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In this paper we give a method that removes the Wess Zumino fields of the BFFT formalism. Consequently,
we derive a gauge invariant system written only in terms of the original second class phase space variables where
important physical properties can be raised. Here, the Wess Zumino fields are considered only as auxiliary
variables that permit us to reveal the underlying symmetries present in a second class system. We apply our
formalism in three important and nontrivial constrained systems which are the Abelian Proca model, the Chern
Simons Proca theory and the reduced SU(2) Skyrme model.
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I. INTRODUCTION

The BFFT formalism[1, 2] converts second class con-
strained systems into first class ones by enlarging the origi-
nal second class phase space variables with the Wess Zumino
(WZ) fields. In order to guarantee that the same degrees of
freedom are maintained with the original second class sys-
tem, the WZ fields are introduced in equal number to the
number of second class constraints. The introduction of the
WZ fields modifies the second class constraints and the sec-
ond class Hamiltonian in order to satisfy a first class alge-
bra. Thus, the presence of the WZ fields allows us to obtain
a gauge invariant model where symmetries are revealed from
the original second class system. The symmetries permit us
to describe the physical properties in a more general way. For
this reason we can disclose important and interesting physical
results. As an example, we can cite the case of a noncommut-
ing second class algebra resulting from a nonstandard gauge
condition[3, 4].

The purpose of this paper is to give a method in order to re-
move the WZ fields of the BFFT formalism and, consequently,
to obtain a gauge invariant system written only in terms of the
original second class phase space variables. In our formalism,
the WZ fields are treated as auxiliary variables that permit us
to build a first class system from the second class one, and,
consequently, to enforce symmetries. As an additional step,
we replace the WZ fields by convenient functions that lead us
to derive a first class system written only in terms of the initial
second class phase space variables. As we will see, we can
choose gauge symmetry generators and, consequently, gauge
fixing conditions that allow us to reveal interesting physical
properties. Since many important constrained systems have
only two second class constraints, so, in this paper, we de-
scribe our formalism only for systems with two second class
constraints without any loss of generality.

In order to clarify the exposition of the subject, this paper
is organized as follows: In Section II we give a short review
of the BFFT formalism. In Section III, we present the formal-
ism. In Section IV, we apply the formalism to the Abelian
Proca model[5], the Chern Simons Proca theory (CSP)[6]

and the collective coordinates expansion of the SU(2) Skyrme
model[7, 8]. These three physical systems are important non-
trivial examples of the second class constrained systems. The
Abelian Proca model is a four dimensional field theory which
describes electromagnetism with massive photon field. The
Chern Simons Proca theory concerns with the interaction of a
charged particle with magnetic field and it is known that this
model exhibits a noncommutative algebra[9]. The Skyrme
model is a nonlinear effective field theory which describes
hadrons physics and its quantization is obtained with quantum
mechanics on a curved space. Here, we would like to remark
that, using our formalism (embedding techniques), we have
obtained a noncommutative Skyrmions system, a new result
which is derived from a particular gauge condition. In Section
V, we make our concluding remarks.

II. A BRIEF REVIEW OF THE BFFT FORMALISM

As we have mentioned in the introduction, the BFFT for-
malism converts second class system into first class one by
adding WZ fields to the original second class system. All the
second class constraints and the second class Hamiltonian are
changed in order to satisfy a first class algebra.

Consider the original phase space variables as (qi , pi)
where a constrained system has two second class constraints,
Tα, α = 1,2, obeying the algebra

{Tα,Tβ} = ∆αβ, (1)

where the matrix ∆αβ has a nonvanishing determinant. First,
in the BFFT formalism, the two first class constraints are con-
structed by the following expansion

T̃α(qi , pi ,Φα) = Tα +
∞

∑
m=1

T(m)
α , (2)

where Φα are the WZ fields satisfying the algebra

{Φα,Φβ} = ωαβ, (3)
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being ωαβ an antisymmetric matrix. T(m)
α are the correction

terms which are powers of Φα , i.e., T(m)
α ∼ Φ(m)

α . The first
class constraints must satisfy the boundary condition

T̃α(qi , pi ,0) = T(0)
α = Tα. (4)

From the Abelian first class algebra

{T̃α, T̃β} = 0, (5)

we obtain recursive equations which determine the correction

terms T(m)
α . As an example, we have a basic equation in the

lowest order

∆αβ +Xαγ ωγλ Xλβ = 0, (6)

and the first order correction term written as

T(1)
α = Xαβ(qi , pi)Φβ. (7)

The matrices ωαβ and Xαβ in Eqs.(3) and (6), which are the
inherent arbitrariness of the BFFT formalism, can be chosen
with the aim of obtaining algebraic simplifications in the de-

termination of the correction terms T(m)
α .

