Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufjf.br/jspui/handle/ufjf/6089
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
weineresmeriobatistadeoliveira.pdf1.79 MBAdobe PDFVista previa
Visualizar/Abrir
Clase: Dissertação
Título : Um framework para análise e visualização de dados de proveniência
Autor(es): Oliveira, Weiner Esmério Batista de
Orientador: Braga, Regina Maria Maciel
Miembros Examinadores: Menezes, Victor Stroële de Andrade
Miembros Examinadores: Dantas, Mario Antônio Ribeiro
Resumo: A proveniência é reconhecida hoje como um desafio central para estabelecer confiabilidade e prover segurança em sistemas computacionais. Em workflows científicos, a proveniência é considerada essencial para apoiar a reprodutibilidade dos experimentos, a interpretação dos resultados e o diagnóstico de problemas. Estes benefícios podem também ser utilizados em outros contextos, como, por exemplo, em processos de software. No entanto, para sua melhor compreensão e utilização, são necessários mecanismos eficientes e amigáveis. Pesquisas em visualização de software, ontologias e redes complexas podem ajudar neste processo, gerando novo conhecimento sobre os dados e informações estratégicas para tomada de decisão. Esta dissertação apresenta um framework chamado Visionary, para auxiliar na compreensão e uso dos dados de proveniência através de técnicas de visualização de software, ontologias e análise de redes complexas. O framework captura os dados de proveniência e gera novas informações usando ontologias e análise do grafo de proveniência. A visualização apresenta e destaca as inferências e os resultados obtidos com a análise. O Visionary é um framework livre de contexto que pode ser adaptado para qualquer sistema que utiliza o modelo PROV de proveniência. Com o objetivo de avaliar a proposta, foi realizado um estudo experimental que encontrou indícios que o framework auxilia na compreensão e análise dos dados de proveniência, dando suporte à tomada de decisão.
Resumen : Provenance is recognized today as a central challenge to establish reliability and pro-vide security in computational systems. In scientific workflows, provenance is considered essential to support the reproducibility of experiments, interpretation of results and diagnosis of problems. We consider that these benefits can be used in new contexts, like software process. However, for a better understanding and use, efficient and friendly mechanisms are needed. Software visualization, ontology, and complex networks can help in this process by generating new data insights and strategic information for decision making. This dissertation presents a framework named Visionary, to assist in the understanding and use of provenance data through software visualization techniques, ontologies and analysis of complex networks. The framework captures the provenance data and generates new information using ontologies and analysis of provenance graph. The visualization presents and highlights the inferences and the results obtained with the analysis. Visionary is a context-free framework that can be adapted to any system that uses the PROV provenance model. In order to evaluate the proposal, an experimental study was carried out, which found indications that the framework assists in the understanding and analysis of provenance data, supporting decision making.
Palabras clave : Proveniência de dados
Visualização de software
Redes complexas
Provenance data
Software visualization
Complex networks
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editorial : Universidade Federal de Juiz de Fora (UFJF)
Sigla de la Instituición: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Ciência da Computação
Clase de Acesso: Acesso Aberto
URI : https://repositorio.ufjf.br/jspui/handle/ufjf/6089
Fecha de publicación : 1-sep-2017
Aparece en las colecciones: Mestrado em Ciência da Computação (Dissertações)



Los ítems de DSpace están protegidos por licencias Creative Commons, con todos los derechos reservados, a menos que se indique lo contrario.