Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/15519
Files in This Item:
File Description SizeFormat 
kevynswhantsdossantosribeiro.pdf5.21 MBAdobe PDFThumbnail
View/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.advisor1Vieira, Marcelo Bernardes-
dc.contributor.advisor1Latteshttp://buscatextual.cnpq.br/buscatextual/busca.dopt_BR
dc.contributor.advisor-co1Villela, Saulo Moraes-
dc.contributor.advisor-co1Latteshttp://buscatextual.cnpq.br/buscatextual/busca.dopt_BR
dc.contributor.referee1Maciel, Luiz Maurílio da Silva-
dc.contributor.referee1Latteshttp://buscatextual.cnpq.br/buscatextual/busca.dopt_BR
dc.contributor.referee2Pedrini, Hélio-
dc.contributor.referee2Latteshttp://buscatextual.cnpq.br/buscatextual/busca.dopt_BR
dc.creatorRibeiro, Kevyn Swhants dos Santos-
dc.creator.Latteshttp://buscatextual.cnpq.br/buscatextual/busca.dopt_BR
dc.date.accessioned2023-07-03T11:10:56Z-
dc.date.available2023-06-30-
dc.date.available2023-07-03T11:10:56Z-
dc.date.issued2022-09-22-
dc.identifier.urihttps://repositorio.ufjf.br/jspui/handle/ufjf/15519-
dc.description.abstractSeismic data provide structural and static information of the region where they were acquired, used to determine regions to explore oil and gas. The improvements in the acquisition methods, especially in the high quality of the sensors, have also increased the size of the seismic data. The motivation for compressing them comes from the demand for hundreds of terabytes to transmit and store seismic data. This work presents a method for three-dimensional (3D) poststack seismic data compression integrating a 3D convolutionbased autoencoder to a generative adversarial network (GAN). The main challenge of the 3D convolutional autoencoder is how to exploit volumetric redundancy, keeping the latent representation dimensions. The proposed method is based on a convolutional neural network for seismic data compression called 3DSC. The main hypothesis is that 3DSC architecture can be improved by adversarial training. Thus, a new 3D-based seismic data compression method (3DSC-GAN) is proposed by coupling the 3DSC network to a GAN. The decoder module is used as a generator of poststack seismic data integrated with a discriminator module to better exploit the volumetric redundancy of the 3D data. Also, a new fashion to calculate the distortion for multidimensional data is proposed, such as seismic data. Since the generic functions ignore the 3D data structure and consider it as a 1D vector, the idea is to apply a different loss function for each axis, for a reduction in dimensionality that better captures the error according to its magnitude. For this purpose, an extensive study is performed to analyze the possible combinations of functions for the 3D poststack seismic data compression problem. Results indicate that the 3DSC-GAN method outperforms previous ones for very low target bit rates, increasing the peak signal-to-noise ratio (PSNR) with high visual reconstruction quality. In addition, the experiments using the new distortion function show that it benefits the network learning process, generating a superior reconstruction compared to methods that use PSNR as a distortion function, in quantitative and qualitative terms.pt_BR
dc.description.resumoDados sísmicos fornecem informações estruturais e estáticas da região de onde foram coletados, usadas para determinar regiões para explorar petróleo e gás. As melhorias nos métodos de aquisição, especialmente na alta qualidade dos sensores, também aumentaram o tamanho dos dados sísmicos. A motivação para comprimi-los vem da necessidade de centenas de terabytes para transmitir e armazenar dados sísmicos. Este trabalho apresenta um método para compressão de dados sísmicos pós-pilha tridimensional (3D) integrando um autocodificador baseado em convoluções 3D e uma rede adversária generativa (GAN). O principal desafio dos autocodificadores é como explorar a redundância volumétrica, mantendo as dimensões da representação latente. O método proposto é baseado em uma rede neural convolucional para compressão de dados sísmicos chamada 3DSC. A principal hipótese é que a arquitetura da 3DSC pode ser melhorada pelo treinamento adversário. Assim, é proposto um novo método de compressão de dados sísmicos baseado em 3D (3DSC-GAN) ao acoplar a rede 3DSC a uma GAN. O módulo decodificador é utilizado como um gerador de dados sísmicos pós-pilha integrado a um módulo discriminador para melhor explorar a redundância volumétrica presente no dado 3D. Também é proposta uma nova forma para calcular a distorção em dados multidimensionais, como dados sísmicos. Visto que funções genéricas ignoram a estrutura do dado 3D e o consideram como um vetor 1D, a ideia consiste em aplicar uma função de perda diferente para cada eixo, para uma redução de dimensionalidade que melhor capture o erro de acordo com sua grandeza. Para isso, é feito um estudo extensivo para analisar as possíveis combinações de funções para o problema de compressão de dados sísmicos pós-pilha 3D. Os resultados indicam que o método 3DSC-GAN supera os métodos anteriores para taxas de bits alvo muito baixas, aumentando a relação sinal-ruído de pico (PSNR) com alta qualidade visual de reconstrução. Além disso, os experimentos realizados aplicando a nova função de distorção mostram que ela auxilia no processo de aprendizado da rede, gerando uma reconstrução superior comparado com métodos que utilizam PSNR como função de distorção, em termos quantitativos e qualitativos.pt_BR
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Geraispt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Juiz de Fora (UFJF)pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentICE – Instituto de Ciências Exataspt_BR
dc.publisher.programPrograma de Pós-graduação em Ciência da Computaçãopt_BR
dc.publisher.initialsUFJFpt_BR
dc.rightsAcesso Abertopt_BR
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/br/*
dc.subjectCompressão de dados sísmicospt_BR
dc.subjectAprendizado profundopt_BR
dc.subjectRedes adversárias generativaspt_BR
dc.subjectDados sísmicos pós-pilha 3Dpt_BR
dc.subjectSeismic data compressionpt_BR
dc.subjectDeep learningpt_BR
dc.subjectGenerative adversarial networkspt_BR
dc.subject3D poststack seismic datapt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpt_BR
dc.titleCompressão de dados sísmicos pós-pilha usando uma rede adversária generativa com função de perda compostapt_BR
dc.typeDissertaçãopt_BR
Appears in Collections:Mestrado em Ciência da Computação (Dissertações)



This item is licensed under a Creative Commons License Creative Commons