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Temperature Dependent Molecular Dynamic Simulation of Friction
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In this work we present a molecular dynamics simulation of a FFM experiment. The tip-sample interaction

is studied by varying the normal force in the tip and the temperature of the surface. The friction force, cA, at

zero load and the friction coefficient, µ, were obtained. Our results strongly support the idea that the effective

contact area, A, decreases with increasing temperature and the friction coefficient presents a clear signature of

the premelting process of the surface.
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I. INTRODUCTION

Friction is one of the oldest phenomenon studied in natural

sciences. In a macroscopic scale it is known that the friction

force between surfaces satisfies the following rules: (1) The

friction is independent of contact area between surfaces; (2) It

is proportional to the normal force applied between surfaces

and (3) The kinetic friction force is independent of relative

speed between surfaces[1]. Considering that friction is the

result of many microscopic interactions between the building

atoms at the surfaces, it must depend on factors as roughness ,

temperature and the energy dissipation mechanism at the sur-

faces. Therefore, to understand its macroscopic behavior it is

necessary to understand in details the dynamics of interaction

between atoms in the surfaces in contact. In 1987, C. M. Mat

et al[2] have used, for the first time, the Friction Force Micro-

scope (FFM) to investigate friction in nano-scale. That kind of

microscope allows the experimentalist to produce essentially

a single contact between a sharp tip, of atomic dimensions,

and the surface. [3, 4].

FIG. 1: Schematic view of a FFM apparatus. [5]

Its basic principle is shown in Fig. 1. In this apparatus the

tip stays in touch with the surface while it moves at constant

velocity, v, parallel to the surface. The resulting force in the

cantilever makes a torsion on it. This torsion can be observed

by optical techniques. One of the more striking effects ob-

served is the stick-slip phenomenon: The friction force plotted

as a function of time exhibits a sawtooth behavior. [6, 7].

Analytically, the motion of the tip can be modelled as fol-

lows. Forces in the tip are a sum of two terms: An interac-

tion force between the tip and the surface due to the periodic

atomic arrangement of the lattice and a force due to the can-

tilever. Some authors by using this approach were able to re-

produce several features of the friction at a nanoscopic scale

[8, 9]. In this work we use molecular dynamics (MD) simula-

tion to study the friction phenomenon at the atomic scale. In

Fig. 2 we show a schematic view of the model we have used in

our simulation to reproduce the FFM mechanism (Figure 1).

The tip is represented by a single particle that interacts with

the surface through a convenient potential. The springs rep-

resent the mechanism we have used to vary the normal force

(z direction) and to measure the lateral force (x and y direc-

tions). By measuring both forces it is possible to study the

friction force behavior under several circumstances.

In a recent work Resende and Costa [10] using molecular

dynamic simulation have studied the migration of an individ-

ual atom on the surface of a 12−6 Lennard-Jones bcc crystal.

They argued that an observed anomaly occurring in the diffu-

sion constant could be the signature of a pre-melting process.

The migration of an ad-atom at the surface may occurs by

three mechanisms. At low temperature the adsorbed particle

can move through channels on the surface since thermal mo-

tion of atoms at the surface have low amplitude. Once tem-

perature rises one reaches an intermediate state. The surface

starts to melt so that the channels are closed and ad-atoms

are stuck in the vicinity of a surface atom. The situation per-

sists until the ad-atom is thermally activated and random-walk

diffusion occurs. In summary, the diffusion constant should

present a minimum at the intermediate region. Under the point

of view of friction we may ask what is the effect of this phe-

nomenon over friction. For two macroscopic sliding surfaces

we may not expect to distinguish the first two process since the

contact area is large compared to interatomic distance. How-

ever as temperature rises the surface is lubricated by melted

atoms, we may expect a smaller friction coefficient. The situ-

ation is quite different for a small tip in contact with the sur-

face.
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FIG. 2: Schematic view of our Friction Force apparatus.

In the following we describe a series of molecular dynam-

ics computer simulation of the interaction of a small tip with

a surface. Computer simulations give us a very convenient

instrument to study tribological processes. They allow con-

trolled “numerical experiments” where the geometry, sliding

conditions and interactions between atoms can be varied at

will to explore their effect on friction, lubrication, wear and to

reach unaccessible regions for experimentalists. Unlike labo-

ratory experiments, computer simulations enable us to follow

and analyze the full dynamics of all atoms. A wide range of

potentials have been employed in numerical studies of tribol-

ogy. For example, simulations of metals frequently use the

embedded atom method, while studies of hydrocarbons use

potentials that include bond-stretching and so on. We will not

concentrate ourselves in any specific material rather in general

aspects of the problem under consideration. Due to the gen-

eral character of our study we content ourselves by using the

Lennard-Jones (6−12) potential which is commonly used in

studies of general behavior. We will consider that the interac-

tion of the tip with the surface does not disturb very much the

electronic structure of the system. This consideration means

that we do not have to deal with the quantum aspects of the

problem. This simplification let us save a lot of computer

time. If, for one side, we lose details of the considered phe-

nomenon, we gain in that we can study true dynamical and

temperature dependent models.

