Use este identificador para citar ou linkar para este item: https://repositorio.ufjf.br/jspui/handle/ufjf/15482
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
feliperafaeldesouza.pdf2.77 MBAdobe PDFThumbnail
Visualizar/Abrir
Tipo: Dissertação
Título: Aprendizado por reforço assistido por imitação para jogos digitais
Autor(es): Souza, Felipe Rafael de
Primeiro Orientador: Bernardino, Heder Soares
Membro da banca: Fonseca, Leonardo Goliatt da
Membro da banca: Silva, Eduardo Krempser da
Resumo: O Aprendizado por Reforço (RL) e o Aprendizado por Imitação (IL) são ramos da Inteligência Artificial que possibilitam o aprendizado através da interação com o ambiente e através da observação de exemplos, respectivamente. Eles possuem aplicações em diversas áreas, tais como: veículos autônomos, controle de robôs e jogos. Os jogos são amplamente utilizados para testar o desempenho de modelos de Aprendizado por Reforço, geralmente utilizando redes neurais profundas, pois proporcionam um ambiente controlado capaz de expor o modelo à uma ampla variedade de problemas e contextos. Dessa forma, o presente trabalho tem como objetivo propor modelos de controle para o jogo Sonic The Hedgehog utilizando Aprendizado por Imitação e Aprendizado por Reforço Profundo. Além disso, busca-se analisar o desempenho de modelos de imitação baseados em estratégias adversariais, investigar o impacto da imitação no comportamento e desempenho do modelo, e verificar se o Aprendizado por Imitação pode ser uma alternativa viável à criação de funções de recompensa. Foram realizados experimentos comparando diversos métodos de IL, a fim de verificar se o mesmo seria capaz de gerar bons controladores para o jogo. Em seguida, os métodos de IL de clonagem comportamental, Aprendizado por Imitação Generativo Adversarial e Aprendizado por Reforço Inverso Adversarial foram utilizados para iniciar o RL, com a hipótese de que o conhecimento prévio de domínio disponibilizado pela imitação auxilie o modelo a atingir melhores resultados. Os resultados obtidos mostraram que o IL pode ser utilizado para gerar controladores de jogos digitais e que a inicialização da etapa de RL com o Aprendizado por Imitação pode ajudar o modelo a obter melhor desempenho.
Abstract: Reinforcement Learning (RL) and Imitation Learning (IL) are branches of Artificial Intelligence that enable learning through interaction with the environment and through observation of examples, respectively. They have applications in several areas, such as: autonomous vehicles, robot control and games. Games are widely used to test the performance of Reinforcement Learning models, usually using deep neural networks, as they provide a controlled environment capable of exposing the model to a wide variety of problems and contexts. Thus, the present work aims to propose control models for the game Sonic The Hedgehog using Imitation Learning and Deep Reinforcement Learning. In addition, we seek to analyze the performance of imitation models based on adversarial strategies, investigate the impact of imitation on the model’s behavior and performance, and verify whether Imitation Learning can be a viable alternative to creating reward functions. Experiments were carried out comparing different IL methods, in order to verify if it would be able to generate good controllers for the game. Then, the IL methods of behavioral cloning, Adversarial Generative Imitation Learning and Adversarial Inverse Reinforcement Learning were used to start the RL, with the hypothesis that the prior domain knowledge provided by imitation helps the model to achieve better results. The obtained results showed that the IL can be used to generate digital game controllers and that the initialization of the RL step with Imitation Learning can help the model to obtain better performance.
Palavras-chave: Aprendizado por reforço profundo
Redes neurais convolucionais
Redes neurais adversariais
Aprendizado por imitação
Aprendizado por reforço inverso
Otimização de política proximal
Deep reinforcement learning
Convolutional neural networks
Adversarial neural networks
Imitation learning
Inverse reinforcement learning
Proximal policy optimization
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA
Idioma: por
País: Brasil
Editor: Universidade Federal de Juiz de Fora (UFJF)
Sigla da Instituição: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Modelagem Computacional
Tipo de Acesso: Acesso Aberto
Attribution 3.0 Brazil
Licenças Creative Commons: http://creativecommons.org/licenses/by/3.0/br/
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/15482
Data do documento: 15-Mar-2023
Aparece nas coleções:Mestrado em Modelagem Computacional (Dissertações)



Este item está licenciado sob uma Licença Creative Commons Creative Commons