https://repositorio.ufjf.br/jspui/handle/ufjf/5310
File | Description | Size | Format | |
---|---|---|---|---|
francilenebarbosadossantossilva.pdf | 1.19 MB | Adobe PDF | View/Open |
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor1 | Borges, Carlos Cristiano Hasenclever | - |
dc.contributor.advisor1Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728257U5 | pt_BR |
dc.contributor.advisor-co1 | Lemonge, Afonso Celso de Castro | - |
dc.contributor.advisor-co1Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4707594U9 | pt_BR |
dc.contributor.advisor-co2 | Barbosa, Helio José Corrêa | - |
dc.contributor.advisor-co2Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781805Y9 | pt_BR |
dc.contributor.referee1 | Lima, Beatriz de Souza Leite Pires de | - |
dc.contributor.referee1Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728580T3 | pt_BR |
dc.contributor.referee2 | Fonseca, Leonardo Goliatt da | - |
dc.contributor.referee2Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4771799H1 | pt_BR |
dc.creator | Silva, Francilene Barbosa dos Santos | - |
dc.creator.Lattes | http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4220778U4 | pt_BR |
dc.date.accessioned | 2017-08-07T20:11:10Z | - |
dc.date.available | 2017-06-22 | - |
dc.date.available | 2017-08-07T20:11:10Z | - |
dc.date.issued | 2011-08-31 | - |
dc.identifier.uri | https://repositorio.ufjf.br/jspui/handle/ufjf/5310 | - |
dc.description.abstract | Penalty strategies are widely used in dealing with problems with constraints. Problems inherent in the choice of appropriate values for the terms of penalties dificult to obtain reliable and strong results in its application in problems of structural optimization. Techniques based on models of adaptive penalty has shown some success when applied in conjunction with evolutionary algorithms. Here is presented a new alternative using augmented Lagrangian strategy for dealing with the problem of constrained structural optimizations. It is found in the literature models for adaptive penalties as well as the use of the augmented Lagrangian together with generational genetic algorithms. The aim of this work is to adapt a model of penalization for non-generational genetic algorithm, as well as create an algorithm based on augmented Lagrangian as also for a non-generational algorithm. These algorithms were applied to structures, widely used in construction as coverage of gymnasiums, hangars, etc.. The performance of these types of structures and functions was analyzed using mathematical techniques for handling constraints presented in this work. This was done during the search for optimal solutions in an attempt to minimize costs and satisfy the constraints appropriate for various structures and mathematical functions. | pt_BR |
dc.description.resumo | Estratégias de penalização são muito utilizadas no trato de problemas com restrições. Problemas inerentes a escolha de valores adequados para os termos de penalização di-ficultam a obtenção de resultados confiáveis e robustos na sua aplicação em problemas da otimização estrutural. Técnicas baseadas em modelos de penalização adaptativa tem apresentado relativo sucesso quando aplicadas em conjunto com algoritmos evolucionis-tas. Apresenta-se aqui uma nova alternativa utilizando uma estratégia de lagrangeano aumentado para o trato das restrições do problema de otimização estrutural. Encontra-se na literatura modelos para penalização adaptativa bem como o uso do lagrangeano aumentado em conjunto com algoritmos genéticos geracionais. O objetivo desse trabalho é adaptar um modelo de penalização para um algoritmo genético não gera-cional, bem como criar um algoritmo baseado em lagrangeano aumentado também para o algoritmo não-geracional. Esses algoritmos foram aplicados em estruturas reticuladas, muito utilizadas na construção civil como coberturas de ginásios, hangares, galpões, etc. O desempenho desses tipos de estruturas e funções matemáticas foi analisado com as técnicas de tratamento de restrição apresentadas nesse trabalho. Isso foi feito durante a busca de soluções ótimas na tentativa de minimizar os custos e satisfazer as restrições adequadas para diversas estruturas e funções matemáticas. | pt_BR |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal de Juiz de Fora (UFJF) | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | ICE – Instituto de Ciências Exatas | pt_BR |
dc.publisher.program | Programa de Pós-graduação em Modelagem Computacional | pt_BR |
dc.publisher.initials | UFJF | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Otimização com restrição | pt_BR |
dc.subject | Penalização | pt_BR |
dc.subject | Lagrangeano aumentado | pt_BR |
dc.subject | Algoritmos genéticos | pt_BR |
dc.subject | Constrained optimization | pt_BR |
dc.subject | Penalization | pt_BR |
dc.subject | Augmented lagrangian | pt_BR |
dc.subject | Genetic algorithm | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA | pt_BR |
dc.title | Algoritmos genéticos para otimização de estruturas reticuladas baseadas em modelos adaptativos e lagrangeano aumentado | pt_BR |
dc.type | Dissertação | pt_BR |
Appears in Collections: | Mestrado em Modelagem Computacional (Dissertações) |
Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.