In a similar way, the gauge invariant Hamiltonian is ob-
tained by the expansion

H̃ = Hc +
∞

∑
m=1

H(m), (8)

where Hc is the canonical second class Hamiltonian and the
correction terms, H(m), are powers of Φα , i.e., H(m) ∼ Φ(m)

α .
Also, from the Abelian first class algebra

{H̃, T̃α} = 0, (9)

we have recursive equations which determine the correction
terms H(m) and, consequently, the gauge invariant Hamil-
tonian.

III. REMOVING THE WESS ZUMINO FIELDS

Our formalism begins by choosing, as example, T̃1, one of
the two first class constraints, Eq.(2), to be the extended gauge
symmetry generator of the theory

T̃ = T̃1. (10)

The other first class constraint, T̃2, will be discarded. To elim-
inate the WZ auxiliary fields, Φα, we must find functions(an
appropriate functional) for the WZ fields written only in terms
of the original second class phase space variables (qi , pi),
namely

Φα = Fα(qi , pi). (11)

At this stage, two conditions must be satisfied: the first one
determines that the algebraic form of the functions Fα(qi , pi)
must have the same infinitesimal gauge transformations given
by Φα, i.e.

δΦα = δFα(qi , pi), (12)

where

δΦα = ε{Φα, T̃}, (13)

and

δFα = ε{Fα,T1}, (14)

being ε an infinitesimal parameter and T1 the second class
constraint that builds the extended gauge symmetry generator;
the second condition imposes that when we make the con-
straint surface T2 = 0, where T2 is the original second class
constraint that builds the discarded first class constraint, the
function Fα(qi , pi) must vanish, i.e.

T2 = 0 ⇒ Fα(qi , pi) = 0. (15)

With this condition we must recover the second class Hamil-
tonian, Hc. The relation (15) is the boundary condition of
the formalism or the gauge fixing constraint that reduces our
gauge invariant model to the second class one. This condition
ensures the equivalence of the gauge invariant model obtained
by our prescription and the original second class theory that
has been embedded by the BFFT formalism[10].

It is important to mention that we have arbitrariness in our
prescription because we need to select one of the two first
class constraints, Eqs.(2), to be the extended gauge symme-
try generator. In addition, the two conditions exposed above,
at first, do not determine completely the algebraic form of the
function Fα(qi , pi). However, arbitrariness, in principle, oc-
curs in all methods that embed second class constrained sys-
tems and can be useful to unveil important physical properties
of the models.

Substituting Eq.(11) in the BFFT first class Hamiltonian,
Eq.(8), we obtain a gauge invariant Hamiltonian, H̃, written
only as a function of the original second class phase space
variables (qi , pi), satisfying the first class algebra

{H̃,T1} = 0, (16)

{T1,T1} = 0, (17)

where now the second class T1 becomes the only gauge sym-
metry generator of the theory. The relations (16) and (17)
show that, in some situations,due to the specific arbitrari-
ness of our prescription we can achieved similar results of the
gauge unfixing formalism[5, 10, 11] .
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IV. APPLICATIONS OF THE FORMALISM

A. The Abelian Proca model

The Abelian Proca model is a four dimensional field theory
with the corresponding Lagrangian density given by

L = −1
4

FµνFµν +
m2

2
AµAµ, (18)

where gµν = diag(+,−,−,−) and Fµν = ∂µAν − ∂νAµ. The
explicit mass term breaks the gauge invariance and, conse-
quently, we have a second class constrained system. The pri-
mary constraint is

T1 = π0 ≈ 0. (19)

By using the Legendre transformation we obtain the canonical
Hamiltonian written as

Hc =
Z

d3x Hc =

Z

d3x

[
1
2

πiπi +
1
4

Fi j Fi j − m2

2
(A2

0 −A2
i )+A0(∂iπi)

]
, (20)

with πi = ∂L
∂Ȧi

= −F0i . From the temporal stability condition
of the primary constraint, Eq.(19), we get the secondary con-
straint

T2 = −∂iπi +m2A0 ≈ 0. (21)

We observe that no further constraints are generated via this
iterative procedure. Then, T1 and T2 are the total second class
constraints of the Abelian Proca model.

