https://repositorio.ufjf.br/jspui/handle/ufjf/3511
File | Description | Size | Format | |
---|---|---|---|---|
guilhermeguilherminoneto.pdf | 1.16 MB | Adobe PDF | View/Open |
Type: | Dissertação |
Title: | Métodos univariados e multivariados para previsão da demanda de energia elétrica em curto prazo: um estudo comparativo |
Author: | Guilhermino Neto, Guilherme |
First Advisor: | Hippert, Henrique Steinherz |
Referee Member: | Vieira, Marcel de Toledo |
Referee Member: | Falco, Glaucia de Paula |
Resumo: | Previsões de demanda em curto prazo são fundamentais para o planejamento e o controle da produção em sistemas de energia elétrica. Como não é viável manter estoques de segurança para compensar demandas inesperadas, a programação da geração é baseada em previsões feitas com antecedência de algumas horas. Ao longo dos anos, muitos métodos foram testados para a resolução do problema. Dentre os mais populares estão os univariados, em que a demanda é escrita como uma função linear de seu comportamento histórico e prevista por técnicas estatísticas. Também é frequente o uso de métodos multivariados, que levam em conta o efeito não- linear de variáveis climáticas, como a temperatura do ar, sobre o comportamento do consumidor. Para este caso, a literatura recente sugere o uso de previsores de inteligência computacional, como as redes neurais artificiais. Embora alguns autores afirmem que deve-se considerar métodos multivariados, outros defendem que, para previsões de curto prazo (horizonte de poucas horas), a inclusão de variáveis climáticas traz poucos benefícios, posto que seus efeitos levam mais tempo para serem percebidos. Neste trabalho, experimentamos diversos métodos univariados e multivariados a fim de comparar seu desempenho sobre uma base de dados da cidade do Rio de Janeiro. Para estes dados, mostramos que é possível obter, por meio de um simples previsor linear univariado (um modelo de curva de carga cuja componente-padrão é prevista pelo amortecimento de Holt-Winters-Taylor), resultados próximos aos de técnicas mais complexas, porém, com as vantagens de maior robustez, parcimônia e economia de recursos computacionais. |
Abstract: | Short-term demand forecasts a are vital part of the production plan and control on electrical power systems. As it is not possible to keep large inventories to meet sudden demand increases, the generation scheduling is based on forecasts made for some hours ahead. Throughout the years, many methods have been proposed in order to solve the problem. Among the most popular are the univariate ones, on which the demand is written as a linear function of its historical behavior and forecast by statistical techniques. It is also common to use multivariate methods, which take into account also the nonlinear effects produced on the demand by weather-related variables, such as the air temperature. For this case, recent papers suggest the use of computational intelligence devices, such as artificial neural networks. Although some authors claim that multivariate methods must be considered, some others state that, on a short-run (lead-times up to a few hours), adding weather-related variables brings little benefits, because its effects might take a longer time to affect the demand. On this work, we experiment a large amount of univariate and multivariate methods aiming to compare its performance over a dataset from the city of Rio de Janeiro. For these data, we show that is possible to obtain, via a simple linear univariate method (a load curve model where the standard load is forecast by the Holt-Winters-Taylor smoothing), results that are close enough to those achieved by more complex techniques, but bringing the advantages of more robustness, parsimony and computational economy. |
Keywords: | Previsão de demanda Energia elétrica Amortecimento exponencial Redes neurais Load forecasting Electrical energy Exponential smoothing Neural networks |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA |
Language: | por |
Country: | Brasil |
Publisher: | Universidade Federal de Juiz de Fora (UFJF) |
Institution Initials: | UFJF |
Department: | ICE – Instituto de Ciências Exatas |
Program: | Programa de Pós-graduação em Modelagem Computacional |
Access Type: | Acesso Aberto |
URI: | https://repositorio.ufjf.br/jspui/handle/ufjf/3511 |
Issue Date: | 20-Aug-2014 |
Appears in Collections: | Mestrado em Modelagem Computacional (Dissertações) |
Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.