https://repositorio.ufjf.br/jspui/handle/ufjf/7343
File | Description | Size | Format | |
---|---|---|---|---|
Bayesian inference for the fitting of dry matter accumulation curves in garlic plants.pdf | 479.59 kB | Adobe PDF | View/Open |
Type: | Artigo de Periódico |
Title: | Bayesian inference for the fitting of dry matter accumulation curves in garlic plants |
Other Titles: | Inferência bayesiana para o ajuste de curvas do acúmulo de matéria seca em plantas de alho |
Author: | Macedo, Leandro Roberto de Cecon, Paulo Roberto Silva, Fabyano Fonseca e Nascimento, Moysés Puiatti, Guilherme Alves Oliveira, Ana Carolina Ribeiro de Puiatti, Mario |
Resumo: | O objetivo deste trabalho foi identificar modelos de regressão não linear que melhor descrevam curvas de acúmulo de matéria seca em acessos de alho (Allium sativum), ao longo do tempo, com uso das abordagens bayesiana e frequentista. Análises de agrupamento multivariadas foram empregadas para agrupar acessos similares quanto às estimativas dos parâmetros das curvas com interpretação biológica (β1 e β3). Para verificar se os grupos formados eram iguais, aplicaram-se testes estatísticos para testar a igualdade de parâmetros das curvas representativas de cada grupo. Foram utilizados 30 acessos de alho, mantidos pelo Banco de Germoplasma de Hortaliças da Universidade Federal de Viçosa. O modelo logístico foi o que melhor se ajustou aos dados em ambas as abordagens. As estimativas dos parâmetros deste modelo foram submetidas à análise de agrupamento com o algoritmo de Ward, e a distância generalizada de Mahalanobis foi utilizada como medida de dissimilaridade. O número ótimo de grupos, de acordo com o método de Mojena, foi de três e quatro para as abordagens frequentista e bayesiana, respectivamente. Testes de hipótese quanto à igualdade de parâmetros das curvas estimadas, para cada grupo de acesso, indicaram que ambas as metodologias evidenciam as diferenças identificadas pela análise de agrupamento. Portanto, ambas as abordagens são indicadas para estudos desta natureza. |
Abstract: | The objective of this work was to identify nonlinear regression models that best describe dry matter accumulation curves over time, in garlic (Allium sativum) accessions, using Bayesian and frequentist approaches. Multivariate cluster analyses were made to group similar accessions according to the estimates of the parameters with biological interpretation (β1 and β3). In order to verify if the obtained groups were equal, statistical tests were applied to assess the parameter equality of the representative curves of each group. Thirty garlic accessions were used, which are kept by the vegetable germplasm bank of Universidade Federal de Viçosa, Brazil. The logistic model was the one that fit best to data in both approaches. Parameter estimates of this model were subjected to the cluster analysis using Ward’s algorithm, and the generalized Mahalanobis distance was used as a measure of dissimilarity. The optimal number of groups, according to the Mojena method, was three and four, for the frequentist and Bayesian approaches, respectively. Hypothesis tests for the parameter equality from estimated curves, for each identified group, indicated that both approaches highlight the differences between the accessions identified in the cluster analysis. Therefore, both approaches are recommended for this kind of study. |
Keywords: | Allium sativum Análise de agrupamento agrAgrupamento multivariado de curvas Modelos Allium sativum Cluster analysis Multivariate clustering curves Nonlinear models |
CNPq: | - |
Language: | eng |
Country: | Brasil |
Publisher: | - |
Institution Initials: | - |
Access Type: | Acesso Aberto |
DOI: | http://dx.doi.org/10.1590/s0100-204x2017000800002 |
URI: | https://repositorio.ufjf.br/jspui/handle/ufjf/7343 |
Issue Date: | Aug-2017 |
Appears in Collections: | Artigos de Periódicos |
Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.