Using the BFFT formalism to convert this second class sys-
tem into first class one, we obtain the two first class constraints
and the gauge invariant Hamiltonian written as[5]

T̃1 = T1 +m2θ, (22)

T̃2 = T2 +πθ, (23)

H̃ = Hc +
Z

d3x

[
π2

θ
2m2 +

m2

2
(∂iθ)2 −m2θ∂iAi

]
, (24)

where the extra canonical pair of fields θ and πθ satisfy the al-
gebra {θ(x),πθ(y)}= εδ(x−y). The first class constraints and
the first class Hamiltonian obey the following Poisson brack-
ets

{T̃1, T̃2} = 0, (25)

{T̃1, H̃} = T̃2, (26)

{T̃2, H̃} = 0. (27)

In order to apply our formalism, we choose the first class
constraint, Eq.(23), to be the extended gauge symmetry gen-
erator

T̃ = T̃2 = T2 +πθ = −∂iπi +m2A0 +πθ. (28)

The infinitesimal gauge transformations of the WZ fields gen-
erated by the extended gauge symmetry generator T̃ are

δθ = ε
{

θ,−∂iπi +m2A0 +πθ
}

=

ε{θ(x),πθ(y)} = εδ(x−y), (29)

δπθ = ε{πθ,−∂iπi +m2A0 +πθ} = ε{πθ(x),πθ(y)} = 0.
(30)

From the infinitesimal gauge transformations, Eq.(30), we can
choose a representation for πθ as

πθ = 0. (31)

A representation for θ can be determined by imposing the first
class strong equation, Eq.(22),

T1 +m2θ = 0 ⇒ θ = − 1
m2 T1 = − 1

m2 π0. (32)

As we can observe, the function for θ satisfies the infinitesimal
gauge transformation, Eq.(29),

δθ = ε{θ, T̃} = ε
{
− 1

m2 π0,T2

}
=

ε
{
− 1

m2 π0,−∂iπi +m2A0

}
= εδ(x−y). (33)

Substituting the WZ formulas, Eqs.(31) and (32), in the ex-
tended first class Hamiltonian, Eq.(24), we get a first class
Hamiltonian written only in terms of the original second class
fields

H̃ = Hc +
Z

d3x

[
π0 ∂iAi +

1
2m2 (∂iπ0)2

]
, (34)

or

H̃ = Hc +
Z

d3x

[
π0 ∂iAi − 1

2m2 π0 ∂2
i π0

]
, (35)

being the only gauge symmetry generator

T2 = −∂iπi +m2A0, (36)
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which satisfies an Abelian first class algebra

{T2,T2} = 0, (37)

{H̃,T2} = 0. (38)

Here, we would like to comment that the first class Hamil-
tonian, Eq.(35), is identical to the gauge invariant Hamiltonian
which was derived by using the GU formalism[5]. Then, this
result confirms the validity of our formalism.

B. The Chern Simons Proca theory

The Chern Simons Proca theory (CSP) describes a charged
particle constrained to move on a two dimensional plane, in-
teracting with a constant magnetic field B which is orthogonal
to the plane. In the vanishing mass limit (infrared limit), the
Lagrangian that governs the dynamics is

L =
B
2

qiεi j q̇j − k
2

qiqi , (39)

where k is a constant and ε12 = 1. The CSP model is a second
class constrained system with the two constraints given by

Ti = pi +
B
2

εi j qj , i = 1,2 (40)

where pi are the canonical momenta (pi = ∂L
∂q̇i

), and the Pois-
son brackets between the second class constraints read as

{Ti ,Tj} = Bεi j . (41)

From the Legendre transformation we obtain the second class
Hamiltonian

Hc = piq̇i −L =
k
2

qiqi . (42)

Using the BFFT formalism to convert this second class sys-
tem into first class one, we get the two first class constraints
and the gauge invariant Hamiltonian written as[12]

T̃1 = T1 +
√

Bc1, (43)

T̃2 = T2 +
√

Bc2, (44)

H̃ =
k
2

[
qiqi +

2√
B

εi j ciqj +
1
B

cici

]
, (45)

where c1 and c2 are the WZ variables. By construction, we
have a first class algebra

