https://repositorio.ufjf.br/jspui/handle/ufjf/6816
File | Description | Size | Format | |
---|---|---|---|---|
joaodanielmadureirayamim.pdf | 852.86 kB | Adobe PDF | View/Open |
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor1 | Borges, Carlos Cristiano Hasenclever | - |
dc.contributor.advisor1Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728257U5 | pt_BR |
dc.contributor.advisor-co1 | Fonseca Neto, Raul | - |
dc.contributor.advisor-co1Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786482Y2 | pt_BR |
dc.contributor.referee1 | Perobelli, Fernanda Finotti Cordeiro | - |
dc.contributor.referee1Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4706392H0 | pt_BR |
dc.contributor.referee2 | Oliveira, Fabrízzio Condé de | - |
dc.contributor.referee2Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766245H8 | pt_BR |
dc.creator | Yamim, João Daniel Madureira | - |
dc.creator.Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8565409P1 | pt_BR |
dc.date.accessioned | 2018-05-24T17:47:46Z | - |
dc.date.available | 2018-05-23 | - |
dc.date.available | 2018-05-24T17:47:46Z | - |
dc.date.issued | 2018-02-23 | - |
dc.identifier.uri | https://repositorio.ufjf.br/jspui/handle/ufjf/6816 | - |
dc.description.abstract | Since the seminal work of Harry Markowitz (1952), which initiated the modern theory of portfolios, the strategies of portfolio allocation were extensively discussed in economic literature. With the development of online optimization techniques, dynamic learning algorithms emerged as an effective approach to develop investment portfolios (COVER, 1991; ARGAWAL et al., 2006). However, there are few attempts aiming to connect the traditional literature of portfolio investment, which evolved based on Markowitz (1952) work, with the recent online methods, developed from Cover (1991). The main objec-tive of this work is to implement online convex optimization techniques to: (i) perform strategies of portfolio allocation; (ii) couple these algorithms with risk factors used in traditional models. Two methods of online algorithms were implemented and adapted, the Online Gradient Descendent (OGD) and the Online Newton Step (ONS). Besides, two new versions for the OGD algorithm are proposed in order to control risk in portfolios. The first one, seeks to limit maximum investment for stocks and, the second, aims to keep control of the /3 of portfolios. Both strategies were compared with the Uniform Constant Re-Balanced Portfolio (UCRP) and the Dow Jones Industrial Index (DJIA). Data from weekly observations of DJIA from March 1987 until February 2009 are used. The OGD algorithm presented the best accumulated return among all strategies. Both algorithms (OGD and ONS) performed better than the UCRP and DJIA index. Furthermore, the risk control mechanism proposed proved to be an useful tool in order to improve results related to the Value at Risk (VaR) and Conditional Value at Risk (CVaR) of the portfolios. | pt_BR |
dc.description.resumo | Desde o trabalho seminal de Harry Markowitz, em 1952, que iniciou a moderna te-oria de carteiras, as estratégias de alocação de portfólio foram intensamente discutidas na literatura. Com o desenvolvimento de técnicas de otimização online, os algoritmos de aprendizado dinâmico se mostraram uma abordagem efetiva para construir portfólios (COVER, 1991; ARGAWAL et al., 2006). No entanto, poucos trabalhos conectam a lite-ratura tradicional, evoluída a partir do trabalho de Markowitz (1952) com a literatura de otimização online, que evoluiu a partir do trabalho de Cover (1991). O principal objetivo deste trabalho é implementar técnicas de otimização convexa online para: (i) executar estratégias de alocação de portfólio; (ii) conectar esses algoritmos com fatores risco usados em metodologias tradicionais. Dois métodos de algoritmos online foram implementados e adaptados, o Online Gradient Descendent (OGD) e o Online Newton Step (ONS). Além disso, duas novas versões para o algoritmo OGD são propostas para controlar o risco em carteiras. O primeiro, busca limitar o investimento máximo para ações e, o segundo, visa controlar o /3 das carteiras. Ambas as estratégias foram comparadas com o Uniform Constant Rebalanced Portfolio (UCRP) e o Dow Jones Industrial Index (DJIA). Foram utilizados dados do DJIA de março de 1987 até fevereiro de 2009 com observações se-manais. O algoritmo OGD apresentou o maior retorno acumulado entre as estratégias testadas. Ambos os algoritmos (OGD e ONS) apresentaram melhor desempenho do que o UCRP e DJIA ao longo do período. Além disso, o mecanismo de controle de risco pro-posto provou ser uma ferramenta útil para melhorar os resultados relacionados ao valor em risco (VaR) e ao valor condicional em risco (CVaR) das carteiras. | pt_BR |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal de Juiz de Fora (UFJF) | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | ICE – Instituto de Ciências Exatas | pt_BR |
dc.publisher.program | Programa de Pós-graduação em Ciência da Computação | pt_BR |
dc.publisher.initials | UFJF | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Seleção de portfólio | pt_BR |
dc.subject | Otimização online | pt_BR |
dc.subject | Alocação dinâmica | pt_BR |
dc.subject | Portfolio selection | pt_BR |
dc.subject | Online optimization | pt_BR |
dc.subject | Dynamic allocation | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | pt_BR |
dc.title | Um modelo de seleção de carteiras de ações baseado em otimização convexa online | pt_BR |
dc.type | Dissertação | pt_BR |
Appears in Collections: | Mestrado em Ciência da Computação (Dissertações) |
Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.