https://repositorio.ufjf.br/jspui/handle/ufjf/4097
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
igorlucasdesouzarusso.pdf | 2.21 MB | Adobe PDF | Visualizar/Abrir |
Tipo: | Dissertação |
Título: | Otimização multiobjetivo e programação genética para descoberta de conhecimento em engenharia |
Autor(es): | Russo, Igor Lucas de Souza |
Primeiro Orientador: | Bernardino, Heder Soares |
Co-orientador: | Barbosa, Helio José Corrêa |
Membro da banca: | Toledo, Elson Magalhães |
Membro da banca: | Guerreiro, João Nisan Correia |
Membro da banca: | Augusto, Douglas Adriano |
Resumo: | A área de Otimização envolve o estudo e emprego de métodos para determinação dos parâmetros que levam à obtenção de soluções ótimas, de acordo com critérios denominados objetivos. Um problema é classificado como multiobjetivo quando apresenta objetivos múltiplos e conflitantes, que devem ser otimizados simultaneamente. Recentemente tem crescido o interesse dos pesquisadores pela análise de pós-otimalidade, que consiste na busca por propriedades intrínsecas às soluções ótimas de problemas de otimização e que podem lançar uma nova luz à compreensão dos mesmos. Innovization (inovação através de otimização, do inglês innovation through optmization) é um processo de descoberta de conhecimento a partir de problemas de otimização na forma de relações matemáticas entre variáveis, objetivos, restrições e parâmetros. Dentre as técnicas de busca que podem ser utilizadas neste processo está a Programação Genética (PG), uma meta heurística bioinspirada capaz de evoluir programas de forma automatizada. Além de numericamente válidos, os modelos encontrados devem utilizar corretamente as variáveis de decisão em relação às unidades envolvidas, de forma a apresentar significado físico coerente. Neste trabalho é proposta uma alternativa para tratamento das unidades através de operações protegidas que ignoram os termos inválidos. Além disso, propõe-se aqui uma estratégia para evitar a obtenção de soluções triviais que não agregam conhecimento sobre o problema. Visando aumentar a diversidade dos modelos obtidos, propõe-se também a utilização de um arquivo externo para armazenar as soluções de interesse ao longo da busca. Experimentos computacionais são apresentados utilizando cinco estudos de caso em engenharia para verificar a influência das ideias propostas. Os problemas tratados aqui envolvem os projetos de: uma treliça de 2 barras, uma viga soldada, do corte de uma peça metálica, de engrenagens compostas e de uma treliça de 10 barras, sendo este último ainda não explorado na literatura de descoberta de conhecimento. Finalmente, o conhecimento inferido no estudo de caso da estrutura de 10 barras é utilizado para reduzir a dimensionalidade do problema. |
Abstract: | The area of optimization involves the study and the use of methods to determine the parameters that lead to optimal solutions, according to criteria called objectives. A problem is classified as multiobjective when it presents multiple and conflicting objectives which must be simultaneously optimized. Recently, the interest of the researchers has grown in the analysis of post-optimality, which consists in the search for intrinsic properties of the optimal solutions of optimization problems. This can shed a new light on the understanding of the optimization problems. Innovization (from innovation through optimization) is a process of knowledge discovery from optimization problems in the form of mathematical relationships between variables, objectives, constraints, and parameters. Genetic Programming (GP), a search technique that can be used in this process, is a bio-inspired metaheuristic capable of evolving programs automatically. In addition to be numerically valid, the models found must correctly use the decision variables with respect to the units involved, in order to present coherent physical meaning. In this work, a method is proposed to handle the units through protected operations which ignore invalid terms. Also, a strategy is proposed here to avoid trivial solutions that do not add knowledge about the problem. In order to increase the diversity of the models obtained, it is also proposed the use of an external file to store the solutions of interest found during the search. Computational experiments are presented using five case studies in engineering to verify the influence of the proposed ideas. The problems dealt with here are the designs of: a 2-bar truss, a welded beam, the cutting of a metal part, composite gears, and a 10-bar truss. The latter was not previously explored in the knowledge discovery literature. Finally, the inferred knowledge in the case study of the 10-bar truss structure is used to reduce the dimensionality of that problem. |
Palavras-chave: | Innovization Otimização multiobjetivo Descoberta de conhecimento Programação genética Innovization Multiobjective Optimization Knowledge discovery Genetic Programming |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal de Juiz de Fora (UFJF) |
Sigla da Instituição: | UFJF |
Departamento: | ICE – Instituto de Ciências Exatas |
Programa: | Programa de Pós-graduação em Modelagem Computacional |
Tipo de Acesso: | Acesso Aberto |
URI: | https://repositorio.ufjf.br/jspui/handle/ufjf/4097 |
Data do documento: | 26-Jan-2017 |
Aparece nas coleções: | Mestrado em Modelagem Computacional (Dissertações) |
Os itens no repositório estão protegidos por licenças Creative Commons, com todos os direitos reservados, salvo quando é indicado o contrário.