{T̃i , T̃j} = 0, (46)

{H̃, T̃i} = 0 , (47)

where the WZ variables satisfy the following Poisson brackets

{ci ,cj} = ε ji . (48)

At this point, we begin our formalism by choosing the first
class constraint, Eqs.(43), to be the extended gauge symmetry
generator

T̃ = T̃1 = T1 +
√

Bc1 = p1 +
B
2

q2 +
√

Bc1. (49)

The infinitesimal gauge transformations of the WZ variables
generated by the extended gauge symmetry generator T̃ are

δc1 = ε{c1, T̃} = ε{c1, p1 +
B
2

q2 +
√

Bc1} = 0, (50)

δc2 = ε{c2, T̃}=ε{c2, p1 +
B
2

q2 +
√

Bc1} = ε
√

B. (51)

From the infinitesimal gauge transformations, Eq.(50), we can
choose a representation for c1 as

c1 = 0. (52)

A representation for c2 can be determined by imposing the
first class strong equation, Eq.(44)

T2 +
√

Bc2 = 0 ⇒ c2 = − 1√
B

T2. (53)

As we can see, the function for c2 satisfies the infinitesimal
gauge transformation, Eq.(51),

δc2 = ε
{

c2, T̃
}

= ε
{
− 1√

B
T2, T̃

}
=

ε
{
− 1√

B
T2,T1

}
= ε

√
B. (54)

Then, substituting the functions for c1 and c2, Eqs.(52) and
(53), in the first class Hamiltonian, Eq.(45), we obtain a gauge
invariant Hamiltonian written only in terms of the original sec-
ond class phase space variables

H̃ =
k
2

qiqi +
k
B

q1T2 +
k

2B2 T2
2 =

k
2

[
q2q2 +

(
q1 +

T2

B

)2
]

, (55)

being the only gauge symmetry generator

T1 = p1 +
B
2

q2, (56)
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which satisfies an Abelian first class algebra

{T1,T1} = 0, (57)

{H̃,T1} = 0. (58)

We can observe that when we make T2 = p2 − B
2 q1 = 0 (the

second class constraint that builds the discarded first class
constraint, condition two of the formalism) the first class
Hamiltonian, Eq.(55), reduces to the CSP second class Hamil-
tonian, Eq.(42). This result guarantees the equivalence of our

CSP gauge invariant system and the original CSP second class
model.

C. The reduced Skyrme model or the Skyrme model expanded
in terms of the SU(2) collective coordinates

The Skyrme model describes baryons and their interactions
through soliton solutions of the nonlinear sigma model type
Lagrangian given by

L =
Z

d3x

[
f 2
π
4

Tr (∂µU∂uU+)+
1

32e2 Tr[U+∂µU,U+∂νU ]2
]
, (59)

where fπ is the pion decay constant, e is a dimensionless
parameter and U is a SU(2) matrix. Performing the col-
lective semiclassical expansion[8] just substituting U(r, t) by
U(r, t) = A(t)U0(r)A+(t) in Eq. (59), being A a SU(2) matrix,
we obtain

L = −M +λTr[∂0A∂0A−1], (60)

where M is the soliton mass and λ is the moment of inertia[8].
The SU(2) matrix A can be written as A = a0 + ia · τ, where
τi are the Pauli matrices, and satisfies the spherical constraint
relation

T1 = aiai −1 ≈ 0, i = 0,1,2,3. (61)

The Lagrangian (60) can be read as a function of ai as

L = −M +2λȧi ȧi . (62)

Calculating the canonical momenta

πi =
∂L
∂ȧi

= 4λȧi , (63)

and using the Legendre transformation, the canonical Hamil-
tonian is computed as

Hc = πi ȧi −L = M +2λȧi ȧi

= M +
1

8λ

3

∑
i=0

πiπi . (64)

From the temporal stability condition of the spherical con-
straint, Eq.(61), we get the secondary constraint

T2 = aiπi ≈ 0 . (65)
We observe that no further constraints are generated via this
iterative procedure. T1 and T2 are the second class constraints
with

{T1,T2} = 2aiai . (66)

Using the BFFT formalism we obtain the first class con-
straints written as[13]

T̃1 = T1 +b1 = aiai −1+b1, (67)

