Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/12753
Files in This Item:
File Description SizeFormat 
fabianebarbosadonascimento.pdf1.67 MBAdobe PDFThumbnail
View/Open
Type: Dissertação
Title: Estratégias de predição de preços do mercado livre de energia por redes neurais artificiais e filtragem estocástica
Author: Nascimento, Fabiane Barbosa do
First Advisor: Oliveira, Leonardo Willer de
Co-Advisor: Silva Junior, Ivo Chaves da
Referee Member: Ferreira, Vitor Hugo
Referee Member: Marcato, André Luís Marques
Referee Member: Olivi, Leonardo Rocha
Resumo: O Preço de Liquidação das Diferenças (PLD) é utilizado como base na comercialização de energia elétrica no mercado de curto prazo. O conhecimento dos seus valores futuros e tendências reduz a insegurança na tomada de decisões, permitindo que os agentes de mercado decidam as estratégias mais adequadas e estabeleçam contratações bem-sucedidas, maximizando os lucros e minimizando os riscos de seus empreendimentos. O PLD é, no entanto, influenciado por diversos fatores ligados principalmente às incertezas das demandas e à hidrologia bem como fatores sociais e políticos, o que lhe confere alta volatilidade, sazonalidade, saturação de valores e comportamento estocástico. Desta forma, o presente trabalho propõe uma abordagem investigativa para a predição das tendências futuras do PLD por meio de Redes Neurais Artificiais e Filtragem Estocástica, com a motivação de auxiliar o processo de decisão da compra de energia no mercado de curto prazo. Tal abordagem consiste na combinação de uma rede neural do tipo recorrente com um filtro na saída para atenuar os ruídos inerentes aos dados auxiliando na preservação das tendências dos dados futuros. A rede foi treinada por meio do algoritmo ADAM e é aplicada ao mercado brasileiro de energia. A escolha dos dados de entrada da rede foi feita a partir de análises estatísticas de correlação cruzada entre as séries temporais das variáveis de interesse. Os resultados mostram uma boa capacidade de predição com um bom acompanhamento das tendências da variável de interesse ao longo do ano, oferecendo seus principais comportamentos e tendências aos operadores de mercado, auxiliando-os nas tomadas de decisões de compra e venda de energia.
Abstract: The Settlement Price of Differences (PLD) is used as a basis for the sale of electrical energy in the short-term market. The knowledge of its future values and trends mitigates insecurity in decision making, allowing market agents to decide the most appropriate strategies and establish successful contracts, maximizing profits and minimizing the risks of their ventures. PLD is, however, influenced by several factors linked mainly to the uncertainties of demands and hydrology as well as social and political factors, which gives it high volatility, seasonality, saturation of values and stochastic behavior. In this way, the present work proposes an investigative approach for the prediction of future trends of PLD through Artificial Neural Networks and Stochastic Filtration, with the motivation to assist the decision process of purchasing energy in the short-term market. Such an approach consists of combining a recurrent neural network with an output filter to attenuate the noise inherent in the data, helping to preserve future data trends. The network was trained using the ADAM algorithm and is applied to the Brazilian energy market. The choice of network input data was made based on statistical analyzes of cross-correlation between the time series of the variables of interest. The results show a good predictive capacity with a good monitoring of the trends of the variable of interest throughout the year, offering its main behaviors and trends to market operators, assisting them in making energy purchase and sale decisions.
Keywords: Preço de liquidação das diferenças
Modelos de predição
Predição de séries temporais
Redes neurais artificiais
Filtragem estocástica
Settlement price of differences
Forecasting models
Time series forecasting
Artificial neural networks
Stochastic filtering
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Language: por
Country: Brasil
Publisher: Universidade Federal de Juiz de Fora (UFJF)
Institution Initials: UFJF
Department: Faculdade de Engenharia
Program: Programa de Pós-graduação em Engenharia Elétrica
Access Type: Acesso Aberto
Attribution-NonCommercial-NoDerivs 3.0 Brazil
Creative Commons License: http://creativecommons.org/licenses/by-nc-nd/3.0/br/
DOI: https://doi.org/10.34019/ufjf/di/2021/00065
URI: https://repositorio.ufjf.br/jspui/handle/ufjf/12753
Issue Date: 27-Mar-2021
Appears in Collections:Mestrado em Engenharia Elétrica (Dissertações)



This item is licensed under a Creative Commons License Creative Commons