Universidade Federal de Juiz de Fora Programa de Pós-Graduação em Engenharia Elétrica Mestrado em Engenharia Elétrica

Letícia Lacerda Santos de Sousa

Desenvolvimento de Modelo de Fluxo de Potência Polar Intervalar baseado na Expansão da Série de Taylor

Juiz de Fora

Letícia Lacerda Santos de Sousa

Desenvolvimento de Modelo de Fluxo de Potência Polar Intervalar baseado na Expansão da Série de Taylor

Dissertação apresentada ao corpo docente do Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Juiz de Fora como parte dos requisitos necessários para a obtenção do grau de Mestre em Engenharia Elétrica com ênfase em Sistemas de Energia.

Orientador: Prof. Vander Menengoy da Costa, D.Sc

Juiz de Fora

Ficha catalográfica elaborada através do Modelo Latex do CDC da UFJF com os dados fornecidos pelo(a) autor(a)
de Sousa, Letícia Lacerda Santos.
Desenvolvimento de Modelo de Fluxo de Potência Polar Intervalar baseado na Expansão da Série de Taylor / Letícia Lacerda Santos de Sousa. - 2018.

113 f. : il.

Orientador: Prof. Vander Menengoy da Costa, D.Sc
Dissertação (mestrado acadêmico) - Universidade Federal de Juiz de Fora, . Programa de Pós-Graduação em Engenharia Elétrica Mestrado em Engenharia Elétrica, 2018.

1. Fluxo de Potência. 2. Incertezas. 3. Série de Taylor. 4. Sistemas Elétricos de Potência I. da Costa, Vander Menengoy, orient. II. Título.

Letícia Lacerda Santos de Sousa

Desenvolvimento de Modelo de Fluxo de Potência Polar Intervalar baseado na Expansão da Série de Taylor

Dissertação apresentada ao corpo docente do Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Juiz de Fora como parte dos requisitos necessários para a obtenção do grau de Mestre em Engenharia Elétrica com ênfase em Sistemas de Energia.

Aprovada em: 03/12/2018

BANCA EXAMINADORA

 Universidade Federal de Juiz de Fora

Prof. ${ }^{\text {a }}$ Marina Lavorato de Oliveira, D.Sc
Pontifícia Universidade Católica de Campinas

Prof. Leandro Ramos de Araújo, D.Sc
Universidade Federal de Juiz de Fora

Dedico este trabalho a Deus, aos meus pais Marcos e Édina e ao meu namorado Davi. Sem o apoio que sempre recebi, jamais teria chegado até aqui.

AGRADECIMENTOS

Primeiramente agradeço a Deus por ser o autor da minha história e ter me dado condições de chegar até aqui. As lutas foram grandes e por vezes pensei em até desistir mas aqui estou por conta do seu amparo e proteção.

À minha mãe Édina e meu pai Marcos, que mesmo com todas dificuldades e abdicações sempre me motivaram, aconselharam e ajudaram. Obrigada por terem acreditado em mim e tenham a certeza que se cheguei até aqui essa conquista também é de vocês!

Ao meu amigo de infância que considero como irmão, Rodolfo, o qual sempre esteve presente em minha vida, nos melhores e piores momentos. Seus conselhos e até mesmo seus puxões de orelha serviram para meu amadurecimento como pessoa.

Ao meu namorado Davi pelo companheirismo, compreensão, motivação e paciência. Sem você a vida não seria tão leve em meio as dificuldades.

Em especial ao professor Vander Menengoy da Costa, pela excelente orientação e dedicação ao longo da minha formação profissional.

Aos meu amigos, que de alguma forma, contribuíram ou fizeram parte durante toda a realização do curso, em especial ao Igor Delgado que ao final do meu mestrado contribuiu auxiliando na plataforma latex e incentivo nos demais assuntos.

E finalmente e não menos importante, agradeço ao Programa de Pós-Graduação em Engenharia Elétrica pela estrutura e qualidade de ensino oferecidos.
"Ora, a fé é o firme fundamento das coisas que se esperam, e a prova das coisas que não se vêem"

RESUMO

A análise de fluxo de potência, ao longo dos anos, tem sido uma ferramenta muito utilizada pelos engenheiros no planejamento e operação de sistemas elétricos de potência. Através do cálculo de fluxo de potência é possível determinar os fluxos nos ramos da rede e as tensões nas barras, dadas as condições de geração e de carga em estado permanente. Todavia, o constante crescimento do consumo de energia elétrica aliado a utilização de fontes intermitentes, juntamente com erro de medições; variação das cargas, variação das impedâncias de linha; entre outras; fazem com que dados de entrada incertos sejam observados. Sob tais condições, estudos específicos de fluxo de potência devem ser desenvolvidos no sentido de incorporar o efeito da incerteza dos dados de geração e carga na análise do fluxo de potência. Portanto, este trabalho desenvolve um modelo de fluxo de potência polar intervalar, com base na utilização da expansão da série de Taylor até a segunda ordem da série. Neste contexto, o método utiliza, além da matriz Jacobiana, a matriz Hessiana referente às equações do fluxo de potência. As incertezas em estudo são as potências ativa e reativa demandadas em cada barra. Esta técnica é incorporada ao fluxo de potência expresso em termos das equações tradicionais, com as tensões escritas em coordenadas polares. Simulações são conduzidas usando sistemas-testes brasileiros 9,33 e 107 barras. Os resultados são comparados com a matemática intervalar; com o modelo de fluxo de potência retangular intervalar baseado na expansão completa da série de Taylor e com a Simulação de Monte Carlo.

Palavras-chave: Fluxo de Potência. Incertezas. Série de Taylor. Sistemas Elétricos de Potência.

Abstract

Power flow analysis, over the years, has been a tool widely used by engineers in electric power systems planning and operation. Based on power flow solution, it is possible to determine voltage magnitudes and angles at each bus, active and reactive flows for all the branches in steady state, once it is provided an operating point determined by scheduled load and generation data. However, due to the ever increasing of power energy consumption and the use of intermittent sources, uncertain input data are observed in practical situations. Thus, novel methodologies must be proposed for power flow algorithms in order to consider uncertainties over load and generation data. This work presents an interval power flow based on polar coordinates, using Taylor series expansion until the second order of the series. Within this context, the proposed method uses not only the Jacobian but also the Hessian matrix referring to the power flow equations. Uncertainties are considered for active and reactive load power at each bus of systems. This technique is incorporated into the power flow based on polar coordinates. Simulations are carried out using brazilian test systems 9,33 and 107-bus . The results are compared with interval mathematics, with the interval rectangular power flow model based on the full Taylor series expansion and also with Monte Carlo Simulation.

Key-words: Power flow. Uncertainties. Taylor series. Electrical Power Systems

LISTA DE ILUSTRAÇÕES

Figura 1 - Fluxograma das Etapas do Método 34
Figura 2 - Sistema exemplo 3 barras 35
Figura 3 - Módulo das tensões nodais intervalares (barra 3 a barra 6) do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 48
Figura 4 - Módulo das tensões nodais intervalares (barra 7 a barra 9) do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 48
Figura 5 - Fase das tensões nodais intervalares (barra 2 a barra 5) do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 49
Figura 6 - Fase das tensões nodais intervalares (barra 6 a barra 9) do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 49
Figura 7 - Geração de potência ativa intervalar da barra $V \theta$ do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 51
Figura 8 - Geração de potência reativa intervalar da barra $V \theta$ do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 51
Figura 9 - Geração de potência reativa intervalar da barra $P V$ do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 51
Figura 10 - Fluxo de potência ativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 53
Figura 11 - Fluxo de potência ativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 53
Figura 12 - Fluxo de potência reativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 53
Figura 13 - Fluxo de potência reativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 54
Figura 14 - Perda de potência ativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 55
Figura 15 - Perda de potência ativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 56
Figura 16 - Perda de potência reativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 56
Figura 17 - Perda de potência reativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$ 56
Figura 18 - Módulo das tensões nodais intervalares do sistema 33 barras com $\Delta \xi=$$\pm 10 \%$59
Figura 19 - Fases das tensões nodais intervalares do sistema 33 barras com $\Delta \xi= \pm 10 \%$ 59Figura 20 - Geração de potência ativa intervalar da barra $V \theta$ do sistema 33 barras$\operatorname{com} \Delta \xi= \pm 10 \%$61
Figura 21 - Geração de potência reativa intervalar da barra $V \theta$ do sistema 33 barras $\operatorname{com} \Delta \xi= \pm 10 \%$61
Figura 22 - Geração de potência reativa intervalar da barra $P V$ do sistema 33 barras $\operatorname{com} \Delta \xi= \pm 10 \%$61
Figura 23 - Fluxo de potência ativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$ 64
Figura 24 - Fluxo de potência reativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$ 65
Figura 25 - Perda de potência ativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$ 68
Figura 26 - Perda de potência reativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$ 68
Figura 27 - Módulo das tensões nodais intervalares do sistema 107 barras com $\Delta \xi= \pm 3 \%$ 75
Figura 28 - Fases das tensões nodais intervalares do sistema 107 barras com $\Delta \xi= \pm 3 \%$ 75
Figura 29 - Geração de potência ativa intervalar da barra $V \theta$ do sistema 107 barras $\operatorname{com} \Delta \xi= \pm 3 \%$ 76
Figura 30 - Geração de potência reativa intervalar da barra $V \theta$ do sistema 107 barras com $\Delta \xi= \pm 3 \%$ 77
Figura 31 - Geração de potência reativa intervalar da barra $P V$ do sistema 107 barras com $\Delta \xi= \pm 3 \%$ 77
Figura 32 - Fluxo de potência ativo intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$ 78
Figura 33 - Fluxo de potência reativo intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$ 79
Figura 34 - Perda de potência ativa intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$ 80
Figura 35 - Perda de potência reativa intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$ 80
Figura 36 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 10 \%$ para o método FPITP 82
Figura 37 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 30 \%$ para o método FPITP 83
Figura 38 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 70 \%$ para o método FPITP 84
Figura 39 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 10 \%$ para o método FPITR 85
Figura 40 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 30 \%$ para o método FPITR 86
Figura 41 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 70 \%$ para o método FPITR 87
Figura 42 - Diagrama unifilar do sistema-teste brasileiro 9 barras 99
Figura 43 - Diagrama unifilar do sistema-teste brasileiro 33 barras 101
Figura 44 - Diagrama unifilar do sistema-teste brasileiro 107 barras 113

LISTA DE ABREVIATURAS E SIGLAS

FP Fluxo de Potência

FPF Fluxo de Potência Fuzzy
FPI Fluxo de Potência Intervalar
FPITP Fluxo de Potência Intervalar com expansão da série de Taylor em coordenadas Polares

FPITR Fluxo de Potência Intervalar com expansão da série de Taylor em coordenadas Retangulares

FPP Fluxo de Potência Probabilístico
FDP Função de Densidade de Probabilidade
MC Monte Carlo
SEP Sistema Elétrico de Potência
SIN Sistema Interligado Nacional
FPI-inf Limite inferior do método FPI via aritmética intervalar
FPI-sup Limite superior do método FPI via aritmética intervalar
FPITP-inf Limite inferior do método FPITP
FPITP-sup Limite superior do método FPITP
FPITP-inf Limite inferior do método FPITR
FPITR-sup Limite superior do método FPITR
MC-inf Limite inferior da simulação de MC
MC-sup Limite superior da simulação de MC

LISTA DE SÍMBOLOS

n
$\Omega_{k} \quad$ Conjunto das barras adjacentes à barra k, incluindo a própria barra k
$V_{k} \quad$ Módulo da tensão na barra k
$\theta_{k} \quad$ Ângulo da tensão na barra k
$\theta_{k m}$
$\varphi_{k m} \quad$ Ângulo do transformador defasador conectado entre as barras $k-m$
$b_{k}^{\text {sh }} \quad$ Susceptância shunt na barra k
$r_{k m} \quad$ Resistência série do ramo $k-m$
$x_{k m} \quad$ Reatância série do ramo $k-m$
$b_{k m} \quad$ Susceptância série do ramo $k-m$
$g_{k m}$
$J \quad$ Matriz Jacobiana
$H \quad$ Matriz Hessiana
$\xi_{P_{k}} \quad$ Parâmetro do erro referente à potência ativa, da barra k
$\xi_{Q_{k}} \quad$ Parâmetro do erro referente à potência reativa, da barra k
$P_{k m} \quad$ Fluxo de potência ativa no ramo $k-m$
$Q_{k m} \quad$ Fluxo de potência reativa no ramo $k-m$
$P_{k m}^{p d} \quad$ Perda de potência ativa no ramo $k-m$
$Q_{k m}^{p d} \quad$ Perda de potência reativa no ramo $k-m$
$G_{k m}+j . B_{k m} \quad$ Elemento $(k-m)$ da matriz admitância nodal
$Q_{k m} \quad$ Potência reativa no ramo $k-m$
$\Delta P_{k} \quad$ Resíduo de potência ativa na barra k
$\Delta Q_{k} \quad$ Resíduo de potência reativa na barra k
$P_{L k} \quad$ Potência ativa demandada da barra k
$Q_{L k} \quad$ Potência reativa demandada da barra k

$P_{G k}$	Potência ativa gerada da barra k
$Q_{G k}$	Potência reativa gerada da barra k
\underline{x}	Valor inferior da variável x
\bar{x}	Valor superior da variável x

SUMÁRIO

1 INTRODUÇÃO 15
1.1 CONSIDERAÇÕES INICIAIS 15
1.2 MOTIVAÇÃO DO TRABALHO 16
1.3 REVISÃO BIBLIOGRÁFICA 17
1.4 OBJETIVOS 22
1.5 PUBLICAÇÕES DECORRENTES 22
1.6 ESTRUTURA DO DOCUMENTO 22
2 FLUXO DE POTÊNCIA INTERVALAR DESENVOLVIDO EM TERMOS DA SÉRIE DE TAYLOR 24
2.1 MODELAGEM EM ESTUDO 24
2.2 ANÁLISE DE FLUXO DE POTÊNCIA INTERVALAR POLAR 28
2.2.1 Modelagem Generalizada Proposta 28
2.2.2 Modelagem da Matriz Hessiana 31
2.2.3 Fluxograma da Metodologia Adotada 33
2.2.4 Exemplo Ilustrativo 35
2.2.4.1 Cálculo das derivadas de primeira ordem 36
2.2.4.2 Cálculo das derivadas de segunda ordem 38
2.2.4.3 Cálculo da solução intervalar 39
2.2.4.4 Cálculo das variáveis de saída 40
2.2.4.4.1 Potências ativa e reativa em barras de geração 41
2.2.4.4.2 Fluxos de potência ativa e reativa nos ramos 43
2.2.4.4.3 Perdas de potência ativa e reativa nos ramos 44
3 RESULTADOS 47
3.1 CONSIDERAÇÕES INICIAIS 47
3.2 SISTEMA TESTE BRASILEIRO 9 BARRAS 47
3.3 SISTEMA TESTE BRASILEIRO 33 BARRAS 57
3.4 SISTEMA TESTE BRASILEIRO 107 BARRAS 69
3.5 IMPACTO DO SEGUNDO TERMO DA SÉRIE DE TAYLOR 81
4 CONCLUSÃO 88
4.1 PROPOSTAS PARA TRABALHOS FUTUROS 89
REFERENCIAS 91
APÊNDICE A - Revisão do Método de Newton-Raphson para Solução do Fluxo de Potência 95
A. 1 MÉTODO DE NEWTON-RAPHSON 95
A. 2 APLICAÇÃO DO MÉTODO DE NEWTON-RAPHSON ÀS EQUA- ÇÕES DO FLUXO DE POTÊNCIA 96
APÊNDICE B - Sistema 9 Barras 99
APÊNDICE C-Sistema 33 Barras 101
APÊNDICE D-Sistema 107 Barras 105

1 INTRODUÇÃO

O presente trabalho encontra-se inserido em pesquisas relacionadas às incertezas no sistema de energia elétrica. Com o aumento da demanda de energia elétrica, os sistemas, muitas vezes, têm operado próximos de seus limites de máximo carregamento. A constante variação na carga e o aumento das fontes intermitentes geram incertezas; as quais, se não incluídas na análise, podem gerar resultados não condizentes com a realidade. Na verdade, a previsão da geração e da carga é uma tarefa de difícil execução na análise de sistemas de potência. Este capítulo apresenta as considerações iniciais, motivações, revisão bibliográfica, principais objetivos do trabalho, publicações decorrentes e a estruturação desta dissertação.

1.1 CONSIDERAÇÕES INICIAIS

A análise de fluxo de potência (FP), ou fluxo de carga, é uma das ferramentas mais utilizadas no estudo de sistemas de potência, tanto em nível de planejamento como de operação. Essa ferramenta permite a determinação do estado operativo do sistema elétrico, a distribuição dos fluxos nos ramos e das injeções de potências ativa e reativa nas barras, dado um nível de carga especificado e as condições de geração ativa estabelecida [1, 2]. A modelagem convencional é representada por um conjunto de equações e inequações algébricas expressas em coordenadas polares ou em coordenadas retangulares das tensões nas barras.

Um dos primeiros estudos visando a solução de fluxo de potência surgiu ao final da década de cinquenta e era baseado em métodos matriciais iterativos [3]. Pouco tempo depois surgiu o método de Newton, que é, até hoje, largamente utilizado [4, 5]. O desenvolvimento de técnica de esparsidade [6] e armazenamento compacto [7] constituíramse num grande avanço para as pesquisas da época, de tal modo, que muitas pesquisas em seguida estudaram a melhoria de características de convergência [8] e análise teórica do problema [9]. Com o objetivo de conter em seus cálculos as características físicas do sistema e algoritmos mais rápidos para atuação em tempo real, surgiram os métodos da Escada ("Ladder") [10], da Soma de Corrente [11] e da Soma de Potência [12], sendo esse último método a melhor alternativa por apresentar maior confiabilidade e velocidade em sistemas de carga pesada, conforme [13].

Atualmente ainda existem pesquisas de novas metodologias de fluxo de potência A Referência [14] propõe um novo tipo de barra no problema de fluxo de potência, para a análise da estabilidade de tensão no estado permanente, reformulando e eliminando diretamente a singularidade da matriz Jacobiana. A Referência [15] propõe um algoritmo de fluxo de potência para sistemas de distribuição com geração distribuída. A Referência [16] propõe um cálculo de fluxo de potência simplificado para rede de distribuição com
geração distribuída.
Apesar de inúmeras pesquisas de novas metodologias de fluxo de potência, praticamente todos os programas atuais utilizam diferentes variações do método de NewtonRaphson. Tal método tem característica de convergência quadrática, é adequado nas aplicações que envolvem sistemas de grande porte; a matriz Jacobiana é altamente esparsa, e, finalmente, as equações iterativas são resolvidas de forma direta e rápida, utilizando-se as técnicas de eliminação ordenada para a solução [5, 6].

No problema de fluxo de potência, as gerações, as cargas ativas e reativas e os dados de linha são considerados quantidades determinísticas, ou seja, retratadas por um único valor. Consequentemente, as tensões nas barras, os fluxos de potência e as perdas são também calculadas de modo determinístico.

O conhecimento apropriado das fontes de imprecisão e seus efeitos é fundamental para uma análise adequada dos sistemas elétricos de potência. Assim, o aumento dos recursos integrados de energia renovável nas redes elétricas, variações nas cargas/geração, diferentes distúrbios, alterações na topologia, entre outras, geram incertezas. Dessa forma, as informações obtidas pelo cálculo do fluxo de potência determinístico não condizem com a realidade do sistema e, portanto, tais incertezas devem ser adequadamente consideradas [17].

1.2 MOTIVAÇÃO DO TRABALHO

Tendo em vista que o fluxo de potência determinístico não considera incertezas, é necessário, portanto, o desenvolvimento de métodos que permitam o tratamento e inclusão de incertezas nas simulações dos problemas de FP. Neste caso, cada variável de saída é representada por uma faixa de possíveis valores, permitindo resultados mais realistas.

Existem muitas ferramentas capazes de incorporar, no processo de solução do problema, as incertezas nos dados de entrada. Dentre os métodos mais citados na literatura destacam-se: fluxo de potência probabilístico (FPP), fluxo de potência fuzzy (FPF) e fluxo de potência intervalar (FPI). O FPP considera as incertezas como variáveis aleatórias de natureza probabilística. Baseia-se em repetições de eventos ou em dados experimentais [18, 19, 20]. Os cálculos de FPF são considerados mais simples que o FPP. As cargas e as gerações são representadas como números fuzzy, através de distribuições de possibilidades [21]. O FPI utiliza a aritmética intervalar para considerar os dados incertos. Comparado aos métodos anteriores, é mais simples e prático para avaliação de segurança do sistema de energia elétrica [22, 23].

Neste âmbito, a proposta básica deste trabalho é desenvolver um novo método que trata incertezas de cargas ativa e reativa na solução do fluxo de potência, expandindo, em termos da série de Taylor, as equações do FP expressas em termos das coordenadas
polares das tensões nas barras. Esta expansão é feita até o termo referente à derivada de segunda ordem. Desta forma, o método propõe utilizar, além da matriz Jacobiana, a matriz Hessiana referente às equações do fluxo de potência.

O método desenvolvido em [24] e analisado em [25] expande, em termos da série de Taylor, as equações de fluxo de potência expressas em coordenadas retangulares das tensões nas barras.

1.3 REVISÃO BIBLIOGRÁFICA

O conceito fundamental teórico e estrutural da definição de FP é descrito nas Referências [1, 2], onde [1] apresenta técnicas de solução de problemas envolvendo sistemas de potência e [2] mostra a formulação do FP, conceito atualmente usado.

Um dos primeiros estudos, apresentado na referência [3], aborda a primeira solução do FP utilizando computador, que até então era realizada a mão. O método utiliza a formulação nodal e resolve as equações não-lineares por um método iterativo de Newton modificado. Com o sucesso de [3], muitos artigos foram publicados sugerindo modificações nos algoritmos e incorporando características adicionais aos programas computacionais. Assim, a Referência [4] sugere o método de eliminação para a solução do FP. A Referência [5] apresenta a versão do método de Newton-Raphson aplicada à solução das equações não-lineares, resolvendo os problemas que ocorriam no método de Gauss-Seidel.

A fim de otimizar o tempo computacional e estender os trabalhos anteriores, a Referência [6] apresenta a fatoração triangular ordenada da matriz esparsa. Outra alternativa, apresentada em [7], utiliza a lista encadeada para a estruturação da matriz Jacobiana e redução do tempo computacional. A Referência [8] também propõe uma nova versão do FP desacoplado rápido, estendendo a solução para sistemas que antes não convergiam. Segundo [9], o desacoplamento não é visto como meramente zerar submatrizes de acoplamento da matriz Jacobiana completa de Newton. Dessa forma, a Referência [9] apresenta uma dedução matemática do método desacoplado rápido.

A evolução do FP, em termos de algoritmos mais rápidos e de estrutura matemática, é evidenciada nas Referências [10, 11, 12]. A Referência [10] desenvolve o método Escada, uma técnica de FP para resolução de redes de distribuição radial usando a teoria da rede ladder. A Referência [11] apresenta a soma de corrente, um método de solução de redes de transmissão e distribuição fracamente malhada, baseado nas leis de Kirchhoff. Por fim, a Referência [12] desenvolve a soma de potência, um método que usa uma equação quadrática do módulo da tensão da barra. Esse método, por apresentar maior confiabilidade e velocidade das três propostas, é considerado na Referência [13] como a melhor alternativa.

Desde então, muitos estudos têm demostrado a importância do tratamento de
incertezas no sistema elétrico de potência. A Referência [17] considera essas incertezas no cálculo de FP trifásico desbalanceado, para redes de distribuição de energia elétrica, usando uma versão fuzzy. É utilizada uma função sinusoidal (forma de seno) ao invés de outras funções de pertinência, como, por exemplo, a trapezoidal e a triangular, para representar os números nebulosos e simular o fluxo de potência fuzzy. Para a validação do método proposto, resultados para sistemas de 13,34 e 123 barras IEEE são apresentados.

A Referência [18] apresenta o FPP, onde considera as variáveis de entrada (geração e carga) como aleatórias, relacionadas a uma determinada distribuição de probabilidades. As amostras são combinadas com a simulação de Monte Carlo. Os resultados da simulação são apresentados para o caso do sistema-teste 118 barras IEEE.

A Referência [19] descreve FPP e propõe que as incertezas na geração eólica sejam retratadas como não gaussiana. O método baseia-se nas propriedades de cumulação das funções de densidade de probabilidade (FDP). O método é aplicado ao sistema RTS96 do IEEE e modificado para incluir dois parques eólicos. Os resultados são validados com a simulação de Monte Carlo.

A Referência [20] aborda o FPP considerando perdas aleatórias de ramos e incertezas nas injeções nodais de potência. As perdas são simuladas por injeções de potência fictícia nos nós correspondentes. A distribuição final de uma variável desejada é obtida simplesmente por meio da convolução das partes referentes às distribuições contínua e discreta desta variável.

A Referência [21] utiliza a modelagem fuzzy para representação de incertezas, onde considera as variáveis de entrada, geração e carga, como números fuzzy e, dessa forma, as variáveis de estado e de saída são calculadas como distribuições de possibilidades. A solução de FPF considera as violações de limite de potência reativa, incertezas em modelos de carga, na previsão de carga e nos parâmetros do sistema.

A Referência [22] incorpora a aritmética intervalar na solução de FP via injeção de corrente, considerando as incertezas nos parâmetros de carga, geração e nos dados de linha. O trabalho modela e implementa o fluxo de potência intervalar via equações de injeção de corrente. A validação dos resultados intervalares é feita através da simulação de Monte Carlo, para os sistemas 14, 57, 300 barras IEEE e 1768 barras.

A Referência [23] aborda uma análise intervalar aplicada ao ponto de máximo carregamento de sistemas de energia elétrica, onde considera incertezas nos dados de carga. A solução é realizada através do método iterativo de Krawczyk. Sistema-teste IEEE de 30 barras e sistema brasileiro sul-sudeste são usados para validar a metodologia proposta, comparando os resultados obtidos com a simulação de MC.

Com a finalidade de obter manipulações simples de equações matemáticas intervalares, a Referência [24] propõe um método de solução de fluxo de potência intervalar baseado
na expansão completa, em série de Taylor, das equações do FP expressas em termos das coordenadas retangulares das tensões nas barras. O modelo matemático é, primeiramente, estabelecido e a solução das equações algébricas não-lineares com variáveis intervalares é transformada na solução de três conjuntos de equações lineares determinísticas. Para validação da metodologia, os sistemas-testes IEEE de 9 barras e de 57 barras são analisados e os resultados são comparados com aqueles gerados pela simulação de Monte Carlo e pela matemática intervalar.

A Referência [25] analisa o método proposto por [24], de modo a verificar o desempenho e eficiência. Para isto, o método é implementado em MATLAB, considerando diferentes incertezas aplicadas aos sistemas IEEE 57 barras e brasileiro de 107 barras. Os resultados são comparados com aqueles gerados pela matemática intervalar e pela simulação de Monte Carlo.

A Referência [26] propõe uma metodologia baseada em aritmética affine para análise de fluxo de potência na presença de incerteza nos dados de entrada. A aritmética affine é um modelo de análise numérica auto-validada em que as quantidades de interesse são representadas como combinações afins de variáveis primitivas que representam as incertezas dos dados ou aproximações realizadas durante o cálculo.

A Referência [27] propõe o uso da aritmética affine na solução do fluxo de potência ótimo com incertezas na geração. O método é utilizado para determinar as margens operacionais dos geradores térmicos em sistemas com geração eólica e solar. Esta metodologia trata as variáveis de estado e de controle como variáveis afins, compreendendo um valor central e as magnitudes de ruído correspondentes, de modo a representar a previsão de carga, erro de modelo e outras fontes de incerteza. Os resultados são apresentados para o sistema-teste IEEE de 30 barras e para o sistema europeu real de 1211 barras e são comparados com os intervalos gerados via simulação de Monte Carlo.

A Referência [28] apresenta uma modelagem de incertezas relacionadas à previsão de carga, através de variáveis fuzzy aleatórias integradas à técnica de redes neurais. Este método é capaz de modelar as incertezas presentes na previsão de carga, através da integração de técnicas já existentes, tais como Rede Neurais Fuzzy e Redes Neurais Bayesiana. As técnicas propostas são aplicadas à previsão de carga usando dados operacionais reais coletados da concessionária de energia de Macau.

A Referência [29] utiliza a equação do balanço de potência em coordenadas retangulares do fluxo de potência intervalar como solução de incertezas de geração de fontes intermitentes. Um modelo de programação quadrática é estabelecido para formular o problema do fluxo de potência intervalar. A solução intervalar para módulos de tensão, ângulos e fluxos de potência é obtida para todos as barras e ramos do sistema 9 e 57 barras IEEE e comparados com a simulação de Monte Carlo.

A Referência [30] apresenta um modelo de fluxo de potência trifásico desequilibrado com varredura forward-backward, baseado em aritmética complexa affine, para estudar os impactos de incertezas em sistemas desequilibrados de fontes intermitentes. Os resultados para o sistema-teste de distribuição IEEE de 13 barras modificado são comparados com aqueles da simulação de Monte Carlo.

A Referência [31] propõe a solução de FP intervalar com base na utilização da aritmética affine. Esta técnica é incorporada ao FP expresso em termos das equações de injeção de corrente, com as tensões escritas na forma retangular.

A Referência [32] apresenta uma abordagem para a reconfiguração ótima de sistemas de distribuição elétrica, de modo a minimizar as perdas de energia considerando incertezas na demanda de carga e na geração distribuída. A otimização é feita por um algoritmo específico e utiliza o fluxo de potência intervalar para obter os intervalos de perdas a partir da representação de incertezas nos dados de entrada. Resultados são apresentados para os sistemas de 33 barras, 69 barras, 94 barras e 135 barras e são comparados com aqueles gerados pela simulação de Monte Carlo.

A Referência [33] apresenta um método probabilístico para resolver problemas de Unit Commitment incorporando incertezas devido à integração de energia renovável. Baseia-se na solução do problema do despacho econômico, considerando a função de distribuição de probabilidade da potência de saída dos geradores térmicos, energia não suprida, excesso de eletricidade, custo de geração e reserva giratória. Os resultados são comparados com a programação estocástica baseada na formulação de programação linear inteira mista.

A Referência [34] propõe um algoritmo, baseado em intervalos correlacionados, para o cálculo de fluxos de potência em sistema de distribuição, utilizando operações intervalares não conservativas. As incertezas são consideradas nas gerações renováveis e nas cargas da rede de distribuição. As correlações são calculadas a partir de padrões historicamente registrados de variáveis de entrada e diretamente integradas ao algoritmo de fluxo de potência de distribuição forward-backward. O algoritmo proposto é testado nos sistemas-testes de 6 e 1003 barras, e os resultados validados com a simulação de Monte Carlo.

A Referência [35] apresenta um método probabilístico para considerar as incertezas nas cargas e gerações de energia eólica em sistemas de distribuição desequilibrados. O método é baseado na simulação de Monte Carlo aplicada às equações de fluxo de potência trifásico. As aplicações numéricas são realizadas no sistema-teste 34 barras trifásico desbalanceado, na presença de parques eólicos conectados em diferentes barramentos do IEEE.

A Referência [36] propõe uma estrutura unificada baseada na aritmética affine, para
soluções intervalares de fluxo de potência convencional e ótimo, considerando incertezas nos dados. Os resultados para os sistemas-testes IEEE de 30 barras, 57 barras e 118 barras são comparados com aqueles obtidos via simulação de Monte Carlo e via métodos affine propostos em [26].

A Referência [37] propõe um método misto de análise de fluxo de potência intervalar polar e retangular, baseado em aritmética affine. O método misto é desenvolvido no intuito de melhorar os resultados na análise do fluxo de potência intervalar. Como validação, os resultados para os sistemas-testes IEEE de 30 barras e de 118 barras são comparados com aqueles gerados via simulação de Monte Carlo, e via método affine polar apresentado em [26].

A Referência [38] propõe um modelo de fluxo de potência ótimo incorporando as incertezas associadas à geração eólica e carga. Essas incertezas são expressas em termos de intervalos, formando um conjunto poliédrico, onde a decomposição, baseada em cortes primários e duplos, é usada para solução do problema. A proposta é validada usando os sistemas-testes IEEE de 300 barras e polonês de 2746 barras.

