Use este identificador para citar ou linkar para este item: https://repositorio.ufjf.br/jspui/handle/ufjf/15282
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
felipesouzaamaral.pdf587.89 kBAdobe PDFThumbnail
Visualizar/Abrir
Tipo: Dissertação
Título: Um classificador baseado na profundidade de Tukey para geração de uma aproximação do ponto de Bayes
Autor(es): Amaral, Felipe Souza
Primeiro Orientador: Fonseca Neto, Raul
Co-orientador: Villela, Saulo Moraes
Membro da banca: Borges, Carlos CrisƟano Hasenclever
Membro da banca: Costa, Marcelo Azevedo
Resumo: Comitês (ensembles) para a criação de classificadores, no campo de aprendizado de máquina, têm sido largamente usados por serem uma via mais eficaz e mais acurada, ao se comparar a um único classificador. Esse aumento na acurácia dos comitês está diretamente relacionado à capacidade de combinar os conhecimentos aprendido de componentes do classificador para gerar uma solução que supera as soluções de cada indivíduo. Um comitê pode ser interpretado como um conjunto de membros, por essa ótica, pode-se relacionar com o campo da estatística e portanto aplicar conceitos de profundidade de dados nesses membros. Uma concepção bastante conhecida é a profundidade de Tukey, também conhecida como profundidade de meio espaço, que é definida como a menor área de probabilidade de um meio espaço fechado que contenha o ponto analisado, resultando assim as profundidades dos dados em um conjunto multivariado. O ponto mais profundo em relação à profundidade de Tukey é comumente visto como a mediana de Tukey. Este trabalho tem como objetivo desenvolver ferramentas e análises para aplicar em um comitê de classificadores, sendo o espaço de versões criado através de Perceptrons balanceados, buscando encontrar o representante que mais ganha nas votações ocorridas, ou o membro considerado mais profundo, cunhando assim o Perceptron de Tukey, além de apresentar algoritmos, baseados nos conceitos de buscas em profundidade e largura, para identificação do membro mais ganhador da votações realizadas. Um estudo experimental foi conduzido para avaliação dos métodos propostos e os resultados mostram que os métodos apresentados são capazes de superar, na maior parte dos casos, outros algoritmos, como a Máquina de Vetores Suporte, Máquina de Ponto de Bayes, Máquina de Redução do Espaço de Versões e Classificador Evolucionário de Centro Analítico.
Abstract: Ensembles for creating classifiers, in the area of machine learning, have been widely used since they are a more efficient and more accurate way when compared to a single classifier. This increase in the accuracy of ensembles is directly related to the capacity to combine the acquired knowledge from the classifier components to generate a solution that surpasses the solutions of each individual. An ensemble can be understood as a group of members and, from that point of view, it can be related to the field of statistics and, therefore, apply concepts of depth data to these members. A well-known concept is Tukey’s depth, also known as the half-space depth, which is defined as the smallest area of the probability of a closed half-space that contains an analyzed point, thus resulting in the depths of data in a multivariate group. The deepest point regarding Tukey’s depth is commonly seen as Tukey’s median. This dissertation has as its main objective to develop tools and analyses to be applied to an ensemble of classifiers, being the version space created from balanced Perceptrons, aiming to find the representative member that wins the most in the voting or the deepest member, then coining Tukey’s Perceptron, besides presenting the algorithms based on the concepts of the depth-first search and breadth-first search for identifying the winner with most votes. An experimental study has been performed to evaluate the proposed methods, and the results show that the introduced methods are able to overcome, in most cases, other algorithms such as Support Vector Machine, Bayes Point Machine, Version Space Reduction Machine, and Evolutionary Analytic Center Classifier.
Palavras-chave: Comitês
Perceptron
Profundidade de Tukey
Mediana de Tukey
Ensembles
Perceptron
Tukey’s median
Tukey’s depth
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editor: Universidade Federal de Juiz de Fora (UFJF)
Sigla da Instituição: UFJF
Departamento: ICE – Instituto de Ciências Exatas
Programa: Programa de Pós-graduação em Ciência da Computação
Tipo de Acesso: Acesso Aberto
Attribution 3.0 Brazil
Licenças Creative Commons: http://creativecommons.org/licenses/by/3.0/br/
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/15282
Data do documento: 11-Mar-2022
Aparece nas coleções:Mestrado em Ciência da Computação (Dissertações)



Este item está licenciado sob uma Licença Creative Commons Creative Commons