T̃2 = T2 −aiaib2 = aiπi −aiaib2, (68)

which satisfy an Abelian first class algebra

{T̃1, T̃2} = 0, (69)

with the WZ variables obeying the following Poisson bracket
relation

{bi ,bj} = 2εi j , i, j = 1,2. (70)

The first class Hamiltonian is given by

H̃ = M +
1

8λ
aiai

aiai +b1
π jπ j − 1

4λ
aiaib2

aiai +b1
ajπ j +

(aiai)2(b2)2

aiai +b1

= M +
1

8λ
aiai

aiai +b1
[π j −b2aj ]

2 , (71)
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which also satisfies an Abelian first class algebra

{H̃, T̃α} = 0, α = 1,2. (72)

The first class Lagrangian is written as

L = −M +2λ
ȧi ȧi

ajaj
− λ

2
ḃ1ḃ1

(ajaj)2 . (73)

At this stage, we are ready to apply our formalism. We
begin by choosing the first class constraint, Eq.(67), to be the
extended gauge symmetry generator

T̃ = T̃1 = T1 +b1 = aiai −1+b1. (74)

The infinitesimal gauge transformations of the WZ variables
generated by the extended gauge symmetry generator T̃ are

δb1 = ε{b1, T̃} = ε{b1,aiai −1+b1} = 0, (75)

δb2 = ε{b2, T̃} = ε{b2,aiai −1+b1} = −2ε. (76)

From the infinitesimal gauge transformations, Eq.(75), we can
choose a representation for b1 as

b1 = 0. (77)

A representation for b2 can be determined by imposing the
first class strong equation, Eq.(68)

aiπi −aiaib2 = 0 ⇒ b2 =
aiπi

ajaj
. (78)

As we can see, the function for b2 satisfies the infinitesimal
gauge transformation, Eq.(76),

δb2 = ε{b2, T̃} = ε{ aiπi

ajaj
,T1} = ε{ aiπi

ajaj
,aiai −1} = −2ε.

(79)
Then, substituting the functions for b1 and b2, Eqs.(77) and
(78), in the first class Hamiltonian, Eq.(71), we obtain a gauge
invariant Hamiltonian written only in terms of the original sec-
ond class phase space variables

H̃ = M +
1

8λ

[
π jπ j − (aiπi)2

ajaj

]
=

M +
1

8λ

[
π jπ j − (T2)

2

ajaj

]
, (80)

with the only gauge symmetry generator of the theory

T1 = aiai −1, (81)

which satisfies an Abelian first class algebra

{T1,T1} = 0, (82)

{H̃,T1} = 0. (83)

Note that when we make the second class constraint equal to
zero, T2 = aiπi = 0, we observe that the first class Hamil-
tonian, Eq.(80), reduces to the original second class Hamil-
tonian, Eq.(64). This result ensures the equivalence of our
gauge invariant model and the original second class system.

The gauge invariant Hamiltonian, Eq.(80), can be written
as

H̃ = M +
1

8λ
πiM

i j π j , (84)

where the phase space metric Mi j given by

Mi j = δi j − aiaj

aiai
, (85)

is a singular matrix which has ai as an eigenvector with null
eigenvalue, namely,

aiM
i j = 0. (86)

Then, due to the fact that the matrix M is singular, in prin-
ciple, it is not possible to obtain the first class Skyrmion La-
grangian written only in terms of the original second phase
space variables with the gauge symmetry generator being T1 ,
Eq.(81).

Now we choose the other first class constraint, Eq.(68), to
be the extended gauge symmetry generator of theory

T̃ = T̃2 = T2 −aiaib2 = aiπi −aiaib2. (87)

The infinitesimal gauge transformations of the WZ variables
generated by this extended gauge symmetry generator T̃ are

δb1 = ε{b1, T̃} = ε{b1,aiπi −aiaib2} = −2εaiai , (88)

δb2 = ε{b2, T̃} = ε{b2,aiπi −aiaib2} = 0. (89)

From the infinitesimal gauge transformations, Eq.(89), we can
choose a representation for b2 as

b2 = 0. (90)

The use of the condition (90) in the extended gauge symmetry
generator, Eq. (87), ensures that the infinitesimal gauge trans-
formations of the original phase space variables (aj ,π j ) are
given by T2 = aiπi . A representation for b1 can be obtained
by imposing the first class strong equation, Eq.(67)
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aiai −1+b1 = 0

⇒ b1 = 1−aiai . (91)