A Referência [39] propõe uma metodologia para determinar um modelo probabilístico de geração distribuída de energia elétrica, a partir de geradores eólicos e painéis fotovoltaicos, e determina a localização ótima destes geradores em uma rede de distribuição de energia elétrica, com base em parâmetros técnicos e econômicos. Para validação do modelo proposto, foram realizados testes em dois alimentadores radiais reais, sistema de Recife e sistema de Bandeiras. Obtendo como resultado as perdas anuais de potência ativa, os perfis de tensão e os custos totais de investimento.

A Referência [40] é apresentada uma metodologia para avaliação do impacto de incertezas associadas aos parâmetros estocásticos dos equipamentos para o planejamento de sistemas de sub-transmissão. As incertezas são modeladas com base nas definições da Aritmética Intervalar e consideradas em estudos de três sistemas, sendo dois deles sistemas reais de sub-transmissão, sistema de Pirapora 2 e sistema Noroeste. Os resultados, são obtidos como intervalos, permitindo avaliar a robustez das alternativas de expansão, configurando-se como uma metodologia de suporte ao planejador.

A Referência [41] apresenta um método de fluxo de potência harmônico trifásico, baseado na aritmética complexa affine, para rastrear as contribuições harmônicas de cada unidade de geração distribuída e sua influência sobre cada barramento do sistema de distribuição, considerando as incertezas relacionadas à intermitência da geração. O método é testado em um sistema de distribuição de 33 barras do IEEE.

A Referência [42] aborda a análise de estabilidade de tensão com índice probabilístico, para estudar a estabilidade de redes de distribuição radial incluindo a incerteza de geração eólica. Este índice identifica o barramento mais sensível ao colapso de tensão. As
incertezas de geração distribuída e demanda de carga são levadas em consideração por este índice. A metodologia proposta é aplicada aos sistemas-teste IEEE de 33 e 69 barras.

1.4 OBJETIVOS

O objetivo fundamental deste trabalho e sua principal contribuição é desenvolver, em coordenadas polares das tensões nas barras, a metodologia apresentada em [24], de modo a calcular, de forma intervalar, considerando incertezas nos dados de carga, os módulos das tensões, ângulos de fase, gerações de potência ativa e reativa, fluxos e perdas de potência ativa e reativa nas linhas.

Os resultados intervalares da metodologia proposta (FPITP) serão comparados com os respectivos resultados em coordenadas retangulares (FPITR) [24, 25], com a matemática intervalar (FPI) [31] e com a simulação de Monte Carlo. A implementação do algoritmo é realizada no ambiente MATLAB, onde os sistemas testes brasileiros utilizados são compostos por 9, 33 e 107 barras.

A principal contribuição do trabalho é desenvolver uma ferramenta adicional ao estudo do problema de fluxo de potência intervalar, submetido às incertezas nas demandas ativa e reativa nas barras. Tal ferramenta é capaz de proporcionar ao operador as faixas de possíveis valores que as variáveis associadas ao FP podem assumir, oferecendo maior segurança no planejamento e operação do sistema elétrico de potência.

1.5 PUBLICAÇÕES DECORRENTES

Durante o desenvolvimento do estudo referente a esta dissertação, o artigo " Fluxo de Potência Polar Intervalar Baseado na Expansão da Série de Taylor" foi apresentado no Congresso Brasileiro de Automática - CBA, João Pessoa, PB, 2018.

1.6 ESTRUTURA DO DOCUMENTO

O presente trabalho está dividido em 4 capítulos. O capítulo 1 contextualiza o trabalho com um todo.

O Capítulo 2 apresenta os conceitos básicos do fluxo de potência intervalar desenvolvido em coordenadas polares, bem como a respectiva modelagem. Exemplos ilustrativos para facilitar a compreensão da metodologia são apresentados.

O Capítulo 3 apresenta os resultados desta metodologia aplicada aos sistemas brasileiros de 9, 33 e 107 barras. Resultados da matemática intervalar, do FP intervalar retangular e da simulação Monte Carlo são também apresentados para a validação do estudo aqui presente.

O Capítulo 4 apresenta as conclusões sobre este trabalho e propõe possíveis estudos futuros.

O Apêndice A apresenta uma breve revisão do método de solução das equações de fluxo de potência, em coordenadas polares, segundo o método iterativo de Newton-Raphson.

Os Apêndices B, C e D apresentam as topologias e dados dos sistemas brasileiros de 9,33 e 107 barras.

2 FLUXO DE POTÊNCIA INTERVALAR DESENVOLVIDO EM TERMOS DA SÉRIE DE TAYLOR

2.1 MODELAGEM EM ESTUDO

A série de Taylor é uma função matemática que possibilita calcular o valor da função em um ponto, em termos do valor da função e suas derivadas em um outro ponto. A grosso modo, a série de Taylor é basicamente a soma de uma função com suas n derivadas.

A análise intervalar é representada usando o conceito simples da aritmética intervalar, onde cada intervalo representa um número real fixo entre os limites inferior e superior, expresso como: $[x]=[\underline{x}, \bar{x}]=\{x \in R: \underline{x} \leq x \leq \bar{x}\}$.

Assim, a função real F é representada pela função intervalar $[F]$ se $F(\mathrm{x}) \in[F]([a, b])$ $\forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$. A função F pode ser expressa em termos de suas primeiras n derivadas contínuas em um intervalo $[x]$, da seguinte forma [24]:

$$
\begin{equation*}
[\boldsymbol{F}]([x])=\boldsymbol{F}\left(x_{c}\right)+\boldsymbol{F}^{\prime}\left(x_{c}\right)[\Delta x]+\cdots+\frac{1}{(n)!} \mathbf{F}^{n}\left(x_{c}\right)[\Delta x]^{n} \tag{2.1}
\end{equation*}
$$

onde: $x_{c}=\frac{\underline{x}+\bar{x}}{2},[\Delta x]=\left[-\left(\frac{\underline{x}-\bar{x}}{2}\right)\right.$ e $\left.\left(\frac{\underline{x}-\bar{x}}{2}\right)\right]$.
A fim de exemplificar e facilitar o compreendimento matemático da expansão da série de Taylor, seja F uma função da variável de estado x e da variável de pertubação ξ. O termo de primeira ordem da série de Taylor é dado por:

$$
\begin{equation*}
T_{1}=\frac{\partial F}{\partial x} \cdot \Delta x+\frac{\partial F}{\partial \xi} \cdot \Delta \xi \tag{2.2}
\end{equation*}
$$

Como x varia não-linearmente com ξ, então, de forma aproximada $\Delta x=\frac{\partial x}{\partial \xi} . \Delta \xi$. Logo:

$$
\begin{equation*}
T_{1}=\frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial \xi} \cdot \Delta \xi+\frac{\partial F}{\partial \xi} \cdot \Delta \xi \tag{2.3}
\end{equation*}
$$

ou ainda:

$$
\begin{equation*}
T_{1}=\left(\frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial \xi}+\frac{\partial F}{\partial \xi}\right) \cdot \Delta \xi \tag{2.4}
\end{equation*}
$$

O segundo termo da série de Taylor é dado por:

$$
\begin{equation*}
T_{2}=\frac{\partial}{\partial x}\left[\left(\frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial \xi}+\frac{\partial F}{\partial \xi}\right) \cdot \Delta \xi\right]+\frac{\partial}{\partial \xi}\left[\left(\frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial \xi}+\frac{\partial F}{\partial \xi}\right) \cdot \Delta \xi\right] \tag{2.5}
\end{equation*}
$$

ou seja,

$$
\begin{equation*}
T_{2}=\left(\frac{\partial^{2} F}{\partial x^{2}} \cdot \frac{\partial x}{\partial \xi}+\frac{\partial F}{\partial x} \cdot \frac{\partial^{2} x}{\partial \xi \cdot \partial x}+\frac{\partial^{2} F}{\partial \xi \cdot \partial x}\right) \cdot \Delta x \cdot \Delta \xi+\left(\frac{\partial^{2} F}{\partial x \cdot \partial \xi} \cdot \frac{\partial x}{\partial \xi}+\frac{\partial F}{\partial x} \cdot \frac{\partial^{2} x}{\partial \xi^{2}}+\frac{\partial^{2} F}{\partial \xi^{2}}\right) \cdot(\Delta \xi)^{2} \tag{2.6}
\end{equation*}
$$

Mas, $\frac{\partial^{2} F}{\partial \xi^{2}}=\frac{\partial^{2} x}{\partial \xi \cdot \partial x}=\frac{\partial^{2} F}{\partial x \cdot \partial \xi}=\frac{\partial^{2} F}{\partial \xi \cdot \partial x}=0$. Logo:

$$
\begin{equation*}
T_{2}=\left(\frac{\partial^{2} F}{\partial x^{2}} \cdot \frac{\partial x}{\partial \xi} \cdot \frac{\partial x}{\partial \xi}+\frac{\partial F}{\partial x} \cdot \frac{\partial^{2} x}{\partial \xi^{2}}\right) \cdot \Delta \xi^{2} \tag{2.7}
\end{equation*}
$$

Portanto, a função F pode ser expandida na seguinte forma:

$$
\begin{equation*}
0=F\left(x_{0}, \xi_{0}\right)+\left(\frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial \xi}+\frac{\partial F}{\partial \xi}\right) \cdot \Delta \xi+\frac{1}{2}\left(\frac{\partial^{2} F}{\partial x^{2}} \cdot \frac{\partial x}{\partial \xi} \cdot \frac{\partial x}{\partial \xi}+\frac{\partial F}{\partial x} \cdot \frac{\partial^{2} x}{\partial \xi^{2}}\right) \cdot \Delta \xi^{2} \tag{2.8}
\end{equation*}
$$

onde x_{0} e ξ_{0} são as soluções de F no caso base. Dessa forma, para que a Equação (2.8) seja satisfeita, uma das possíveis soluções é garantir que o somatório dos três termos seja igual a zero, como:

$$
\begin{gather*}
F\left(x_{0}, \xi_{0}\right)=0 \tag{2.9}\\
\frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial \xi}+\frac{\partial F}{\partial \xi}=0 \tag{2.10}
\end{gather*}
$$

ou ainda:

$$
\begin{equation*}
\frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial \xi}=-\frac{\partial F}{\partial \xi} \tag{2.11}
\end{equation*}
$$

Além disso:

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial x^{2}} \cdot \frac{\partial x}{\partial \xi} \cdot \frac{\partial x}{\partial \xi}+\frac{\partial F}{\partial x} \cdot \frac{\partial^{2} x}{\partial \xi^{2}}=0 \tag{2.12}
\end{equation*}
$$

ou ainda:

$$
\begin{equation*}
\frac{\partial F}{\partial x} \cdot \frac{\partial^{2} x}{\partial \xi^{2}}=-\frac{\partial x}{\partial \xi} \cdot \frac{\partial^{2} F}{\partial x^{2}} \cdot \frac{\partial x}{\partial \xi} \tag{2.13}
\end{equation*}
$$

Finalmente, a solução em função da variação ξ é dada por [24]:

$$
\begin{equation*}
x=x_{0}+\frac{\partial x}{\partial \xi} \cdot \Delta \xi+\frac{1}{2} \cdot \frac{\partial^{2} x}{\partial \xi^{2}} \cdot \Delta \xi^{2} \tag{2.14}
\end{equation*}
$$

onde $\frac{\partial x}{\partial \xi}$ e $\frac{\partial^{2} x}{\partial \xi^{2}}$ são calculados a partir de (2.11) e (2.13), respectivamente.
Como exemplo ilustrativo, seja a seguinte função:

$$
x^{2}-5 x+6(1+\xi)=0
$$

As soluções do caso base $(\xi=0)$ são $x_{1}=2$ e $x_{2}=3$. A análise será efetuada para $x_{1}=2$. Da Equação (2.11):

$$
(2 x-5) \cdot \frac{\partial x}{\partial \xi}=-6
$$

Para $x=2$:

$$
-1 \cdot \frac{\partial x}{\partial \xi}=-6
$$

Logo:

$$
\frac{\partial x}{\partial \xi}=6
$$

De (2.13):

$$
-1 . \frac{\partial^{2} x}{\partial^{2} \xi}=-(6.2 .6)
$$

Logo:

$$
\frac{\partial^{2} x}{\partial^{2} \xi}=72
$$

Portanto, de (2.14):

$$
x=2+6 . \Delta \xi+\frac{1}{2} \cdot 72 . \Delta \xi^{2}
$$

Se $\Delta \xi= \pm 3 \%$

$$
\begin{gathered}
x_{+}=2+6 \cdot 0,03+36 \cdot 0,03^{2}=2,2124 \\
x_{-}=2-6 \cdot 0,03+36 \cdot(-0,03)^{2}=1,8524
\end{gathered}
$$

Assim, o valor de x intervalar é:

$$
x=[1,8524 ; 2,2124]
$$

Para a análise efetuada para $x_{2}=3$. Da Equação (2.11):

$$
(2 x-5) \cdot \frac{\partial x}{\partial \xi}=-6
$$

Para $x=3$:

$$
\text { 1. } \frac{\partial x}{\partial \xi}=-6
$$

Logo:

$$
\frac{\partial x}{\partial \xi}=-6
$$

De (2.13):

$$
\text { 1. } \frac{\partial^{2} x}{\partial^{2} \xi}=-(-6.2 .-6)
$$

Logo:

$$
\frac{\partial^{2} x}{\partial^{2} \xi}=-72
$$

Portanto, de (2.14):

$$
x=2-6 . \Delta \xi+\frac{1}{2} .-72 . \Delta \xi^{2}
$$

Se $\Delta \xi= \pm 3 \%$

$$
\begin{gathered}
x_{+}=2+6 \cdot 0,03+36 \cdot 0,03^{2}=2,7876 \\
x_{-}=2-6 \cdot 0,03+36 \cdot(-0,03)^{2}=3,1476
\end{gathered}
$$

Assim, o valor de x intervalar é:

$$
x=[2,7876 ; 3,1476]
$$

Conferindo os resultados:

$$
\begin{gathered}
x^{2}-5 x+6,18=0 \\
x=\frac{5 \pm \sqrt{25-24,72}}{2} \\
x=2,7645 \text { ou } x=2,2354 \\
x^{2}-5 x+5,82=0
\end{gathered}
$$

$$
\begin{gathered}
x=\frac{5 \pm \sqrt{25-23,28}}{2} \\
x=3,1557 \text { ou } x=1,8442
\end{gathered}
$$

É possível observar que a expansão da série de Taylor resulta valores aproximados, validando a solução.

2.2 ANÁLISE DE FLUXO DE POTÊNCIA INTERVALAR POLAR

2.2.1 Modelagem Generalizada Proposta

Uma revisão da solução das equações do problema básico de fluxo de potência em coordenadas polares de tensão é apresentada no Apêndice A. De forma generalizada e visando solucionar o problema de fluxo de potência intervalar através da expansão da série de Taylor, sejam as equações básicas de injeção de potência em coordenadas polares de tensão [2]:

$$
\begin{align*}
& P_{k}=V_{k} \cdot \sum_{m \in \Omega_{k}} V_{m} \cdot\left(G_{k m} \cdot \cos \theta_{k m}+B_{k m} \cdot \operatorname{sen} \theta_{k m}\right) \tag{2.15}\\
& Q_{k}=V_{k} \cdot \sum_{m \in \Omega_{k}} V_{m} \cdot\left(G_{k m} \cdot \operatorname{sen} \theta_{k m}-B_{k m} \cdot \cos \theta_{k m}\right) \tag{2.16}
\end{align*}
$$

As incertezas estão relacionadas às cargas agora representadas por uma faixa de valores, ou seja, possuem limites inferior e superior ao invés de um único valor (determinístico). Dessa maneira, as incertezas nas potências ativa e reativa demandadas em uma barra k, expressas pelas variações $\xi_{p_{k}}$ e $\xi_{q_{k}}$, são dadas por [24]:

$$
\begin{align*}
& {\left[P_{L_{k}}\right]=P_{L_{k}} \cdot\left(1+\left[\xi_{p_{k}}\right]\right)} \tag{2.17}\\
& {\left[Q_{L_{k}}\right]=Q_{L_{k}} \cdot\left(1+\left[\xi_{q_{k}}\right]\right)} \tag{2.18}
\end{align*}
$$

Assim, como o modelo determinístico apresentado no Anexo A em (A.23) e (A.24), os resíduos de potência ΔP_{k} e ΔQ_{k} com variáveis intervalares são representados pela combinação das Equações (2.15), (2.16), (2.17) e (2.18), ou seja:

$$
\begin{gather*}
\Delta P_{k}=P_{G k}-P_{L k}\left(1+\left[\xi_{p_{k}}\right]\right)-V_{k} \sum_{m \in \Omega k} V_{m} \cdot\left(G_{k m} \cdot \cos \theta_{k m}+B_{k m} \cdot \operatorname{sen} \theta_{k m}\right) \tag{2.19}\\
\Delta Q_{k}=Q_{G k}-Q_{L k} \cdot\left(1+\left[\xi_{q_{k}}\right]\right)-V_{k} \sum_{m \in \Omega k} V_{m} \cdot\left(G_{k m} \cdot \operatorname{sen} \theta_{k m}-B_{k m} \cdot \cos \theta_{k m}\right) \tag{2.20}
\end{gather*}
$$

As Equações (2.19) e (2.20) representam o modelo matemático do fluxo de potência polar com variáveis intervalares. A solução é dada pelo conjunto de Equações (2.21), onde x representa as variáveis de estado módulo e ângulo de fase das tensões nas barras.

$$
F(x,[\xi])=\left[\begin{array}{l}
\Delta P(x,[\xi]) \tag{2.21}\\
\Delta Q(x,[\xi])
\end{array}\right]=0
$$

Portanto, expandindo (2.21) em relação a ξ e considerando até o termo de segunda ordem da equação (2.1), é possível afirmar que [24]:

$$
\begin{array}{r}
\mathbf{0}=F\left(x_{c}, \xi\right)+\left.\sum_{k=1}^{m}\left(\sum_{m=1}^{N} \frac{\partial F}{\partial x_{k}} \frac{\partial x_{m}}{\partial \xi_{k}}+\frac{\partial F}{\partial \xi_{k}}\right)\right|_{\left(x_{c}, \xi\right)} \Delta \xi_{k}+ \\
+\frac{1}{2} \sum_{k=1}^{m} \sum_{m=1}^{m}\left(\sum_{p=1}^{N} \sum_{q=1}^{N} \frac{\partial^{2} F}{\partial x_{p} \partial x_{q}} \frac{\partial x_{p}}{\partial \xi_{k}} \frac{\partial x_{q}}{\partial \xi_{m}}+2 \sum_{p=1}^{N} \frac{\partial^{2} F}{\partial x_{p} \partial \xi_{k}} \frac{\partial x_{p}}{\partial \xi_{m}}+\right. \tag{2.22}\\
\left.+\sum_{p=1}^{N} \frac{\partial F}{\partial x_{p}} \frac{\partial^{2} x_{p}}{\partial \xi_{k} \partial \xi_{m}}+\frac{\partial^{2} F}{\partial \xi_{k} \partial \xi_{m}}\right)\left.\right|_{\left(x_{c}, \xi\right)} \Delta \xi_{k} \Delta \xi_{m}
\end{array}
$$

Equação (2.22) é a generalização da Equação (2.8). E, dessa forma, para que a Equação (2.22) seja satisfeita, é necessário garantir que suas três parcelas sejam iguais à zero. Portanto, de [24]:

$$
\begin{gather*}
F\left(x_{c}, \xi\right)=0 \tag{2.23}\\
\left.\left(\sum_{m=1}^{N} \frac{\partial F}{\partial x_{k}} \frac{\partial x_{m}}{\partial \xi_{k}}+\frac{\partial F}{\partial \xi_{k}}\right)\right|_{\left(x_{c}, \xi\right)}=0 \tag{2.24}\\
\left.\left(\sum_{p=1}^{N} \sum_{q=1}^{N} \frac{\partial^{2} F}{\partial x_{p} \partial x_{q}} \frac{\partial x_{p}}{\partial \xi_{k}} \frac{\partial x_{q}}{\partial \xi_{m}}+2 \sum_{p=1}^{N} \frac{\partial^{2} F}{\partial x_{p} \partial \xi_{k}} \frac{\partial x_{p}}{\partial \xi_{m}}+\sum_{p=1}^{N} \frac{\partial F}{\partial x_{p}} \frac{\partial^{2} x_{p}}{\partial \xi_{k} \partial \xi_{m}}+\frac{\partial^{2} F}{\partial \xi_{k} \partial \xi_{m}}\right)\right|_{\left(x_{c}, \xi\right)}=0 \tag{2.25}
\end{gather*}
$$

A expansão em termos da série de Taylor, basicamente, é dividida em três conjuntos, onde a Equação (2.23) é a solução do fluxo de potência tradicional determinístico com $\xi=0$. A solução do FP é feita pelo método padrão de Newton-Raphson expresso em (2.26) e apresentado no Anexo A.

$$
\left\{\begin{array}{c}
-\mathbf{J}_{h} \Delta x_{h}=\Delta \mathbf{F}_{h} \tag{2.26}\\
x_{h+1}=x_{h}+\Delta x_{h}
\end{array}\right.
$$

onde \mathbf{J}_{h} é a matriz Jacobiana, $\Delta \mathbf{F}_{h}$ e Δx_{h} são os vetores de resíduo e de correção das variáveis de entrada e estado, respectivamente, na iteração h.

O conjunto de Equações (2.24) é representado na forma matricial (2.27) para $j=1,2, \cdots, m$.

$$
\left[\begin{array}{cccc}
\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial x_{2}} & \cdots & \frac{\partial F_{1}}{\partial x_{N}} \tag{2.27}\\
\frac{\partial F_{2}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{2}} & \cdots & \frac{\partial F_{2}}{\partial x_{N}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F_{N}}{\partial x_{1}} & \frac{\partial F_{N}}{\partial x_{2}} & \cdots & \frac{\partial F_{N}}{\partial x_{N}}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial x_{1}}{\partial \xi_{j}} \\
\frac{\partial x_{2}}{\partial \xi_{j}} \\
\vdots \\
\frac{\partial x_{N}}{\partial \xi_{j}}
\end{array}\right]+\left[\begin{array}{c}
\frac{\partial F_{1}}{\partial \xi_{j}} \\
\frac{\partial F_{2}}{\partial \xi_{j}} \\
\vdots \\
\frac{\partial F_{N}}{\partial \xi_{j}}
\end{array}\right]=0
$$

De maneira simplificada:

$$
\begin{equation*}
\frac{\partial x}{\partial \xi_{j}}=-\left(\mathbf{J}_{h+1}\right)^{-1} \frac{\partial \mathbf{F}}{\partial \xi_{j}} \tag{2.28}
\end{equation*}
$$

Nota-se que a Equação (2.28) é a forma generalizada da Equação (2.11). O resultado $\frac{\partial x}{\partial \xi}$ é a solução da derivada de primeira ordem, onde \mathbf{J}_{h+1} é a matriz Jacobiana determinística em coordenadas polares.

E, por fim, o terceiro conjunto de equações representado pela Equação (2.25), onde $\frac{\partial^{2} F}{\partial x_{p} \partial \xi_{k}}$ e $\frac{\partial^{2} F}{\partial \xi_{k} \partial \xi_{m}}$ são iguais à zero, pode ser visto de forma expandida matricialmente em (2.29).

$$
\left[\begin{array}{cccc}
\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial x_{2}} & \cdots & \frac{\partial F_{1}}{\partial x_{N}} \tag{2.29}\\
\frac{\partial F_{2}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{2}} & \cdots & \frac{\partial F_{2}}{\partial x_{N}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F_{N}}{\partial x_{1}} & \frac{\partial F_{N}}{\partial x_{2}} & \cdots & \frac{\partial F_{N}}{\partial x_{N}}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial^{2} x_{1}}{\partial \xi_{i} \xi_{j}} \\
\frac{\partial^{2} x_{2}}{\partial \xi_{i} \xi_{j}} \\
\vdots \\
\frac{\partial^{2} x_{N}}{\partial \xi_{i} \xi_{j}}
\end{array}\right]+\left[\begin{array}{c}
{\left[\frac{\partial \mathbf{x}}{\partial \xi_{j}}\right]^{T} \mathbf{H}_{s}\left(F_{1}\right)\left[\frac{\partial \mathbf{x}}{\partial \xi_{j}}\right]} \\
{\left[\frac{\partial \mathbf{x}}{\partial \xi_{j}}\right]^{T} \mathbf{H}_{s}\left(F_{2}\right)\left[\frac{\partial \mathbf{x}}{\partial \xi_{j}}\right]} \\
\vdots \\
{\left[\frac{\partial \mathbf{x}}{\partial \xi_{j}}\right]^{T} \mathbf{H}_{s}\left(F_{N}\right)\left[\frac{\partial \mathbf{x}}{\partial \xi_{j}}\right]}
\end{array}\right]=\mathbf{0}
$$

onde $\mathbf{H}_{s}\left(F_{p}\right)$ representa a matriz Hessiana da função F_{p} para $p=1,2, \ldots, N$ e $\frac{\partial^{2} x}{\partial \xi^{2}}$ a solução da derivada de segunda ordem. A Equação (2.29) é uma generalização de (2.25). Além disso, o produto $\left[\frac{\partial \mathbf{x}}{\partial \xi_{j}}\right]^{T} \mathbf{H}_{s}\left(F_{i}\right)\left[\frac{\partial \mathbf{x}}{\partial \xi_{j}}\right]$, para $i=1, \ldots, N$, resulta numa grandeza escalar.

De forma simplificada, a Equação (2.29) para $j=1,2, \ldots, m$ é expressa:

$$
\begin{equation*}
-\mathbf{J}_{h+1}\left[\frac{\partial^{2} x}{\partial \xi_{k} \xi_{m}}\right]=\left[\frac{\partial \mathbf{x}}{\partial \xi_{j}}\right]^{T} \mathbf{H}_{s}(F)\left[\frac{\partial \mathbf{x}}{\partial \xi_{j}}\right] \tag{2.30}
\end{equation*}
$$

A soma dos três conjuntos apresentados em (2.23), (2.24) e (2.25) expressa, portanto, a solução intervalar $[x]$ da seguinte forma [24]:

$$
[x]=x_{c}+\frac{\partial x}{\partial \xi}[\Delta \xi]+\frac{1}{2} \frac{\partial^{2} x}{\partial \xi^{2}}\left[\begin{array}{c}
{\left[\Delta \xi_{1} \Delta \xi_{1}\right]} \tag{2.31}\\
{\left[\Delta \xi_{2} \Delta \xi_{2}\right]} \\
\vdots \\
{\left[\Delta \xi_{m} \Delta \xi_{m}\right]}
\end{array}\right]
$$

A solução $[x]$ em (2.31) representa os valores intervalares de módulo e ângulo de fase da tensão nas barras. Através desses valores intervalares, é possível obter as potências reativas das barras $P V^{\prime} s$, a potência ativa e reativa da barra $V \theta$, os fluxos de potência e perdas nos ramos; todos expressos em faixas intervalares.

2.2.2 Modelagem da Matriz Hessiana

As Equações (2.27), (2.29) e (2.31) possibilitam o cálculo dos valores intervalares no fluxo de potência expresso em termos das coordenadas polares das tensões nas barras. Seja a matriz Jacobiana polar J dada por:

$$
\mathbf{J}=\left[\begin{array}{c:c}
& \frac{\partial \Delta \mathbf{P}}{\partial \theta} \tag{2.32}\\
\hdashline \frac{\partial \Delta \mathbf{P}}{\partial V} \\
\hdashline \frac{\partial \Delta \mathbf{Q}}{\partial \theta} & \frac{\partial \Delta \mathbf{Q}}{\partial V}
\end{array}\right]=\left[\begin{array}{c:c}
\mathbf{H} & \mathbf{N} \\
\hdashline \mathbf{M} & \mathbf{L}
\end{array}\right]
$$

As submatrizes H, M, N e L são calculadas conforme Anexo A. A matriz Hessiana \mathbf{H}_{s} é a derivada da matriz Jacobiana (2.32), representada esquematicamente da seguinte forma:

$$
\mathbf{H}_{\mathbf{P}}=\left[\begin{array}{c:c}
\frac{\partial^{2} \Delta \mathbf{P}}{\partial \partial \theta \theta} & \frac{\partial^{2} \Delta \mathbf{P}}{\partial V \partial \theta} \tag{2.33}\\
\hdashline \frac{\partial^{2} \Delta \mathbf{P}}{\partial \theta \partial V} & \frac{\partial^{2} \Delta \mathbf{P}}{\partial V \partial V}
\end{array}\right] \quad \mathbf{H}_{\mathbf{Q}}=\left[\begin{array}{c:c}
\frac{\partial^{2} \Delta \mathbf{Q}}{\partial \theta \partial \theta} & \frac{\partial^{2} \Delta \mathbf{Q}}{\partial V \partial \theta} \\
\hdashline-\partial \cdots \\
\frac{\partial^{2} \Delta \mathbf{Q}}{\partial \theta \partial V} & \frac{\partial^{2} \Delta \mathbf{Q}}{\partial V \partial V}
\end{array}\right]
$$

