Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/6069
Files in This Item:
File Description SizeFormat 
raphaelfranciscofirmianoteixeira.pdf2 MBAdobe PDFThumbnail
View/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.advisor1Hippert, Henrique Steinherz-
dc.contributor.advisor1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782250Z1pt_BR
dc.contributor.referee1Chaoubah, Alfredo-
dc.contributor.referee1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4708996Y2pt_BR
dc.contributor.referee2Manfrini, Francisco Augusto de Lima-
dc.contributor.referee2Latteshttp://lattes.com.brpt_BR
dc.creatorTeixeira, Raphael Francisco Firmiano-
dc.creator.Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4801157T0pt_BR
dc.date.accessioned2018-01-23T11:53:03Z-
dc.date.available2018-01-10-
dc.date.available2018-01-23T11:53:03Z-
dc.date.issued2017-08-30-
dc.identifier.urihttps://repositorio.ufjf.br/jspui/handle/ufjf/6069-
dc.description.abstractThe values of the parameters required in a Contract of Electric Power Supply are often estimated with bases on the demand forecasted using the “Naive” method, for nonindustrial consumers. Sometimes, the method suffers some empirical adjustment, which can generate a non-optimal contract for the consumer. Universities (in special the public ones) are examples of these type of consumers since they have considerable physical dimensions. The elaboration of a demand profile for these type of consumers, based on a study of the operation of the facilities, is a complicated task. Because the consumer is part of the Public Service, there is a need for Contracts defined with sufficiently clear criteria, given the pressure of the control bodies, particularly when the responsible and effective use of the public money is considered. Therefore, methods based on the consumer demand forecast in function of consumer’s history, and capable of greater approximation with reality, would be important to obtain contracts with minimized financial values. A method was developed based on data of the registered demands of the Federal University of Juiz de Fora (UFJF), and Temperature and Class Calendar adjuvant data. The method tests the predictions made by linear (Moving Averages, ARIMA and Holt-Winters) and by non-linear methods (Neural Networks). The predictions were compared and the best one was taken to an optimization process using Genetic Algorithms. The optimization revealed optimal data for the contract and its costs. The prediction that showed the best performance was the one obtained using Neural Networks without the adjuvant data. The optimization led to the choice of the “Tarifa Azul”, with possible economic gains for UFJF.pt_BR
dc.description.resumoFrequentemente os valores dos parâmetros exigidos em um Contrato de Fornecimento de Energia Elétrica para consumidores não industriais são estimados com base na previsão de demanda utilizando o método “Naive”, por vezes, com algum ajuste empírico, o que pode gerar um contrato não-ótimo para o consumidor. Exemplo desse tipo de consumidor são as universidades, principalmente as públicas, por possuírem dimensões físicas consideráveis. Em consumidores com esse tipo de comportamento, a elaboração de um perfil de demanda baseado em estudo do funcionamento das instalações torna-se algo muito complicado. Tendo em vista tratar-se de um consumidor pertencente ao Serviço Público, há a necessidade de Contratos definidos com critérios suficientemente claros, haja vista a pressão dos órgãos de controle. Mais ainda quando se considera o uso responsável e eficaz do dinheiro público. Portanto, métodos com base na previsão de demanda do consumidor, em função do seu histórico e capazes de uma aproximação maior com a realidade, seriam importantes para obter contratos com valores financeiros minimizados. Tendo os dados de Demandas Registradas da Universidade Federal de Juiz de Fora e dados auxiliares de Temperaturas e Calendário de Aulas, desenvolvemos um método que testa previsões realizadas por métodos lineares (Médias Móveis, ARIMA e Holt-Winters), com previsões realizadas por métodos não- lineares (Redes Neurais). Comparamos estas previsões, e a melhor foi levada a um processo de otimização utilizando Algoritmos Genéticos. Essa otimização revelou dados ótimos para o Contrato e os respectivos custos. A previsão com melhor desempenho foi a obtida utilizando-se Redes Neurais, sem os dados auxiliares. A otimização levou a escolha da Tarifa Azul, com previsão de ganhos econômicos para a UFJF.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Juiz de Fora (UFJF)pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICE – Instituto de Ciências Exataspt_BR
dc.publisher.programPrograma de Pós-graduação em Modelagem Computacionalpt_BR
dc.publisher.initialsUFJFpt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectPrevisão de demandapt_BR
dc.subjectContratos de fornecimento de energia elétricapt_BR
dc.subjectOtimização de contratospt_BR
dc.subjectDemand forecastingpt_BR
dc.subjectContract of Electric power supplypt_BR
dc.subjectOptimization of contractspt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRApt_BR
dc.titleEstudo de técnicas de apoio a definições em contratos de energia elétricapt_BR
dc.typeDissertaçãopt_BR
Appears in Collections:Mestrado em Modelagem Computacional (Dissertações)



Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.