This work is organized as follows. In the section II we in-

troduce general aspects of the numerical method used, in the

section III we present our results and in section IV we discuss

and present some conclusions.

II. SIMULATION BACKGROUND

Our simulation is carried out by using molecular dynam-

ics (MD) simulation. A schematic view of the simulation

arrangement we have used is shown in Fig. 2. Three springs

of elastic constants kx, ky and kz are attached to the particle

M that represents a tip point. This arrangement allow us to

measure normal (Fz) and parallel (Fx, Fy) forces on M. The

surface is represented by an arrangement of particles which

interact with each other and with the mass M through a trun-

cated Lennard-Jones (6−12) (LJ) potential

Φi, j(ri, j) =

{
φi, j(ri, j)−φi, j(rc)− (ri, j − rc)

(
∂φi, j(ri, j)

∂ri, j

)
ri, j=rc

i f ri, j < rc

0 i f ri, j > rc

(1)

where φi, j(ri, j) is the complete LJ potential,

φi, j(ri, j) = 4εi, j

[(
σi, j

ri, j

)12

−
(

σi, j

ri, j

)6
]

. (2)

The indexes i and j stands for position vectors
−→ri and

−→r j re-

spectively, and 1 ≤ i ≤ N, where N is the total number of par-

ticles and ri, j =
∣∣r j − ri

∣∣. A cutoff, rc, is introduced in the

potential in order to accelerate the simulation. If the force on

a particle is found by summing contributions from all parti-

cles acting upon it, then this truncation limits the computa-

tion time to an amount proportional to the total number of

particles N. Of course, this truncation introduces disconti-

nuities both in the potential and the force. To smooth these

discontinuities we introduce the constant term φ(rc). Another

term (∂φi, j(ri, j)/∂ri, j)ri, j=rc
is introduced to remove the force

discontinuity. Particles in the simulation move according to

Newton’s law of motion, which generates a set of 3N coupled

equations of motion which are solved by increasing forward

in time the physical state of the system in small time steps of

size δt. The resulting equations are solved by using Beeman’s

method of integration[11–14]. The system is arranged in 4

layers with free boundary conditions in all directions. The

first layer is frozen in a regular arrangement as in the (001)
surface of a Lennard-Jones bcc crystal in order to maintain

the whole structure as flat as possible.

With the tip far away from the surface we thermalize the

system at temperature T . After thermalization, the tip is

pushed in a direction parallel to the surface at constant ve-

locity vp. For each simulation the distance between the spring

and the surface is fixed at the start, so that we can control the

perpendicular force on the tip. By measuring the size vari-

ation of the springs we can calculate the lateral, Fx, and the

perpendicular force, Fz, on the tip. The temperature, T , of the

surface can be controlled by using a velocity renormalization

scheme (See for example [15] and references therein). From

the equipartition theorem we can write that

〈v2〉 = 3
kB

m
T. (3)

By controlling the value of 〈v2〉 we can reach a chosen tem-

perature Tf . An appropriated way to do that is by successive
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FIG. 3: Energy as a function of temperature. The melting temperature is estimated as

the inflexion point, being around Tm ≈ 1.1ε/kb

approximations. By multiplying each velocity by a factor α0

defined as

α0 =

√
m

3kB

〈v2〉0

Tf
, (4)

a first approximation to Tf is done. By evolving in time the

system we can create sequences, Tn, {v}n and {α}n, such that

after a finite number of time steps the temperature of the sys-

tem converges to Tn ≈ Tf . The friction coefficient is calculated

as the quotient

µ ≡ dFx

dFz
. (5)

Before we start the simulation we have to have an estima-

tive of the melting temperature, Tm, of the system. This is

done by performing a preliminary simulation of the substrate.

In Figure 3 we show the total energy per particle, E, as a func-

tion of temperature. The melting temperature is estimated as

the inflection point of the curve. We find Tm ≈ 1.1 in accor-

dance with earlier calculations [10, 15–17]. The velocity, po-

sition and forces are stored at each time step for further analy-

sis. We measure the time t, temperature T and forces in units

of σ
√

m/ε, ε/kB and ε/σ respectively.

