https://repositorio.ufjf.br/jspui/handle/ufjf/12133
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
pedrogabrieldasilvaguimarães.pdf | PDF/A | 2.71 MB | Adobe PDF | Visualizar/Abrir |
Tipo: | Dissertação |
Título: | Otimização multiobjetivo do leito de fusão para altos-fornos |
Autor(es): | Guimarães, Pedro Gabriel da Silva |
Primeiro Orientador: | Borges, Carlos Cristiano H. |
Co-orientador: | Arbex, Wagner Antônio |
Membro da banca: | Fonseca Neto, Raul |
Membro da banca: | Santo, Marcelo Costa Pinto e |
Resumo: | Neste trabalho é apresentado um modelo de otimização multiobjetivo para apoiar no orçamento de cargas para o consumo em altos-fornos na fabricação de ferro-gusa, principal material na produção do aço. Dado um conjunto de matérias-primas e restrições de fabricação como disponibilidade dos materiais, características objetivadas para o produto final, etc, deseja-se calcular a quantidade de cada matéria-prima a ser enfornada que gere as soluções com os menores custos e desperdício. Devido ao interesse em objetivos conflitantes, um modelo evolutivo multiobjetivo foi desenvolvido com o acoplamento de componentes específicos construídos com base nas características das variáveis de decisão que compõem o problema, estas que se dividem em variáveis com normalização e sem normalização. Desta forma, modelos de projeção das variáveis são apresentados em conjunto com uma estratégia de evolução intra-indivíduo, visando um incremento na eficiência e qualidade das soluções obtidas. A evolução intra-indivíduo consiste em etapas que envolvem mutação por permutação, um método de projeção específico e uma otimização secundária em parte das variáveis de decisão, construída por meio de um modelo de inteligência de enxame, o algoritmo de enxame de partículas (PSO). O modelo mostrou-se ser bastante efetivo e útil ao imprimir vários cenários de maneira rápida para auxiliar na tomada de decisões para o orçamento de matérias-primas. |
Abstract: | In this work is presented a multi-objective optimization model to support the raw materials budget for blast furnaces consumption in the production of pig-iron, main material for steel making. Given a set of materials and fabrication constraints, such as materials availability, their chemical compositions, required features for the final product, etc, the objective of the model is to find the amount of each material that generates the lowest cost and wasteful solutions. Due to the interest in conflicting objectives, an evolutionary multi-objective model has been developed associated with specific components, built on the characteristics of decision variables that formulate the problem, in which those are divided in variables with normalization and without normalization. Thus, variable projections models are presented together with an intra-individual evolution strategy, aiming to increment efficiency and quality in the obtained solutions. The intra-individual evolution consists of stages that involve mutation by permutation, a specific projection method, and a secondary optimization, which was built by means of a swarm inteligent algorithm, the Particle Swarm Optimization. The model has shown to be very effective and useful in printing several scenarios in a swift way to aid in decisions making for the raw materials budget. |
Palavras-chave: | Alto-forno Leito de fusão Otimização multiobjetivo Algoritmo genético Problemas de misturas Plano simplex Enxame de partículas Blast furnace Multi-objective optimization Genetic algorithm Mixture problems Simplex Particle swarm optimization |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal de Juiz de Fora (UFJF) |
Sigla da Instituição: | UFJF |
Departamento: | ICE – Instituto de Ciências Exatas |
Programa: | Programa de Pós-graduação em Ciência da Computação |
Tipo de Acesso: | Acesso Aberto Attribution-ShareAlike 3.0 Brazil |
Licenças Creative Commons: | http://creativecommons.org/licenses/by-sa/3.0/br/ |
URI: | https://repositorio.ufjf.br/jspui/handle/ufjf/12133 |
Data do documento: | 2-Set-2019 |
Aparece nas coleções: | Mestrado em Ciência da Computação (Dissertações) |
Este item está licenciado sob uma Licença Creative Commons