Para um sistema composto por N barras, as estruturas das matrizes \mathbf{H}_{P} e \mathbf{H}_{Q}, correspondentes a uma barra genérica k, são dadas por (2.34) de [24]:

$$
\mathrm{H}_{P_{k}}=\left[\begin{array}{cccc}
\frac{\partial^{2} P_{k}}{\partial \theta_{1}^{2}} & \frac{\partial^{2} P_{k}}{\partial \theta_{1} \partial \theta_{2}} & \cdots & \frac{\partial^{2} P_{k}}{\partial \theta_{1} \partial V_{N}} \tag{2.34}\\
\frac{\partial^{2} P_{k}}{\partial \theta_{2} \partial \theta_{1}} & \frac{\partial^{2} P_{k}}{\partial \theta_{2}^{2}} & \cdots & \frac{\partial^{2} P_{k}}{\partial \theta_{2} \partial V_{N}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} P_{k}}{\partial V_{N} \partial \theta_{1}} & \frac{\partial^{2} P_{k}}{\partial V_{N} \partial \theta_{2}} & \cdots & \frac{\partial^{2} P_{k}}{\partial V_{N}^{2}}
\end{array}\right] \quad \mathrm{H}_{Q_{k}}=\left[\begin{array}{cccc}
\frac{\partial^{2} Q_{k}}{\partial \theta_{1}^{2}} & \frac{\partial^{2} Q_{k}}{\partial \theta_{1} \partial \theta_{2}} & \cdots & \frac{\partial^{2} Q_{k}}{\partial \theta_{1} \partial V_{N}} \\
\frac{\partial^{2} Q_{k}}{\partial \theta_{2} \partial \theta_{1}} & \frac{\partial^{2} Q_{k}}{\partial \theta_{2}^{2}} & \cdots & \frac{\partial^{2} Q_{k}}{\partial \theta_{2} \partial V_{N}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} Q_{k}}{\partial V_{N} \partial \theta_{1}} & \frac{\partial^{2} Q_{k}}{\partial V_{N} \partial \theta_{2}} & \cdots & \frac{\partial^{2} Q_{k}}{\partial V_{N}^{2}}
\end{array}\right]
$$

onde:

$$
\begin{gather*}
\frac{\partial^{2} P_{k}}{\partial \theta_{k}^{2}}=V_{k} \sum_{m \in \Omega_{k}} V_{m}\left(-G_{k m} \cos \theta_{k m}-B_{k m} \operatorname{sen} \theta_{k m}\right)+V_{k}^{2} G_{k k}=-P_{k}+V_{k}^{2} G_{k k} \tag{2.35}\\
\frac{\partial^{2} P_{k}}{\partial \theta_{k} \partial \theta_{m}}=\frac{\partial^{2} P_{k}}{\partial \theta_{m} \partial \theta_{k}}=V_{k} V_{m}\left(G_{k m} \cos \theta_{k m}+B_{k m} \operatorname{sen} \theta_{k m}\right) \tag{2.36}\\
\frac{\partial^{2} P_{k}}{\partial V_{k} \partial \theta_{k}}=\frac{\partial^{2} P_{k}}{\partial \theta_{k} \partial V_{k}}=\sum_{m \in \Omega_{k}} V_{m}\left(-G_{k m} \operatorname{sen} \theta_{k m}+B_{k m} \cos \theta_{k m}\right)-V_{k} B_{k k}=-\frac{Q_{k}}{V_{k}}-V_{k} B_{k k} \tag{2.37}\\
\frac{\partial^{2} P_{k}}{\partial V_{m} \partial \theta_{k}}=\frac{\partial^{2} P_{k}}{\partial \theta_{k} \partial V_{m}}=V_{k}\left(-G_{k m} \operatorname{sen} \theta_{k m}+B_{k m} \cos \theta_{k m}\right) \tag{2.38}\\
\frac{\partial^{2} P_{k}}{\partial \theta_{m}^{2}}=V_{k} V_{m}\left(-G_{k m} \cos \theta_{k m}-B_{k m} \operatorname{sen} \theta_{k m}\right) \tag{2.39}\\
\frac{\partial^{2} P_{k}}{\partial V_{k} \partial \theta_{m}}=\frac{\partial^{2} P_{k}}{\partial \theta_{m} \partial V_{k}}=V_{m}\left(G_{k m} \operatorname{sen} \theta_{k m}-B_{k m} \cos \theta_{k m}\right) \tag{2.40}\\
\frac{\partial^{2} P_{k}}{\partial V_{m} \partial \theta_{m}}=\frac{\partial^{2} P_{k}}{\partial \theta_{m} \partial V_{m}}=V_{k}\left(G_{k m} \operatorname{sen} \theta_{k m}-B_{k m} \cos \theta_{k m}\right) \tag{2.41}\\
\frac{\partial^{2} P_{k}}{\partial V_{k}^{2}}=2 G_{k k} \tag{2.42}\\
\frac{\partial^{2} P_{k}}{\partial V_{m} \partial V_{k}}=\frac{\partial^{2} P_{k}}{\partial V_{k} \partial V_{m}}=\left(G_{k m} \cos \theta_{k m}+B_{k m} \operatorname{sen} \theta_{k m}\right) \tag{2.43}\\
\frac{\partial^{2} P_{k}}{\partial V_{m}^{2}}=0 \tag{2.44}\\
\end{gather*}
$$

$$
\begin{gather*}
\frac{\partial^{2} Q_{k}}{\partial \theta_{k}^{2}}=V_{k} \sum_{m \in \Omega_{k}} V_{m}\left(-G_{k m} \operatorname{sen} \theta_{k m}+B_{k m} \cos \theta_{k m}\right)+V_{k}^{2} B_{k k}=-Q_{k}-V_{k}^{2} B_{k k} \tag{2.45}\\
\frac{\partial^{2} Q_{k}}{\partial \theta_{k} \partial \theta_{m}}=\frac{\partial^{2} Q_{k}}{\partial \theta_{m} \partial \theta_{k}}=V_{k} V_{m}\left(G_{k m} \operatorname{sen} \theta_{k m}-B_{k m} \cos \theta_{k m}\right) \tag{2.46}\\
\frac{\partial^{2} Q_{k}}{\partial V_{k} \partial \theta_{k}}=\frac{\partial^{2} Q_{k}}{\partial \theta_{k} \partial V_{k}}=\sum_{m \in \Omega_{k}} V_{m}\left(G_{k m} \cos \theta_{k m}+B_{k m} \operatorname{sen} \theta_{k m}\right)-V_{k} G_{k k}=\frac{P_{k}}{V_{k}}-V_{k} G_{k k} \tag{2.47}\\
\frac{\partial^{2} Q_{k}}{\partial V_{m} \partial \theta_{k}}=\frac{\partial^{2} Q_{k}}{\partial \theta_{k} \partial V_{m}}=V_{k}\left(G_{k m} \cos \theta_{k m}+B_{k m} \operatorname{sen} \theta_{k m}\right) \tag{2.48}\\
\frac{\partial^{2} Q_{k}}{\partial \theta_{m}^{2}}=V_{k} V_{m}\left(-G_{k m} \operatorname{sen} \theta_{k m}+B_{k m} \cos \theta_{k m}\right) \tag{2.49}\\
\frac{\partial^{2} Q_{k}}{\partial V_{k} \partial \theta_{m}}=\frac{\partial^{2} Q_{k}}{\partial \theta_{m} \partial V_{k}}=V_{m}\left(-G_{k m} \cos \theta_{k m}-B_{k m} \operatorname{sen} \theta_{k m}\right) \tag{2.50}\\
\frac{\partial^{2} Q_{k}}{\partial V_{m} \partial \theta_{m}}=\frac{\partial^{2} Q_{k}}{\partial \theta_{m} \partial V_{m}}=V_{k}\left(-G_{k m} \cos \theta_{k m}-B_{k m} \operatorname{sen} \theta_{k m}\right) \tag{2.51}\\
\frac{\partial^{2} Q_{k}}{\partial V_{k}^{2}}=2 B_{k k} \tag{2.52}\\
\frac{\partial^{2} Q_{k}}{\partial V_{m} \partial V_{k}}=\frac{\partial^{2} Q_{k}}{\partial V_{k} \partial V_{m}}=\left(G_{k m} \operatorname{sen} \theta_{k m}-B_{k m} \cos \theta_{k m}\right) \tag{2.53}\\
\frac{\partial^{2} Q_{k}}{\partial V_{m}^{2}}=0 \tag{2.54}
\end{gather*}
$$

2.2.3 Fluxograma da Metodologia Adotada

O fluxograma da Figura 1 sintetiza os procedimentos necessários para a obtenção da solução intervalar. Desse modo, são apresentadas as etapas para facilitar o entendimento.

Primeiramente, é realizado a leitura de dados. E posteriormente no bloco 2, o programa de fluxo de potência é simulado para gerar as variáveis de estado determinísticas, módulo (V) e ângulo de fase (θ) das tensões nas barras. Esses resultados serão utilizados no bloco 5. Além disso, a matriz Jacobiana é armazenada.

O bloco 3 realiza a inclusão de incerteza em porcentagem. As incertezas aqui são definidas aleatoriamente e são impostas às cargas do sistema, ou seja, o operador
fornece a faixa de variação desejada. As cargas formam a principal fonte da incerteza e são altamente distribuídas e bastante variáveis. Existem alguns artifícios e algoritmos de otimização [38, 43] que fazem detalhadamente essa modelagem e previsão. Porém, o objetivo desse trabalho é apenas definir uma faixa aleatória de variação de carga e ter uma saída intervalar do fluxo de potência como resultado.

Figura 1 - Fluxograma das Etapas do Método

O bloco 4 é responsável por realizar os cálculos das derivadas de primeira ordem em relação a incerteza $[\xi]$. Esse cálculo é realizado da seguinte forma: primeiramente a matriz Jacobiana polar é atualizada com os valores de V e θ convergidos; em seguida é aplicada a incerteza na carga como em (2.17) e (2.18). Logo após, o vetor solução é obtido com a aplicação de (2.28) e esses dados são armazenados.

O bloco 5 realiza os cálculos das derivadas de segunda ordem em relação a incerteza
$[\xi]$. Assim, para a solução da Equação (2.30) basta determinar somente a matriz Hessiana correspondente a cada barra do sistema, segundo (2.34). A solução obtida também é armazenada.

Por fim, a solução intervalar é realizada no bloco 6, por meio da Equação (2.31), utilizando os valores armazenados.

Uma forma de comparar os resultados dos métodos é através do cálculo de seus desvios em relação aos valores da simulação MC , conforme mostrado em (2.55).

$$
\begin{equation*}
D(\%)=\left|\frac{X_{M C}-X_{i}}{X_{M C}}\right| \tag{2.55}
\end{equation*}
$$

onde, $X_{M C}$ são os valores das variáveis obtidos pelo método MC e X_{i} os valores obtidos pelo método a ser comparado.

2.2.4 Exemplo Ilustrativo

Considere um sistema de 3 barras, extraído da referência [2], como mostra a Figura 2. Os dados de barra e de linha em regime permanente encontram-se, respectivamente, nas Tabelas 1 e 2.

Figura 2 - Sistema exemplo 3 barras

Tabela 1 - Dados de barra do sistema 3 barras

Barra	Tipo	Tensão [p.u.]	$\theta\left[{ }^{\circ}\right]$	$\mathbf{P}[\mathrm{MW}]$	$\mathbf{Q}[\mathrm{MVAr}]$
1	$\mathrm{~V} \theta$	1,00	0,00	0,00	0,00
2	PQ	-	0,00	$-5,00$	$-2,00$
3	PV	0,98	0,00	$-15,00$	0,00

Tabela 2 - Dados de linha do sistema 3 barra

De	Para	Resistência [p.u.]	Reatância [p.u.]	Susceptância shunt [p.u.]
1	2	0,10	1,00	0,01
1	3	0,20	2,00	0,02
2	3	0,10	1,00	0,01

A matriz admitância de barras é dada por:
$Y_{\text {barra }}=\left[\begin{array}{ccc}0,14851-j 1,45515 & -0,09901+j 0,99010 & -0,04950+j 0,49505 \\ -0,09901+j 0,99010 & 0,19802-j 1,96020 & -0,09901+j 0,99010 \\ -0,04950+j 0,49505 & -0,09901+j 0,99010 & 0,14851-j 1,45515\end{array}\right]$ p.u.
A solução do fluxo de potência determinístico, executado com tolerância para convergência de 10^{-4}, é dada na Tabela 3 .

Tabela 3 - Resultado determinístico do caso base do sistema 3 barras

Barra	Tipo	Tensão $[$ p.u. $]$	Fase $\left[{ }^{\circ}\right]$	\mathbf{P} $[\mathbf{M W}]$	\mathbf{Q} $[\mathbf{M V A r}]$
1	$\mathrm{~V} \theta$	1,0000	0,0000	20,3335	$-0,8552$
2	PQ	0,9827	$-6,6055$	$-5,0000$	$-2,0000$
3	PV	0,9800	$-10,3630$	$-15,0000$	$-1,6229$

O sistema linearizado, com a exclusão do módulo e ângulo de fase da tensão da barra V θ e do módulo de tensão da barra PV, é representado da seguinte forma:

$$
\left[\begin{array}{c}
\Delta \theta_{2} \\
\Delta \theta_{3} \\
\hdashline \Delta V_{2}
\end{array}\right]=\left[\begin{array}{cc:c}
H_{22} & H_{23} & N_{22} \\
H_{32} & H_{33} & N_{32} \\
\hdashline M_{22} & M_{23} & L_{22}
\end{array}\right]^{-1} \cdot\left[\begin{array}{c}
\Delta P_{2} \\
\Delta P_{3} \\
\hdashline \Delta Q_{2}
\end{array}\right]
$$

2.2.4.1 Cálculo das derivadas de primeira ordem

Primeiramente, é necessário calcular a matriz Jacobiana no ponto de solução do FP determinístico. Dessa forma, a utilização de (A.11) a (A.22) resulta:

$$
\begin{array}{r}
H_{22}=\frac{\partial P_{2}}{\partial \theta_{2}}=-V_{2}^{2} B_{22}-Q_{2}=-\left(0,9827^{2}\right) \cdot(-1,96)-(-0,02)=1,9128 \\
H_{23}=\frac{\partial P_{2}}{\partial \theta_{3}}=V_{2} V_{3}\left(G_{32} \operatorname{sen} \theta_{23}-B_{23} \cos \theta_{23}\right)=0,9827 \cdot 0,98 \cdot[-0,099 \operatorname{sen}(3,758) \\
-0,99 \cos (3,758)]=-0,9576
\end{array}
$$

$$
\begin{array}{r}
H_{32}=\frac{\partial P_{3}}{\partial \theta_{2}}=V_{3} V_{2}\left(G_{32} \operatorname{sen} \theta_{32}-B_{32} \cos \theta_{32}\right)=0,980.0,9827 \cdot[-0,099 \operatorname{sen}(-3,758) \\
-0,99 \cos (-3,758)]=-0,9451
\end{array}
$$

$$
H_{33}=\frac{\partial P_{3}}{\partial \theta_{3}}=-V_{3}^{2} B_{33}-Q_{3}=-\left(0,98^{2}\right) \cdot(-1,455)-(-0,0162)=1,4136
$$

$$
N_{22}=\frac{\partial P_{2}}{\partial V_{2}}=\frac{P_{2}+V_{2}^{2} G_{22}}{V_{2}}=\frac{-0,05+0,9827^{2} \cdot 0,19802}{0,9827}=0,1437
$$

$$
\begin{aligned}
& N_{32}=\frac{\partial P_{3}}{\partial V_{2}}=V_{3}\left(G_{32} \cos \theta_{32}+B_{32} \operatorname{sen} \theta_{32}\right)=0,98 \cdot[-0,099 \cos (-3,758)+ \\
&0,99 \operatorname{sen}(-3,758)]=-0,1604
\end{aligned}
$$

$$
M_{22}=\frac{\partial Q_{2}}{\partial \theta_{2}}=-V_{2}^{2} G_{22}+P_{2}=-\left(0,9827^{2}\right) \cdot 1,9802+(-0,05)=-0,2412
$$

$$
\begin{array}{r}
M_{23}=\frac{\partial Q_{2}}{\partial \theta_{3}}=-V_{2} V_{3}\left(G_{32} \cos \theta_{23}+B_{23} \operatorname{sen} \theta_{23}\right)=0,9827 \cdot 0,98 \cdot[-0,099 \operatorname{sen}(3,758) \\
-0,99 \cos (3,758)]=0,0326
\end{array}
$$

$$
L_{22}=\frac{\partial Q_{2}}{\partial V_{2}}=\frac{Q_{2}+V_{3}^{2} B_{22}}{V_{2}}=\frac{-0,02-0,9827^{2} \cdot(-1,960)}{0,9827}=1,9057
$$

Logo de (2.27):

$$
\left[\begin{array}{c}
\frac{\partial \theta_{2}}{\partial \xi} \\
\frac{\partial \theta_{3}}{\partial \xi} \\
\frac{\partial V_{2}}{\partial \xi}
\end{array}\right]=\left[\begin{array}{ccc}
1,9128 & -0,9576 & 0,1437 \\
-0,9451 & 1,4136 & -0,1604 \\
-0,2412 & 0,0326 & 1,9057
\end{array}\right]^{-1} \cdot\left[\begin{array}{c}
-0,050 \\
-0,150 \\
-0,020
\end{array}\right]
$$

Resolvendo:

$$
\left[\frac{\partial x}{\partial \xi}\right]=\left[\begin{array}{c}
\frac{\partial \theta_{2}}{\partial \xi} \\
\frac{\partial \theta_{3}}{\partial \xi} \\
\frac{\partial V_{2}}{\partial \xi}
\end{array}\right]=\left[\begin{array}{l}
-0,1185 \\
-0,1879 \\
-0,0223
\end{array}\right]
$$

2.2.4.2 Cálculo das derivadas de segunda ordem

Este cálculo é feito em termos da Equação (2.29), ou seja:

$$
\left[\frac{\partial^{2} x}{\partial \xi^{2}}\right]=\left[\begin{array}{c}
\frac{\partial^{2} \theta_{2}}{\partial \xi^{2}} \\
\frac{\partial^{2} \theta_{3}}{\partial \xi^{2}} \\
\frac{\partial^{2} V_{2}}{\partial \xi^{2}}
\end{array}\right]=\left[\begin{array}{lll}
H_{22} & H_{23} & N_{22} \\
H_{32} & H_{33} & N_{32} \\
M_{22} & M_{23} & L_{22}
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
-\left[\frac{\partial x}{\partial \xi}\right]^{t} \cdot \boldsymbol{A}_{\mathbf{1}} \cdot\left[\frac{\partial x}{\partial \xi}\right] \\
-\left[\frac{\partial x}{\partial \xi}\right]^{t} \cdot \boldsymbol{A}_{\mathbf{2}} \cdot\left[\frac{\partial x}{\partial \xi}\right] \\
-\left[\frac{\partial x}{\partial \xi}\right]^{t} \cdot \boldsymbol{A}_{\mathbf{3}} \cdot\left[\frac{\partial x}{\partial \xi}\right]
\end{array}\right]
$$

onde:

$$
\begin{aligned}
& \boldsymbol{A}_{1}=\left[\begin{array}{ccc}
\frac{\partial^{2} P_{2}}{\partial \theta_{2}^{2}} & \frac{\partial^{2} P_{2}}{\partial \theta_{3} \partial \theta_{2}} & \frac{\partial^{2} P_{2}}{\partial V_{2} \partial \theta_{2}} \\
\frac{\partial^{2} P_{2}}{\partial \theta_{2} \partial \theta_{3}} & \frac{\partial^{2} P_{2}}{\partial \theta_{3}^{2}} & \frac{\partial^{2} P_{2}}{\partial V_{2} \partial \theta_{3}} \\
\frac{\partial^{2} P_{2}}{\partial \theta_{2} V_{2}} & \frac{\partial^{2} P_{2}}{\partial \theta_{3} \partial V_{2}} & \frac{\partial^{2} P_{2}}{\partial V_{2}^{2}}
\end{array}\right] \\
& \boldsymbol{A}_{\mathbf{2}}=\left[\begin{array}{ccc}
\frac{\partial^{2} P_{3}}{\partial \theta_{2}^{2}} & \frac{\partial^{2} P_{3}}{\partial \theta_{3} \partial \theta_{2}} & \frac{\partial^{2} P_{3}}{\partial V_{2} \partial \theta_{2}} \\
\frac{\partial^{2} P_{3}}{\partial \theta_{2} \partial \theta_{3}} & \frac{\partial^{2} P_{3}}{\partial \theta_{3}^{2}} & \frac{\partial^{2} P_{3}}{\partial V_{2} \partial \theta_{3}} \\
\frac{\partial^{2} P_{3}}{\partial \theta_{2} V_{2}} & \frac{\partial^{2} P_{3}}{\partial \theta_{3} \partial V_{2}} & \frac{\partial^{2} P_{3}}{\partial V_{2}^{2}}
\end{array}\right] \\
& \boldsymbol{A}_{\mathbf{3}}=\left[\begin{array}{lll}
\frac{\partial^{2} Q_{2}}{\partial \theta_{2}^{2}} & \frac{\partial^{2} Q_{2}}{\partial \theta_{3} \partial \theta_{2}} & \frac{\partial^{2} Q_{2}}{\partial V_{2} \partial \theta_{2}} \\
\frac{\partial^{2} Q_{2}}{\partial \theta_{2} \partial \theta_{3}} & \frac{\partial^{2} Q_{2}}{\partial \theta_{3}^{2}} & \frac{\partial^{2} Q_{2}}{\partial V_{2} \partial \theta_{3}} \\
\frac{\partial^{2} Q_{2}}{\partial \theta_{2} V_{2}} & \frac{\partial^{2} Q_{2}}{\partial \theta_{3} \partial V_{2}} & \frac{\partial^{2} Q_{2}}{\partial V_{2}^{2}}
\end{array}\right]
\end{aligned}
$$

ou ainda, conforme as Equações de (2.35) a (2.54):

$$
\boldsymbol{A}_{\mathbf{1}}=\left[\begin{array}{ccc}
0,2412 & -0,0327 & 1,9467 \\
-0,0327 & 0,0327 & -0,9746 \\
1,9467 & -0,9746 & 0,3960
\end{array}\right]
$$

$$
\begin{aligned}
& \boldsymbol{A}_{\mathbf{2}}=\left[\begin{array}{ccc}
0,1576 & -0,1576 & -0,9619 \\
-0,1576 & 0,2926 & 0,9619 \\
-0,9619 & 0,9619 & 0
\end{array}\right] \\
& \boldsymbol{A}_{\mathbf{3}}=\left[\begin{array}{ccc}
1,9131 & -0,9577 & -0,2455 \\
-0,9577 & 0,9577 & 0,0332 \\
-0,2455 & 0,0332 & 3,9204
\end{array}\right]
\end{aligned}
$$

A substituição dos valores na Equação (2.29) resulta:

$$
\left[\frac{\partial^{2} x}{\partial \xi^{2}}\right]=\left[\begin{array}{ccc}
1,9128 & -0,9576 & 0,1437 \\
-0,9451 & 1,4136 & -0,1604 \\
-0,2412 & 0,0326 & 1,9057
\end{array}\right]^{-1} \cdot\left[\begin{array}{c}
-0,0054 \\
-0,0085 \\
-0,0190
\end{array}\right]
$$

Resolvendo:

$$
\left[\frac{\partial^{2} x}{\partial \xi^{2}}\right]=\left[\begin{array}{l}
-0,0085 \\
-0,0129 \\
-0,0108
\end{array}\right]
$$

2.2.4.3 Cálculo da solução intervalar

Os resultados intervalares, dados pela Equação (2.31), são:

$$
\begin{aligned}
& \theta_{2}=\theta_{2_{(0)}}+\frac{\partial \theta_{2}}{\partial \xi} \Delta \xi+\frac{1}{2} \frac{\partial^{2} \theta_{2}}{\partial \xi^{2}} \Delta \xi^{2}=-0,11528+(-0,1185) \Delta \xi+\frac{1}{2}(-0,0085) \Delta \xi^{2} \\
& \theta_{3}=\theta_{3_{(0)}}+\frac{\partial \theta_{3}}{\partial \xi} \Delta \xi+\frac{1}{2} \frac{\partial^{2} \theta_{3}}{\partial \xi^{2}} \Delta \xi^{2}=-0,18087+(-0,1879) \Delta \xi+\frac{1}{2}(-0,0129) \Delta \xi^{2} \\
& V_{2}=V_{2_{(0)}}+\frac{\partial V_{2}}{\partial \xi} \Delta \xi+\frac{1}{2} \frac{\partial^{2} V_{2}}{\partial \xi^{2}} \Delta \xi^{2}=-0,9827+(-0,0223) \Delta \xi+\frac{1}{2}(-0,0108) \Delta \xi^{2}
\end{aligned}
$$

Seja, uma incerteza $\Delta \xi$ de $\pm 10 \%$, ou seja, $\Delta \xi= \pm 0,1$. Assim, para $\xi=0,1$, então, $\theta_{2}=-0,1272 \mathrm{rad}$ ou $-7,2864^{\circ}, \theta_{3}=-0,1997 \mathrm{rad}$ ou $-11,4432^{\circ}$ e $V_{2}=0,9804$ p.u.

Para $\xi=-0,1$, então, $\theta_{2}=-0,1035 \mathrm{rad}$ ou $-5,9283^{\circ}, \theta_{3}=-0,1621 \mathrm{rad} \mathrm{ou}-9,2902^{\circ}$ e $V_{2}=0,9849$ p.u.

E, portanto, as faixas intervalares em coordenadas polares são:

$$
\begin{gathered}
\theta_{2}=[-7,2864 ;-5,9283]^{\circ} \\
\theta_{3}=[-11,4432 ;-9,2902]^{\circ} \\
V_{2}=[0,9804 ; 0,9849] p . u .
\end{gathered}
$$

Os limites inferiores das faixas não necessariamente correspondem aos valores para $\xi=-0,1$. O mesmo ocorre em relação aos limites superiores das faixas.

As Tabelas 4 e 5 mostram os resultados para as variáveis de estado V e θ utilizando o método proposto em comparação com o FPI, FPITR e com a simulação de MC. Os desvios dos limites inferior e superior do módulo da tensão na barra 2 via FPITP e FPITP, em relação aos obtidos via MC, são, respectivamente, $0,03 \%$ e $0,02 \%$. Tais desvios utilizando FPI são $0,30 \%$ e $0,31 \%$. Já para as fases das tensões nas barras 2 e 3 os desvios máximos são, respectivamente, $0,36 \%$ e $0,15 \%$ via FPITP e FPITR e $0,77 \%$ e $0,66 \%$ via FPI.

Tabela 4 - Módulo da tensão nodal intervalar do sistema 3 barras para $\Delta \xi= \pm 10 \%$

	Magnitude de Tensão [p.u]				
Barra	FPI	FPITR	FPITP	MC	
		$[\underline{V}, \bar{V}]$	$[\underline{V}, \bar{V}]$	$[\underline{V}, \bar{V}]$	$[\underline{V}, \bar{V}]$
2		$[0,9778 ; 0,9878]$	$[0,9804 ; 0,9849]$	$[0,9804 ; 0,9849]$	$[0,9807 ; 0,9847]$

Tabela 5 - Fase das tensões nodais intervalares do sistema 3 barras para $\Delta \xi= \pm 10 \%$

	Ângulo de Fase da Tensão [$\left.{ }^{\circ}\right]$				
Barra	FPI	FPITR	FPITP	MC	
		$[\underline{\theta} ; \bar{\theta}]$	$[\underline{\theta} ; \bar{\theta}]$	$[\underline{\theta} ; \bar{\theta}]$	$[\underline{\theta} ; \bar{\theta}]$
2		$[-7,316 ;-5,898]$	$[-7,286 ;-5,928]$	$[-7,286 ;-5,928]$	$[-7,260 ;-5,937]$
3		$[-11,472 ;-9,258]$	$[-11,443 ;-9,290]$	$[-11,443 ;-9,290]$	$[-11,417 ;-9,304]$

Os valores intervalares de módulo e fase das tensões das barras obtidos via FPITP e FPITR são iguais. Os limites intervalares contém o valor determinístico. Além disso, as faixas geradas por todos os métodos contemplam integralmente as respectivas faixas geradas pelo MC.

2.2.4.4 Cálculo das variáveis de saída

Dos valores intervalares obtidos da seção anterior, é possível calcular os intervalos de todas as variáveis de saída de interesse, tais como: fluxos de potência ativa e reativa nos ramos, perdas de potência ativa e reativa nos ramos e potência reativa gerada em cada barra.

Para cada variável de saída, o valor correspondente a $\xi=-0,1$ é calculado usando os ângulos de fase e módulo das tensões associadas a $\xi=-0,1$. Da mesma forma, para $\xi=0,1$. O limite inferior de uma variável de saída não necessariamente corresponde ao valor calculado para $\xi=-0,1$. O mesmo ocorre para o limite superior.
2.2.4.4.1 Potências ativa e reativa em barras de geração

Conforme a Equação (A.33):

$$
P_{g_{1}}=V_{1}^{2} G_{11}+V_{1} V_{2}\left(G_{12} \cos \theta_{12}+B_{12} \operatorname{sen} \theta_{12}\right)+V_{1} V_{3}\left(G_{13} \cos \theta_{13}+B_{13} \operatorname{sen} \theta_{13}\right)
$$

Para $\xi=-0,1$:

$$
\begin{aligned}
P_{g_{1}}= & 0,1485+1 \cdot 0,9849\left(-0,099 \cos \left(5,9283^{\circ}\right)+0,99 \cdot \operatorname{sen}\left(5,9283^{\circ}\right)\right)+ \\
& +1.0,98\left(-0,0495 \cos \left(9,2902^{\circ}\right)+0,495 \operatorname{sen}\left(9,2902^{\circ}\right)\right)=0,2240 \text { p.u. }
\end{aligned}
$$

Para $\xi=0,1$:

$$
\begin{aligned}
P_{g_{1}}= & 0,1485+1 \cdot 0,9804\left(-0,099 \cdot \cos \left(7,2864^{\circ}\right)+0,99 \cdot \operatorname{sen}\left(7,2864^{\circ}\right)\right)+ \\
& +1 \cdot 0,98\left(-0,0495 \cdot \cos \left(11,4432^{\circ}\right)+0,495 \cdot \operatorname{sen}\left(11,4432^{\circ}\right)\right)=0,1827 \text { p.u. }
\end{aligned}
$$

Logo, a potência ativa intervalar na barra de referência é dada por $P_{g_{1}}=[0,1827 ; 0,2240]$ p.u. A Tabela 6 apresenta tal resultado decorrente dos diferentes métodos.

Tabela 6 - Geração de potência ativa intervalar da barra $V \theta$ do sistema 3 barras com $\Delta \xi= \pm 10 \%$

	Geração de potência ativa intervalar [p.u.]				
Barra		FPI	FPITR	FPITP	MC
		$\left[\underline{P_{g}} ; \overline{P_{g}}\right]$	$\left[\underline{P_{g}} ; \overline{P_{g}}\right]$	$\left[\underline{P_{g}} ; \overline{P_{g}}\right]$	$\left[\underline{P_{g}} ; \overline{P_{g}}\right]$
1		$[0,1819 ; 0,2248]$	$[0,1827 ; 0,2240]$	$[0,1827 ; 0,2240]$	$[0,1830 ; 0,2233]$

Para a potência reativa gerada na barra de referência, de (A.34):
$Q_{g_{1}}=V_{1}^{2} B_{11}+V_{1} V_{2}\left(G_{12} \operatorname{sen} \theta_{12}-B_{12} \cos \theta_{12}\right)+V_{1} V_{3}\left(G_{13} \operatorname{sen} \theta_{13}-B_{13} \cos \theta_{13}\right)$
Para $\xi=-0,1$:

$$
\begin{aligned}
Q_{g_{1}}= & 1,4551+1.0,9849\left(-0,099 \operatorname{sen}\left(5,9283^{\circ}\right)+0,99 \cdot \cos \left(5,9283^{\circ}\right)\right)+ \\
& +1.0,98\left(-0,0495 \operatorname{sen}\left(9,2902^{\circ}\right)+0,495 \cos \left(9,2902^{\circ}\right)\right)=-0,0115 \text { p.u. }
\end{aligned}
$$

Para $\xi=0,1$:

$$
\begin{aligned}
Q_{g_{1}}= & 1,4551+1 \cdot 0,9849\left(-0,099 \operatorname{sen}\left(5,9283^{\circ}\right)+0,99 \cdot \cos \left(5,9283^{\circ}\right)\right)+ \\
& +1 \cdot 0,98\left(-0,0495 \operatorname{sen}\left(9,2902^{\circ}\right)+0,495 \cos \left(9,2902^{\circ}\right)\right)=-0,0051 \text { p.u. }
\end{aligned}
$$

Tabela 7 - Geração de potência reativa intervalar da barra $V \theta$ do sistema 3 barras com $\Delta \xi=$ $\pm 10 \%$

	Geração de potência reativa intervalar [p.u.]				
Barra	FPI	FPITR	FPITP	MC	
		$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{\bar{Q}_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q}_{g} ; \overline{Q_{g}}\right]$
1		$[-0,0117 ;-0,0053]$	$[-0,0114 ;-0,0052]$	$[-0,0115 ;-0,0051]$	$[-0,0113 ;-0,0055]$

Logo, $Q_{g_{1}}=[-0,0115 ;-0,0051]$ p.u. A Tabela 7 apresenta tal resultado decorrente dos diferentes métodos.

Para a potência reativa gerada na barra PV, de (A.34):
$Q_{g_{3}}=V_{3}^{2} B_{33}+V_{1} V_{3}\left(G_{31} \operatorname{sen} \theta_{31}-B_{31} \cos \theta_{31}\right)+V_{3} V_{2}\left(G_{32} \operatorname{sen} \theta_{32}-B_{32} \cos \theta_{32}\right)$

Para $\xi=-0,1$:

$$
\begin{aligned}
Q_{g_{3}}= & 0,98^{2} \cdot 0,4950+1 \cdot 0,98\left(-0,0495 \operatorname{sen}\left(-9,2902^{\circ}\right)-0,495 \cdot \cos \left(-9,2902^{\circ}\right)\right)+ \\
& +0,98 \cdot 0,9849\left(-0,099 \operatorname{sen}\left(-3,3619^{\circ}\right)-0,99 \cos \left(-3,3619^{\circ}\right)\right)=-0,0218 \text { p.u. }
\end{aligned}
$$

Para $\xi=0,1$:

$$
\begin{aligned}
Q_{g_{3}}= & 0,98^{2} \cdot 0,4950+1 \cdot 0,98\left(-0,0495 \operatorname{sen}\left(-11,4432^{\circ}\right)-0,495 \cdot \cos \left(-11,4432^{\circ}\right)\right)+ \\
& +0,98 \cdot 0,9849\left(-0,099 \operatorname{sen}\left(-4,1568^{\circ}\right)-0,99 \cos \left(-4,1568^{\circ}\right)\right)=-0,0102 \text { p.u. }
\end{aligned}
$$

Logo, $Q_{g_{3}}=[-0,0218 ;-0,0102]$ p.u. A Tabela 8 apresenta tal resultado decorrente dos diferentes métodos.

