Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/4412
Files in This Item:
File Description SizeFormat 
lucasfagundesesteves.pdf10.5 MBAdobe PDFThumbnail
View/Open
Type: Tese
Title: Investigação computacional do mecanismo de quebra hidrolítica de ésteres de fosfato catalisado por um modelo biomimético da catecol oxidase
Author: Esteves, Lucas Fagundes
First Advisor: Costa, Luiz Antônio Sodré
Referee Member: Cuin, Alexandre
Referee Member: Santos, Helio Ferreira dos
Referee Member: Morgon, Nelson Henrique
Referee Member: Rey, Nicolás Adrián
Resumo: Esta tese propõe uma investigação teórica do mecanismo de quebra hidrolítica de um modelo para diésteres de fosfato, o íon BDNPP [bis(2,4-dinitrofenil)fosfato], catalisada por um complexo dinuclear de cobre(II) (R1). Esse complexo metálico foi originalmente planejado para mimetizar a estrutura e as propriedades catalíticas do sítio ativo das catecóis oxidases (COs), revelando um caso interessante de promiscuidade catalítica em sistemas biomiméticos. As possibilidades de mecanismo foram cuidadosamente avaliadas através de cálculos de Teoria do Funcional da Densidade (DFT) em fase gás e em fase aquosa com cálculos no ponto dentro do modelo contínuo polarizável (PCM). Dois mecanismos principais foram encontrados. O Mecanismo 1 (Concertado) corresponde a uma reação do tipo SN2 que envolve o ataque da ponte µOH, situada entre os íons Cu(II), ao centro fosfórico da molécula de BDNPP, enquanto que o Mecanismo 2 (Associativo) ocorre através de sucessivas transferências de próton entre o átomo de oxigênio desta mesma ponte com o átomo de oxigênio terminal do grupo fosfato, passando pela formação de um intermediário pentacoordenado estável. O Mecanismo 1 envolve dois possíveis caminhos reacionais para a liberação do íon DNPP [(2,4-dinitrofenil)fosfato] gerado após a quebra hidrolítica. O primeiro caminho reacional (p1) envolve uma transferência de próton – que ocorre entre o átomo de oxigênio que compunha a ponte µ-OH e o átomo de oxigênio terminal do grupo fosfato – imediatamente após a quebra hidrolítica, seguido pela entrada de duas moléculas de água, sendo a etapa de transferência de próton determinante da velocidade. O segundo caminho reacional (p2) envolve a entrada de duas moléculas de água imediatamente após a quebra hidrolítica sem que haja a reação de transferência de próton, sendo a etapa de quebra hidrolítica a etapa determinante da velocidade. Dentre as propostas de mecanismo estudadas o caminho reacional p2 dentro do Mecanismo 1 corresponde ao mais provável, uma vez que possui a menor barreira de reação (ΔG‡ = 23,7 kcal mol-1, em solução aquosa). A constante de velocidade observada experimentalmente, Kobs, vale 1,7 × 10-5 s-1, indicando que o valor calculado teoricamente (K1 = 2.6 × 10-5 s-1) está em excelente acordo com o valor experimental. O efeito isotópico cinético (KIE) foi avaliado para o caminho reacional p2 dentro do Mecanismo 1 com o intuito de entender as alterações estruturais envolvidas na formação do TS1-i (Estado de transição para o Mecanismo 1), caracterizando perfeitamente o mecanismo descrito. O efeito explícito da inclusão de moléculas do solvente foi avaliado de maneira preliminar para apenas uma estrutura do ciclo catalítico para a quebra hidrolítica de ésteres de fosfato, através da utilização do método de Monte Carlo. Os resultados permitem uma análise detalhada da organização das moléculas de solvente ao redor do complexo, podendo servir de ponto de partida para uma análise mais elaborada dos mecanismos reacionais utilizando modelos explícitos para o solvente. O mecanismo de oxidação de catecóis – representado pelo substrato modelo, o 3,5-di-tercbutilcatecol (DTBC) – no sítio ativo do complexo R1 foi avaliado através de cálculos quanto-mecânicos. Embora não tenham sido obtidos resultados conclusivos acerca da cinética da reação, os aspectos estruturais das principais espécies envolvidas no ciclo catalítico foram analisados.
Abstract: In this thesis the theoretical investigation of the hydrolytic cleavage mechanism of a phosphate diester, BDNPP [bis(2,4-dinitrophenyl)phosphate] in the active site of the dinuclear copper complex, labelled as R1, has been proposed. The metal complex was originally designed to mimic the active site structure as well the catalytic properties of catechol oxidase, revealing an interesting case of catalytic promiscuity in biomimetic systems. The mechanistic possibilities have been carefully evaluated through Density Functional Theory (DFT) calculations in gas phase and in aqueous solution using continuum solvation models with single point calculations within the Polarizable continuum model (PCM). Two reaction mechanisms have been proposed. The Mechanism 1 (Concerted) is a SN2 type mechanism which involves the direct attack of the µ-OH bridge between the two copper(II) ions towards the phosphorus center whereas, the Mechanism 2 (Associative) occurs through two successive proton transferences between the oxygen atom of the bridging hydroxo ligand and another oxygen atom of the phosphate model forming a stable pentacoordinate intermediate. There are two reactions paths for Mechanism 1 to release the DNPP (2,4-dinitrophenylphosphate) ion generated after the hydrolytic cleavage. The first reaction path (p1) involves a proton transfer immediately after the hydrolytic cleavage, being the proton transfer the rate-determining step, followed by the entry of two water molecules. The second reaction path (p2) comprises the entry of two water molecules just after the hydrolytic cleavage without any proton transfer, being the hydrolytic cleavage the rate limiting step. The most probable catalytic path occurs via Mechanism 1, following the second reaction path (p2) once it involves the lowest free energies activation barrier (ΔG‡ = 23.7 kcal mol-1, in aqueous solution). The experimental rate constant, Kobs is 1.7 × 10-5 s-1, indicating that the calculated value, (K1 = 2.6 × 10-5 s-1) is in a very good accordance with the experimental value. Kinetic Isotope Effect (KIE) analysis for the second reaction path (p2) within the Mechanism 1 has also been considered in order to understand the changes taking place in TS1-i (transition state of Mechanism 1) and perfectly characterize the mechanism here described. The solvent effect using explicit water molecules were evaluated in a preliminary fashion for one structure within the catalytic cycle of hydrolytic cleavage of phosphate ester, using the Monte Carlo method. The obtained results allows a detailed analysis of the water molecules organization around the complex, serving as a starting point for an more elaborated study of the reaction mechanisms by using explicit solvent models. The oxidation of catechols – represented herein by the model substrate, 3,5-di-tercbuthylcatechol (DTBC) – in the active site of the R1 complex were evaluated by using quantum-mechanical calculations. The results are not conclusive for the kinetic, but the structural aspects for the main species in the catalytic cycle were studied.
Keywords: Metaloenzimas
Modelos miméticos
Hidrolise de ésteres de fosfato
Complexos dinucleares de cobre(II)
DFT
Promiscuidade catalítica
Metalloenzymes
Mimetic Models
Phosphate Ester Hydrolysis
Dinuclear Copper(II) Complexes
DFT
Catalytic Promiscuity
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
Language: por
Country: Brasil
Publisher: Universidade Federal de Juiz de Fora (UFJF)
Institution Initials: UFJF
Department: ICE – Instituto de Ciências Exatas
Program: Programa de Pós-graduação em Química
Access Type: Acesso Aberto
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/4412
Issue Date: 29-Feb-2016
Appears in Collections:Doutorado em Química (Teses)



Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.