Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/4094
Files in This Item:
File Description SizeFormat 
emmanuelfelixyarlequemedina.pdf9.05 MBAdobe PDFThumbnail
View/Open
Type: Dissertação
Title: Método do fator de integração implícito para problemas de reação-difusão
Author: Medina, Emmanuel Felix Yarleque
First Advisor: Toledo, Elson Magalhães
Co-Advisor: Barra, Luis Paulo da Silva
Referee Member: Rocha, Bernardo Martins
Referee Member: Loula, Abimael Fernando Dourado
Resumo: Problemas de Reação-Difusão são modelos matemáticos que descrevem fenômenos observados em diversas aplicações da Física, Química, Ciência dos Materiais e Biologia. Nesses casos, podemos utilizar o método do fator de integração implícito (IIF) que desacopla os termos de difusão e de reação para assim calcular explicitamente os termos difusivos e tratar de forma implícita os termos reativos. O custo computacional do IIF (armazenamento e processamento) torna este método não muito atrativo e, uma das abordagens para contornar este problema, é empregar estratégias em aproximações utilizando o subespaço de Krylov para reduzir as operações aritméticas para a avaliação da exponencial da matriz envolvida neste processo. Outra abordagem consiste em trabalhar com a representação compacta da discretização espacial e, assim, obter o método do fator de integração implícita compacto, com menores custos de armazenamento e processamento do àqueles do método IIF. No presente trabalho, apresentamos este procedimento junto com experimentos computacionais em domínios bi e tridimensionais para diferentes equações com o objetivo de testar a eficiência de cada um dos métodos. Os exemplos de aplicação do procedimento são problemas de reação-difusão linear, de Allen-Cahn, de Ginzburg Landau, de Schnackenberg e de FitzHugh-Nagumo discutidos com o objetivo de demonstrar a aplicabilidade do método.
Abstract: Reaction-Diffusion problems are mathematical models that describe phenomena observed in various applications of Physics, Chemistry, Materials Science and Biology. In such cases, we can use the method of implicit integration factor (IIF), which decouples the terms of diffusion and reaction in order to calculate explicity the diffusive terms and treat implicitly reactive terms. The computational cost of the IIF (storage and processing) makes this method not very attractive and one of the approaches to work around this problem is to employ strategies approaches using the Krylov subspace approximations to reduce arithmetic operations for the evaluation of the exponential matrix involved in this process. Another approach is to work with the compact representation of the spatial discretization to obtain the compact implicit integration factor method, with reduced costs of storage and processing then those of IIF method. In this paper, we present this procedure along with computational experiments in two and three dimensional domains for different equations in order to test the effectiveness of each method. Application examples of the procedure are linear reaction-diffusion problems, Allen-Cahn, Ginzburg Landau Schnackenberg FitzHugh-Nagumo and discussed in order to demonstrate the applicability of the method.
Keywords: Fator de integração implícito
Fator de integração implícito de Krylov
Fator de integração implícito compacto
Reação-difusão
Implicit Integration Factor
Krylov Implicit Integration Factor
Implicit Integration Factor Compact
Reaction-Diffusion
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA
Language: por
Country: Brasil
Publisher: Universidade Federal de Juiz de Fora (UFJF)
Institution Initials: UFJF
Department: ICE – Instituto de Ciências Exatas
Program: Programa de Pós-graduação em Modelagem Computacional
Access Type: Acesso Aberto
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/4094
Issue Date: 14-Sep-2016
Appears in Collections:Mestrado em Modelagem Computacional (Dissertações)



Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.