Use este identificador para citar ou linkar para este item: https://repositorio.ufjf.br/jspui/handle/ufjf/16916
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
karlagabrieleflorentinodasilva.pdf8.44 MBAdobe PDFThumbnail
Visualizar/Abrir
Tipo: Dissertação
Título: Uma base de imagens de folhas de feijão e uma rede neural profunda para estimativa não-destrutiva de área foliar
Autor(es): Silva, Karla Gabriele Florentino da
Primeiro Orientador: Vieira, Marcelo Bernardes
Co-orientador: Maciel, Luiz Maurílio da Silva
Membro da banca: Villela, Saulo Moraes
Membro da banca: Pedrini, Hélio
Resumo: As folhas desempenham papel fundamental para o corpo vegetal ao realizarem fotossíntese e as características morfológicas (e.g., área foliar) associadas a sua superfície são parâmetros que podem contribuir para explicar respostas a diversos processos, como mudanças climáticas, relações ecológicas e produtividade agrícola. Porém, a maioria dos métodos para medição das dimensões de superfícies foliares existentes são trabalhosos e onerosos. Além de utilizarem muitas das vezes abordagens destrutivas que impossibilitam acompanhar o crescimento da planta. Neste contexto, construiu-se uma nova base de imagens anotadas para estimativa não destrutiva das dimensões (área, largura, comprimento e perímetro) de superfícies de folhas de feijão, com base em um marcador de realidade virtual adicionado na cena. A construção do conjunto de dados envolveu um processo de plantio, aquisição de imagens, colheita das folhas, medição manual das dimensões reais, segmentação semi-automática e estimativa de pose do marcador. Além disso, desenvolveu-se uma nova rede neural profunda que receba uma imagem de entrada contendo uma folha saliente acompanhada de um marcador, e retorne a estimativa da área foliar pela comparação entre as proporções dos dois objetos na imagem. O modelo proposto é baseado na arquitetura de uma rede neural de segmentação semântica. A hipótese principal é que é possível adaptar uma rede neural convolucional para realizar a regressão da área dos pixels da imagem. Assim, propõe-se um novo módulo decodificador para a rede, utilizado para remapear a representação da imagem na estimativa da área relativa dos objetos de interesse, folha e marcador. O modelo apresentado é composto por um codificador e dois decodificadores, que estimam a segmentação da imagem e a área dos pixels dos objetos de interesse. Também define-se uma forma para calcular a perda deste decodificador e critérios para seleção do melhor modelo. Para determinar a viabilidade da proposta realiza-se uma análise extensiva, em termos quantitativos e qualitativos, do comportamento das predições do modelo para 1033 imagens de 90 folhas distintas. Os resultados obtidos evidenciam que o modelo é capaz de aprender a estimar a área dos objetos de interesse tendo apenas uma imagem de entrada.
Abstract: Leaves perform a fundamental role for the plant body doing photosynthesis and morphological characteristics (e.g., leaf area) associated with its surface are parameters that could help explain responses to various processes, such as climate change, ecological relationships, and agricultural productivity. Most of the existing methods for measuring leaf surface dimensions are expensive and often complicated. In addition, it commonly uses destructive approaches that make it impossible to monitor plant growth. In this context, a new database with annotated images was constructed for non-destructive estimation of bean leaf dimensions (area, width, length, and perimeter), based on a virtual reality marker added to the scene. The construction of the database involved a process of planting, image acquisition, leaf picking, manual measurement, semi-automatic segmentation, and marker pose estimation. Furthermore, a new deep neural network was developed that receives one input image containing a salient leaf accompanied by a marker and provides relative leaf area by comparing the proportions of both objects in the image. The proposed method is based on the architecture of a semantic segmentation neural network. The main hypothesis is that is possible to adapt a convolutional neural network to regress image pixels area. Thus, a new decoder module is proposed for the network, used to remap image representation on relative area estimation of the objects of interest, leaf and marker. The model presented is composed of one encoder and two decoders, which estimate the image segmentation and the pixels area of the objects of interest. A way of calculating the loss of the decoder and selection criteria for the best model are also defined. For proposal viability determination, an extensive quantitative and qualitative analysis is performed with the model’s predictions on 1033 images of 90 different leaves. Results indicate that the model is capable of learning to estimate the area of the objects of interest with only one input image.
Palavras-chave: Rede neural
Aprendizado profundo
Área foliar
Base de imagens
Método não destrutivo
Neural network
Deep learning
Leaf area
Image database
Nondestructive method
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editor: Universidade Federal de Juiz de Fora (UFJF)
Sigla da Instituição: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Ciência da Computação
Tipo de Acesso: Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazil
Licenças Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/br/
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/16916
Data do documento: 21-Dez-2023
Aparece nas coleções:Mestrado em Ciência da Computação (Dissertações)



Este item está licenciado sob uma Licença Creative Commons Creative Commons