Tabela 8 - Geração de potência reativa intervalar da barra $P V$ do sistema 3 barras com $\Delta \xi=$ $\pm 10 \%$

	Geração de potência reativa intervalar [p.u.]				
Barra	FPI	FPITR	FPITP	MC	
		$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{\left.\underline{Q_{g}} ; \overline{Q_{g}}\right]}\right.$
3		$[-0,0221 ;-0,0103]$	$[-0,0218 ;-0,0103]$	$[-0,0218 ;-0,0102]$	$[-0,0216 ;-0,0106]$

Conforme mostrado nas Tabelas 6 a 8, as faixas referentes às potências ativa e reativa nas barras de geração contemplam os respectivos valores determinísticos e, além disso, também contemplam integralmente as respectivas faixas oriundas do método de MC. Em algumas situações, as faixas FPITP praticamente coincidem com as respectivas faixas FPITR.
2.2.4.4.2 Fluxos de potência ativa e reativa nos ramos

Conforme a Equação (A.27), para $\xi=-0,1$:

$$
\begin{aligned}
P_{12}= & 1^{2} .0,099-1.0,9849 \cdot 0,099 \cos \left(5,9283^{\circ}\right)-1.0,9849(-0,99) \operatorname{sen}\left(5,9283^{\circ}\right)= \\
& 0,1027 \text { p.u. } \\
P_{13}= & 1^{2} .0,0495-1.0,98 \cdot 0,0495 \cos \left(9,2902^{\circ}\right)-1.0,98(-0,495) \operatorname{sen}\left(9,2902^{\circ}\right)= \\
& 0,0799 p . u .
\end{aligned}
$$

$$
\begin{aligned}
P_{23}= & 0,9849^{2} \cdot 0,099-0,98 \cdot 0,9849 \cdot 0,099 \cos \left(3,3619^{\circ}\right)- \\
& 0,98 \cdot 0,9849(-0,99) \operatorname{sen}\left(3,3619^{\circ}\right)=0,0567 p . u
\end{aligned}
$$

Para $\xi=0,1$:

$$
P_{12}=1^{2} .0,099-1.0,9804.0,099 \cos \left(7,2864^{\circ}\right)-1.0,9804(-0,99) \operatorname{sen}\left(7,2864^{\circ}\right)=
$$ 0,1258 p.u.

$$
\begin{aligned}
P_{13}= & 1^{2} \cdot 0,0495-1.0,98 \cdot 0,0495 \cos \left(11,4432^{\circ}\right)-1.0,98(-0,495) \operatorname{sen}\left(11,4432^{\circ}\right)= \\
& 0,0982 \text { p.u. }
\end{aligned}
$$

$$
\begin{aligned}
P_{23}= & 0,9804^{2} \cdot 0,099-0,98 \cdot 0,9804 \cdot 0,099 \cos \left(4,1568^{\circ}\right)- \\
& -0,98 \cdot 0,9804(-0,99) \operatorname{sen}\left(4,1568^{\circ}\right)=0,0692 \text { p.u. }
\end{aligned}
$$

Logo, $P_{12}=[0,1027 ; 0,1258]$ p.u., $P_{13}=[0,0799 ; 0,0982]$ p.u. e $P_{23}=[0,0567 ; 0,0692]$ p.u. A Tabela 9 apresenta os resultados decorrentes dos diferentes métodos.

Tabela 9 - Fluxo de potência ativa intervalar do sistema 3 barras com $\Delta \xi= \pm 10 \%$

	Fluxo de potência ativa [p.u.]								
Linha	FPI						FPITR	FPITP	MC
	$P_{k m}$	$\left[\underline{P_{k m}} ; \overline{P_{k m}}\right]$	$\left[\underline{\left.\underline{P_{k m}} ; \overline{P_{k m}}\right]}\right.$	$\left[\underline{P_{k m}} ; \overline{P_{k m}}\right]$	$\left[\underline{\left.P_{k m} ; \overline{P_{k m}}\right]}\right.$				
$1-2$	0,1143	$[0,1022 ; 0,1263]$	$[0,1027 ; 0,1258]$	$[0,1027 ; 0,1258]$	$[0,1029 ; 0,1254]$				
$1-3$	0,0891	$[0,0796 ; 0,0985]$	$[0,0799 ; 0,0982]$	$[0,0799 ; 0,0982]$	$[0,0801 ; 0,0980]$				
$2-3$	0,0630	$[0,0538 ; 0,0721]$	$[0,0567 ; 0,0692]$	$[0,0567 ; 0,0692]$	$[0,0567 ; 0,0693]$				

Para os fluxos de potência reativa nos ramos, de (A.29), para $\xi=-0,1$:

$$
\begin{aligned}
Q_{12}= & -1^{2} \cdot(-0,99+0,01)+1 \cdot 0,9849 \cdot(-0,99) \cos \left(5,9283^{\circ}\right)- \\
& -1 \cdot 0,9849 \cdot 0,099 \operatorname{sen}\left(5,9283^{\circ}\right)=0,0001 \text { p.u. }
\end{aligned}
$$

$$
\begin{aligned}
Q_{13}= & -1^{2} \cdot(-0,495+0,02)+1.0,98 \cdot(-0,495) \cos \left(9,2902^{\circ}\right)- \\
& -1.0,98 \cdot 0,0495 \operatorname{sen}\left(9,2902^{\circ}\right)=-0,0116 \text { p.u. }
\end{aligned}
$$

$$
\begin{aligned}
Q_{23}= & -0,9849^{2} \cdot(-0,99+0,01)+0,98 \cdot 0,9849 \cdot(-0,99) \cos \left(3,3619^{\circ}\right)- \\
& -1.0,9849 \cdot 0,099 \operatorname{sen}\left(3,3619^{\circ}\right)=-0,0089 \text { p.u. }
\end{aligned}
$$

Para $\xi=0,1$:

$$
\begin{aligned}
Q_{12}= & -1^{2} \cdot(-0,99+0,01)+1.0,9804 \cdot(-0,99) \cos \left(7,2864^{\circ}\right)- \\
& -1.0,9804.0,099 \operatorname{sen}\left(7,2864^{\circ}\right)=0,0049 \text { p.u. }
\end{aligned}
$$

$$
Q_{13}=-1^{2} \cdot(-0,495+0,02)+1.0,98 \cdot(-0,495) \cos \left(11,4432^{\circ}\right)-
$$

$$
-1.0,98.0,0495 \operatorname{sen}\left(11,4432^{\circ}\right)=-0,0101 \text { p.u. }
$$

$$
\begin{aligned}
Q_{23}= & -0,9849^{2} \cdot(-0,99+0,01)+0,98 \cdot 0,9849 \cdot(-0,99) \cos \left(3,3619^{\circ}\right)- \\
& -1.0,9849 \cdot 0,099 \operatorname{sen}\left(3,3619^{\circ}\right)=-0,0136 \text { p.u. }
\end{aligned}
$$

Logo, $Q_{12}=[0,0001 ; 0,0049]$ p.u., $Q_{13}=[-0,0116 ;-0,0101]$ p.u. e $Q_{23}=$ [$-0,0136 ;-0,0089]$ p.u. A Tabela 10 apresenta os resultados decorrentes dos diferentes métodos.

Tabela 10 - Fluxo de potência reativa intervalar do sistema 3 barras com $\Delta \xi= \pm 10 \%$

	Fluxo de potência ativa [p.u.]								
Linha	FPI						FPITR	FPITP	MC
	$Q_{k m}$	$\left[\underline{Q_{k m}} ; \overline{Q_{k m}}\right]$	$\left[\underline{Q_{k m} ;} ; \overline{Q_{k m}}\right]$	$\left[\underline{\left.Q_{k m} ; \overline{Q_{k m}}\right]}\right.$	$\left[\underline{Q_{k m} ;} ; \overline{Q_{k m}}\right]$				
$1-2$	0,0024	$[-0,0001 ; 0,0048]$	$[0,0001 ; 0,0049]$	$[0,0001 ; 0,0049]$	$[0,0003 ; 0,0046]$				
$1-3$	$-0,0109$	$[-0,0117 ;-0,0102]$	$[-0,0116 ;-0,0101]$	$[-0,0116 ;-0,0101]$	$[-0,0116 ;-0,0010]$				
$2-3$	$-0,0112$	$[-0,0136 ;-0,0088]$	$[-0,0136 ;-0,0089]$	$[-0,0136 ;-0,0089]$	$[-0,0133 ; 0,0091]$				

Conforme mostrado nas Tabelas 9 e 10, as faixas referentes aos fluxos de potência ativa e reativa contemplam os respectivos valores determinísticos e, além disso, também contemplam integralmente as respectivas faixas oriundas do método de MC. Em algumas situações, as faixas FPITP praticamente coincidem com as respectivas faixas FPITR.
2.2.4.4.3 Perdas de potência ativa e reativa nos ramos

Conforme a Equação (A.31), para $\xi=-0,1$:

$$
P_{12}^{p d}=0,099\left(1^{2}+0,9849^{2}-2.1 .0,9849 \cos \left(5,9283^{\circ}\right)\right)=0,0011 \text { p.u. }
$$

$$
P_{13}^{p d}=0,0495\left(1^{2}+0,98^{2}-2.1 .0,98 \cos \left(9,2902^{\circ}\right)\right)=0,0013 \text { p.u. }
$$

$$
P_{32}^{p d}=0,099\left(0,9849^{2}+0,98^{2}-2.0,98.0,9849 \cos \left(3,3619^{\circ}\right)\right)=0,0003 \text { p.u. }
$$

Para $\xi=0,1$:

$$
\begin{aligned}
& P_{12}^{p d}=0,099\left(1^{2}+0,9804^{2}-2.1 .0,9804 \cos \left(7,2864^{\circ}\right)\right)=0,0016 \text { p.u. } \\
& P_{13}^{p d}=0,0495\left(1^{2}+0,98^{2}-2.1 .0,98 \cos \left(11,4432^{\circ}\right)\right)=0,0019 \text { p.u. }
\end{aligned}
$$

$$
P_{32}^{p d}=0,099\left(0,9804^{2}+0,98^{2}-2.0,98.0,9804 \cos \left(4,1568^{\circ}\right)\right)=0,0005 \text { p.u. }
$$

Logo, $P_{12}^{p d}=[0,0011 ; 0,0016]$ p.u., $P_{13}^{\text {pd }}=[0,0013 ; 0,0019]$ p.u. e $P_{23}^{\text {pd }}=[0,0003 ; 0,0005]$ p.u. A Tabela 11 apresenta os resultados decorrentes dos diferentes métodos.

Tabela 11 - Perda de potência ativa intervalar do sistema 3 barras com $\Delta \xi= \pm 10 \%$

Linha	Perda de potência ativa [p.u.]				
	$P_{k m}^{p d}$	$\begin{gathered} \text { FPI } \\ {\left[P_{k m}^{p d} ; \underline{P_{k m}^{p d}}\right]} \end{gathered}$	$\begin{aligned} & \text { FPITR } \\ & {\left[\underline{P_{k m}^{p d}} ; \underline{\left.P_{k m}^{p d}\right]}\right.} \end{aligned}$	$\begin{aligned} & \text { FPITP } \\ & {\left[\underline{P_{k m}^{p d}} ; \underline{P_{k m}^{p d}}\right]} \end{aligned}$	$\begin{gathered} \mathrm{MC} \\ {\left[P_{k m}^{p d} ; \overline{P_{k m}^{p d}}\right]} \end{gathered}$
1-2	0,0013	[0,$0010 ; 0,0016]$	[0,$0011 ; 0,0016$]	[0,0011; 0,0016]	[0,$0011 ; 0,0016]$
1-3	0,0016	[0,0013; 0,0019]	[0,0013; 0,0019]	[0,0013; 0,0019]	[0,0013; 0,0019]
2-3	0,0004	[0,0003; 0,0005]	[0,0003; 0,0005]	[0,0003; 0,0005]	[0,0003; 0,0005]

Para as perdas de potência reativa nos ramos, de (A.32), para $\xi=-0,1$:

$$
\begin{aligned}
Q_{12}^{p d}= & -(-0,99+0,01)\left(1^{2}+0,9849^{2}\right)+2.1 .0,9849(-0,99) \cos \left(5,9283^{\circ}\right)= \\
& -0,0090 \text { p.u. }
\end{aligned}
$$

$$
\begin{aligned}
Q_{13}^{p d}= & -(-0,495+0,02)\left(1^{2}+0,98^{2}\right)+2.1 .0,98(-0,495) \cos \left(9,2902^{\circ}\right)= \\
& -0,0263 \text { p.u. }
\end{aligned}
$$

$$
\begin{aligned}
Q_{23}^{p d}= & -(-0,99+0,01)\left(0,98^{2}+0,9849^{2}\right)+2.0,98.0,9849(-0,99) \cos \left(3,3619^{\circ}\right)= \\
& -0,0160 \text { p.u. }
\end{aligned}
$$

Para $\xi=0,1$:

$$
\begin{aligned}
Q_{12}^{p d}= & -(-0,99+0,01)\left(1^{2}+0,9804^{2}\right)+2.1 .0,9804(-0,99) \cos \left(7,2864^{\circ}\right)= \\
& -0,0036 \text { p.u. }
\end{aligned}
$$

$$
\begin{aligned}
Q_{13}^{p d}= & -(-0,495+0,02)\left(1^{2}+0,98^{2}\right)+2.1 .0,98(-0,495) \cos \left(11,4432^{\circ}\right)= \\
& -0,0197 \text { p.u. }
\end{aligned}
$$

$$
\begin{aligned}
Q_{23}^{p d}= & -(-0,99+0,01)\left(0,98^{2}+0,9804^{2}\right)+2.0,98 \cdot 0,9804(-0,99) \cos \left(4,1568^{\circ}\right)= \\
& -0,0142 \text { p.u. }
\end{aligned}
$$

Logo, $Q_{12}=[-0,0090 ;-0,0036]$ p.u., $Q_{13}=[-0,0263 ;-0,0197]$ p.u. е $Q_{23}=$ $[-0,0160 ;-0,0142]$ p.u. A Tabela 12 apresenta os resultados decorrentes dos diferentes métodos.

Tabela 12 - Perda de potência reativa intervalar do sistema 3 barras com $\Delta \xi= \pm 10 \%$

Linha	Perda de potência reativa [p.u.]				
	$Q_{k m}^{p d}$	$\begin{gathered} \text { FPI } \\ {\left[Q_{k m}^{p d} ; \overline{Q_{k m}^{p d}}\right]} \end{gathered}$	$\begin{aligned} & \text { FPITR } \\ & {\left[Q_{k m}^{p d} ; \overline{Q_{k m}^{p d}}\right]} \end{aligned}$	$\begin{aligned} & \text { FPITP } \\ & {\left[Q_{k m}^{p d} ; \overline{Q_{k m}^{p d}}\right]} \end{aligned}$	$\begin{gathered} \mathrm{MC} \\ {\left[Q_{k m}^{p d} ; \overline{Q_{k m}^{p d}}\right]} \end{gathered}$
1-2	-0,0064	[-0,0093; -0,0036]	[-0,0090; -0,0035]	[-0,0090; -0,0036]	[0,0090; 0,0037]
1-3	-0,0232	[-0,0266; -0,0198]	[-0,0263; -0,0197]	[-0,0263; -0,0197]	[-0,0262; -0,0198]
2-3	-0,0152	[-0,0164; -0,0140]	[-0,0160; -0,0142]	[-0,0160; -0,0142]	[-0,0598; 0,0142]

Conforme mostrado nas Tabelas 11 a 12, as faixas referentes às perdas ativa e reativa nos ramos contemplam os respectivos valores determinísticos e, além disso, também contemplam integralmente as respectivas faixas oriundas do método de MC. Em algumas situações, as faixas FPITP praticamente coincidem com as respectivas faixas FPITR.

3 RESULTADOS

3.1 CONSIDERAÇÕES INICIAIS

Este capítulo apresenta os resultados do método proposto para três sistemas elétricos brasileiros: 9, 33 e 107 barras, cujos dados estão nos Apêndices A, B e C, respectivamente. Esses dados são extraídos da Referência [44]. O método é desenvolvido no ambiente MATLAB com a tolerância adotada para a convergência dos fluxos determinístico e intervalar de 10^{-4}. As incertezas são consideradas nas demandas ativa e reativa das barras. São apresentados, de forma gráfica, os resultados para o módulo e ângulo de fase da tensão, juntamente com as potências ativa e reativa geradas, perdas e fluxos de potência nos ramos. Para cada sistema simulado, os resultados do método proposto (FPITP) são comparados com aqueles obtidos via matemática intervalar (FPI) [31], via expansão completa da série de Taylor em coordenadas retangulares (FPITR) [25] e via simulação de Monte Carlo (MC). Na simulação de MC, 5 mil amostras são utilizadas.

3.2 SISTEMA TESTE BRASILEIRO 9 BARRAS

Esse sistema possui um máximo carregamento de $73,17 \%$. Incertezas de $\pm 5 \%$ são consideradas nas potências ativa e reativa de cada barra do sistema.

A Tabela 13 e as Figuras 3 e 4 apresentam o módulo das tensões intervalares em cada barra do sistema. Nas Figuras 3 e 4, as barras 1 e 2 não são exibidas pois representam barras $V \theta$ e $P V$, ou seja, não são geradas faixas de tensão.

Tabela 13 - Módulo das tensões nodais intervalares do sistema 9 barras para $\Delta \xi= \pm 5 \%$

	Magnitude de Tensão [p.u]				
Barra	V	FPI $[\underline{V}, \bar{V}]$	FPITR $[\underline{V}, \bar{V}]$	FPITP $[\underline{V}, \bar{V}]$	MC $[\underline{V}, \bar{V}]$
1	1,030	$[1,030 ; 1,030]$	$[1,030 ; 1,030]$	$[1,030 ; 1,030]$	$[1,030 ; 1,030]$
2	1,035	$[1,035 ; 1,035]$	$[1,035 ; 1,035]$	$[1,035 ; 1,035]$	$[1,035 ; 1,035]$
3	1,029	$[1,022 ; 1,035]$	$[1,024 ; 1,033]$	$[1,024 ; 1,033]$	$[1,026 ; 1,031]$
4	1,027	$[1,016 ; 1,038]$	$[1,021 ; 1,032]$	$[1,021 ; 1,032]$	$[1,023 ; 1,030]$
5	1,012	$[0,999 ; 1,025]$	$[1,004 ; 1,019]$	$[1,004 ; 1,019]$	$[1,006 ; 1,016]$
6	1,022	$[1,008 ; 1,037]$	$[1,015 ; 1,029]$	$[1,015 ; 1,029]$	$[1,018 ; 1,026]$
7	1,007	$[0,989 ; 1,025]$	$[0,997 ; 1,016]$	$[0,997 ; 1,016]$	$[1,001 ; 1,012]$
8	1,019	$[1,004 ; 1,034]$	$[1,011 ; 1,026]$	$[1,011 ; 1,026]$	$[1,013 ; 1,023]$
9	1,002	$[0,981 ; 1,024]$	$[0,992 ; 1,013]$	$[0,992 ; 1,013]$	$[0,995 ; 1,008]$

Figura 3 - Módulo das tensões nodais intervalares (barra 3 a barra 6) do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Figura 4 - Módulo das tensões nodais intervalares (barra 7 a barra 9) do sistema 9 barras com $\Delta \xi= \pm 5 \%$

A Tabela 14 e as Figuras 5 e 6 mostram a fase das tensões intervalares. Nas Figuras 5 e 6 , a fase da barra 1 não é apresentada pelo fato de ser $V \theta$ e seu valor ser constante.

Tabela 14 - Fase das tensões nodais intervalares do sistema 9 barras para $\Delta \xi= \pm 5 \%$

Barra	Ângulo de Fase da Tensão [${ }^{\circ}$]				
	θ	$\begin{aligned} & \text { FPI } \\ & {[\underline{\theta} ; \bar{\theta}]} \end{aligned}$	$\begin{gathered} \text { FPITR } \\ {[\underline{\theta} ; \bar{\theta}]} \end{gathered}$	$\begin{aligned} & \text { FPITP } \\ & {[\underline{\theta} ; \bar{\theta}]} \end{aligned}$	$\begin{gathered} \mathrm{MC} \\ {[\underline{\theta} ; \bar{\theta}]} \end{gathered}$
1	0,000	[0,000; 0,000]	[0,000; 0,000]	[0,000; 0,000]	[0,000; 0,000]
2	-0,504	[-1,821; 0,813]	[-1,638; 0,602$]$	[-1,638; 0,602]	[-1,339; 0,284]
3	-5,168	[-5,762; -4,579]	[-5,682; -4,663]	[-5,682; -4,663]	[-5,454; -4,804]
4	-6,728	[-8,085; -5,385]	[-7,896; -5,589]	[-7,896; -5,589]	[-7,578; -5,928]
5	-8,907	[-9,920;-7,910]	[-9,781; -8,054]	[-9,780; -8,054]	[-9,548; -8,286]
6	-9,009	[-10,343;-7,695]	[-10,162; -7,886]	[-10,162;- 7,887]	[-9,843; -8,246]
7	-10,662	[-12,106; -9,244]	[-11,903; -9,455]	[-11,902; -9,455]	[-11,554; -9,803]
8	-9,963	[-11,155; -8,790]	[-10,997; -8,955]	[-10,996; -8,956]	[-10,714; -9,240]
9	-13,081	[-14,634; -11,561]	[-14,423; -11,778]	[-14,422; -11,779]	[-14,055; -12,131]

Figura 5 - Fase das tensões nodais intervalares (barra 2 a barra 5) do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Figura 6 - Fase das tensões nodais intervalares (barra 6 a barra 9) do sistema 9 barras com $\Delta \xi= \pm 5 \%$

As Tabelas 13 e 14 e as Figuras 3 a 6 mostram que todas as faixas de módulo e de ângulo de fase, em todas as barras, contemplam os respectivos valores determinísticos. Além disso, as faixas geradas pelos métodos FPITP, FPITR e FPI contemplam integralmente as respectivas faixas geradas pelo MC. Trinta e seis limites, inferior e superior, referentes ao módulo e o ângulo de fase da tensão são calculados. Os métodos FPITP, FPITR e FPI apresentam 5, 5 e 9 desvios maiores que 5%, respectivamente, e 18 , 18 e 12 menores que 1%. Portanto, $86,11 \%, 86,11 \%$ e $75,00 \%$ dos desvios gerados pelos métodos FPITP, FPITR e FPI, nesta ordem, são menores que 5%, ao passo que os maiores desvios são $111,97 \%, 111,97 \%$ e $186,97 \%$ referentes ao ângulo de fase intervalar na barra 2 .

As gerações de potências ativa e reativa intervalares estão mostradas nas Tabelas 15 e 16 e nas Figuras 7 e 8, respectivamente. A potência reativa intervalar gerada na barra $P V$ está mostrada na Tabela 17 e Figura 9.

Tabela 15 - Geração de potência ativa intervalar da barra $V \theta$ do sistema 9 barras com $\Delta \xi= \pm 5 \%$

	Geração de potência ativa intervalar $[\mathrm{MW}]$				
Barra	P_{g}	FPI	FPITR	FPITP	MC
		$\left[\underline{P_{g}} ; \overline{P_{g}}\right]$	$\underline{\left.\underline{P_{g}} ; \overline{P_{g}}\right]}$	$\left[\underline{\left[P_{g}\right.} ; \overline{P_{g}}\right]$	$\left[\underline{P_{g}} ; \overline{P_{g}}\right]$
1	178,749	$[159,14 ; 198,36]$	$[161,99 ; 195,58]$	$[162,00 ; 195,58]$	$[166,37 ; 191,36]$

Tabela 16 - Geração de potência reativa intervalar da barra $V \theta$ do sistema 9 barras com $\Delta \xi=$ $\pm 5 \%$

	Geração de potência reativa intervalar [MVAr]				
Barra	FPI				FPITR
	Q_{g}	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$
1	10,483	$[-0,04 ; 21,01]$	$[0,81 ; 20,93]$	$[0,81 ; 20,93]$	$[5,19 ; 17,16]$

Tabela 17 - Geração de potência reativa intervalar da barra $P V$ do sistema 9 barras com $\Delta \xi= \pm 5 \%$

	Geração de potência reativa intervalar [MVAr]				
Barra	FPI	FPITR	FPITP	MC	
		$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \bar{Q}_{g}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$
2		$[11,702 ; 26,778]$	$[12,114 ; 26,935]$	$[12,116 ; 26,933]$	$[15,267 ; 23,874]$

Figura 7 - Geração de potência ativa intervalar da barra $V \theta$ do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Figura 8 - Geração de potência reativa intervalar da barra $V \theta$ do sistema 9 barras $\operatorname{com} \Delta \xi= \pm 5 \%$

Figura 9 - Geração de potência reativa intervalar da barra $P V$ do sistema 9 barras com $\Delta \xi=$ $\pm 5 \%$

As Tabelas 15 a 17 e as Figuras 7 a 9 mostram que todas as faixas de geração ativa e reativa, em todas as barras, contemplam os respectivos valores determinísticos. Além disso, as faixas geradas pelos métodos FPITP, FPITR e FPI contemplam integralmente as respectivas faixas geradas pelo MC . Os maiores desvios de geração de potência reativa na barra 2 são $20,64 \%, 20,65 \%$ e $23,35 \%$ referentes aos métodos FPITP, FPITR e FPI.

As Tabelas 18 e 19 e as Figuras 10 a 13 apresentam os valores intervalares referentes aos fluxos de potência ativa e reativa.

Tabela 18 - Fluxo de potência ativo intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Linha	Fluxo de potência ativa [MW]				
	$P_{k m}$	$\begin{gathered} \text { FPI } \\ {\left[\underline{P_{k m}} ; \overline{P_{k m}}\right]} \end{gathered}$	$\begin{aligned} & \text { FPITR } \\ & {\left[\underline{P_{k m}} ; \overline{P_{k m}}\right]} \end{aligned}$	$\begin{aligned} & \text { FPITP } \\ & {\left[P_{k m} ; \overline{P_{k m}}\right]} \end{aligned}$	$\begin{gathered} \mathrm{MC} \\ {\left[\underline{P_{k m}} ; \overline{P_{k m}}\right]} \end{gathered}$
1-3	178,75	[159,14; 198,36]	[161,99; 195,58]	[162,00; 195,58]	[166,57; 191,17]
2-4	150,00	[149,98; 150,02]	[149,99; 150,01]	[150,00; 150,00]	[149,99; 150,17]
3-5	75,19	[67,43; 82,95]	[68,58; 81,82]	[68,58; 81,82]	[70,30; 80,10]
3-8	103,56	[91,71; 115,42]	[93,41; 113,76]	[93,42; 113,76]	[96,25; 111,01]
4-7	91,88	[88,49; 95,27]	[91,05; 92,72]	[91,05; 92,72]	[90,95; 92,39]
5-7	19,27	[13,56; 24,98]	[15,58; 22,97]	[15,58; 22,97]	[16,80; 21,81]
6-4	-57,85	[-61,20; -54,49]	[-58,67; -57,02]	[-58,67; -57,02]	[-59,01; -57,15]
6-8	20,85	[16,68; 25,02]	[18,17; 23,52]	[18,17; 23,52]	[19,10; 21,80]
7-9	42,28	[38,14; 46,42]	[41,24; 43,33]	[41,24; 43,33]	[41,$10 ; 43,30]$
8-9	33,35	[29,09; 37,61]	[30,56; 36,15]	[30,56; 36,15]	[31,23; 35,45]

Tabela 19 - Fluxo de potência reativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Linha	Fluxo de potência reativa [MVAr]				
	$Q_{k m}$	$\begin{gathered} \mathrm{FPI} \\ {\left[\underline{Q_{k m}} ; \overline{Q_{k m}}\right]} \end{gathered}$	$\begin{gathered} \text { FPITR } \\ {\left[\underline{Q_{k m}} ; \overline{Q_{k m}}\right]} \end{gathered}$	$\begin{gathered} \text { FPITP } \\ {\left[\underline{Q_{k m}} ; \overline{Q_{k m}}\right]} \end{gathered}$	$\begin{gathered} \mathrm{MC} \\ {\left[\underline{Q_{k m}} ; \overline{Q_{k m}}\right]} \end{gathered}$
1-3	10,48	[-0,04; 21,01]	[0,81; 20,93]	[0,81; 20,93]	[4,73; 17,33]
2-4	19,34	[11,80; 26,88]	[12,11; 26,93]	[12,11; 26,93]	[15,28; 23,86]
3-5	-0,64	[-4,05; 2,76]	[-3,52; 2,38]	[-3,52; 2,38]	[-2,27; 1,25]
3-8	-5,01	[-9,19; -0,84]	[-8,88; -0,92]	[-8,88; -0,92]	[-7,13; -2,42]
4-7	10,00	[5,22;14,78]	[5,38;14,78]	[5,$38 ; 14,78$]	[7,32;13,26]
5-7	-16,16	[-18,98; 13,35]	[-16,61; 15,69]	[-16,61; 15,69]	[-16,31; 15,97]
6-4	-6,27	[-8,87; -3,67]	[-8,67; -3,97]	[-8,67; -3,97]	[-7,32; -4,84]
6-8	-11,73	[-14,14; -9,32]	[-13,13; -10,23]	[-13,13; -10,23]	[-12,45; -10,03]
7-9	-10,42	[-13,23; -7,61]	[-11,99; -8,79]	[-11,99; -8,79]	[-10,77; -8,92]
8-9	-15,62	[-18,23; -13,02]	[-16,95; -14,25]	$[-16,95 ;-14,25]$	[-16,02; -14,57]

Figura 10 - Fluxo de potência ativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Figura 11 - Fluxo de potência ativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Figura 12 - Fluxo de potência reativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Figura 13 - Fluxo de potência reativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

As Tabelas 18 e 19 e Figuras 10 a 13 mostram que todas as faixas de potência ativa e reativa, em todos os ramos, contemplam os respectivos valores determinísticos. Neste caso, as faixas referentes aos fluxos de potência ativa intervalares nos ramos 2-4 e 7-9 são menores que aquelas geradas pelo MC. No caso do ramo 2-4, os três métodos apresentam o limite superior $0,113 \%$ menor que o MC , enquanto no caso do ramo $7-9$, apenas FPITP e FPITR apresentam o limite superior $0,07 \%$ menor que MC. Os métodos FPITP e FPITR também geram faixas menores que MC para o fluxo de potência reativa. Quarenta limites, inferior e superior, referentes aos fluxos de potência ativa e reativa são calculados. Os métodos FPITP, FPITR e FPI apresentam 18, 18 e 28 desvios maiores que 5%, respectivamente, e 8,7 e 2 menores que 1%. Portanto, 55%, 55% e 30% dos desvios gerados pelos métodos FPITP, FPITR e FPI, nesta ordem, são menores que 5%.

As perdas intervalares nos ramos estão representadas nas Tabelas 20 e 21 e nas Figuras 14 a 17.