The function for b1 satisfies the infinitesimal gauge transfor-
mation, Eq.(88),

δb1 = ε{b1, T̃} = ε{1−aiai ,aiπi} = −2ε. (92)

Substituting the functions for b1 and b2, Eqs.(90) and (91), in
the first class Hamiltonian, Eq.(71), we get a gauge invariant
Hamiltonian written only in terms of the original second class
phase space variables

H̃ = M +
1

8λ
aiaiπ jπ j , (93)

with the only gauge symmetry generator of the theory

T2 = aiπi , (94)

which satisfies an Abelian first class algebra

{T2,T2} = 0, (95)

{H̃,T2} = 0. (96)

Again, when we make the second class constraint equal to
zero, T1 = aiai − 1 = 0, the gauge invariant Hamiltonian
Eq.(93) reduces to the original second class Hamiltonian,
Eq.(64).

The first class Skyrmion Lagrangian can be deduced by per-
forming the inverse Legendre transformation

L = πi ȧi − H̃, (97)

where the momentum πi is eliminated by using the Hamilton
equation of motion

ȧi = {ai , H̃} =
1

4λ
ajajπi . (98)

Using relation (98) in Eq.(97) we derive the first class La-
grangian written as

L = −M +2λ
ȧi ȧi

ajaj
, (99)

with the infinitesimal gauge variation given by δai = εai ,
where ε is a constant. Notice that it is only possible to derive
this first class Lagrangian, Eq.(99), if we adopt the symme-
try generator of the theory as T2 = aiπi , Eq.(94). Moreover,
using the relations (91) and (98) and imposing the constraint
surface aiπi = 0, we obtain ḃ1 = 0. Consequently, we can
observe that the BFFT first class Lagrangian (73) reduces to

the gauge invariant Lagrangian, Eq.(99). This important result
also confirms the consistency of our formalism.

Along the text we have mentioned the property that we have
only one gauge symmetry generator. Thus from this property
we can obtain a second class system from the gauge condition

T1θ = aiai −θπiπi −1, (100)

where θ is a constant. T1θ is a deformed spherical constraint
with the Poisson bracket

{T2,T1θ} = −2aiai −2θπiπi . (101)

It is not difficult to observe that no additional constraints are
generated by imposing the deformed spherical condition re-
lation (100). T2 and T1θ are now the total second class con-
straints of the model. Using the Dirac brackets formula [3, 14]

{A,B}DB = {A,B}+

1
{T2,T1θ} ({A,T2}{T1θ,B}−{A,T1θ}{T2,B}) , (102)

we obtain the commutation relations between the collective
coordinates operators upon quantization

{ai ,aj}DB = θ
ajπi −aiπ j

a2 +θπ2 , (103)

{ai ,π j}DB = δi j − aiaj +θπiπ j

a2 +θπ2 , (104)

{πi ,π j}DB =
ajπi −aiπ j

a2 +θπ2 . (105)

Note that if we make θ = 0 we recover the usual algebra of
this collective coordinates operators[15]. Therefore, it is im-
portant to observe that using a specific embedding procedure,
choosing a particular gauge condition and applying the Dirac
bracket quantization we get a noncommuting collective coor-
dinates operators, relation(103). This new result is only de-
rived if we have used T2 = aiπi as the symmetry generator in
the first class Skyrmion system.

V. CONCLUSIONS

In this paper, we give some prescriptions in order to elimi-
nate the WZ fields of the BFFT formalism. The WZ variables
are considered only as auxiliary tools that enforce symmetries
in an initial second class constrained system. Then, after em-
bedding a second class system by the BFFT formalism, we
substitute the WZ fields by convenient functions and, conse-
quently, we derive a gauge invariant Hamiltonian written only
in terms of the original second class phase space variables.
This first class system has one gauge symmetry generator. It
is an advantage because we have the possibility to select one
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gauge condition which can reveal important physical proper-
ties. In all first class conversion formalisms there are ambi-
guities in the construction of the first class constraints and the
gauge invariant Hamiltonian[2] and this situation is not dif-
ferent in our prescription. For example, the choices of the
extended gauge symmetry generator (and, consequently, the
gauge symmetry generator of the theory) and the key func-
tion Fα(qi , pi), Eq.(11), are arbitrary. However, these different
possible options can be used in order to unveil important phys-
ical results or some choices can be related to obtain benefits

in the algebraic calculations.
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