III. RESULTS

We have simulated the FFM system for several tempera-

tures and initial distances of the tip to the substrate or equiva-

lently, the normal force in the tip. In Fig. 4 we show a plot of

our MD simulation results for the friction force as a function

of normal force for several temperatures. The Amonton’s Law

of friction states that frictional forces are proportional to the

normal force and independent of the contact area. This type of

behavior was observed in some systems by many authors, who

fitted 〈Fx〉 to a linear function of both load,〈Fz〉, and contact

area, A:

〈Fx〉 = µ〈Fz〉+ cA. (6)

Here µ is the friction coefficient and the second term cA is

interpreted as the friction force for zero normal force. In the
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FIG. 4: The friction force,〈Fx〉 as a function of normal force, 〈Fz〉 is

shown for several temperatures. The 〈Fx〉 and 〈Fz〉 forces are measured in

units of ε/σ. The figures, from a to e are for several different values of

T = 0.25,0.44,067,085,1.05 respectively. The circles are the MD results

and the straight line correspond to an adjust.

following we present our results that strongly suggest that the

Amonton’s laws[18, 19] is violated when the friction force is

considered as a function of temperature. In the Fig. 5(left)

we show a plot of cA as a function of temperature. We can

see that when the temperature increases the contact area or

adhesion forces decrease. This behavior can be related to the

fact that at low temperature the atoms at the surface perform

low amplitude jumps so that the number of collisions with the

tip is low. In this case the effective contact area is high be-

cause the tip stays a long time close to the surface. However,

when the temperature grows the number of high energy fluc-

tuations of particles at the surface increases with a consequent

increase in the number of high energy collisions with the tip,

decreasing the effective contact area. We also observe that the

friction coefficient (Shown in Fig. 5(right)) grows abruptly at

T ∼ 0.7ε/kb. This behavior can be related to the pre-melting

of the surface. We show in fig. 6 a plot of the path of the tip

over the surface for several temperatures and normal forces.

As should be expected the paths are well defined for low tem-

peratures becoming random as temperature grows. To un-

derstand what is going on, we have calculated the residence

time of the tip in each site, defined as the time that the tip

spends in the neighborhood of a specific site, i.e., its distance

to some particular site being smaller than some reference dis-

tance δ. With no loss of generality we choose δ = σ, the lat-

tice parameter. In Figs. 7 and 8 we show the histograms for



744 R. A. Dias et al.

0.2 0.4 0.6 0.8 1
T

0.2

0.4

0.6

0.8

1

cA

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
T

0.1

0.2

0.3

0.4

0.5

µ

0.2 0.4 0.6 0.8 1

0.2

0.4

FIG. 5: Plot of cA (left) and µ (right) as a function of Temperature. The line

is only a guide to the eyes.
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FIG. 6: Path of the tip over the surface (XY plane) for several tempera-

tures and normal forces. From a) to e) we have T = 0.25,0.44,067,085,1.05

respectively. The normal forces are defined in fig 4. The plots are shown

dislocated by a constant value in the y direction as a matter of clarity.

normal forces Fz = −1.09,−1.02,−0.95,−0.42,−0.14 and

Fz = 2.05,2.09,2.13,2.52,2.56 respectively for several tem-

peratures. For negative values of Fz the residence time is

well defined even at high temperatures having its average at

δt ≈ 50. The tip is immersed in the surface, so that, it can eas-

ily travel along channels on the surface of the crystal. In the

Fig. 8 we show the histograms for positive values of Fz. The

temperatures are the same as in Fig. 4. At low T they show a

similar behavior as that for Fz < 0. However, at higher temper-

atures, the residence time spreads out to the higher t region.

We interpret this as a closing of the channels discussed above

due to thermic motion of the particles at the surface. When

temperature increases the particle gets more energy, which is

eventually enough to push it from any specific neighborhood.
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FIG. 7: Histogram for the residence time. The normal force is for Fz =
−1.09,−1.02,−0.95,−0.42,−0.14. Beam size is tbeam = 5.
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FIG. 8: Histogram for the residence time. The normal force is for Fz =
2.05,2.09,2.13,2.52,2.56. Beam size is tbeam = 5.



Brazilian Journal of Physics, vol. 36, no. 3A, September, 2006 745

IV. CONCLUSION

We have performed a molecular dynamics simulation of a

FFM experiment. Our results were obtained by varying the

normal force in the tip and the temperature of the surface. The

behavior of the cA term in the Amonton’s law (eq. 6) and the

friction coefficient were found to depend on the temperature.

The cA term which measures essentially the effective contact

area, A, between the tip and the surface were found to decrease

with increasing T . The friction coefficient presents a sudden

jump which seems to be related to the premelting processes of

the surface.
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