Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/4287
Files in This Item:
File Description SizeFormat 
monicacristinamelquiadesduque.pdf681.21 kBAdobe PDFThumbnail
View/Open
Type: Dissertação
Title: Alguns métodos para o cálculo do propagador de Feynman
Author: Duque, Mônica Cristina Melquíades
First Advisor: Oliveira, Wilson
Referee Member: Soares, Thales Costa
Referee Member: Mendes, Albert Carlo Rodrigues
Resumo: Apresenta-se aqui uma discussão sobre três métodos para o cálculo do propagador de Feynman para alguns modelos em mecânica quântica não relativística. O formalismo de Feynman é apenas um dos vários existentes para a abordagem de problemas na mecânica quântica. O primeiro método é um cálculo da integral de caminho, que é baseado em uma relação de recorrência para a produção de propagadores infinitesimais. Essa relação de recorrência não tem aparecido em discussões anteriores da integral de caminho do oscilador harmônico unidimensional, embora seja inspirada por uma relação similar em um sistema tridimensional. O segundo método foi desenvolvido por Schwinger em 1951 para tratar ações efetivas na eletrodinâmica quântica baseado na solução das equações de movimento do operador de Heisenberg. Com o uso adequado do operador ordenado e subordinadas as condições iniciais produz o propagador. Por fim, o terceiro método, que usa-se de técnicas algébricas baseadas na fatoração do operador evolução temporal usando a fórmula Baker-Campbell-Hausdorff.
Abstract: Here we present a discussion of three methods to calculate the Feynman propagator for some models in non-relativistic quantum mechanics. The formalism of Feynman is just one of several available for addressing problems in quantum mechanics. The first method is a calculation of the integral path, which is based on a recurrence relation for the production of infinitesimal propagators. This recurrence relation has not appeared in previous discussions of the full path of the one-dimensional harmonic oscillator, although inspired by a similar relationship in a three-dimensional system. The second method was developed by Schwinger in 1951 for treating effective action in quantum electrodynamics based on the solution of the equations of motion of the Heisenberg operator. With the proper use of the operator ordained and subordinated the initial conditions produces the propagator. Finally, the third method, which uses the algebraic techniques are based on factorization of the time evolution operator using the formula Baker-Campbell-Hausdorff.
Keywords: Método integral de caminho
Método de Shwinger
Método algébrico
Path integral method
Method of Shwinger
Algebraic method
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
Language: por
Country: Brasil
Publisher: Universidade Federal de Juiz de Fora (UFJF)
Institution Initials: UFJF
Department: ICE – Instituto de Ciências Exatas
Program: Programa de Pós-graduação em Física
Access Type: Acesso Aberto
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/4287
Issue Date: 20-Feb-2013
Appears in Collections:Mestrado em Física (Dissertações)



Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.