https://repositorio.ufjf.br/jspui/handle/ufjf/15804
File | Description | Size | Format | |
---|---|---|---|---|
thalesschuabbdeaalmeida.pdf | 1.13 MB | Adobe PDF | View/Open |
Type: | Dissertação |
Title: | Estimação de estados multi-área de sistemas de distribuição de energia elétrica com suporte de redes neurais artificiais considerando variações topológicas e erros grosseiros |
Author: | Almeida, Thales Schuabb de |
First Advisor: | Oliveira, Leonardo Willer de |
Co-Advisor: | Oliveira, Edimar José de |
Co-Advisor: | Souza, Julio Cesar Stacchini de |
Referee Member: | Rocha, Helder Roberto de Oliveira |
Referee Member: | Melo, Igor Delgado de |
Resumo: | O presente trabalho apresenta uma metodologia para Estimação de Estados (EE) de Sistemas de Distribuição de Energia Elétrica (SDEE) baseada no uso de Redes Neurais Artificiais (RNA), considerando a divisão do SDEE em áreas, e realizando sua estimação a partir de RNA separadas para cada área, caracterizando a estimação multi-áreas. As estimações são realizadas a partir de poucas medições de variáveis elétricas da rede, obtidas a partir de Unidades de Medição Fasoriais, do inglês Phasor Measurement Units (PMU) ou de Medidores Inteligentes (MI). As RNA são treinadas a partir de padrões de medições e os referentes estados reais da rede elétrica, se tornando capazes de estimar estados para novas medições futuras não observadas durante seu treinamento. A modelagem dos SDEE considera variações topológicas, que são identificadas a partir do monitoramento dos estados das chaves da rede, e também englobam as variáveis alimentadas às RNA para realizar a estimação. Além disso, a metodologia também contempla métodos de detecção e correção tanto de erros grosseiros nas medidas das variáveis elétricas, quanto na aquisição dos estados das chaves do SDEE, de modo a garantir maior robustez do estimador frente à ocorrência de erros grosseiros nas medições. Por fim, as estimações realizadas nos estimadores de cada área são enviadas a um agente central responsável pelo sincronismo das variáveis elétricas estimadas para formar o estado atual estimado do SDEE completo. Testes foram realizados considerando dois sistemas de teste frequentemente utilizados na literatura, além de um sistema real brasileiro simulado computacionalmente. As implementações foram realizadas no software MATLAB, e os resultados obtidos apontam a eficácia da metodologia para realizar a estimação das redes testadas considerando variações de carga, variações topológicas, e tratamento dos erros grosseiros detectados durante o monitoramento. |
Abstract: | This work presents a methodology for State Estimation (SE) of Electrical Distribution Systems (EDS) based on Artificial Neural Networks (ANN), considering the division of EDS into different areas, and performing the estimation using separate ANN for each area, characterizing Multi-Area State Estimation (MASE). The estimations are performed using few electrical measurements obtained from Phasor Measurement Units or Smart Meters. The ANN are trained considering the measurement patterns and their related true states of the electrical network, becoming able to estimate state for future measurements not observed during the trainning process. The EDS modeling considers topology changes, which are identified by monitoring the network switches status, and also encompass the input variables of the ANN. Furthermore, the methodology also includes methods for detection and correction of gross erros on the electrical measurements and monitored switch status, as to ensure the estimatitor robustness against gross errors on the measurements. Lastly, the estimations performed by each area’s estimators are sent to a central agent responsible for synchronizing the estimated electrical variables and composing the estimated state of the EDS as a whole. Tests were performed considering two networks frequently used on the literature, and also on a real brazilian network computationally simulated. The implementations were performed using the MATLAB software, and the obtained results showcase the methodology effectiveness for state estimation considering load variations, topology changes, and gross errors detected during monitoring. |
Keywords: | Estimação de estados multi-área Sistemas de distribuição de energia elétrica Redes neurais artificiais Variações topológicas Erros grosseiros Multi-area state estimation Electrical distribution systems Artificial neural networks Topology changes Gross errors |
CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
Language: | por |
Country: | Brasil |
Publisher: | Universidade Federal de Juiz de Fora (UFJF) |
Institution Initials: | UFJF |
Department: | Faculdade de Engenharia |
Program: | Programa de Pós-graduação em Engenharia Elétrica |
Access Type: | Acesso Aberto Attribution 3.0 Brazil |
Creative Commons License: | http://creativecommons.org/licenses/by/3.0/br/ |
URI: | https://repositorio.ufjf.br/jspui/handle/ufjf/15804 |
Issue Date: | 23-May-2023 |
Appears in Collections: | Mestrado em Engenharia Elétrica (Dissertações) |
This item is licensed under a Creative Commons License