Use este identificador para citar ou linkar para este item: https://repositorio.ufjf.br/jspui/handle/ufjf/4883
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
karenbragaenes.pdf593.61 kBAdobe PDFThumbnail
Visualizar/Abrir
Tipo: Dissertação
Título: Uma abordagem baseada em Perceptrons balanceados para geração de ensembles e redução do espaço de versões
Autor(es): Enes, Karen Braga
Primeiro Orientador: Fonseca Neto, Raul
Co-orientador: Villela, Saulo Moraes
Membro da banca: Bernardino, Heder Soares
Membro da banca: Braga, Antônio de Pádua
Resumo: Recentemente, abordagens baseadas em ensemble de classificadores têm sido bastante exploradas por serem uma alternativa eficaz para a construção de classificadores mais acurados. A melhoria da capacidade de generalização de um ensemble está diretamente relacionada à acurácia individual e à diversidade de seus componentes. Este trabalho apresenta duas contribuições principais: um método ensemble gerado pela combinação de Perceptrons balanceados e um método para geração de uma hipótese equivalente ao voto majoritário de um ensemble. Para o método ensemble, os componentes são selecionados por medidas de diversidade, que inclui a introdução de uma medida de dissimilaridade, e avaliados segundo a média e o voto majoritário das soluções. No caso de voto majoritário, o teste de novas amostras deve ser realizado perante todas as hipóteses geradas. O método para geração da hipótese equivalente é utilizado para reduzir o custo desse teste. Essa hipótese é obtida a partir de uma estratégia iterativa de redução do espaço de versões. Um estudo experimental foi conduzido para avaliação dos métodos propostos. Os resultados mostram que os métodos propostos são capazes de superar, na maior parte dos casos, outros algoritmos testados como o SVM e o AdaBoost. Ao avaliar o método de redução do espaço de versões, os resultados obtidos mostram a equivalência da hipótese gerada com a votação de um ensemble de Perceptrons balanceados.
Abstract: Recently, ensemble learning theory has received much attention in the machine learning community, since it has been demonstrated as a great alternative to generate more accurate predictors with higher generalization abilities. The improvement of generalization performance of an ensemble is directly related to the diversity and accuracy of the individual classifiers. In this work, we present two main contribuitions: we propose an ensemble method by combining Balanced Perceptrons and we also propose a method for generating a hypothesis equivalent to the majority voting of an ensemble. Considering the ensemble method, we select the components by using some diversity strategies, which include a dissimilarity measure. We also apply two strategies in view of combining the individual classifiers decisions: majority unweighted vote and the average of all components. Considering the majority vote strategy, the set of unseen samples must be evaluate towards the generated hypotheses. The method for generating a hypothesis equivalent to the majority voting of an ensemble is applied in order to reduce the costs of the test phase. The hypothesis is obtained by successive reductions of the version space. We conduct a experimental study to evaluate the proposed methods. Reported results show that our methods outperforms, on most cases, other classifiers such as SVM and AdaBoost. From the results of the reduction of the version space, we observe that the genareted hypothesis is, in fact, equivalent to the majority voting of an ensemble.
Palavras-chave: Perceptron
Classificação binária
Métodos ensemble
Espaço de versões
Perceptron
Binary Classification
Ensemble Methods
Version Space
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editor: Universidade Federal de Juiz de Fora (UFJF)
Sigla da Instituição: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Ciência da Computação
Tipo de Acesso: Acesso Aberto
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/4883
Data do documento: 8-Jan-2016
Aparece nas coleções:Mestrado em Ciência da Computação (Dissertações)



Os itens no repositório estão protegidos por licenças Creative Commons, com todos os direitos reservados, salvo quando é indicado o contrário.