https://repositorio.ufjf.br/jspui/handle/ufjf/3551
File | Description | Size | Format | |
---|---|---|---|---|
carlarezendebarbosabonin.pdf | 3.25 MB | Adobe PDF | View/Open |
Type: | Dissertação |
Title: | Modelagem matemático-computacional da resposta imune à vacina de febre amarela |
Author: | Bonin, Carla Rezende Barbosa |
First Advisor: | Lobosco, Marcelo |
Co-Advisor: | Santos, Rodrigo Weber dos |
Co-Advisor: | Fernandes, Guilherme Côrtes |
Referee Member: | Muñoz, Sergio Alonso |
Referee Member: | Camacho, Luiz Antonio Bastos |
Referee Member: | Bastos, Flávia de Souza |
Resumo: | Desde 1937 está disponível uma vacina eficaz contra febre amarela. Ainda assim, questões relativas a seu uso permanecem pouco entendidas, como, por exemplo, a necessidade da dose reforço a cada dez anos. O objetivo deste trabalho é demonstrar que ferramentas matemático-computacionais podem ser utilizadas para simular diferentes cenários referentes à vacinação e aos indivíduos a fim de auxiliar a busca pelas respostas de algumas destas questões em aberto. Neste contexto, este trabalho apresenta um modelo matemático-computacional da resposta imune humana à vacinação contra febre amarela. O modelo leva em conta importantes células dos sistemas inato e adaptativo, como células apresentadoras de antígeno, anticorpos, células B e células T (CD4+ e CD8+). Também são consideradas populações de células de memória, importantes na aquisição da imunidade conferida pela vacina. O modelo foi capaz de gerar curvas de anticorpos que estão de acordo com dados experimentais, além de representar o comportamento de diversas populações importantes do sistema imune de acordo com o que é esperado pela literatura. Este é o início de um caminho que, em um cenário ideal, permitirá simular diferentes situações relacionadas ao emprego da vacina contra febre amarela, como sua aplicação em indivíduos com imunodeficiências, diferentes estratégias de vacinação, duração da imunidade e necessidade de dose reforço. |
Abstract: | An effective vaccine against yellow fever is available since 1937, but some issues regarding its use remain poorly understood, for example, the need for a booster dose every ten years. The objective of this study is to demonstrate that mathematical-computational tools can be used to simulate distinct scenarios related both to vaccination and individuals in order to assist the search for the answers to some of these open issues. In this context, this study presents a mathematical-computational model of the human immune response to vaccination against yellow fever. The model takes into account important cells of the innate and adaptive systems, such as antigen presenting cells, antibodies, B cells and T cells (CD4 + and CD8 +). Memory cell populations, important on the immunity induced by a vaccine, were also considered in the model. The model was able to generate antibodies curves which are in accordance with experimental data as well as to represent the behavior of several important populations of the immune system according to the results of the literature surveyed. This is the first step towards an ideal scenario where it will be possible to simulate distinct situations related to the use of yellow fever vaccine, as its application in immunodeficient individuals, different vaccination strategies, duration of immunity and the need for a booster dose. |
Keywords: | Vacina Febre amarela Modelagem matemática Modelagem computacional Sistema imune Equações diferenciais ordinárias Vaccine Yellow fever Mathematical modeling Computational modeling Immune system Ordinary Differential Equations |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA |
Language: | por |
Country: | Brasil |
Publisher: | Universidade Federal de Juiz de Fora (UFJF) |
Institution Initials: | UFJF |
Department: | ICE – Instituto de Ciências Exatas |
Program: | Programa de Pós-graduação em Modelagem Computacional |
Access Type: | Acesso Aberto |
URI: | https://repositorio.ufjf.br/jspui/handle/ufjf/3551 |
Issue Date: | 26-Feb-2015 |
Appears in Collections: | Mestrado em Modelagem Computacional (Dissertações) |
Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.