Tabela 20 - Perda de potência ativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

	Perda de potência ativa $[\mathrm{MW}]$				
Linha	FPI	FPITR	FPITP	MC	
	$P_{k m}^{p d}$	$\left[\underline{P_{k m}^{p d}} ; \overline{P_{k m}^{p d}}\right]$	$\underline{\left.\underline{P_{k m}^{p d}} ; \overline{P_{k m}^{p d}}\right]}$	$\underline{\left.\underline{P_{k m}^{p d}} ; \overline{P_{k m}^{p d}}\right]}$	$\underline{\left.\underline{P_{k m}^{p d}} ; \overline{P_{k m}^{p d}}\right]}$
$1-3$	0,00	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$
$2-4$	0,00	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$
$3-5$	0,92	$[0,715 ; 1,120]$	$[0,753 ; 1,103]$	$[0,753 ; 1,103]$	$[0,796 ; 1,051]$
$3-8$	1,02	$[0,771 ; 1,259]$	$[0,818 ; 1,240]$	$[0,818 ; 1,240]$	$[0,872 ; 1,175]$
$4-7$	0,75	$[0,678 ; 0,822]$	$[0,717 ; 0,789]$	$[0,717 ; 0,789]$	$[0,724 ; 0,774]$
$5-7$	0,12	$[0,047 ; 0,185]$	$[0,075 ; 0,168]$	$[0,075 ; 0,168]$	$[0,088 ; 0,150]$
$6-4$	0,27	$[0,241 ; 0,304]$	$[0,268 ; 0,277]$	$[0,268 ; 0,277]$	$[0,268 ; 0,282]$

$6-8$	0,05	$[0,028 ; 0,064]$	$[0,036 ; 0,057]$	$[0,036 ; 0,057]$	$[0,040 ; 0,050]$
$7-9$	0,21	$[0,169 ; 0,251]$	$[0,196 ; 0,225]$	$[0,196 ; 0,225]$	$[0,196 ; 0,223]$
$8-9$	0,42	$[0,309 ; 0,534]$	$[0,347 ; 0,505]$	$[0,347 ; 0,505]$	$[0,366 ; 0,483]$

Tabela 21 - Perda de potência reativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Linha	Perda de potência reativa [MVAr]				
	$Q_{k m}^{p d}$	$\begin{aligned} & \text { FPI } \\ & {\left[Q_{k m}^{p d} ; \overline{Q_{k m}^{p d}}\right]} \end{aligned}$	$\begin{aligned} & \text { FPITR } \\ & {\left[\underline{Q_{k m}^{p d}} ; \overline{Q_{k m}^{p d}}\right]} \end{aligned}$	$\begin{aligned} & \text { FPITP } \\ & {\left[Q_{k m}^{p d} ; \overline{Q_{k m}^{p d}}\right]} \end{aligned}$	$\begin{gathered} \mathrm{MC} \\ {\left[\underline{Q_{k m}^{p d}} ; \overline{Q_{k m}^{p d}}\right]} \end{gathered}$
1-3	16,14	[12,50; 19,78]	[13,21; 19,48]	[13,21; 19,47]	[13,98; 19,55]
2-4	16,40	[16,19; 16,61]	[16,23; 16,65]	[16,23; 16,65]	[16,33; 16,51]
3-5	-11,48	[-12,78; -10,18]	[-12,56; -10,27]	[-12,56; -10,27]	$[-12,25 ;-10,62]$
3-8	-9,82	[-12,12; -7,51]	[-11,71; -7,67]	[-11,71; -7,67]	[-11,16; -8,31]
4-7	-10,16	[-11,02; -9,30]	[-10,69; -9,58]	[-10,69; -9,58]	[-10,53; -9,80]
5-7	-30,58	[-31,44; -29,72]	[-31,30; -29,79]	[-31,30; -29,79]	[-31,02; -30,07]
6-4	-13,33	[-13,76; -12,90]	[-13,47; -13,17]	[-13,47; -13,17]	[-13,36; -13,25]
6-8	-26,30	[-26,77; -25,84]	[-26,60; -25,98]	[-26,60; -25,98]	[-26,49; -26,11]
7-9	-19,32	[-20,04; -18,59]	[-19,84; -18,77]	[-19,84; -18,77]	[-19,65; -18,93]
8-9	-34,73	[-35,87; -33,59]	[-35,71; -33,68]	[-35,71; -33,68]	[-35,32; -34,01]

Figura 14 - Perda de potência ativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Figura 15 - Perda de potência ativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Figura 16 - Perda de potência reativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

Figura 17 - Perda de potência reativa intervalar do sistema 9 barras com $\Delta \xi= \pm 5 \%$

As Tabelas 20 e 21 e Figuras 14 a 17 mostram que todas as faixas de perdas de potência ativa e reativa, em todos os ramos, contemplam os respectivos valores determinísticos. Além disso, as faixas geradas pelos métodos FPITP, FPITR e FPI contemplam integralmente as faixas geradas pelo MC. Quarenta limites, inferior e superior, referentes aos fluxos de potência ativa e reativa são calculados. Os métodos FPITP, FPITR e FPI apresentam 10, 11 e 21 desvios maiores que 5%, respectivamente, e 19 , 19 e 6 menores que 1%. Portanto, $75,00 \%, 72,50 \%$ e $47,50 \%$ dos desvios gerados pelos métodos FPITP, FPITR e FPI, nesta ordem, são menores que 5%.

3.3 SISTEMA TESTE BRASILEIRO 33 BARRAS

Esse sistema possui um máximo carregamento de $19,4 \%$. Incertezas de $\pm 10 \%$ são consideradas nas potências ativa e reativa de cada barra do sistema.

As Tabelas 22 e 23 apresentam as faixas geradas em todas as barras e as Figuras 18 e 19 apresentam as três principais barras com maiores desvios absolutos no módulo e fase das tensões intervalares, respectivamente.

Tabela 22 - Módulo das tensões nodais intervalares do sistema 33 barras para $\Delta \xi= \pm 10 \%$

	Magnitude de Tensão $[$ p.u $]$				
Barra	V	FPI	FPITR	FPITP	MC
		$[\underline{V}, \bar{V}]$	$[\underline{V}, \bar{V}]$	$[\underline{V}, \bar{V}]$	$[\underline{V}, \bar{V}]$
800	1,010	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$
808	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
810	1,010	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$
814	1,026	$[0,902 ; 1,055]$	$[0,967 ; 1,067]$	$[0,966 ; 1,068]$	$[0,985 ; 1,059]$
824	1,049	$[1,014 ; 1,089]$	$[1,023 ; 1,067]$	$[1,023 ; 1,067]$	$[1,032 ; 1,063]$
839	0,990	$[0,980 ; 1,101]$	$[0,980 ; 0,998]$	$[0,980 ; 0,998]$	$[0,985 ; 0,995]$
840	0,986	$[0,974 ; 1,004]$	$[0,974 ; 0,995]$	$[0,974 ; 0,995]$	$[0,980 ; 0,992]$
848	1,004	$[0,989 ; 1,029]$	$[0,995 ; 1,010]$	$[0,995 ; 1,010]$	$[0,999 ; 1,007]$
856	1,045	$[1,029 ; 1,065]$	$[1,029 ; 1,055]$	$[1,029 ; 1,055]$	$[1,035 ; 1,053]$
895	1,028	$[0,916 ; 1,146]$	$[0,971 ; 1,068]$	$[0,970 ; 1,068]$	$[0,989 ; 1,059]$
896	1,044	$[1,031 ; 1,066]$	$[1,035 ; 1,050]$	$[1,035 ; 1,050]$	$[1,039 ; 1,048]$
897	1,051	$[1,036 ; 1,076]$	$[1,044 ; 1,056]$	$[1,044 ; 1,056]$	$[1,047 ; 1,055]$
898	1,019	$[0,997 ; 1,051]$	$[1,012 ; 1,024]$	$[1,012 ; 1,024]$	$[1,015 ; 1,022]$
904	1,010	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$
915	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
919	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
925	1,045	$[1,045 ; 1,045]$	$[1,045 ; 1,045]$	$[1,045 ; 1,045]$	$[1,045 ; 1,045]$

933	1,050	$[1,012 ; 1,093]$	$[1,022 ; 1,068]$	$[1,022 ; 1,068]$	$[1,031 ; 1,064]$
934	0,994	$[0,960 ; 1,033]$	$[0,970 ; 1,010]$	$[0,969 ; 1,010]$	$[0,977 ; 1,006]$
938	1,059	$[0,923 ; 1,200]$	$[1,000 ; 1,100]$	$[0,999 ; 1,100]$	$[1,018 ; 1,089]$
939	1,022	$[0,880 ; 1,167]$	$[0,964 ; 1,061]$	$[0,962 ; 1,062]$	$[0,981 ; 1,051]$
955	1,087	$[1,004 ; 1,179]$	$[1,046 ; 1,115]$	$[1,046 ; 1,116]$	$[1,061 ; 1,107]$
959	1,030	$[0,913 ; 1,151]$	$[0,970 ; 1,070]$	$[0,970 ; 1,070]$	$[0,989 ; 1,061]$
960	1,032	$[0,899 ; 1,169]$	$[0,968 ; 1,077]$	$[0,967 ; 1,077]$	$[0,988 ; 1,067]$
964	1,082	$[0,950 ; 1,222]$	$[1,028 ; 1,120]$	$[1,027 ; 1,120]$	$[1,046 ; 1,110]$
965	1,006	$[0,871 ; 1,146]$	$[0,955 ; 1,041]$	$[0,954 ; 1,042]$	$[0,972 ; 1,032]$
976	1,063	$[0,915 ; 1,217]$	$[1,004 ; 1,104]$	$[1,002 ; 1,105]$	$[1,022 ; 1,094]$
995	1,076	$[1,011 ; 1,151]$	$[1,046 ; 1,096]$	$[1,045 ; 1,097]$	$[1,056 ; 1,091]$
1030	1,081	$[1,010 ; 1,161]$	$[1,047 ; 1,104]$	$[1,046 ; 1,104]$	$[1,059 ; 1,098]$
1047	1,026	$[1,001 ; 1,161]$	$[1,020 ; 1,030]$	$[1,020 ; 1,030]$	$[1,022 ; 1,029]$
1060	1,060	$[1,048 ; 1,077]$	$[1,047 ; 1,068]$	$[1,046 ; 1,068]$	$[1,051 ; 1,066]$
1210	1,009	$[0,854 ; 1,169]$	$[0,949 ; 1,051]$	$[0,948 ; 1,052]$	$[0,967 ; 1,041]$
2458	0,989	$[0,979 ; 1,007]$	$[0,978 ; 0,997]$	$[0,978 ; 0,997]$	$[0,983 ; 0,994]$

Tabela 23 - Fase das tensões nodais intervalares do sistema
33 barras para $\Delta \xi= \pm 10 \%$

	Angulo de Fase da Tensão $\left.{ }^{\circ}\right]$				
Barra	FPI	FPITR	FPITP	MC	
		$[\underline{\theta} ; \bar{\theta}]$	$[\underline{\theta} ; \bar{\theta}]$	$[\underline{\theta} ; \bar{\theta}]$	$[\underline{\theta} ; \bar{\theta}]$
800	0,000	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$
808	10,906	$[5,257 ; 16,556]$	$[6,266 ; 15,242]$	$[6,270 ; 15,237]$	$[8,102 ; 14,007]$
810	4,871	$[-0,009 ; 9,750]$	$[0,910 ; 8,566]$	$[0,913 ; 8,563]$	$[2,468 ; 7,588]$
814	$-20,560$	$[-28,291 ;-13,572]$	$[-27,455 ;-14,753]$	$[-27,349 ;-14,843]$	$[-24,819 ;-16,483]$
824	$-5,698$	$[-9,973 ;-1,606]$	$[-9,281 ;-2,400]$	$[-9,260 ;-2,420]$	$[-7,871 ;-3,305]$
839	2,814	$[-3,293 ; 8,908]$	$[-2,380 ; 7,668]$	$[-2,367 ; 7,654]$	$[-0,348 ; 6,070]$
840	$-0,011$	$[-6,446 ; 6,425]$	$[-5,561 ; 5,173]$	$[-5,545 ; 5,156]$	$[-3,433 ; 3,352]$
848	4,711	$[-1,381 ; 10,801]$	$[-0,557 ; 9,649]$	$[-0,544 ; 9,636]$	$[1,684 ; 7,561]$
856	$-0,840$	$[-5,749 ; 4,058]$	$[-4,899 ; 2,921]$	$[-4,883 ; 2,906]$	$[-3,282 ; 1,913]$
895	$-18,423$	$[-25,670 ;-11,852]$	$[-24,807 ;-12,975]$	$[-24,714 ;-13,053]$	$[-22,349 ;-14,575]$
896	4,291	$[-1,529 ; 10,100]$	$[-0,572 ; 8,829]$	$[-0,561 ; 8,817]$	$[1,350 ; 7,467]$
897	5,316	$[-0,330 ; 10,962]$	$[0,630 ; 9,685]$	$[0,640 ; 9,674]$	$[2,501 ; 8,433]$
898	7,930	$[2,201 ; 13,651]$	$[3,042 ; 12,510]$	$[3,053 ; 12,499]$	$[5,025 ; 10,906]$
904	$-7,075$	$[-13,995 ;-0,155]$	$[-12,856 ;-1,882]$	$[-12,849 ;-1,892]$	$[-10,768 ;-3,072]$
915	$-2,562$	$[-9,115 ; 4,032]$	$[-8,062 ; 2,410]$	$[-8,056 ; 2,402]$	$[-6,080 ; 1,262]$
919	15,665	$[10,092 ; 21,237]$	$[10,905 ; 20,138]$	$[10,907 ; 20,133]$	$[12,815 ; 18,612]$
925	7,336	$[2,072 ; 12,600]$	$[2,929 ; 11,440]$	$[2,932 ; 11,436]$	$[4,706 ; 10,362]$
933	$-6,000$	$[-10,506 ;-1,697]$	$[-9,779 ;-2,531]$	$[-9,755 ;-2,553]$	$[-8,290 ;-3,483]$
934	$-5,495$	$[-10,282 ;-0,910]$	$[-9,542 ;-1,776]$	$[-9,518 ;-1,798]$	$[-7,873 ;-2,829]$
938	$-21,865$	$[-30,103 ;-14,393]$	$[-29,263 ;-15,642]$	$[-29,151 ;-15,739]$	$[-26,481 ;-17,427]$

939	$-23,781$	$[-32,425 ;-15,949]$	$[-31,634 ;-17,237]$	$[-31,511 ;-17,344]$	$[-28,754 ;-19,136]$
955	$-12,882$	$[-19,739 ;-6,465]$	$[-18,734 ;-7,699]$	$[-18,679 ;-7,748]$	$[-16,502 ;-8,982]$
959	$-18,969$	$[-26,381 ;-12,261]$	$[-25,503 ;-13,408]$	$[-25,406 ;-13,490]$	$[-23,016 ;-15,033]$
960	$-21,480$	$[-29,534 ;-14,249]$	$[-28,637 ;-15,487]$	$[-28,519 ;-15,587]$	$[-26,005 ;-17,257]$
964	$-19,719$	$[-28,332 ;-11,824]$	$[-27,200 ;-13,267]$	$[-27,104 ;-13,353]$	$[-24,467 ;-14,727]$
965	$-21,818$	$[-30,853 ;-13,547]$	$[-29,764 ;-15,026]$	$[-29,658 ;-15,121]$	$[-26,838 ;-16,548]$
976	$-21,978$	$[-31,211 ;-13,593]$	$[-30,012 ;-15,117]$	$[-29,896 ;-15,219]$	$[-27,106 ;-16,656]$
995	$-10,350$	$[-17,348 ;-3,687]$	$[-16,246 ;-5,074]$	$[-16,205 ;-5,113]$	$[-14,078 ;-6,314]$
1030	$-11,184$	$[-18,052 ;-4,683]$	$[-17,006 ;-5,994]$	$[-16,960 ;-6,036]$	$[-14,827 ;-7,247]$
1047	8,983	$[3,346 ; 14,608]$	$[4,178 ; 13,487]$	$[4,188 ; 13,476]$	$[6,125 ; 11,943]$
1060	0,908	$[-4,512 ; 6,331]$	$[-3,587 ; 5,071]$	$[-3,572 ; 5,056]$	$[-1,758 ; 3,966]$
1210	$-24,205$	$[-33,990 ;-15,371]$	$[-32,781 ;-16,960]$	$[-32,646 ;-17,078]$	$[-29,663 ;-18,591]$
2458	2,428	$[-3,690 ; 8,534]$	$[-2,767 ; 7,280]$	$[-2,753 ; 7,266]$	$[-0,736 ; 5,714]$

Figura 18 - Módulo das tensões nodais intervalares do sistema 33 barras com $\Delta \xi= \pm 10 \%$

Figura 19 - Fases das tensões nodais intervalares do sistema 33 barras com $\Delta \xi= \pm 10 \%$

As Tabelas 22 e 23 mostram todas as faixas de módulo e de ângulo de fase, e as Figuras 18 e 19 mostram os três maiores desvios obtidos. Os três métodos contemplam os respectivos valores determinísticos. Além disso, as faixas geradas pelos métodos FPITP, FPITR e FPI contemplam integralmente as respectivas faixas geradas pelo MC. Cento e trinta e dois limites, inferior e superior, referentes ao módulo e o ângulo de fase da tensão são calculados. Os métodos FPITP, FPITR e FPI apresentam 66, 66 e 90 desvios maiores que 5%, respectivamente, e 49 , 52 e 21 menores que 1%. Portanto, $50,00 \%, 50,00 \%$ e $31,82 \%$ dos desvios gerados pelos métodos FPITP, FPITR e FPI, nesta ordem, são menores que 5%.

As gerações de potências ativa e reativa intervalares da barra mostradas nas Tabelas 24 e 25 e nas Figuras 20 e 21, respectivamente. A potência reativa intervalar gerada na barra $P V$ está mostrada na Tabela 26 e Figura 22.

Tabela 24 - Geração de potência ativa intervalar da barra $V \theta$ do sistema 33 barras com $\Delta \xi=$ $\pm 10 \%$

	Geração de potência ativa intervalar $[\mathrm{MW}]$				
Barra	FPI	FPITR	FPITP	MC	
		$\left[\underline{P_{g}} ; \overline{P_{g}}\right]$	$\left[\underline{P_{g}} ; \overline{P_{g}}\right]$	$\left.\underline{\underline{P_{g}} ;} ; \overline{P_{g}}\right]$	$\left[\underline{P_{g}} ; \overline{P_{g}}\right]$
800		$[273,53 ; 1561,48]$	$[393,38 ; 1452,51]$	$[396,67 ; 1448,96]$	$[538,58 ; 1250,38]$

Tabela 25 - Geração de potência reativa intervalar da barra $V \theta$ do sistema 33 barras com $\Delta \xi= \pm 10 \%$

	Geração de potência reativa intervalar [MVAr]								
Barra	FPI						FPITR	FPITP	MC
	Q_{g}	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$				
800	$-87,55$	$[-350,94 ; 175,83]$	$[-275,97 ; 220,07]$	$[-276,74 ; 220,66]$	$[-226,74 ; 104,95]$				

Tabela 26 - Geração de potência reativa intervalar da barra $P V$ do sistema 33 barras com $\Delta \xi= \pm 10 \%$

	Geração de potência reativa intervalar [MVAr]				
Barra	FPI	FPITR	FPITP	MC	
		$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{\left.Q_{g} ; \overline{Q_{g}}\right]}\right.$	$\left[\underline{\left.Q_{g} ; \overline{Q_{g}}\right]}\right.$
808		$[27,34 ; 156,47]$	$[-67,39 ; 56,64]$	$[-67,19 ; 56,48]$	$[-49,69 ; 26,48]$
810		$[-202,69 ; 65,49]$	$[-382,57 ;-135,13]$	$[-382,34 ;-135,27]$	$[-360,57 ;-185,72]$
904		$[-430,17 ;-75,83]$	$[-561,02 ;-223,07]$	$[-560,59 ;-223,35]$	$[-522,28 ;-291,07]$
915		$[-149,88 ; 0,48]$	$[-178,69 ;-33,69]$	$[-178,45 ;-33,87]$	$[-161,79 ;-64,88]$
919	124,90	$[90,48 ; 159,32]$	$[118,19 ; 181,88]$	$[118,36 ; 181,73]$	$[128,56 ; 165,77]$
925	65,97	$[-16,65 ; 148,59]$	$[49,39 ; 198,75]$	$[49,67 ; 198,52]$	$[65,76 ; 166,14]$

Figura 20 - Geração de potência ativa intervalar da barra $V \theta$ do sistema 33 barras com $\Delta \xi=$ $\pm 10 \%$

Figura 21 - Geração de potência reativa intervalar da barra $V \theta$ do sistema 33 barras com $\Delta \xi= \pm 10 \%$

Figura 22 - Geração de potência reativa intervalar da barra $P V$ do sistema 33 barras com $\Delta \xi= \pm 10 \%$

As Tabelas 24 a 26 e as Figuras 20 a 22 mostram todas as faixas de geração ativa e reativa. Os três métodos contemplam os respectivos valores determinísticos. Além disso, as faixas geradas pelos métodos FPITP e FPITR contemplam integralmente as respectivas faixas geradas pelo MC. Neste caso, para o método FPI as faixas referentes à geração reativa são menores que aquelas geradas pelo MC. Dos 36 limites inferior e superior calculados, referente à geração ativa e reativa das barras $P V^{\prime}$ s e $V \theta, 6$ são menores que MC. Portanto, $83,3 \%$ das faixas de FPI contemplam integralmente as respectivas faixas do MC.

As Tabelas 27 e 28 e as Figuras 23 e 24 apresentam os valores intervalares referentes aos fluxos de potência ativa e reativa.

Tabela 27 - Fluxo de potência ativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$

Linha	Fluxo de potência ativa [MW]				
	$P_{k m}$	$\begin{gathered} \text { FPI } \\ {\left[\underline{P_{k m}} ; \overline{P_{k m}}\right]} \end{gathered}$	$\begin{gathered} \text { FPITR } \\ {\left[\underline{P_{k m}} ; \overline{P_{k m}}\right]} \end{gathered}$	$\begin{aligned} & \text { FPITP } \\ & {\left[\underline{P_{k m}} ; \overline{P_{k m}}\right]} \end{aligned}$	$\begin{gathered} \mathrm{MC} \\ {\left[\underline{P_{k m}} ; \overline{P_{k m}}\right]} \end{gathered}$
814-894	-342,87	[-381,69;-304,05]	[-377,61; -308,14]	[-375,11; -310,42]	[-365,83; -325,14]
814-895	-337,13	[-375,31; -298,95]	[-371,29; -302,98]	[-368,83; -305,23]	[-359,71; -319,70]
824-800	-917,51	[-1561,48; -273,53]	[-1452,51; -393,38]	[-1448,96; -396,67]	[-1244,06; -539,57]
824-933	462,35	[137,76; 786,94]	[198,16; 732,03]	[201,26; 728,74]	[271,74; 625,53]
824-933	455,16	[135,77; 774,54]	[195,22; 720,48]	[198,26; 717,24]	[267,62; 615,69]
839-840	72,97	[65,77; 80,28$]$	[65,60; 80,35]	[65,70; 80,24]	[71,01; 78,80]
839-840	77,03	[69,77; 84,74]	[69,25; 84,82]	[69,35; 84,71]	[74,96; 83,19]
839-898	-130,96	[-145,77; -116,17]	[-136,73; -125,31]	[-136,61; -125,42]	[-136,28; -124,74]
839-1047	-144,46	[-158,77; -130,32]	[-151,38; -137,65]	[-151,24; -137,78]	[-150,15; -138,53]
839-2458	60,77	[43,77; 78,29]	[59,58; 62,08]	[59,55; 62,10]	[56,70; 60,78]
839-2458	64,65	[45,77; 83,36]	[63,38; 66,03]	[63,34; 66,06]	[60,32; 64,57]
856-810	-1000,00	[-1018,77; -981,68]	[-1002,46; -997,72]	[-1000,06; -999,93]	[-1001,21; -997,09]
856-933	1498,34	[1331,77; 1665,24]	[1374,03; 1615,62]	[1371,21; 1618,16]	[1423,98; 1591,72]
856-1060	-498,34	[-646,77; -349,74]	[-617,91; -371,56]	[-618,20; -371,21]	[-588,29; -431,66]
896-897	-274,73	[-333,77; -216,13]	[-317,60; -231,69]	[-317,15; -232,10]	[-305,41; -260,48]
897-808	-1000,00	[-1010,77; -989,77]	[-1001,49; -998,63]	[-1000,01; -999,99]	[-1000,35; -997,72]
898-848	90,00	[80,77; 99,31]	[80,92; 99,08]	[81,02; 98,98]	[92,65; 94,14]
898-1047	-222,96	[-241,77; -204,37]	[-238,05; -208,03]	[-237,82; -208,24]	[-230,79; -220,38]
933-895	919,96	[795,77; 1044,59]	[811,52; 1028,83]	[816,29; 1023,55]	[852,96; 988,07]
933-955	651,83	[468,77; 835,00]	[503,04; 803,00]	[505,99; 799,81]	[532,24; 750,90]
933-959	910,26	[785,77; 1034,94]	[802,18; 1018,23]	[807,02; 1012,87]	[842,70; 979,46]
934-933	77,41	[30,77; 124,16]	[33,83; 120,44]	[33,86; 120,39]	[61,42; 103,15]
934-1047	-156,11	[-168,77; -143,63]	[-165,84; -146,10]	[-166,02; -145,90]	[-160,31; -149,74]
934-1047	-156,30	[-168,77; -143,81]	[-166,05; -146,28]	[-166,23; -146,08]	[-160,51; -149,93]
938-955	-615,14	[-736,77; -493,33]	[-657,46; -577,09]	[-653,20; -580,92]	[-643,80; -603,56]
938-959	-325,45	[-461,77; -188,95]	[-378,96; -267,82]	[-376,88; -269,79]	[-361,45; -283,48]
939-938	-325,45	[-359,77; -291,37]	[-358,54; -292,39]	[-356,09; -294,63]	[-356,63; -307,14]
939-938	-321,82	[-355,77; -288,12]	[-354,54; -289,12]	[-352,11; -291,34]	[-352,65; -303,71]

| $939-938$ | $-292,73$ | $[-323,77 ;-262,06]$ | $[-322,54 ;-262,95]$ | $[-320,28 ;-265,01]$ | $[-320,79 ;-276,20]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $955-964$ | 597,70 | $[482,77 ; 713,03]$ | $[513,38 ; 680,79]$ | $[517,05 ; 676,74]$ | $[522,12 ; 660,16]$ |
| $959-895$ | $-223,40$ | $[-350,77 ;-96,72]$ | $[-257,05 ;-188,13]$ | $[-255,07 ;-189,93]$ | $[-255,45 ;-197,07]$ |
| $960-959$ | $-395,58$ | $[-446,77 ;-344,60]$ | $[-436,21 ;-355,05]$ | $[-432,60 ;-358,31]$ | $[-432,37 ;-372,99]$ |
| $960-959$ | $-394,42$ | $[-445,77 ;-343,58]$ | $[-434,93 ;-354,00]$ | $[-431,33 ;-357,26]$ | $[-431,11 ;-371,90]$ |
| $964-976$ | 510,33 | $[395,77 ; 624,72]$ | $[448,38 ; 572,10]$ | $[452,84 ; 567,12]$ | $[459,07 ; 556,33]$ |
| $965-964$ | $-353,15$ | $[-390,77 ;-315,70]$ | $[-389,18 ;-317,18]$ | $[-386,85 ;-319,31]$ | $[-372,50 ;-322,43]$ |
| $965-964$ | $-346,85$ | $[-383,77 ;-310,07]$ | $[-382,23 ;-311,51]$ | $[-379,94 ;-313,61]$ | $[-365,84 ;-316,68]$ |
| $976-995$ | $-593,02$ | $[-655,77 ;-530,54]$ | $[-647,21 ;-539,95]$ | $[-642,91 ;-543,82]$ | $[-629,19 ;-548,74]$ |
| $995-904$ | $-399,59$ | $[-420,77 ;-378,83]$ | $[-404,17 ;-395,50]$ | $[-399,66 ;-399,50]$ | $[-400,35 ;-397,60]$ |
| $995-964$ | 624,27 | $[564,77 ; 684,22]$ | $[572,56 ; 678,36]$ | $[576,34 ; 674,14]$ | $[580,67 ; 659,31]$ |
| $995-1030$ | 178,15 | $[107,77 ; 248,96]$ | $[156,07 ; 202,80]$ | $[154,96 ; 203,78]$ | $[154,90 ; 204,47]$ |
| $995-1060$ | $-1004,75$ | $[-1125,77 ;-883,78]$ | $[-1089,20 ;-926,84]$ | $[-1086,36 ;-929,45]$ | $[-1073,39 ;-933,74]$ |
| $1030-915$ | $-400,00$ | $[-405,77 ;-394,73]$ | $[-402,01 ;-398,20]$ | $[-400,10 ;-399,87]$ | $[-400,98 ;-397,51]$ |
| $1030-955$ | 577,91 | $[506,77 ; 649,33]$ | $[557,91 ; 600,69]$ | $[554,41 ; 603,78]$ | $[550,44 ; 605,78]$ |
| $1047-919$ | $-698,81$ | $[-701,77 ;-696,47]$ | $[-699,62 ;-698,05]$ | $[-698,83 ;-698,77]$ | $[-699,09 ;-697,52]$ |
| $1060-897$ | $-721,21$ | $[-775,77 ;-666,69]$ | $[-762,56 ;-680,09]$ | $[-763,52 ;-679,05]$ | $[-735,94 ;-690,85]$ |
| $1060-925$ | $-799,32$ | $[-803,77 ;-795,13]$ | $[-800,97 ;-797,79]$ | $[-799,36 ;-799,26]$ | $[-799,90 ;-797,83]$ |
| $1210-976$ | $-357,38$ | $[-402,77 ;-311,81]$ | $[-394,62 ;-320,30]$ | $[-391,08 ;-323,50]$ | $[-378,28 ;-329,67]$ |
| $1210-976$ | $-384,05$ | $[-432,77 ;-335,17]$ | $[-424,05 ;-344,23]$ | $[-420,27 ;-347,64]$ | $[-406,56 ;-354,28]$ |
| $1210-976$ | $-358,57$ | $[-404,77 ;-312,89]$ | $[-395,93 ;-321,38]$ | $[-392,38 ;-324,57]$ | $[-379,56 ;-330,77]$ |
| $2458-896$ | $-274,73$ | $[-333,77 ;-216,13]$ | $[-317,60 ;-231,69]$ | $[-317,14 ;-232,11]$ | $[-304,46 ;-260,86]$ |

Tabela 28 - Fluxo de potência reativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$

| | Fluxo de potência reativa $[\mathrm{MVAr}]$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |$]$

898-1047	-42,165	[-50,62; -33,71]	[-49,08; -35,81]	[-49,14; -35,77]	[-42,10; -39,65]
33-895	-56,892	[-193,05; 79,26]	[-167,12; 95,076]	[-168,29; 96,37]	[-141,16; 48,34]
933-955	-340,265	[-420,91; -259,62]	[-405,03; -250,6]	[-406,46; -249,02]	[-383,27; -287,52]
933-959	-70,926	[-208,70; 66,85]	[-182,58; 82,772]	[-183,73; 84,03]	-155,63; 36,21]
934-933	-91,321	[-128,57; -54,07]	[-108,25; -67,36]	[-108,10; -67,54]	[-101,02; -80,53]
934-1047	17,133	[1,71; 32,56]	[2,46; 28,31]	[2,42; 28,35]	,78]
934-1047	17	[1,74; 32,63]	[2,50; 28,38]	[2,46; 28,42]	,
938-955	-201,749	[-283,88; -119,62]	[-220,88; -185,77]	[-223,37; -183,79]	[-224,22; -184,73]
938-959	120,116	[29,64; 210,59]	[112,61; 128,26]	[114,50; 125,93]	104,63; 125,45]
939-938	-14,633	[-40,86; 11,59]	[-14,61; -14,18]	-16,07; -13,20]	[-16,39; -15,26]
939-938	-14,289	[-40,23; 11,66]	[-14,40; -13,82]	[-15,69; -12,89]	-16,04; -14,89]
939-938	-21,078	[-44,17; 2,02]	[-21,47; -20,36]	[-23,12; -19,04]	[-22,40; -22,22]
955-964	-158,279	[-235,30; -81,26]	[-216,25; -82,57]	[-217,83; -80,66]	[-202,50; -100,17]
959-895	26,475	[-63,70; 116,65]	[3,29; 44,76]	[2,11; 45,69]	[7,21; 37,21]
960-959	-165,027	[-208,97; -121,09]	[-179,32; -150,31]	[-181,09; -148,92]	[-176,82; -149,57]
960-959	-164,973	[-208,77; -121,17]	[-179,27; -150,26]	[-181,03; -148,87]	[-176,77; -149,53]
964-976	133,818	[39,31; 228,32]	[89,58; 186,62]	[88,06; 188,62]	[96,72; 179,75]
965-964	-24,669	[-52,00; 2,66]	[-25,38; -23,62]	[-27,08; -22,26]	[-25,94; -23,84]
965-964	-24,331	[-51,17; 2,51]	[-25,04; -23,29]	[-26,71; -21,95]	[-25,57; -23,52]
976-995	-210,430	[-270,04; -150,82]	[-233,15; -190,15]	[-235,42; -188,45]	[-229,13; -196,65]
995-904	473,505	[271,82; 675,19]	[255,21; 632,20]	[255,00; 632,12]	[327,84; 587,60]
995-964	-210,815	[-304,42; -117,21]	[-288,00; -105,83]	[-288,98; -104,57]	[-267,82; -139,71]
995-1030	-136,925	[-183,19; -90,66]	[-172,51; -84,09]	[-172,55; -84,00]	[-161,29; -109,61]
995-1060	106,515	[36,59; 176,44]	[59,82; 139,87]	[57,80; 141,52]	[76,45; 126,64]
1030-915	188,877	[105,27; 272,48]	[98,25; 254,38]	[97,81; 254,65]	[129,70; 235,86]
1030-955	-198,246	[-320,33; -76,16]	[-295,04; -61,54]	[-295,30; -61,07]	[-266,33; -116,88]
1047-919	-60,947	[-93,25; -28,64]	[-96,14; -35,87]	[-96,16; -35,89]	[-81,28; -45,65]
1060-897	81,902	[23,09; 140,71]	[25,43; 120,11]	[25,39; 120,12]	[41,89; 110,87]
1060-925	-18,830	[-98,34; 60,68]	[-104,14; 39,42]	[-104,28; 39,47]	[-73,70; 23,69]
1210-976	-131,976	[-172,32; -91,63]	[-143,13; -120,38]	[-144,87; -119,06]	[-144,11; -122,27]
1210-976	-137,629	[-181,07; -94,18]	[-149,19; -125,59]	[-151,08; -124,15]	[-150,41; -127,52]
1210-976	-130,395	[-170,92; -89,88]	[-141,38; -118,96]	[-143,14; -117,63]	[-142,44; -120,81]
2458-896	-119,080	[-138,13; -100,03]	[-131,45; -106,58]	[-131,58; -106,49]	[-125,29; -110,84]

Figura 23 - Fluxo de potência ativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$

Figura 24 - Fluxo de potência reativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$

As Tabelas 27 e 28 mostram todas as faixas de fluxos de potência ativa e reativa e as Figuras 23 e 24 apresentam os três maiores desvios. Os três métodos contemplam os respectivos valores determinísticos. Além disso, as faixas geradas pelo método FPI contemplam integralmente as respectivas faixas geradas pelo MC. Os métodos FPITP e FPITR geram faixas menores que MC. Dos 200 limites inferior e superior, os métodos FPITP e FPITR apresentam 33 e 30 resíduos menores que MC, respectivamente. Logo, 83,50\% e 85,00\% das faixas geradas por FPITP e FPITR, nesta ordem, contemplam as faixas de MC. Além do mais, dos 200 limites calculados, os métodos FPITP, FPITR e FPI apresentam 93, 92 e 165 desvios maiores que 5%, respectivamente, e 43 , 35 e 10 menores que 1%. Portanto, $53,50 \%, 54,00 \%$ e $17,50 \%$ dos desvios gerados pelos métodos FPITP, FPITR e FPI, nesta ordem, são menores que 5%.

