Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/391
Files in This Item:
File Description SizeFormat 
eduardochinelatecosta.pdf997.87 kBAdobe PDFThumbnail
View/Open
Type: Dissertação
Title: Centralidade de tempo em grafos variantes no tempo
Author: Costa, Eduardo Chinelate
First Advisor: Vieira, Alex Borges
Co-Advisor: Silva, Ana Paula Couto da
Referee Member: Ziviani, Artur
Referee Member: Fonseca Neto, Raul
Resumo: Atualmente, há um grande interesse em investigar a dinâmica em Grafos Variantes no Tempo (GVTs). Esses grafos contemplam a evolução temporal, tanto de nós, quanto de arestas. Nesse cenário, de maneira similar a grafos estáticos, o conceito de centralidade geralmente se refere a métricas que avaliam a importância relativa dos vértices. Entretanto, GVTs possibilitam a avaliação da importância dos instantes de tempo (ou estados) de um grafo ao longo de sua existência. Determinar instantes de tempo importantes nesse contexto pode ter aplicações práticas fortes, sendo particularmente úteis para definir melhores momentos para difusão, gerar modelos e prever o comportamento de GVTs. Neste trabalho, nós definimos Centralidade de Tempo em Grafos Variantes no Tempo. A centralidade de tempo avalia a importância relativa dos instantes de tempo. São apresentadas duas métricas de centralidade de tempo voltadas a processos de difusão de informação e uma métrica baseada na disposição das conexões da rede. As métricas foram avaliadas em um conjunto de dados real. Os resultados mostram que os instantes de tempo melhor classificados, de acordo com as métricas criadas, podem tornar o processo de difusão mais rápido e eficiente. Comparado com uma escolha aleatória, o processo de difusão iniciado nos instantes de tempo mais bem classificados pode ser até 2,5 vezes mais rápido, e também pode atingir praticamente o dobro do número de nós na rede em alguns casos.
Abstract: Currently, there is a great interest in investigating dynamics in Time-Varying Graphs (TVGs). These graphs contemplate the temporal evolution, both nodes and edges. In this scenario, similar to static graphs, centrality usually refers to metrics that assess the relative importance of vertices. However, in TVGs it is possible to assess the importance of time instants (or states) of a graph throughout its existence. Determining important time instants in this context may have strong practical applications and is particularly useful for defining best times to spread, generate models and predict the behavior of TVGs. In this paper, we define time centrality in Time-Varying Graphs. Time centrality evaluates the relative importance of time instants. We present two time centrality metrics focused on information dissemination processes and another based on layout of network connections.. We evaluate metrics we define relying in a real dataset from an hospital environment. Our results show that the best classified time instants, according to created metrics, can make a faster and more efficient diffusion process. Compared to a random choice, the diffusion process starting at best rated time instants can up to 2.5 times faster, and it also can reach almost double the number of nodes in the network in some cases.
Keywords: Grafos Variantes no Tempo
Processo de Difusão de Informação
Centralidade de Tempo
Time-Varying Graphs
Information Diffusion Process
Time Centrality
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Language: por
Country: Brasil
Publisher: Universidade Federal de Juiz de Fora
Institution Initials: UFJF
Department: ICE – Instituto de Ciências Exatas
Program: Programa de Pós-graduação em Ciência da Computação
Access Type: Acesso Aberto
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/391
Issue Date: 23-Feb-2015
Appears in Collections:Mestrado em Ciência da Computação (Dissertações)



Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.