controle. A amplitude do intervalo entre esses limites é escolhida de maneira que, quando o ponto amostral estiver dentro dos limites de controle, considera-se que o processo esteja operando sob controle. Entretanto, quando um ponto ocorrer fora desses limites, considera-se que o processo está fora de controle, exigindo intervenção gerencial para que o processo opere novamente em condições de controle estatístico. No presente trabalho são estudadas as consequências das várias estimativas paramétricas efetuadas para a construção de gráficos de controle de média e de medidas individuais. Em particular, são verificados os efeitos dessas estimativas no comprimento médio de sequência (CMS), que é bastante utilizado para medir o desempenho desses gráficos. São apresentadas também duas abordagens não paramétricas para determinação dos limites de gráficos de controle de média amostral e de medidas individuais: reamostragem por bootstrap e núcleo estimador. É analisado o desempenho de gráficos de controle por média, cujos limites são construídos por intermédio de metodologia de reamostragem por bootstrap e o desempenho de gráficos de controle de medidas individuais, construído por intermédio das metodologias de núcleos estimadores da função de distribuição. A determinação dos limites de controle baseia-se em observações obtidas na denominada Fase I, na qual são coletados os dados da característica de qualidade de interesse. São apresentados resultados de análise de sensibilidade de um conjunto de misturas de normais que simulam situações de não normalidade, em especial quanto à assimetria e a curtose da função de densidade de probabilidade da característica de qualidade de interesse.
Abstract: The Shewhart control chart is a powerful statistical tool in process control. The operation of these control charts is the periodic sampling off items produced. They are analyzed according to some characteristic of interest. The quality characteristic can be an attribute or a variable. The chart contains two horizontal lines, called upper and lower control limits. The width of the range between these limits is chosen so that, when the sampling point is within the control limits, it is considered that the process is operating under control. However, when a point occurs outside these limits, it is considered that the process is out of control, requiring management intervention for the process to operating again in statistical control conditions. The in-control performance of non-parametric individuals control charts based on kernel estimators are studied by simulation. Three different procedures are adopted for kernel estimator bandwidth selection. It turns out that the alternative control charts are robust against deviations from symmetry and perform reasonably well under normality of the observations.
Keywords: Estimação de limites de controle
Núcleo estimador
Reamostragem por bootstrap
Gráfico de controle por variável
Controle estatístico de processos
Comprimento médio de sequência
Estimation of control limits
Estimator core
Bootstrap resampling
Control chart by variable
Statistical process control
Average string length
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
Language: por
Country: Brasil
Publisher: Universidade Federal de Juiz de Fora (UFJF)
Institution Initials: UFJF
Department: ICE – Instituto de Ciências Exatas
Access Type: Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazil
Creative Commons License: http://creativecommons.org/licenses/by-nc-nd/3.0/br/
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/12675
Issue Date: 10-Jul-2015
Appears in Collections:Estatística - TCC Graduação



This item is licensed under a Creative Commons License Creative Commons