As perdas intervalares nos ramos estão representadas nas Tabelas 29 e 30 e nas Figuras 25 e 26.

Tabela 29 - Perda de potência ativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$

	Perda de potência ativa $[\mathrm{MW}]$				
Linha	FPI	FPITR	FPITP	MC	
	$P_{k m}^{p d}$	$\left[\underline{P_{k m}^{p d}} ; \overline{P_{k m}^{p d}}\right]$	$\left.\underline{P_{k m}^{p d}} ; \overline{P_{k m}^{p d}}\right]$	$\underline{\left.P_{k m}^{p d} ; \overline{P_{k m}^{p d}}\right]}$	$\left[\underline{\left.P_{k m}^{p d} ; \overline{P_{k m}^{p d}}\right]}\right.$
$814-894$	0,375	$[0,254 ; 0,496]$	$[0,281 ; 0,512]$	$[0,284 ; 0,507]$	$[0,316 ; 0,463]$
$814-895$	0,340	$[0,230 ; 0,450]$	$[0,255 ; 0,465]$	$[0,258 ; 0,460]$	$[0,287 ; 0,420]$
$824-800$	0,000	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$	$[0,00 ; 0,00]$	$[0,000 ; 0,000]$
$824-933$	0,200	$[-0,070 ; 0,471]$	$[0,053 ; 0,512]$	$[0,054 ; 0,508]$	$[0,080 ; 0,368]$
$824-933$	0,194	$[-0,068 ; 0,456]$	$[0,051 ; 0,496]$	$[0,052 ; 0,492]$	$[0,077 ; 0,357]$
$839-840$	0,000	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$	$[0,00 ; 0,00]$	$[0,00 ; 0,00]$
$839-840$	0,000	$[0,000 ; 0,000]$	$[0,000 ; 0,000]$	$[0,00 ; 0,00]$	$[0,00 ; 0,00]$
$839-898$	2,000	$[1,507 ; 2,493]$	$[1,797 ; 2,233]$	$[1,800 ; 2,230]$	$[1,796 ; 2,188]$

839-1047	2,628	[2,060; 3,197]	[2,342; 2,956]	[2,346; 9,230]	[2,392; 2,868]
839-2458	0,083	[0,034; 0,132]	[0,081; 0,085]	[0,081; 0,085]	[0,071; 0,084]
839-2458	0,073	[0,$030 ; 0,116$]	[0,071; 0,075]	[0,071; 0,075]	[0,063; 0,074]
856-810	0,000	[0,000; 0,000]	[0,000; 0,000]	[0,$000 ; 0,000$]	[0,000; 0,000]
856-933	10,776	[8,437; 13,116]	[9,$285 ; 12,527]$	[9,250; 12,561]	[9,$852 ; 12,144]$
856-1060	1,429	[0,743; 2,116]	[0,985; 2,025]	[0,982; 2,028]	[1,200; 1,856]
896-897	0,382	[0,224; 0,539]	[0,266; 0,522]	[0,267; 0,521]	[0,338; 0,469]
897-808	0,000	[0,000; 0,000]	[0,000; 0,000]	[0,$000 ; 0,000$]	[0,000; 0,000]
898-848	0,000	[0,000; 0,000]	[0,000; 0,000]	[0,000; 0,000]	[0,000; 0,000]
898-1047	0,743	[0,605; 0,881]	[0,636; 0,864]	[0,637; 0,863]	[0,719; 0,800]
933-895	15,597	[10,206; 20,988]	[11,550; 21,548]	[11,683; 21,359]	[12,877; 19,226]
933-955	6,846	[3,470; 10,222]	[4,572; 10,225]	[4,$623 ; 10,143]$	[4,890; 8,952]
933-959	15,271	[9,938; 20,604]	[11,285; 21,133]	[11,418; 20,943]	[12,568; 18,911$]$
934-933	0,041	[0,003; 0,079]	[0,017; 0,073]	[0,017; 0,073]	[0,030; 0,058]
934-1047	7,798	[6,543; 9,053]	[6,988; 8,746]	[6,971; 8,762]	[7,274; 8,170]
934-1047	7,807	[6,551; 9,064]	[6,996; 8,757]	[6,979; 8,773]	[7,283; 8,181]
938-955	8,623	[4,861; 12,384]	[7,061; 11,098]	[7,148; 10,985]	[7,869; 10,256]
938-959	1,798	[0,706; 2,890]	[1,314; 2,475]	[1,333; 2,446]	[1,383; 2,232]
939-938	0,295	[0,205; 0,385]	[0,221; 0,402]	[0,224; 0,398]	[0,249; 0,384]
939-938	0,298	[0,207; 0,389]	[0,223; 0,406]	[0,226; 0,402]	[0,251; 0,387]
939-938	0,000	[0,000; 0,000]	[0,000; 0,000]	[0,000; 0,000]	[0,000; 0,000]
955-964	5,675	[3,305; 8,045]	[3,999; 8,046]	[4,055; 7,964]	[4,183; 7,329]
959-895	0,248	[-0,016; 0,512]	[0,177; 0,354$]$	[0,181; 0,349]	[0,191; 0,339]
960-959	0,578	[0,377; 0,779]	[0,430; 0,796]	[0,435; 0,789]	[0,476; 0,751]
960-959	0,557	[0,364; 0,751]	[0,415; 0,768]	[0,419; 0,761]	[0,459; 0,723]
964-976	1,880	[0,986; 2,773]	[1,325; 2,688]	[1,344; 2,660]	[1,418; 2,464]
965-964	0,216	[0,152; 0,279]	[0,162; 0,290]	[0,164; 0,288]	[0,171; 0,257]
965-964	0,208	[0,147; 0,270]	[0,157; 0,280]	[0,158; 0,278]	[0,165; 0,248]
976-995	8,900	[6,334; 11,467]	[7,026; 11,737]	[7,123; 11,605]	[7,329; 10,713]
995-904	0,409	[0,212; 0,606]	[0,258; 0,571]	[0,254; 0,573]	[0,294; 0,524]
995-964	5,535	[4,206; 6,863]	[4,559; 7,030]	[4,616; 6,953]	[4,700; 6,459]
995-1030	0,233	[0,073; 0,392]	[0,166; 0,317]	[0,164; 0,319]	[0,172; 0,311]
995-1060	16,012	[11,895; 20,130]	[13,576; 19,316]	[13,651; 19,223]	[13,773; 18,559]
1030-915	0,000	[0,000; 0,000]	[0,000; 0,000]	[0,000; 0,000]	[0,000; 0,000]
1030-955	1,442	[1,091; 1,794]	[1,337; 1,635]	[1,322; 1,649]	[1,295; 1,626]
1047-919	1,191	[1,160; 1,221]	[1,173; 1,221]	[1,175; 1,219]	[1,182; 1,202]
1060-897	3,677	[3,105; 4,248]	[3,270; 4,116]	[3,261; 4,125]	[3,367; 3,843]
1060-925	0,676	[0,652; 0,701]	[0,664; 0,708]	[0,667; 0,705]	[0,669; 0,690]
1210-976	0,398	[0,263; 0,534]	[0,296; 0,547]	[0,300; 0,541]	[0,319; 0,489]
1210-976	0,594	[0,392; 0,796]	[0,441; 0,815]	[0,447; 0,807]	[0,476; 0,730]
1210-976	0,480	[0,317; 0,643]	[0,356; 0,658]	[0,361; 0,651]	[0,384; 0,589]
2458-896	0,000	[0,000; 0,000]	[0,000; 0,000]	[0,000; 0,000]	[0,00; 0, 00]

Tabela 30 - Perda de potência reativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$

Linha	Perda de potência reativa [MVAr]				
	$Q_{k m}^{p d}$	$\begin{gathered} \text { FPI } \\ {\left[\underline{Q_{k m}^{p d}} ; \overline{Q_{k m}^{p d}}\right]} \end{gathered}$	$\begin{gathered} \text { FPITR } \\ {\left[\underline{Q_{k m}^{p d}} ; \overline{Q_{k m}^{p d}}\right]} \end{gathered}$	$\begin{gathered} \text { FPITP } \\ {\left[\underline{Q_{k m}^{p d}} ; \overline{Q_{k m}^{p d}}\right]} \end{gathered}$	$\begin{gathered} \mathrm{MC} \\ {\left[\underline{Q_{k m}^{p d}} ; \overline{Q_{k m}^{p d}}\right]} \end{gathered}$
814-894	13,44	[9,09; 17,77]	[10,05; 18,34]	[10,17; 18,16]	[11,31; 16,57]
814-895	13,22	[8,94; 17,48]	[9,$89 ; 18,04]$	[10,00; 18,87]	[11,13; 16,30]
824-800	93,27	[-31,47; 218,0]	[25,35; 236,95]	[25,68; 236,85]	[38,03; 171,23]
824-933	-14,27	[-18,35; -10,1]	[-16,66; -9,53]	[-16,6; -9,58]	[-16,20; -11,61]
824-933	-14,55	[-18,59; -10,5]	[-16,93; -9,87]	[-16,9; -9,92]	[-16,47; -11,92]
839-840	3,80	[2,95; 4,656]	[3,01; 4,72]	[3,02; 4,71]	[3,54; 4,47]
839-840	4,02	[3,11; 4,915]	[3,18; 4,98]	[3,19; 4,98]	[3,74; 4,72]
839-898	-0,36	[-3,62; 2,897]	[-1,78; 1,29]	[-1,77; 1,28]	[-1,73; 0,92]
839-1047	2,53	[-1,27; 6,330]	[0,56; 4,81]	[0,57; 4,80]	[0,93; 4,16]
839-2458	-1,41	[-1,68; -1,13]	[-1,42; -1,38]	[-1,42; -1,38]	[-1,48; -1,38]
839-2458	-1,57	[-1,86; -1,27]	[-1,59; -1,53]	[-1,59; -1,54]	[-1,65; -1,54]
856-810	111,32	[100,31; 122,32]	[105,28; 117,56]	[104,80; 117,99]	[105,89; 116,55]
856-933	47,23	[20,75; 73,70]	[32,09; 66,87]	[31,67; 66,28]	[38,03; 62,58]
856-1060	-77,16	[-85,67; -68,64]	[-80,15; -71,41]	[-80,15; -71,41]	[-78,33; -73,13]
896-897	-80,06	[-83,16; -76,95]	[-82,67; -76,71]	[-82,69; -76,70]	[-81,31; -78,04]
897-808	98,06	[95,87; 100,25]	[98,25; 98,60]	[98,35; 98,48]	[97,66; 98,35]
898-848	5,30	[4,12; 6,47]	[4,22; 6,53]	[4,24; 6,52]	[5,$67 ; 5,72]$
898-1047	2,70	[1,$86 ; 3,54]$	[2,05; 3,44]	[2,06; 3,44]	[2,55; 3,05]
933-895	-138,88	[-231,42; -46,33]	[-209,37; -35,86]	[-207,88; -38,01]	[-188,20; -73,98]
933-955	-199,18	[-257,67; -140,69]	[-240,44; -138,24]	[-239,93; -138,12]	[-233,18; -160,67]
933-959	-158,29	[-256,00; -60,58]	[-232,59; -49,80]	[-231,03; -52,07]	[-210,62; -88,92]
934-933	1,60	[0,12; 3, 08]	[0,66; 2,83]	[0,67; 2,83]	[1,19; 2,27]
934-1047	12,63	[5,77; 19,49]	[9,25; 16,98]	[9,$18 ; 17,06]$	[10,47; 14,14]
934-1047	12,71	[5,84; 19,58]	[9,33; 17,07]	[9,26; 17,15]	[10,55; 14,23]
938-955	-316,53	[-387,47; -245,59]	[-361,27; -250,37]	[-360,74; -251,09]	[-344,77; -272,37]
938-959	-190,98	[-223,56; -158,40]	[-213,95; -158,86]	[-213,99; -158,89]	[-208,93; -169,07]
939-938	10,95	[7,61; 14,28]	[8,19; 14,92]	[8,300; 14,76]	[9,23; 14,24]
939-938	10,82	[7,52; 14,12]	[8,10; 14,75]	[8,207; 14,60]	[9,12; 14,08]
939-938	9,86	[6,$85 ; 12,87]$	[7,38; 13,44]	[7,48; 13,31]	[8,31; 12,83]
955-964	-266,96	[-320,69; -213,22]	[-308,70; -208,41]	[-308,35; -209,01]	[-300,72; -227,13]
959-895	-48,19	[-55,29; -41,10]	[-52,79; -41,69]	[-52,8; -41,67]	[-51,78; -43,53]
960-959	21,02	[13,71; 28,32]	[15,63; 28,94]	[15,81; 28,67]	[17,29; 27,28]
960-959	20,97	[13,68; 28,25]	[15,59; 28,87]	[15,77; 28,61]	[17,25; 27,21]
964-976	-105,49	[-128,40; -82,58]	[-122,16; -82,17]	[-122,11; -82,29]	[-118, 43; -89,11]
965-964	13,06	[9,20; 16,92]	[9,83; 17,58]	[9,94; 17,42]	[10,36; 15,56]
965-964	12,83	[9,04; 16,61]	[9,$65 ; 17,27]$	[9,77; 17,11]	[10,18; 15,28]
976-995	-442,71	[-519,44; -365,98]	[-501,71; -358,25]	[-501,04; -359,23]	[-488,86; -386,52]
995-904	51,04	[26,42; 75,66]	[32,13; 71,18]	[31,64; 71,53]	[36,66; 65,36]
995-964	-310,85	[-364,02; -257,67]	[-351,54; -251,89]	[-350,91; -252,76]	[-342,86; -272,54]
995-1030	-127,56	[-134,53; -120,58]	[-131,85; -120,80]	[-131,92; -120,72]	[-130,48; -123,30]
995-1060	-100,23	[-163,31; -37,15]	[-139,33; -46,54]	[-138,56; -47,53]	[-134,66; -60,10]

$1030-915$	69,21	$[60,68 ; 77,74]$	$[64,56 ; 75,69]$	$[63,94 ; 75,21]$	$[64,43 ; 74,22]$
$1030-955$	$-66,27$	$[-72,93 ;-59,61]$	$[-67,88 ;-61,85]$	$[-67,77 ;-61,98]$	$[-66,89 ;-64,42]$
$1047-919$	83,59	$[81,43 ; 85,74]$	$[82,30 ; 85,73]$	$[82,46 ; 85,57]$	$[82,94 ; 84,37]$
$1060-897$	$-82,11$	$[-92,30 ;-71,9]$	$[-85,74 ;-77,14]$	$[-85,82 ;-77,06]$	$[-85,22 ;-80,86]$
$1060-925$	90,45	$[87,19 ; 93,70]$	$[88,81 ; 94,60]$	$[89,13 ; 94,245]$	$[89,51 ; 92,28]$
$1210-976$	16,19	$[10,69 ; 21,69]$	$[12,02 ; 22,21]$	$[12,18 ; 22,98]$	$[12,96 ; 19,89]$
$1210-976$	17,33	$[11,44 ; 23,22]$	$[12,87 ; 23,78]$	$[13,04 ; 23,54]$	$[13,88 ; 21,29]$
$1210-976$	16,21	$[10,70 ; 21,72]$	$[12,04 ; 22,24]$	$[12,20 ; 22,01]$	$[12,98 ; 19,91]$
$2458-896$	10,77	$[6,56 ; 14,97]$	$[7,68 ; 14,48]$	$[7,71 ; 14,46]$	$[9,55 ; 13,16]$

Figura 25 - Perda de potência ativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$

Figura 26 - Perda de potência reativa intervalar do sistema 33 barras com $\Delta \xi= \pm 10 \%$

As Tabelas 29 e 30 mostram todas as faixas de perdas de potência ativa e reativa e as Figuras 25 e 26 apresentam os três maiores desvios. Em todos os ramos, os três métodos contemplam os respectivos valores determinísticos. Além disso, as faixas geradas pelos métodos FPI contemplam integralmente as respectivas faixas geradas pelo MC. Os métodos FPITP e FPITR geram faixas menores que MC. Dos 200 limites inferior e superior, os métodos FPITP e FPITR apresentam 7 e 8 resíduos menores que MC, respectivamente. Logo, $96,50 \%$ e $96,00 \%$ das faixas geradas por FPITP e FPITR, nesta ordem, contemplam as faixas de MC. Além do mais, dos 200 limites calculados, os métodos FPITP, FPITR e FPI apresentam 111, 115 e 155 desvios maiores que 5%, respectivamente, e 30, 32 e 13 menores que 1%. Portanto, $44,50 \%, 42,50 \%$ e $22,50 \%$ dos desvios gerados pelos métodos FPITP, FPITR e FPI, nesta ordem, são menores que 5%.

É possível observar que nos ramos 824-933 e 959-895 as perdas de potência ativa foram negativas no método FPI. Tal fato, ocorre devido a característica matemática do método e não se estende nos demais métodos.

3.4 SISTEMA TESTE BRASILEIRO 107 BARRAS

Esse sistema possui um máximo carregamento de 7%. Incertezas de $\pm 3 \%$ são consideradas nas potências ativa e reativa de cada barra do sistema.

As Tabelas 31 e 32 e as Figuras 27 e 28 apresentam o módulo e ângulo de fase das tensões intervalares do sistema.

Tabela 31 - Módulo das tensões nodais intervalares do sistema 107 barras para $\Delta \xi= \pm 3 \%$

	Magnitude de Tensão $[\mathrm{p} . \mathrm{u}]$				
Barra		FPI	FPITR	FPITP	MC
	V	$[\underline{V}, \bar{V}]$	$[\underline{V}, \bar{V}]$	$[\underline{V}, \bar{V}]$	$[\underline{V}, \bar{V}]$
12	1,020	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$
16	1,000	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$
18	1,000	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
20	1,010	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$
21	1,000	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$
22	1,000	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$
35	1,000	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$
48	1,000	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$
86	1,033	$[0,876 ; 1,190]$	$[1,028 ; 1,036]$	$[1,028 ; 1,036]$	$[1,030 ; 1,035]$
100	1,056	$[0,988 ; 1,126]$	$[1,048 ; 1,062]$	$[1,048 ; 1,062]$	$[1,053 ; 1,059]$
101	1,069	$[0,960 ; 1,178]$	$[1,050 ; 1,083]$	$[1,050 ; 1,083]$	$[1,061 ; 1,076]$
102	1,059	$[0,929 ; 1,189]$	$[1,036 ; 1,077]$	$[1,036 ; 1,077]$	$[1,049 ; 1,069]$

103	1,072	$[0,926 ; 1,218]$	$[1,054 ; 1,085]$	$[1,054 ; 1,085]$	$[1,063 ; 1,079]$
104	1,061	$[0,925 ; 1,201]$	$[1,032 ; 1,083]$	$[1,032 ; 1,083]$	$[1,047 ; 1,074]$
106	1,050	$[0,917 ; 1,186]$	$[1,019 ; 1,073]$	$[1,019 ; 1,073]$	$[1,035 ; 1,064]$
120	1,041	$[0,910 ; 1,173]$	$[1,024 ; 1,054]$	$[1,024 ; 1,054]$	$[1,034 ; 1,048]$
122	1,067	$[0,900 ; 1,234]$	$[1,059 ; 1,071]$	$[1,059 ; 1,071]$	$[1,062 ; 1,072]$
123	1,035	$[0,895 ; 1,176]$	$[1,015 ; 1,049]$	$[1,015 ; 1,049]$	$[1,026 ; 1,042]$
126	1,037	$[0,884 ; 1,190]$	$[1,029 ; 1,043]$	$[1,029 ; 1,043]$	$[1,033 ; 1,040]$
131	1,027	$[0,953 ; 1,103]$	$[1,021 ; 1,031]$	$[1,021 ; 1,031]$	$[1,025 ; 1,029]$
134	1,027	$[0,960 ; 1,096]$	$[1,023 ; 1,030]$	$[1,023 ; 1,030]$	$[1,025 ; 1,028]$
136	1,028	$[0,925 ; 1,133]$	$[1,017 ; 1,036]$	$[1,017 ; 1,036]$	$[1,023 ; 1,033]$
138	1,036	$[0,909 ; 1,164]$	$[1,011 ; 1,056]$	$[1,011 ; 1,056]$	$[1,025 ; 1,048]$
140	1,023	$[0,896 ; 1,154]$	$[0,990 ; 1,047]$	$[0,990 ; 1,047]$	$[1,007 ; 1,038]$
210	1,048	$[1,019 ; 1,077]$	$[1,043 ; 1,051]$	$[1,043 ; 1,051]$	$[1,046 ; 1,050]$
213	1,050	$[0,984 ; 1,117]$	$[1,043 ; 1,055]$	$[1,043 ; 1,055]$	$[1,048 ; 1,052]$
216	1,049	$[0,988 ; 1,111]$	$[1,044 ; 1,053]$	$[1,044 ; 1,053]$	$[1,048 ; 1,050]$
217	1,050	$[1,008 ; 1,093]$	$[1,042 ; 1,056]$	$[1,042 ; 1,056]$	$[1,047 ; 1,053]$
218	1,025	$[0,973 ; 1,077]$	$[1,013 ; 1,034]$	$[1,013 ; 1,034]$	$[1,019 ; 1,030]$
219	1,028	$[0,977 ; 1,080]$	$[1,017 ; 1,037]$	$[1,017 ; 1,037]$	$[1,023 ; 1,034]$
220	1,052	$[1,009 ; 1,096]$	$[1,045 ; 1,057]$	$[1,045 ; 1,057]$	$[1,049 ; 1,055]$
225	1,009	$[0,960 ; 1,057]$	$[0,997 ; 1,018]$	$[0,997 ; 1,018]$	$[1,004 ; 1,013]$
228	1,016	$[0,963 ; 1,069]$	$[1,004 ; 1,025]$	$[1,004 ; 1,025]$	$[1,010 ; 1,022]$
231	1,013	$[0,933 ; 1,094]$	$[0,980 ; 1,036]$	$[0,980 ; 1,036]$	$[0,995 ; 1,026]$
233	1,039	$[0,990 ; 1,088]$	$[1,029 ; 1,047]$	$[1,029 ; 1,047]$	$[1,034 ; 1,044]$
234	1,027	$[0,976 ; 1,079]$	$[1,016 ; 1,036]$	$[1,016 ; 1,036]$	$[1,022 ; 1,033]$
300	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
301	1,010	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$
302	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
303	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
305	1,000	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$
320	1,049	$[1,013 ; 1,085]$	$[1,046 ; 1,051]$	$[1,046 ; 1,051]$	$[1,047 ; 1,050]$
325	1,046	$[0,997 ; 1,098]$	$[1,044 ; 1,048]$	$[1,044 ; 1,048]$	$[1,046 ; 1,047]$
326	1,033	$[0,972 ; 1,096]$	$[1,029 ; 1,036]$	$[1,029 ; 1,036]$	$[1,032 ; 1,034]$
360	1,047	$[1,007 ; 1,087]$	$[1,044 ; 1,048]$	$[1,044 ; 1,048]$	$[1,046 ; 1,047]$
370	1,049	$[1,006 ; 1,093]$	$[1,047 ; 1,050]$	$[1,047 ; 1,050]$	$[1,049 ; 1,050]$
396	1,041	$[0,981 ; 1,102]$	$[1,037 ; 1,043]$	$[1,037 ; 1,043]$	$[1,040 ; 1,042]$
500	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
535	1,035	$[0,984 ; 1,088]$	$[1,032 ; 1,037]$	$[1,032 ; 1,037]$	$[1,034 ; 1,036]$
536	1,023	$[0,967 ; 1,080]$	$[1,020 ; 1,026]$	$[1,020 ; 1,026]$	$[1,022 ; 1,024]$
800	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$

808	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
810	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
814	0,996	$[0,810 ; 1,184]$	$[0,990 ; 0,998]$	$[0,990 ; 0,998]$	$[0,989 ; 1,002]$
824	1,038	$[0,934 ; 1,172]$	$[1,036 ; 1,038]$	$[1,036 ; 1,038]$	$[1,035 ; 1,041]$
834	0,991	$[0,828 ; 1,166]$	$[0,986 ; 0,992]$	$[0,986 ; 0,992]$	$[0,985 ; 0,997]$
839	0,999	$[0,969 ; 1,068]$	$[0,998 ; 1,001]$	$[0,998 ; 1,001]$	$[0,998 ; 1,001]$
840	0,986	$[0,938 ; 1,075]$	$[0,984 ; 0,988]$	$[0,984 ; 0,988]$	$[0,985 ; 0,988]$
848	0,999	$[0,973 ; 1,061]$	$[0,998 ; 0,999]$	$[0,998 ; 0,999]$	$[0,997 ; 1,000]$
856	1,035	$[0,977 ; 1,131]$	$[1,034 ; 1,035]$	$[1,034 ; 1,035]$	$[1,033 ; 1,037]$
895	1,044	$[0,857 ; 1,237]$	$[1,039 ; 1,046]$	$[1,039 ; 1,046]$	$[1,037 ; 1,051]$
896	1,028	$[1,009 ; 1,082]$	$[1,027 ; 1,029]$	$[1,027 ; 1,029]$	$[1,027 ; 1,029]$
897	1,039	$[1,027 ; 1,084]$	$[1,039 ; 1,040]$	$[1,039 ; 1,040]$	$[1,039 ; 1,040]$
898	1,012	$[1,004 ; 1,049]$	$[1,011 ; 1,012]$	$[1,011 ; 1,012]$	$[1,011 ; 1,013]$
904	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
915	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
919	1,000	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$
925	1,020	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$	$[1,020 ; 1,020]$
933	1,038	$[0,931 ; 1,174]$	$[1,036 ; 1,038]$	$[1,036 ; 1,038]$	$[1,034 ; 1,041]$
934	0,998	$[0,895 ; 1,131]$	$[0,997 ; 0,999]$	$[0,997 ; 0,999]$	$[0,995 ; 1,002]$
938	1,043	$[0,836 ; 1,252]$	$[1,036 ; 1,046]$	$[1,036 ; 1,046]$	$[1,036 ; 1,050]$
939	0,996	$[0,793 ; 1,201]$	$[0,990 ; 1,000]$	$[0,990 ; 1,000]$	$[0,990 ; 1,003]$
955	1,058	$[0,904 ; 1,233]$	$[1,053 ; 1,061]$	$[1,053 ; 1,061]$	$[1,054 ; 1,061]$
959	1,033	$[0,843 ; 1,228]$	$[1,027 ; 1,036]$	$[1,027 ; 1,036]$	$[1,026 ; 1,040]$
960	0,996	$[0,803 ; 1,191]$	$[0,989 ; 0,999]$	$[0,989 ; 0,999]$	$[0,988 ; 1,003]$
964	1,037	$[0,838 ; 1,248]$	$[1,027 ; 1,046]$	$[1,027 ; 1,046]$	$[1,030 ; 1,044]$
965	1,003	$[0,799 ; 1,215]$	$[0,993 ; 1,012]$	$[0,993 ; 1,012]$	$[0,996 ; 1,010]$
976	1,012	$[0,803 ; 1,228]$	$[1,001 ; 1,023]$	$[1,001 ; 1,023]$	$[1,003 ; 1,021]$
995	1,050	$[0,924 ; 1,205]$	$[1,046 ; 1,053]$	$[1,046 ; 1,053]$	$[1,047 ; 1,053]$
1015	0,998	$[0,797 ; 1,201]$	$[0,992 ; 1,002]$	$[0,992 ; 1,002]$	$[0,991 ; 1,006]$
1030	1,052	$[0,918 ; 1,213]$	$[1,048 ; 1,055]$	$[1,048 ; 1,055]$	$[1,049 ; 1,054]$
1047	1,017	$[1,013 ; 1,047]$	$[1,017 ; 1,017]$	$[1,017 ; 1,017]$	$[1,016 ; 1,018]$
1060	1,043	$[1,003 ; 1,124]$	$[1,043 ; 1,044]$	$[1,043 ; 1,044]$	$[1,042 ; 1,045]$
1210	1,004	$[0,785 ; 1,226]$	$[0,991 ; 1,015]$	$[0,991 ; 1,015]$	$[0,994 ; 1,013]$
1503	1,061	$[0,925 ; 1,198]$	$[1,032 ; 1,082]$	$[1,032 ; 1,082]$	$[1,047 ; 1,073]$
1504	1,026	$[0,897 ; 1,159]$	$[0,995 ; 1,049]$	$[0,995 ; 1,049]$	$[1,012 ; 1,040]$
2458	1,001	$[0,969 ; 1,071]$	$[0,999 ; 1,002]$	$[0,999 ; 1,002]$	$[0,999 ; 1,002]$
4501	1,030	$[0,941 ; 1,127]$	$[0,997 ; 1,054]$	$[0,997 ; 1,054]$	$[1,010 ; 1,045]$
4521	1,037	$[0,938 ; 1,149]$	$[1,021 ; 1,049]$	$[1,021 ; 1,049]$	$[1,027 ; 1,045]$
4522	1,037	$[0,952 ; 1,137]$	$[1,014 ; 1,053]$	$[1,014 ; 1,053]$	$[1,023 ; 1,047]$

