Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufjf.br/jspui/handle/ufjf/4884
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
fernandoakiodearaujoyamada.pdf20.6 MBAdobe PDFVista previa
Visualizar/Abrir
Clase: Dissertação
Título : A Shape-based weighting strategy applied to the covariance estimation on the ICP
Autor(es): Yamada, Fernando Akio de Araujo
Orientador: Silva, Rodrigo Luis de Souza da
Co-orientador: Vieira, Marcelo Bernardes
Miembros Examinadores: Antônio, Gilson
Miembros Examinadores: Leite, Saul de Castro
Resumo: No problema de registro rígido por pares é preciso encontrar uma transformação rígida que alinha duas nuvens de pontos. A sulução clássica e mais comum é o algoritmo Iterative Closest Point (ICP). No entanto, o ICP e muitas de suas variantes requerem que as nuvens de pontos já estejam grosseiramente alinhadas. Este trabalho apresenta um método denominado Shape-based Weighting Covariance Iterative Closest Point (SWC-ICP), uma melhoria do ICP clássico. A abordagem proposta aumenta a possibilidade de alinhar corretamente duas nuvens de pontos, independente da pose inicial, mesmo quando existe apenas sobreposição parcial entre elas, ou na presença de ruído e outliers. Ela se beneficia da geometria local dos pontos, codificada em tensores de orientação de segunda ordem, para prover um segundo conjunto de correspondências para o ICP. A matriz de covariância cruzada computada a partir deste conjunto é combinada com a matriz de covariância cruzada usual, seguindo uma estratégia heurística. Para comparar o método proposto com algumas abordagens recentes, um protocolo de avaliação detalhado para registro rígido é apresentado. Os resultados mostram que o SWC-ICP está entre os melhores métodos comparados, com performance superior em situações de grande deslocamento angular, mesmo na presença de ruído e outliers.
Resumen : In the pairwise rigid registration problem we need to find a rigid transformation that aligns two point clouds. The classical and most common solution is the Iterative Closest Point (ICP) algorithm. However, the ICP and many of its variants require that the point clouds are already coarsely aligned. We present in this work a method named Shape-based Weighting Covariance Iterative Closest Point (SWC-ICP), an improvement over the classical ICP. Our approach improves the possibility to correctly align two point clouds, regardless of the initial pose, even when there is only a partial overlapping between them, or in the presence of noise and outliers. It benefits from the local geometry of the points, encoded in second-order orientation tensors, to provide a second correspondences set to the ICP. The cross-covariance matrix computed from this set is combined with the usual cross-covariance matrix following a heuristic strategy. In order to compare our method with some recent approaches, we present a detailed evaluation protocol to rigid registration. Results show that the SWC-ICP is among the best methods compared, with superior performance in situations of wide angular displacement, even in situations of noise and outliers.
Palabras clave : Registro rígido
Iterative closest point
Tensor de orientação
Dissimilaridade de forma
Geometria computacional
Rigid registration
Iterative Closest Point
Orientation Tensor
Shape Dissimilarity
Computational Geometry
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editorial : Universidade Federal de Juiz de Fora (UFJF)
Sigla de la Instituición: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Ciência da Computação
Clase de Acesso: Acesso Aberto
URI : https://repositorio.ufjf.br/jspui/handle/ufjf/4884
Fecha de publicación : 15-mar-2016
Aparece en las colecciones: Mestrado em Ciência da Computação (Dissertações)



Los ítems de DSpace están protegidos por licencias Creative Commons, con todos los derechos reservados, a menos que se indique lo contrario.