Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/15606
Files in This Item:
File Description SizeFormat 
brunocassaragomes.pdfPDF/A2.05 MBAdobe PDFThumbnail
View/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.advisor1Mattos, Rogério Silva de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2161711905514304pt_BR
dc.contributor.referee1Coimbra, Paulo César-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0669903015493560pt_BR
dc.creatorGomes, Bruno Cassará-
dc.creator.Latteshttps://lattes.cnpq.br/pt_BR
dc.date.accessioned2023-07-19T15:21:38Z-
dc.date.available2023-07-18-
dc.date.available2023-07-19T15:21:38Z-
dc.date.issued2023-07-13-
dc.identifier.urihttps://repositorio.ufjf.br/jspui/handle/ufjf/15606-
dc.description.abstractThe context of the research is the increase in the number of people investing their savings to gain some profit or hedge their portfolio. Consequently, Artificial Neural Networks (ANNs) are used in financial markets and studied to predict the asset's price. As there are a lot of possibilities for the architecture of ANNs and a high number of assets, the research aims to verify the capacity of ANNs to predict the movement of the price of the stock VALE3 and measure their accuracy. To achieve this aim, two ANNs and one aggregator module are constructed, which form the ensemble. After 20 experiments changing the architecture of ANNs, the best ensemble has a global accuracy equal to 57,89%, higher than both ANNs. It is more accurate to predict down movements than up movements, and the situation is better to hedge.pt_BR
dc.description.resumoA pesquisa tem como contexto o aumento de pessoas investindo suas poupanças como forma de atingir algum objetivo, seja o lucro ou a defesa contra alguma perda de patrimônio. Por consequência, as Redes Neurais Artificiais (NRAs) são empregadas cada vez mais nos mercados financeiros e estudadas em âmbito acadêmico como uma ferramenta para previsão de preço de ativos. Dadas as inúmeras possibilidades que a arquitetura de RNAs pode ter e a grande quantidade de ativos que podem ser previstos, a pesquisa possui como objetivo verificar a capacidade de RNAs em prever o movimento do preço da ação VALE3, bem como avaliar sua acuracidade. Para esse fim, foram construídas duas RNAs do tipo Percepetron e um módulo agregador, os quais formam um ensemble. Após 20 experimentos sensibilizando a arquitetura das RNAs, o ensemble vencedor apresenta taxa de acurácia global de 57,89%, superior a ambas RNAs individualmente, além de apresentar maior acuracidade em momentos de descida, o que favorece posições de hedge.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Juiz de Fora (UFJF)pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentFaculdade de Economiapt_BR
dc.publisher.initialsUFJFpt_BR
dc.rightsAcesso Abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/br/*
dc.subjectEnsemblept_BR
dc.subjectRedes neurais artificiaispt_BR
dc.subjectArtificial neural networkspt_BR
dc.subjectSéries temporais financeiraspt_BR
dc.subjectFinancial time seriespt_BR
dc.subject.cnpqCNPQ::CIENCIAS SOCIAIS APLICADAS::ECONOMIApt_BR
dc.titleAntecipação dos movimentos de preços de ações através de redes neurais artificiaispt_BR
dc.typeTrabalho de Conclusão de Cursopt_BR
Appears in Collections:Ciências Econômicas - Campus JF - TCC Graduação



This item is licensed under a Creative Commons License Creative Commons