4523	1,010	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$	$[1,010 ; 1,010]$
4530	1,048	$[0,966 ; 1,152]$	$[1,037 ; 1,056]$	$[1,037 ; 1,056]$	$[1,040 ; 1,053]$
4532	1,048	$[0,966 ; 1,152]$	$[1,037 ; 1,056]$	$[1,037 ; 1,056]$	$[1,040 ; 1,053]$
4533	1,018	$[0,937 ; 1,122]$	$[1,012 ; 1,023]$	$[1,012 ; 1,023]$	$[1,014 ; 1,022]$
4542	1,030	$[0,942 ; 1,140]$	$[1,020 ; 1,038]$	$[1,020 ; 1,038]$	$[1,023 ; 1,035]$
4552	1,013	$[0,968 ; 1,088]$	$[0,994 ; 1,028]$	$[0,994 ; 1,028]$	$[1,002 ; 1,023]$
4562	1,019	$[0,993 ; 1,071]$	$[0,992 ; 1,041]$	$[0,992 ; 1,041]$	$[1,003 ; 1,034]$
4572	1,016	$[0,992 ; 1,070]$	$[0,992 ; 1,035]$	$[0,992 ; 1,035]$	$[1,001 ; 1,029]$
4582	1,026	$[0,992 ; 1,079]$	$[0,997 ; 1,049]$	$[0,997 ; 1,049]$	$[1,008 ; 1,042]$
4592	1,020	$[0,904 ; 1,153]$	$[1,016 ; 1,024]$	$[1,016 ; 1,024]$	$[1,017 ; 1,023]$
4596	1,000	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$
4623	1,023	$[0,950 ; 1,114]$	$[1,000 ; 1,039]$	$[1,000 ; 1,039]$	$[1,008 ; 1,033]$
4703	1,007	$[0,932 ; 1,104]$	$[1,000 ; 1,012]$	$[1,000 ; 1,012]$	$[1,002 ; 1,011]$
4804	1,000	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$	$[1,000 ; 1,000]$
4805	1,028	$[0,972 ; 1,112]$	$[1,023 ; 1,031]$	$[1,023 ; 1,031]$	$[1,024 ; 1,031]$
4807	1,028	$[0,982 ; 1,104]$	$[1,021 ; 1,034]$	$[1,021 ; 1,034]$	$[1,024 ; 1,033]$
4862	1,051	$[0,995 ; 1,136]$	$[1,042 ; 1,058]$	$[1,042 ; 1,058]$	$[1,045 ; 1,056]$

Tabela 32 - Fase das tensões nodais intervalares do sistema 107 barras para $\Delta \xi= \pm 3 \%$

Barra	Ângulo de Fase da Tensão [${ }^{\circ}$]				
	θ	$\begin{aligned} & \text { FPI } \\ & {[\theta ; \bar{\theta}]} \end{aligned}$	$\begin{gathered} \text { FPITR } \\ {[\underline{\theta} ; \bar{\theta}]} \end{gathered}$	$\begin{aligned} & \text { FPITP } \\ & {[\theta ; \bar{\theta}]} \end{aligned}$	$\begin{gathered} \mathrm{MC} \\ {[\underline{\theta} ; \bar{\theta}]} \end{gathered}$
12	-23,770	[-28,554; -19,286]	[-27,693; -20,297]	[-27,690; -20,300]	[-25,386; -22,283]
16	-23,920	[-31,987; -19,898]	[-30,889; -21,219]	[-30,884; -21,225]	[-27,900; -23,652]
18	-25,942	[-23,770; -23,770]	[-23,770; -23,770]	[-23,770; -23,7700]	[-23,770; -23,770]
20	-22,125	[-26,290; -17,960]	[-25,502; -18,855]	[-25,500; -18,857]	[-23,416; -20,596]
21	-61,901	[-71,830; -51,973]	[-70,850; -54,320]	[-70,830; -54,354]	[-66,794; -57,871]
22	-19,617	[-24,547; -14,687]	[-23,625; -15,765]	[-23,622; -15,769]	[-21,187; -17,844]
35	-26,674	[-29,146; -24,203]	[-28,682; -24,751]	[-28,682; -24,752]	[-27,477; -25,879]
48	-42,484	[-51,159; -33,810]	[-49,831; -35,602]	[-49,815; -35,622]	[-45,420; -39,052]
86	-42,484	[-51,184; -33,834]	[-49,840; -35,594]	[-49,815; -35,622]	[-45,420; -39,052]
100	-28,246	[-32,485; -24,068]	[-31,679; -24,936]	[-31,673; -24,942]	[-29,550; -26,700]
101	-36,049	[-41,984; -30,287]	[-40,908; -31,437]	[-40,889; -31,455]	[-37,928; -33,796]
102	-42,716	[-49,774; -35,899]	[-48,574; -37,233]	[-48,544; -37,261]	[-44,972; -39,967]
103	-42,995	[-50,823; -35,356]	[-49,553; -36,869]	[-49,519; -36,902]	[-45,559; -39,928]
104	-51,463	[-59,487; -43,753]	[-58,286; -45,194]	[-58,241; -45,238]	[-54,121; -48,211]
106	-52,342	[-60,394; -44,624]	[-59,195; -46,057]	[-59,148; -46,102]	[-54,993; -49,056]
120	-40,984	[-48,258; -33,895]	[-47,015; -35,321]	[-46,989; -35,346]	[-43,333; -38,176]
122	-41,415	[-50,394; -32,498]	[-49,008; -34,293]	[-48,974; -34,329]	[-44,463; -37,858]
123	-45,779	[-53,653; -38,120]	[-52,384; -39,629]	[-52,349; -39,663]	[-48,369; -42,714]
126	-43,228	[-51,662; -34,889]	[-50,335; -36,577]	[-50,309; -36,605]	[-46,059; -39,917]

131	-27,032	[-32,022; -22,090]	[-31,085; -23,145]	[-31,079; -23,151]	[-28,612; -25,241]
134	-26,153	[-30,812; -21,528]	[-29,937; -22,521]	[-29,933; -22,526]	[-27,621; -24,513]
136	-32,808	[-38,971; -26,756]	[-37,841; -28,019]	[-37,827; -28,033]	[-34,783; -30,484]
138	-43,866	[-50,988; -37,011]	[-49,760; -38,352]	[-49,729; -38,382]	[-46,125; -41,060]
140	-53,450	[-61,545; -45,714]	[-60,353; -47,135]	[-60,304; -47,182]	[-56,100; -50,115]
210	-27,329	[-29,136; -25,535]	[-28,790; -25,920]	[-28,789; -25,922]	[-27,895; -26,732]
213	-28,511	[-32,629; -24,440]	[-31,848; -25,299]	[-31,842; -25,304]	[-29,752; -27,068]
216	-27,601	[-31,541; -23,691]	[-30,797; -24,529]	[-30,793; -24,533]	[-28,801; -26,274]
217	-32,029	[-34,457; -29,632]	[-34,007; -30,141]	[-34,004; -30,144]	[-32,784; -31,261]
218	-39,810	[-42,708; -36,962]	[-42,192; -37,562]	[-42,187; -37,566]	[-40,860; -38,840]
219	-38,680	[-41,542; -35,865]	[-41,021; -36,464]	[-41,018; -36,468]	[-39,728; -37,717]
220	-31,701	[-34,210; -29,217]	[-33,743; -29,752]	[-33,741; -29,755]	[-32,515; -30,901]
225	-34,356	[-37,102; -31,667]	[-36,605; -32,233]	[-36,600; -32,238]	[-35,191; -33,550]
228	-40,376	[-43,338; -37,463]	[-42,808; -38,080]	[-42,803; -38,084]	[-41,430; -39,352]
231	-49,034	[-54,017; -44,340]	[-53,242; -45,313]	[-53,214; -45,339]	[-50,845; -47,557]
233	-35,963	[-38,673; -33,295]	[-38,165; -33,870]	[-38,162; -33,873]	[-36,924; -35,069]
234	-38,775	[-41,642; -35,956]	[-41,121; -36,556]	[-41,117; -36,559]	[-39,830; -37,809]
300	-18,722	[-21,276; -16,168]	[-20,777; -16,737]	[-20,776; -16,738]	[-19,555; -17,876]
301	-19,170	[-22,818; -15,523]	[-22,125; -16,322]	[-22,124; -16,324]	[-20,316; -17,943]
302	-18,045	[-21,094; -14,996]	[-20,507; -15,670]	[-20,506; -15,670]	[-19,019; -17,036]
303	-24,046	[-27,064; -21,027]	[-26,498; -21,677]	[-26,498; -21,678]	[-24,937; -22,997]
305	-21,887	[-26,033; -17,740]	[-25,255; -18,646]	[-25,253; -18,648]	[-23,175; -20,465]
320	-23,816	[-26,385; -21,258]	[-25,885; -21,821]	[-25,884; -21,822]	[-24,651; -22,968]
325	-23,456	[-27,122; -19,807]	[-26,424; -20,598]	[-26,421; -20,600]	[-24,604; -22,226]
326	-25,681	[-29,939; -21,449]	[-29,136; -22,361]	[-29,133; -22,365]	[-27,014; -24,228]
360	-22,207	[-25,267; -19,157]	[-24,678; -19,825]	[-24,676; -19,826]	[-23,183; -21,197]
370	-25,178	[-28,203; -22,163]	[-27,634; -22,808]	[-27,632; -22,809]	[-26,069; -24,129]
396	-25,613	[-29,780; -21,468]	[-28,996; -22,362]	[-28,992; -22,366]	[-26,903; -24,188]
500	-21,325	[-24,882; -17,768]	[-24,218; -18,527]	[-24,216; -18,528]	[-22,373; -20,025]
535	-25,780	[-29,357; -22,221]	[-28,687; -22,971]	[-28,684; -22,973]	[-26,832; -24,477]
536	-28,574	[-32,265; -24,903]	[-31,582; -25,668]	[-31,580; -25,670]	[-29,710; -27,203]
800	-6,882	[-18,575; 5,056]	[-16,608; 2,456]	[-16,568; 2,410]	[-11,226; -1,867]
808	3,730	[-8,493; 15,725]	[-6,272; 13,343]	[-6,229; 13,294]	[-0,809; 8,896]
810	-3,800	[-15,603; 8,226]	[-13,624; 5,636]	[-13,582; 5,589]	[-8,206; 1,273]
814	-37,307	[-48,366; -26,234]	[-46,690; -28,408]	[-46,637; -28,465]	[-41,289; -32,726]
824	-17,179	[-28,860; -5,486]	[-26,937; -7,825]	[-26,889; -7,878]	[-21,511; -12,181]
834	-28,555	[-40,151; -16,946]	[-38,306; -19,248]	[-38,252; -19,306]	[-32,812; -23,640]
839	-6,168	[-18,340; 6,270]	[-16,343; 3,613]	[-16,295; 3,559]	[-10,832; -0,956]
840	-9,154	[-21,434; 3,314]	[-19,435; 0,729]	[-19,385; 0,674]	[-13,901; -3,889]
848	-5,289	[-17,493; 7,183]	[-15,507; 4,535]	[-15,458; 4,481]	[-9,975; 0,017]
856	-10,655	[-22,455; 1,242]	[-20,494; 1,212]	[-20,448; -1,263]	[-15,057; -5,589]
895	-35,062	[-46,041; -24,067]	[-44,349; -26,243]	[-44,298; -26,298]	[-39,025; -30,506]
896	-4,046	[-16,108; 8,250]	[-14,113; 5,627]	[-14,067; 5,575]	[-8,629; 1,140]
897	-2,775	[-14,778; 9,414]	[-12,786; 6,845]	[-12,740; 6,794]	[-7,313; 2,390]
898	-1,897	[-13,989; 10,335]	[-12,002; 7,816]	[-11,955; 7,763]	[-6,509; 3,315]
904	-14,886	[-27,028; -2,745]	[-25,046; -5,143]	[-25,001; -5,194]	[-19,460; -9,647]
915	-12,748	[-24,806; -0,691]	[-22,830; -3,079]	[-22,786; -3,130]	[-17,275; -7,550]

919	5,987	[-6,351; 18,049]	[-4,087; 15,673]	[-4,042; 15,622]	[1,389; 11,189]
925	0,115	[-11,809; 12,028]	[-9,809; 9,648]	[-9,766; 9,600]	[-4,355; 5,244]
933	-17,546	[-29,227; -5,853]	[-27,306; -8,191]	[-27,258; -8,244]	[-21,877; -12,549]
934	-17,714	[-29,470; -5,944]	[-27,547; -8,287]	[-27,498; -8,341]	[-22,065; -12,676]
938	-37,109	[-48,838; -25,403]	[-47,087; -27,623]	[-47,028; -27,687]	[-41,456; -32,118]
939	-39,518	[-51,314; -27,749]	[-49,595; -29,952]	[-49,534; -30,018]	[-43,905; -34,486]
955	-23,464	[-35,519; -11,464]	[-33,565; -13,793]	[-33,511; -13,851]	[-27,975; -18,297]
95	-34,767	[-46,045; -23,	[-44,304; -25,702]	[-44,250, -25,760]	[-38,865; -30,051]
960	-37,286	[-48,722; -25,855]	[-46,975; -28,088]	[-46,918; -28,150]	[-41,464; -32,521]
964	-30,784	[-43,388; -18,348]	[-41,379; -20,654]	[-41,315; -20,723]	[-35,573; -25,313]
965	-33,252	[-45,967; -20,710]	[-43,977; -23,005]	[-43,910; -23,075]	[-38,089; -27,690]
976	-33,464	[-46,266; -20,870]	[-44,230; -23,180]	[-44,162; -23,252]	[-38,375; -27,862]
995	-19,212	[-31,398; -7,093]	[-29,398; -9,448]	[-29,346; -9,505]	[-23,793; -13,971]
1015	-39,469	[-51,145; -27,813]	[-49,426; -30,020]	[-49,366; -30,085]	[-43,755; -34,545]
1030	-20,	[-32,591; -8,446]	[-30,617; -10,794]	[-30,565; -10,851]	296]
1047	-0,911	[-12,979; 11,230]	[-10,993; 8,780]	[-10,947; 8,728]	[-5,507; 4,288]
1060	-7,845	[-19,767; 4,313]	[-17,784; 1,699]	[-17,738; 1,648]	[-12,312; -2,718]
1210	-36,214	[-49,176; -23,478]	[-47,141; -25,786]	[-47,069; -25,861]	[-41,223; -30,497]
1503	-49,276	[-57,047; -41,809]	[-55,836; -43,220]	[-55,794; -43,260]	[-51,812; -46,164]
1504	-53,249	[-61,369; -45,467]	[-60,179; -46,909]	[-60,130; -46,956]	[-55,853; -49,986]
2458	-6,396	[-18,566; 6,037]	[-16,568; 3,380]	[-16,520; 3,327]	[-11,056; -1,171]
4501	-60,409	[-67,657; -53,582]	[-66,734; -55,030]	[-66,683; -55,078]	[-63,548; -57,839]
4521	-66,022	[-74,755; -57,540]	[-73,815; -59,454]	[-73,775; -59,499]	[-70,143; -62,635]
4522	-68,116	[-76,899; -59,676]	[-75,933; -61,531]	[-75,883; -61,584]	[-72,245; -64,723]
4523	-60,350	[-68,897; -51,802]	[-68,017; -53,875]	[-68,005; -53,897]	[-64,413; -57,004]
4530	-72,643	[-82,441; -63,032]	[-81,466; -65,192]	[-81,427; -65,241]	[-77,446; -68,681]
4532	-72,643	[-82,441; -63,032]	[-81,466; -65,192]	[-81,427; -65,241]	[-77,446; -68,681]
4533	-72,981	[-82,868; -63,214]	[-81,903; -65,436]	[-81,870; -65,481]	[-77,860; -68,946]
4542	-71,829	[-81,869; -61,950]	[-80,862; -64,182]	[-80,823; -64,232]	[-76,757; -67,776]
4552	-79,363	[-89,852; -69,018]	[-88,840; -71,334]	[-88,783; -71,401]	[-84,533; -75,146]
4562	-87,553	[-90,000; 90,000]	[-97,653; 79,012]	[-97,575; -79,099]	[-93,065; -83,134]
4572	-84,648	[-90,000; 90,000]	[-94,512; 76,301]	[-94,441; -76,380]	[-90,027; -80,306]
4582	-90,352	[-90,000; 90,000]	[-100,693; 81,617]	[-100,608; -81,711]	[-96,013; -85,852]
4592	-66,939	[-76,923; -57,037]	[-75,928; -59,325]	[-75,898; -59,368]	[-71,848; -62,898]
4596	-68,105	[-77,934; -58,276]	[-76,973; -60,602]	[-76,954; -60,636]	[-72,962; -64,086]
4623	-71,026	[-80,064; -62,323]	[-79,107; -64,226]	[-79,054; -64,282]	[-75,336; -67,481]
4703	-74,083	[-84,028; -64,267]	[-83,058; -66,490]	[-83,024; -66,536]	[-78,994; -70,014]
4804	-74,346	[-84,588; -64,104]	[-83,643; -66,466]	[-83,621; -66,504]	[-79,478; -70,079]
4805	-78,066	[-88,341; -67,879]	[-87,400; -70,157]	[-87,366; -70,204]	[-83,209; -73,789]
4807	-79,341	[-89,604; -69,192]	[-88,652; -71,450]	[-88,616; -71,500]	[-84,474; -75,074]
4862	-77,638	[-87,796; -67,620]	[-86,833; -69,853]	[-86,796; -69,904]	[-82,694; -73,444]

Figura 27 - Módulo das tensões nodais intervalares do sistema 107 barras com $\Delta \xi= \pm 3 \%$

Figura 28 - Fases das tensões nodais intervalares do sistema 107 barras com $\Delta \xi= \pm 3 \%$

As Tabelas 31 e 32 mostram as faixas de módulo e de ângulo de fase e as Figuras 27 e 28 apresentam os três maiores desvios. Os três métodos contemplam os respectivos valores determinísticos. Neste caso, as faixas geradas referentes aos módulos e ângulos de fase das tensões, para os três métodos são menores que aquelas geradas pelo MC. Dos 428 limites inferior e superior, os métodos FPITP, FPITR e FPI apresentam 23, 38 e 3 resíduos menores que MC, respectivamente. Logo, $94,63 \%, 91,12 \%$ e $99,30 \%$ das faixas geradas por FPITP, FPITR e FPI, nesta ordem, contemplam as faixas de MC. Além do mais, dos 428 limites calculados, os métodos FPITP, FPITR e FPI apresentam 170, 176 e 317 desvios maiores que 5%, respectivamente, e 202, 203 e 54 menores que 1%. Portanto, $60,28 \%, 58,88 \%$ e $25,94 \%$ dos desvios gerados pelos métodos FPITP, FPITR e FPI, nesta ordem, são menores que 5%.

As gerações de potências ativa e reativa intervalares da barra mostradas nas Tabelas

33 e 34 e nas Figuras 29 e 30, respectivamente. A potência reativa intervalar gerada na barra $P V$ está mostrada na Tabela 35 e Figura 31.

Tabela 33 - Geração de potência ativa intervalar da barra $V \theta$ do sistema 107 barras com $\Delta \xi=$ $\pm 3 \%$

	Geração de potência ativa intervalar [MW]				
Barra	FPI	FPITR	FPITP	MC	
		$\left[\underline{P_{g}} ; \overline{P_{g}}\right]$	$\left.\underline{P_{g}} ; \overline{P_{g}}\right]$	$\left[\underline{P_{g}} ; \overline{P_{g}}\right]$	$\left[\underline{\underline{P}_{g}} ; \overline{P_{g}}\right]$
18		$[516,41 ; 1474,89]$	$[603,60 ; 1396,98]$	$[603,98 ; 1396,59]$	$[796,14 ; 1160,72]$

Tabela 34 - Geração de potência reativa intervalar da barra $V \theta$ do sistema 107 barras com $\Delta \xi= \pm 3 \%$

	Geração de potência reativa intervalar [MVAr]				
Barra	Q_{g}	FPI	FPITR	FPITP	MC
		$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$	$\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]$
18		$[-502,75 ;-299,03]$	$[-468,65 ;-298,05]$	$[-468,79 ;-297,91]$	$[-431,64 ;-361,31]$

Tabela 35 - Geração de potência reativa intervalar da barra $P V$ do sistema 107 barras com $\Delta \xi= \pm 3 \%$

Barra	Geração de potência reativa intervalar [MVAr]				
	Q_{g}	$\begin{gathered} \text { FPI } \\ {\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]} \end{gathered}$	$\begin{aligned} & \text { FPITR } \\ & {\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]} \end{aligned}$	$\begin{aligned} & \hline \text { FPITP } \\ & {\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]} \end{aligned}$	$\begin{gathered} \mathrm{MC} \\ {\left[\underline{Q_{g}} ; \overline{Q_{g}}\right]} \end{gathered}$
800	138,38	[45,98; 230,78]	[132,56; 153,05]	[132,89; 152,78]	[120,31; 156,18]
915	-109,43	[-181,06; -37,80]	[-126,03; -87,01]	[-125,82; -87,10]	[-122,16; -96,14]
919	89,06	[67,62; 110,504]	[85,31; 94,48]	[85,47; 94,30]	[84,63; 92,81]
4523	-9,08	[-18,64; 0,48]	[-17,23; -2,15]	[-17,20; -2,18]	[-14,45; -6,32]
4596	$-28,66$	[-55,45; -1,87]	[-56,34; -16,89]	[-56,28; -16,95]	[-48,71; -27,96]

Figura 29 - Geração de potência ativa intervalar da barra $V \theta$ do sistema 107 barras com $\Delta \xi=$ $\pm 3 \%$

Figura 30 - Geração de potência reativa intervalar da barra $V \theta$ do sistema 107 barras com $\Delta \xi= \pm 3 \%$

Figura 31 - Geração de potência reativa intervalar da barra $P V$ do sistema 107 barras com $\Delta \xi= \pm 3 \%$

As Tabelas 33 a 35 e as Figuras 29 a 31 mostram as faixas de gerações ativa e reativa. A Tabela 35 mostra os cinco maiores desvios de perdas de potência reativa e a Figura 31 apresenta os três maiores desvios. Os três métodos contemplam os respectivos valores determinísticos. Além disso, as faixas geradas pelo método FPI contemplam integralmente as respectivas faixas geradas pelo MC. Neste caso, para os método FPITP e FPITR as faixas referentes a geração reativa são menores que aquelas geradas pelo MC. Cinquenta limites, inferior e superior, referentes as gerações de potência ativa e reativa são calculados. Os métodos FPITP e FPITR apresentam 4 limites menores que MC. Portanto, 92% dos desvios gerados pelos métodos FPITP e FPITR, contemplam as faixas de MC. Além do mais, dos 50 limites inferior e superior, os métodos FPITP, FPITR e FPI apresentam 30, 30 e 23 desvios maiores que 5%, respectivamente, e 1 desvio menor que 1% para FPITR e FPITP. Portanto, $40,00 \%, 40,00 \%$ e $54,00 \%$ dos desvios gerados pelos métodos FPITP, FPITR e FPI, nesta ordem, são menores que 5%.

As Tabelas 36 e 37 e as Figuras 32 a 33 apresentam os valores intervalares referentes aos fluxos de potência ativa e reativa.

Tabela 36 - Fluxo de potência ativo intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$

	Fluxo de potência ativa [MW]				
Linha	FPI	FPITR	FPITP	MC	
		$\left[\underline{P_{k m}} ; \overline{P_{k m}}\right]$	$\left[\underline{P_{k m} ;} ; \overline{P_{k m}}\right]$	$\left[\underline{P_{k m} ;} ; \overline{P_{k m}}\right]$	$\left[\underline{\left[\underline{P_{k m}} ; \overline{P_{k m}}\right]}\right.$
$100-210$		$[-207,62 ; 91,63]$	$[-185,43 ; 67,96]$	$[-185,10 ; 67,65]$	$[-115,43 ;-2,07]$
$100-213$		$[-2,76 ; 45,20]$	$[13,63 ; 30,12]$	$[13,71 ; 30,04]$	$[15,25 ; 27,59]$
$939-1015$		$[-8,71 ; 5,06]$	$[-4,72 ; 1,16]$	$[-4,70 ; 1,14]$	$[-4,40 ; 0,84]$
$939-1015$		$[-8,72 ; 5,05]$	$[-4,72 ; 1,15]$	$[-4,70 ; 1,13]$	$[-4,40 ; 0,84]$
$959-895$	95,79	$[-31,93 ; 222,98]$	$[-11,55 ; 202,99]$	$[-10,29 ; 201,82]$	$[26,90 ; 163,86]$

Tabela 37 - Fluxo de potência reativo intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$

	Fluxo de potência reativa [MVAr]				
Linha	FPI	FPITR	FPITP	MC	
		$\left[\underline{Q_{k m}} ; \overline{Q_{k m}}\right]$	$\left[\underline{Q_{k m} ;} ; \overline{Q_{k m}}\right]$	$\left[\underline{Q_{k m}} ; \overline{Q_{k m}}\right]$	$\left[\underline{Q_{k m}} ; \overline{Q_{k m}}\right]$
$100-535$		$[-29,55 ; 21,49]$	$[-23,56,9,17]$	$[-23,66 ; 9,24]$	$[-10,42 ; 0,99]$
$126-86$		$[-26,59 ; 29,58]$	$[-20,40,19,35]$	$[-20,11 ; 19,10]$	$[-4,98 ; 7,79]$
$126-86$		$[-26,59 ; 29,65]$	$[-20,39,19,41]$	$[-20,19 ; 19,16]$	$[-4,95 ; 7,84]$
$938-959$		$[-57,68 ; 19,78]$	$[-17,84,-17,41]$	$[-17,87 ;-17,61]$	$[-20,98 ; 11,76]$
$1047-919$		$[-25,20 ; 16,64]$	$[-9,39,-0,78]$	$[-9,37 ;-0,82]$	$[-8,62 ;-0,79]$

Figura 32 - Fluxo de potência ativo intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$

Figura 33 - Fluxo de potência reativo intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$

As Tabelas 36 e 37 mostram os cinco maiores desvios de fluxo de potência ativa e reativa nos ramos e as Figuras 32 e 33 apresentam os três maiores desvios. Todas as faixas dos ramos dos três métodos, contemplam os respectivos valores determinísticos. Dos 684 limites inferior e superior, os métodos FPITP, FPITR e FPI apresentam 267, 119 e 18 resíduos menores que MC, respectivamente. Logo, $60,96 \%, 82,60 \%$ e $97,37 \%$ das faixas geradas por FPITP, FPITR e FPI, nesta ordem, contemplam as faixas de MC. Além do mais, dos 684 limites inferior e superior, referentes aos fluxos de potência ativa e reativa são calculados. Os métodos FPITP, FPITR e FPI apresentam 145, 144 e 490 desvios maiores que 5%, respectivamente, e 425 , 421 e 72 menores que 1%. Portanto, $78,80 \%$, $78,95 \%$ e $28,36 \%$ dos desvios gerados pelos métodos FPITP, FPITR e FPI, nesta ordem, são menores que 5%.

As perdas intervalares nos ramos estão representadas nas Tabelas 38 e 39 e nas Figuras 34 e 35.

Tabela 38 - Perda de potência ativa intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$

Linha	Perda de potência ativa [MW]				
	$P_{k m}^{p d}$	$\begin{gathered} \text { FPI } \\ {\left[P_{k m}^{p d} ; \overline{P_{k m}^{p d}}\right]} \end{gathered}$	$\begin{gathered} \text { FPITR } \\ {\left[\underline{P_{k m}^{p d}} ; P_{k m}^{p d}\right]} \end{gathered}$	$\begin{aligned} & \text { FPITP } \\ & {\left[\underline{P_{k m}^{p d}} ; P_{k m}^{p d}\right]} \end{aligned}$	$\begin{gathered} \mathrm{MC} \\ {\left[\underline{P_{k m}^{p d}} ; \overline{P_{k m}^{p d}}\right]} \end{gathered}$
100-210	0,084	[-0,244; 0,411]	[0,109; 0,675]	[0,109; 0,672]	[0,021; 0,274
122-103	0,357	[-0,216; 0,929]	[0,052; 1,009]	[0,052; 1,006]	[0,165; 0,646]
210-370	0,422	[-0,035; 0,879]	[0,125; 0,887]	[0,125; 0,887]	[0,268; 0,597]
326-134	0,134	[-0,028; 0,296]	[0,051; 0,304]	[0,051; 0,303]	[0,084; 0,200]
939-1015	0,001	[-0,004; 0,006]	[0,002; 0,003]	[0,002; 0,003]	[0,002; 0,003]

Tabela 39 - Perda de potência reativa intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$

Linha	Perda de potência reativa [MVAr]				
	$Q_{k m}^{p d}$	$\begin{gathered} \text { FPI } \\ {\left[\underline{Q_{k m}^{p d}} ; \overline{Q_{k m}^{p d}}\right]} \end{gathered}$	$\begin{aligned} & \text { FPITR } \\ & {\left[\underline{Q_{k m}^{p d}} ; \overline{Q_{k m}^{p d}}\right]} \end{aligned}$	$\begin{gathered} \text { FPITP } \\ {\left[\underline{Q_{k m}^{p d}} ; \overline{Q_{k m}^{p d}}\right]} \end{gathered}$	$\begin{gathered} \mathrm{MC} \\ {\left[\underline{Q_{k m}^{p d}} ; \overline{Q_{k m}^{p d}}\right]} \end{gathered}$
100-213	0,267	[-0,075; 0,608]	[0,139; 0,416]	[0,139; 0,415]	[0,180; 0,355]
225-231	-4,499	[-14,423; 5,424]	[-11,336; 4,571]	[-11,250; 4,461]	[-7,125; -0,777]
225-231	-1,992	[-16,650; 12,667]	[-12,094; 11,408]	[-11,964; 11,242]	[-5,843; 3,501]
933-959	-5,229	[-47,746; 37,288]	[-14,007; 6,714]	[-14,229; 6,944]	[-13,656; 5,716]
960-834	-0,188	[-3,030; 2,654]	[-0,470; 0,314]	[-0,483; 0,333]	[-0,512; 0,396]

Figura 34 - Perda de potência ativa intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$

Figura 35 - Perda de potência reativa intervalar do sistema 107 barras com $\Delta \xi= \pm 3 \%$

As Tabelas 36 e 37 mostram os cinco maiores desvios de perdas de potência ativa e reativa nos ramos e as Figuras 32 e 33 apresentam os três maiores desvios. Os três métodos contemplam os respectivos valores determinísticos. Além disso, as faixas geradas pelos métodos FPI contemplam integralmente as respectivas faixas geradas pelo MC. Os métodos FPITP e FPITR geram faixas menores que MC, dos 684 limites inferior e superior os métodos FPITP e FPITR apresentam 235 e 74 resíduos menores que MC, respectivamente. Logo, $65,64 \%$ e $89,18 \%$ das faixas geradas por FPITP e FPITR, nesta ordem, contemplam as faixas de MC. Além do mais, dos 684 limites calculados, os métodos FPITP, FPITR e FPI apresentam 113, 112 e 385 desvios maiores que 5%, respectivamente, e 451,461 e 133 menores que 1%. Portanto, $83,48 \%, 83,63 \%$ e $43,71 \%$ dos desvios gerados pelos métodos FPITP, FPITR e FPI, nesta ordem, são menores que 5%.

3.5 IMPACTO DO SEGUNDO TERMO DA SÉRIE DE TAYLOR

A avaliação do impacto do segundo termo é realizada no sistema-teste 57 barras IEEE. Esse sistema possui um máximo carregamento de $78,59 \%$.

As Figuras 36 a 38 e 39 a 41, correspondentes aos métodos FPITP e FPITR, respectivamente, apresentam os módulos e fases das tensões nodais intervalares para incertezas de $\pm 10 \%, \pm 30 \%$ e $\pm 70 \%$, onde os dados são representados nos gráficos de forma contínua para melhor compreensão do leitor, porém, esses dados são discretos.

É possível notar que em ambos os métodos, o segundo termo da série de Taylor possui impacto maior quando incertezas são consideradas perto do limite de máximo carregamento do sistema. Tal fato, possibilita saber quando usar o segundo termo da série de Taylor, ou seja, em sistemas de carga leve e pequenas variações de incertezas, a expansão da série de Taylor pode ser feita até o primeiro termo.

A Tabela 40 mostra o tempo gasto por cada parcela da série de Taylor juntamente com o tempo do método de MC das simulações apresentadas nas Figuras 36 a 41. Em média, 53% do tempo gasto pelo método FPITP e 32% pelo método FPITR refere-se ao cálculo do segundo termo da série.

Tabela 40 - Tempo computacional do sistema-teste 57 barras IEEE

	Tempo Computacional [s]						
		PITP			FPITR		
$\Delta \xi$	1^{0} termo de Taylor	2° termo de Taylor	Total	1° termo de Taylor	2° termo de Taylor	Total	Monte Carlo
10\%	0,0016	0,0666	0,125	0,0009	0,0150	0,047	32,169
30\%	0,0017	0,0655	0,109	0,0001	0,0343	0,063	34,660
70\%	0,0011	0,0455	0,093	0,0007	0,0163	0,079	36,326

Fase da Tensão Intervalar com $\Delta \xi= \pm 10 \%$

Figura 36 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 10 \%$ para o método FPITP

Figura 37 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 30 \%$ para o método FPITP

Fase da Tensão Intervalar com $\Delta \xi= \pm 70 \%$

Figura 38 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 70 \%$ para o método FPITP

Fase da Tensão Intervalar com $\Delta \xi= \pm 10 \%$

Figura 39 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 10 \%$ para o método FPITR

Fase da Tensão Intervalar com $\Delta \xi= \pm 30 \%$

Figura 40 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 30 \%$ para o método FPITR

Fase da Tensão Intervalar com $\Delta \xi= \pm 70 \%$

Figura 41 - Módulo e fase das tensões nodais intervalares do sistema-teste 57 barras IEEE com $\Delta \xi= \pm 70 \%$ para o método FPITR

4 CONCLUSÃO

Este trabalho propõe um método de solução de fluxo de potência com tensões em coordenadas polares, através da expansão das equações em termos da série de Taylor, quando as incertezas nas demandas de potência ativa e reativa são consideradas. Um método alternativo, publicado na literatura, considera as equações do fluxo de potência expressas em coordenadas retangulares das tensões nas barras. A proposição dessa dissertação serve como alternativa de cálculo do fluxo de potência intervalar considerando incertezas nas cargas.

Basicamente, o método proposto em coordenadas polares transforma a solução das equações não-lineares intervalares de potência na solução de um conjunto de três equações lineares determinísticas, incluindo o cálculo do fluxo de potência determinístico associado ao caso base e os cálculos das derivadas de primeira e segunda ordens das variáveis de estado em relação à variável de pertubação. A faixa final é obtida mediante a aplicação direta da série de Taylor. O objetivo deste procedimento é melhor quantificar o efeito das incertezas na saída de resultados.

O método, implementado em ambiente MATLAB, está aplicado neste trabalho a três sistemas-testes brasileiros. Os resultados da metodologia proposta em coordenadas polares são comparados com os respectivos resultados obtidos via método análogo em coordenadas retangulares, via matemática intervalar ordinária e, finalmente, via método de simulação Monte Carlo. Os resultados intervalares apresentados incluem o módulo e o ângulo de fase das tensões nas barras, geração ativa e reativa, fluxo de potência e perdas.

De modo geral, as variáveis de estado intervalares, módulo e ângulo de fase da tensão, apresentam faixas mais estreitas, em torno das respectivas soluções determinísticas, em relação às faixas obtidas via matemática intervalar, quando comparadas às faixas obtidas via simulação Monte Carlo. Este comentário aplica-se tanto no método proposto (FPITP) como no método retangular (FPITR). Além disso, as faixas geradas pelos métodos FPITP e FPITR contemplam integralmente aquelas geradas via método MC.

Numa análise geral, os seguintes comentários podem ser extraídos:

- O método proposto calcula 668 limites inferior e superior, referentes às barras. Vinte e sete limites gerados pelo método FPITP são menores que os respectivos limites gerados pelo MC. Para os métodos FPITR e FPI tais valores são 42 e 9, respectivamente.
- Dos 668 limites referentes às barras, a quantidade de limites com desvios absolutos menores que 5%, comparativamente ao método MC , é 375 , 369 e 208 para os métodos FPITP, FPITR e FPI, respectivamente. Portanto, $56,14 \%, 55,24 \%$ e $31,14 \%$ dos limites, respectivamente, possuem desvios menores que 5%.
- O método proposto calcula 1848 limites superior e inferior, referentes aos ramos. Quinhentos e quarenta e seis limites gerados pelo método FPITP são menores que os respectivos limites gerados pelo MC. Para o método FPITR e FPI, tais valores são 234 e 20, respectivamente.
- Dos 1848 limites referentes aos ramos, a quantidade de limites com desvios absolutos menores que 5%, comparativamente ao método MC, é 1358, 1356 e 604 para os métodos FPITP, FPITR e FPI, respectivamente. Portanto, $73,48 \%, 73,38 \%$ e $32,68 \%$ dos limites, respectivamente, possuem desvios menores que 5%.

Em suma, é possível concluir que os métodos FPTIP e FPITR apresentam desempenhos bastante similares. Claramente, os resultados intervalares de ambos os métodos são melhores que FPI. No entanto, o FPTIP gera uma quantidade maior de limites, menor que aqueles gerados pelo MC. Comparativamente ao método MC, o método desenvolvido reduz as faixas das variáveis intervalares de interesse, constituindo-se numa ferramenta adicional para análise de incertezas no estudo de fluxo de potência. Independentemente de algumas melhorias que ainda deverão ser implementadas, sua utilidade poderá ser constatada no planejamento e operação do sistema elétrico de potência, quando incertezas nas demandas ativa e reativa de cada barra são consideradas e um parecer técnico mais conclusivo se tornar necessário.

4.1 PROPOSTAS PARA TRABALHOS FUTUROS

Este item apresenta, em linhas gerais, algumas sugestões de possíveis propostas para desenvolvimentos futuros, visando dar continuidade a pesquisa iniciada no presente trabalho de desertação. As principais são:

- Considerar incertezas em outros parâmetros do sistema como na geração, na linha de transmissão e nos equipamentos conectados ao sistema (transformadores, capacitores e indutores, etc.);
- Investigar razões pelas quais as variáveis de saída, por vezes, apresentam faixas mais estreitas que aquelas da simulação de Monte Carlo;
- Inserir dispositivos de controle, tais como controle reativo e de tap de transformadores;
- Considerar variações para as potências ativas diferentes daquelas associadas às potências reativas das cargas;
- Implementar o método intervalar em estudo considerando as equações de injeção de corrente expressas em função das coordenadas retangulares das tensões.
- Comparar os resultados aqui apresentados com outros métodos, como fluxo de potência fuzzy e fluxo de potência probabilístico.

REFERÊNCIAS

[1] STAGG, G. W., Computação aplicada a sistemas de geração e transmissão de potência. Guanabara Dois, 1979.
[2] MONTICELLI, A. J., Fluxo de carga em redes de energia elétrica. E. Blucher, 1983.
[3] WARD, J. B., HALE, H. W., "Digital Computer Solution of Power-Flow Problems", Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, v. 75, n. 3, pp. 398-404, Jan 1956.
[4] VAN NESS, J. E., GRIFFIN, J. H., "Elimination methods for load-flow studies", Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, v. 80, n. 3, pp. 299-302, 1961.
[5] TINNEY, W. F., HART, C. E., "Power flow solution by Newton's method", IEEE Transactions on Power Apparatus and systems, , n. 11, pp. 1449-1460, 1967.
[6] TINNEY, W. F., WALKER, J. W., "Direct solutions of sparse network equations by optimally ordered triangular factorization", proc. IEEE, v. 55, n. 11, pp. 1801-1809, 1967.
[7] ZOLLENKOPF, K., "Bi-factorization-basic computational algorithm and programming techniques", Large sparse sets of linear equations, pp. 75-96, 1971.
[8] VAN AMERONGEN, R. A., "A general-purpose version of the fast decoupled load flow", IEEE Transactions on Power Systems, v. 4, n. 2, pp. 760-770, 1989.
[9] MONTICELLI, A., GARCIA, A., SAAVEDRA, O. R., "Fast decoupled load flow: Hypothesis, derivations, and testing", IEEE Transactions on Power systems, v. 5, n. 4, pp. 1425-1431, 1990.
[10] KERSTING, W., "Application of ladder network theory to the solution of three-phase radial load problems". In: IEEE PES winter meeting, v. 76044, n. 8, 1976.
[11] SHIRMOHAMMADI, D., HONG, H. W., SEMLYEN, A., LUO, G., "A compensationbased power flow method for weakly meshed distribution and transmission networks", IEEE Transactions on power systems, v. 3, n. 2, pp. 753-762, 1988.
[12] BROADWATER, R., CHANDRASEKARAN, A., HUDDLESTON, C., KHAN, A., "Power flow analysis of unbalanced multiphase radial distribution systems", Electric Power Systems Research, v. 14, n. 1, pp. 23-33, 1988.
[13] KHAN, A., BROADWATER, R., CHANDRASEKARAN, A., "A comparative study of three radial power flow methods". In: Proceedings of the IASTED International Symposium, High Technology in the Power Industry. Arizona Marzo de, 1988.
[14] GHIOCEL, S. G., CHOW, J. H., "A power flow method using a new bus type for computing steady-state voltage stability margins", IEEE Transactions on Power Systems, v. 29, n. 2, pp. 958-965, 2014.
[15] CHIANG, H.-D., ZHAO, T.-Q., DENG, J.-J., KOYANAGI, K., "Homotopy-enhanced power flow methods for general distribution networks with distributed generators", IEEE Transactions on Power Systems, v. 29, n. 1, pp. 93-100, 2014.
[16] CHENG, C., GAO, H., AN, Y., CHENG, X., YANG, J., "Calculation method and analysis of power flow for distribution network with distributed generation". In: 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), pp. 2020-2024, Nov 2015.
[17] CAVALCANTE, P. L., "Fluxo de carga trifásico com modelagem de incertezas via função de pertinência sinusoidal", Campinas, São Paulo. Dissertação de Mestrado. Faculdade de Engenharia Elétrica e de Computação. Universidade Estatual de Campinas - UNICAMP, 2010.
[18] HAJIAN, M., ROSEHART, W. D., ZAREIPOUR, H., "Probabilistic power flow by Monte Carlo simulation with Latin supercube sampling", IEEE Transactions on Power Systems, v. 28, n. 2, pp. 1550-1559, 2013.
[19] USAOLA, J., "Probabilistic load flow with wind production uncertainty using cumulants and Cornish-Fisher expansion", International Journal of Electrical Power ${ }^{8}$ Energy Systems, v. 31, n. 9, pp. 474-481, 2009.
[20] HU, Z., WANG, X., "A probabilistic load flow method considering branch outages", IEEE Transactions on Power Systems, v. 21, n. 2, pp. 507-514, 2006.
[21] BIJWE, P., HANMANDLU, M., PANDE, V., "Fuzzy power flow solutions with reactive limits and multiple uncertainties", Electric Power Systems Research, v. 76, n. 1-3, pp. 145-152, 2005.
[22] PEREIRA, L. E. D. S., "Metodologia intervalar para tratamento de incertezas em problemas de fluxo de potência", Juiz de Fora, Minas Gerais. Dissertação de Mestrado. Programa de Pós- Graduação em Engenharia Elétrica. Universidade Federal de Juiz de Fora - UFJF, 2011.
[23] PEREIRA, L., DA COSTA, V., "Interval analysis applied to the maximum loading point of electric power systems considering load data uncertainties", International Journal of Electrical Power EBEnergy Systems, v. 54, pp. 334-340, 2014.
[24] LIAO, X., LIU, K., ZHANG, Y., WANG, K., QIN, L., "Interval method for uncertain power flow analysis based on Taylor inclusion function", IET Generation, Transmission G3 Distribution, v. 11, n. 5, pp. 1270-1278, 2017.
[25] QUINTANILHA, L. D. M., "Análise do modelo de fluxo de potência retangular intervalar baseado na expansão completa da série de Taylor", Juiz de Fora, Minas Gerais. Dissertação de Mestrado. Programa de Pós- Graduação em Engenharia Elétrica. Universidade Federal de Juiz de Fora - UFJF, 2018.
[26] VACCARO, A., CANIZARES, C. A., VILLACCI, D., "An affine arithmetic-based methodology for reliable power flow analysis in the presence of data uncertainty", IEEE Transactions on Power Systems, v. 25, n. 2, pp. 624-632, 2010.
[27] PIRNIA, M., CAÑIZARES, C. A., BHATTACHARYA, K., VACCARO, A., "A novel affine arithmetic method to solve optimal power flow problems with uncertainties", IEEE Transactions on Power Systems, v. 29, n. 6, pp. 2775-2783, 2014.
[28] LOU, C. W., DONG, M. C., "A novel random fuzzy neural networks for tackling uncertainties of electric load forecasting", International Journal of Electrical Power § Energy Systems, v. 73, pp. 34-44, 2015.
[29] DING, T., BO, R., LI, F., GUO, Q., SUN, H., GU, W., ZHOU, G.., "Interval power flow analysis using linear relaxation and optimality-based bounds tightening (OBBT) methods", IEEE Transactions on Power Systems, v. 30, n. 1, pp. 177-188, 2015.
[30] WANG, S., HAN, L., WU, L., "Uncertainty tracing of distributed generations via complex affine arithmetic based unbalanced three-phase power flow", IEEE Transactions on Power Systems, v. 30, n. 6, pp. 3053-3062, 2015.
[31] ARAÚJO, B. M. C., "Aritméticas intervalares aplicadas à solução do problema de fluxo de potência via equações de injeção de corrente", Juiz de Fora, Minas Gerais. Dissertação de Mestrado. Programa de Pós- Graduação em Engenharia Elétrica. Universidade Federal de Juiz de Fora - UFJF, 2016.
[32] DE OLIVEIRA, L. W., SETA, F. D. S., DE OLIVEIRA, E. J., "Optimal reconfiguration of distribution systems with representation of uncertainties through interval analysis", International Journal of Electrical Power © Energy Systems, v. 83, pp. 382391, 2016.
[33] LUJANO-ROJAS, J., OSÓRIO, G., CATALÃO, J., "New probabilistic method for solving economic dispatch and unit commitment problems incorporating uncertainty due to renewable energy integration", International Journal of Electrical Power ${ }^{6}$ Energy Systems, v. 78, pp. 61-71, 2016.
[34] VIDOVIĆ, P. M., SARIĆ, A. T., "A novel correlated intervals-based algorithm for distribution power flow calculation", International Journal of Electrical Power $\mathfrak{\xi}$ Energy Systems, v. 90, pp. 245-255, 2017.
[35] GUPTA, N., DARATHA, N., "Probabilistic three-phase load flow for unbalanced electrical systems with wind farms", International Journal of Electrical Power 8 Energy Systems, v. 87, pp. 154-165, 2017.
[36] VACCARO, A., CANIZARES, C. A., "An affine arithmetic-based framework for uncertain power flow and optimal power flow studies", IEEE Transactions on Power Systems, v. 32, n. 1, pp. 274-288, 2017.
[37] ZHANG, C., CHEN, H., NGAN, H., YANG, P., HUA, D., "A mixed interval power flow analysis under rectangular and polar coordinate system", IEEE Transactions on Power Systems, v. 32, n. 2, pp. 1422-1429, 2017.
[38] ATTARHA, A., AMJADY, N., CONEJO, A. J., "Adaptive robust AC optimal power flow considering load and wind power uncertainties", International Journal of Electrical Power 63 Energy Systems, v. 96, pp. 132-142, 2018.
[39] PEREIRA, L., "Alocação Ótima de Geração Distribuída em Sistemas de Distribuição Considerando Incertezas no Modelo Probabilístico de Geração de Energia a Partir de Fontes Estocásticas", Vitória, Espirito Santo. Dissertação de Mestrado. Programa de Pós- Graduação em Engenharia Elétrica, 2018.
[40] MIRANDA, F. L., "Avaliação da Incerteza de dados na Confiabilidade de Sistemas de Subtransmissão por meio da Aritmética Intervalar", São João Del-Rei, Minas Gerais. Dissertação de Mestrado. Programa de Pós-Graduação de Engenharia Elétrica. Universidade Federal São João Del-Rei - UFSJ, 2018.
[41] WANG, S., LIU, X., WANG, K., WU, L., ZHANG, Y., "Tracing harmonic contributions of multiple distributed generations in distribution systems with uncertainty", International Journal of Electrical Power छ Energy Systems, v. 95, pp. 585-591, 2018.
[42] KENARI, M. T., SEPASIAN, M. S., NAZAR, M. S., "Probabilistic voltage stability assessment of distribution networks with wind generation using combined cumulants and maximum entropy method", International Journal of Electrical Power 83 Energy Systems, v. 95, pp. 96-107, 2018.
[43] RUEDA-TORRES, J. L., GONZALEZ-LONGATT, F., Dynamic Vulnerability Assessment and Intelligent Control: For Sustainable Power Systems. John Wiley \& Sons, 2018.
[44] ALVES, W., "Proposição de sistemas teste para análise computacional de sistemas de potência", Niterói, Rio de Janeiro. Dissertação de Mestrado. Faculdade de Engenharia Elétrica. Universidade Federal Fluminense - UFF, 2007.

APÊNDICE A - Revisão do Método de Newton-Raphson para Solução do Fluxo de Potência

O método de Newton-Raphson é um método numérico para a determinação de raízes reais de equações não-lineares, com grande confiabilidade de convergência e velocidade. O objetivo deste apêndice é fazer uma rápida revisão da solução das equações de fluxo de potência pelo método de Newton-Raphson.

A. 1 MÉTODO DE NEWTON-RAPHSON

Seja a função:

$$
\begin{equation*}
y=f(x) \tag{A.1}
\end{equation*}
$$

Dessa forma, a função pode ser expressa através da série de Taylor, ou seja,

$$
\begin{equation*}
y=f\left(x^{(h)}\right)+f^{\prime}\left(x^{(h)}\right) \cdot \Delta x^{(h)}+\frac{f^{\prime \prime}\left(x^{(h)}\right)}{2!} \cdot\left(\Delta x^{(h)}\right)^{2}+\ldots \tag{A.2}
\end{equation*}
$$

onde h representa o número da iteração. Desprezando-se as derivadas de ordem maior ou igual a 2 , então:

$$
\begin{equation*}
y-f\left(x^{(h)}\right)=f^{\prime}\left(x^{(h)}\right) \cdot \Delta x^{(h)} \tag{A.3}
\end{equation*}
$$

Como:

$$
\begin{equation*}
\Delta y^{(h)}=y-f\left(x^{(h)}\right) \tag{A.4}
\end{equation*}
$$

então:

$$
\begin{equation*}
\Delta x^{(h)}=\left[f^{\prime}\left(x^{(h)}\right)\right]^{-1} \cdot \Delta y^{(h)} \tag{A.5}
\end{equation*}
$$

A solução dada por (A.5) é realizada a cada iteração. A atualização do novo valor x é feita da seguinte forma:

$$
\begin{equation*}
\mathrm{x}^{(h+1)}=x^{(h)}+\Delta \mathrm{x}^{(h)} \tag{A.6}
\end{equation*}
$$

O processo finda quando a tolerância ε é alcançada. Caso contrário, o processo retorna a (A.4).

$$
\begin{equation*}
\mathrm{x}^{(h+1)}-x^{(h)} \leq \varepsilon \tag{A.7}
\end{equation*}
$$

Assim, o método de Newton-Raphson pode ser generalizado, para n equações, da seguinte forma:

$$
\begin{gather*}
y_{1}=f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
y_{2}=f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{A.8}\\
\vdots \\
y_{n}=f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gather*}
$$

A correção, feita conforme (A.5), pode ser expandida da seguinte forma:

$$
\left[\begin{array}{c}
\Delta x_{1}{ }^{(h)} \tag{A.9}\\
\Delta x_{2}{ }^{(h)} \\
\vdots \\
\Delta x_{n}{ }^{(h)}
\end{array}\right]=\left[\begin{array}{cccc}
\left(\frac{\partial f_{1}}{\partial x_{1}}\right)^{h} & \left(\frac{\partial f_{1}}{\partial x_{2}}\right)^{h} & \cdots & \left(\frac{\partial f_{1}}{\partial x_{1}}\right)^{h} \\
\left(\frac{\partial f_{2}}{\partial x_{1}}\right)^{h} & \left(\frac{\partial f_{2}}{\partial x_{2}}\right)^{h} & \cdots & \left(\frac{\partial f_{2}}{\partial x_{2}}\right)^{h} \\
\vdots & \vdots & \cdots & \vdots \\
\left(\frac{\partial f_{n}}{\partial x_{1}}\right)^{h} & \left(\frac{\partial f_{n}}{\partial x_{2}}\right)^{h} & \cdots & \left(\frac{\partial f_{n}}{\partial x_{n}}\right)^{h}
\end{array}\right]^{-1} \cdot\left[\begin{array}{c}
\Delta y_{1}{ }^{(h)} \\
\Delta y_{2}{ }^{(h)} \\
\vdots \\
\Delta y_{n}{ }^{(h)}
\end{array}\right]
$$

A solução a cada iteração é dada pela substituição das correções de (A.9) em (A.6).

A. 2 APLICAÇÃO DO MÉTODO DE NEWTON-RAPHSON ÀS EQUAÇÕES DO FLUXO DE POTÊNCIA

Como as equações básicas do fluxo de potência em coordenadas polares das tensões nas barras são dadas por (2.15) e (2.16) [2], a relação linearizada entre as variações do módulo da tensão e ângulo, para as variações nas potências ativa e reativa, são descritas da seguinte maneira:

$$
\left[\begin{array}{c}
\Delta \underline{\mathrm{P}} \tag{A.10}\\
\Delta \underline{\mathrm{Q}}
\end{array}\right]=\left[\begin{array}{c:c}
\mathrm{H} & \mathrm{M} \\
\hdashline \mathrm{~N} & \mathrm{~L}
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta \underline{\theta} \\
\Delta \underline{\mathrm{V}}
\end{array}\right]
$$

Conforme [2], as componentes das submatrizes Jacobiana H, M, N e L são dadas por:

$$
\begin{gather*}
H_{k m}=\frac{\partial P_{k}}{\partial \theta_{m}}=V_{k} \cdot V_{m}\left(G_{k m} \cdot \operatorname{sen} \theta_{k m}-B_{k m} \cdot \cos \theta_{k m}\right) \tag{A.11}\\
H_{k k}=\frac{\partial P_{k}}{\partial \theta_{k}}=-V_{k}^{2} \cdot B_{k k}+V_{k} \cdot \sum_{m \in \Omega_{k}} \cdot V_{m}\left(G_{k m} \cdot \operatorname{sen} \theta_{k m}-B_{k m} \cdot \cos \theta_{k m}\right) \tag{A.12}
\end{gather*}
$$

ou ainda:

$$
\begin{gather*}
H_{k k}=-V_{k}^{2} \cdot B_{k k}-Q_{k} \tag{A.13}\\
N_{k m}=\frac{\partial P_{k}}{\partial V_{m}}=V_{k} \cdot\left(G_{k m} \cdot \cos \theta_{k m}+B_{k m} \cdot \operatorname{sen} \theta_{k m}\right) \tag{A.14}\\
N_{k k}=\frac{\partial P_{k}}{\partial V_{k}}=-V_{k} \cdot G_{k k}+\sum_{m \in \Omega_{k}} V_{m} \cdot\left(G_{k m} \cdot \cos \theta_{k m}+B_{k m} \cdot \operatorname{sen} \theta_{k m}\right) \tag{A.15}
\end{gather*}
$$

ou ainda:

$$
\begin{gather*}
N_{k k}=\frac{P_{k}+V_{k}^{2} \cdot G_{k k}}{V_{k}} \tag{A.16}\\
M_{k m}=\frac{\partial Q_{k}}{\partial \theta_{m}}=-V_{k} \cdot V_{m} \cdot\left(G_{k m} \cdot \cos \theta_{k m}+B_{k m} \cdot \operatorname{sen} \theta_{k m}\right) \tag{A.17}\\
M_{k k}=\frac{\partial Q_{k}}{\partial \theta_{k}}=-V_{k}^{2} \cdot G_{k k}+V_{k} \cdot \sum_{m \in \Omega_{k}} V_{m} \cdot\left(G_{k m} \cdot \cos \theta_{k m}+B_{k m} \cdot \operatorname{sen} \theta_{k m}\right) \tag{A.18}
\end{gather*}
$$

ou ainda:

$$
\begin{gather*}
M_{k k}=P_{k}-V_{k}^{2} \cdot G_{k k} \tag{A.19}\\
L_{k m}=\frac{\partial Q_{k}}{\partial V_{m}}=V_{k} \cdot\left(G_{k m} \cdot \operatorname{sen} \theta_{k m}-B_{k m} \cdot \cos \theta_{k m}\right) \tag{A.20}\\
L_{k k}=\frac{\partial Q_{k}}{\partial V_{k}}=V_{k} \cdot B_{k k}+\sum_{m \in \Omega_{k}} V_{m} \cdot\left(G_{k m} \cdot \operatorname{sen} \theta_{k m}-B_{k m} \cdot \cos \theta_{k m}\right) \tag{A.21}
\end{gather*}
$$

ou ainda:

$$
\begin{equation*}
L_{k k}=\frac{Q_{k}-V_{k}^{2} \cdot B_{k k}}{V_{k}} \tag{A.22}
\end{equation*}
$$

Os resíduos de potência ΔP_{k} e ΔQ_{k} são dados por:

$$
\begin{equation*}
\Delta P_{k}=P_{k}^{e s p}-V_{k} \cdot \sum_{m \in \Omega_{k}} V_{m} \cdot\left(G_{k m} \cdot \cos \theta_{k m}+B_{k m} \cdot \operatorname{sen} \theta_{k m}\right) \tag{A.23}
\end{equation*}
$$

$$
\begin{equation*}
\Delta Q_{k}=Q_{k}^{e s p}-V_{k} \cdot \sum_{m \in \Omega_{k}} V_{m} \cdot\left(G_{k m} \cdot \operatorname{sen} \theta_{k m}-B_{k m} \cdot \cos \theta_{k m}\right) \tag{A.24}
\end{equation*}
$$

Os valores de módulo de tensão e ângulo de fase para cada barra são obtidos, quando os resíduos de potência forem menores que a tolerância ε pré-determinada. Caso contrário, calcula-se a matriz Jacobiana de A. 10 e determina-se a nova solução:

$$
\begin{align*}
& \underline{\mathrm{V}}^{(h+1)}=\underline{\mathrm{V}}^{(h)}+\Delta \mathrm{V}^{(h)} \tag{A.25}\\
& \underline{\theta}^{(h+1)}=\underline{\theta}^{(h)}+\Delta \underline{\theta}^{(h)} \tag{A.26}
\end{align*}
$$

A partir das variáveis de estado V_{k} e θ_{k}, todas as variáveis de saída de interesse, tais como: fluxos de potência ativa e reativa nos ramos, perdas de potência ativa e reativa nos ramos e potência ativa e reativa gerada em cada barra são calculadas. Os fluxos ativos e reativos nos ramos $k-m$ e $m-k$ são, respectivamente:

$$
\begin{align*}
& P_{k m}=\left(a_{k m} V_{k}\right)^{2} g_{k m}-a_{k m} V_{k} V_{m} g_{k m} \cos \left(\theta_{k m}+\varphi_{k m}\right)-a_{k m} V_{k} V_{m} b_{k m} \operatorname{sen}\left(\theta_{k m}+\varphi_{k m}\right) \tag{A.27}\\
& P_{m k}=V_{m}^{2} g_{k m}-a_{k m} V_{k} V_{m} g_{k m} \cos \left(\theta_{k m}+\varphi_{k m}\right)+a_{k m} V_{k} V_{m} b_{k m} \operatorname{sen}\left(\theta_{k m}+\varphi_{k m}\right) \tag{A.28}\\
& Q_{k m}=-\left(a_{k m} V_{k}\right)^{2}\left(b_{k m}+b_{k m}^{s h}\right)+a_{k m} V_{k} V_{m} b_{k m} \cos \left(\theta_{k m}+\varphi_{k m}\right)-a_{k m} V_{k} V_{m} g_{k m} \operatorname{sen}\left(\theta_{k m}+\varphi_{k m}\right) \tag{A.29}
\end{align*}
$$

$$
\begin{equation*}
Q_{m k}=-V_{m}^{2}\left(b_{k m}+b_{k m}^{s h}\right)+a_{k m} V_{k} V_{m} b_{k m} \cos \left(\theta_{k m}+\varphi_{k m}\right)+a_{k m} V_{k} V_{m} g_{k m} \operatorname{sen}\left(\theta_{k m}+\varphi_{k m}\right) \tag{A.30}
\end{equation*}
$$

As perdas ativa e reativa nos ramos são, respectivamente:

$$
\begin{gather*}
P_{k m}^{p d}=g_{k m}\left(\left(a_{k m} V_{k}\right)^{2}+V_{m}^{2}-2 a_{k m} V_{k} V_{m} \cos \left(\theta_{k m}+\varphi_{k m}\right)\right) \tag{A.31}\\
Q_{k m}^{p d}=-\left(b_{k m}+b_{k m}^{s h}\right)\left(\left(a_{k m} V_{k}\right)^{2}+V_{m}^{2}\right)+2 a_{k m} V_{k} V_{m} b_{k m} \cos \left(\theta_{k m}+\varphi_{k m}\right) \tag{A.32}
\end{gather*}
$$

As potências geradas nas barras podem ser calculadas da seguinte forma:

$$
\begin{align*}
& P_{g_{k}}=V_{k} \cdot \sum_{m \in \Omega_{k}} V_{m} \cdot\left(G_{k m} \cdot \cos \theta_{k m}+B_{k m} \cdot \operatorname{sen} \theta_{k m}\right)+P_{L_{k}} \tag{A.33}\\
& Q_{g_{k}}=V_{k} \cdot \sum_{m \in \Omega_{k}} V_{m} \cdot\left(G_{k m} \cdot \operatorname{sen} \theta_{k m}-B_{k m} \cdot \cos \theta_{k m}\right)+Q_{L_{k}} \tag{А.34}
\end{align*}
$$

APÊNDICE B - Sistema 9 Barras

Este apêndice apresenta os dados de barra e de linha do sistema-teste brasileiro 9 barras. É considerado um sistema muito simples, composto por uma área elétrica, com topologia em anel ou malha. Os geradores estão posicionados nos extremos do sistema, num total de dois geradores, totalizando 450 MW distribuídos em duas usinas, sendo uma de 250 MW e outra de 200 MW . As cargas estão distribuídas em cinco barras, totalizando uma demanda máxima de 325 MW e 153 MVAr. A rede elétrica é constituída de circuitos simples em 230 kV , num total de oito linhas de transmissão. A Figura 42 apresenta o diagrama unifilar e as Tabelas 41 e 42 apresentam os dados de barra e de linha do sistema. Essas informações são extraídas da referência [44].

Figura 42 - Diagrama unifilar do sistema-teste brasileiro 9 barras

Tabela 41 - Dados de barra do sistema 9 barras

Barra	Tipo	V [p.u. $]$	$\theta\left[{ }^{\circ}\right]$	Carga		Geração		Shunt
				MW	MVAr	MW	MVAr	MVAr
1	V θ	1,030	0,000	0,000	0,000	0,000	0,000	0,000
2	PV	1,035	$-0,500$	0,000	0,000	150,000	19,240	0,000
3	PQ	1,029	$-5,200$	0,000	0,000	0,000	0,000	0,000
4	PQ	1,027	$-6,700$	0,000	0,000	0,000	0,000	0,000
5	PQ	1,012	$-8,900$	55,000	27,000	0,000	0,000	0,000
6	PQ	1,022	$-9,000$	37,000	18,000	0,000	0,000	0,000
7	PQ	1,007	$-11,000$	68,000	45,000	0,000	0,000	0,000
8	PQ	1,019	$-10,000$	90,000	35,000	0,000	0,000	0,000
9	PQ	1,003	$-13,000$	75,000	28,000	0,000	0,000	0,000

Tabela 42 - Dados de linha do sistema 9 barras

De	Para	\mathbf{R} $[\mathbf{p . u .] ~}$	\mathbf{X} $[\mathbf{p . u .] ~}]$	Bsh $[$ p.u. $]$	Tap
1	3	0,0000	0,0534	0,0000	1,00
2	4	0,0000	0,0768	0,0000	1,00
3	5	0,0170	0,0920	0,1580	0,00
3	8	0,0100	0,0850	0,1760	0,00
4	7	0,0090	0,0790	0,1620	0,00
5	7	0,0320	0,1610	0,3060	0,00
6	4	0,0085	0,0720	0,1490	0,00
6	8	0,0110	0,0840	0,2560	0,00
7	9	0,0119	0,1008	0,2090	0,00
8	9	0,0390	0,1700	0,3580	0,00

APÊNDICE C - Sistema 33 Barras

Este apêndice apresenta os dados de barra e de linha do sistema-teste brasileiro 33 barras. Este sistema é elaborado a partir de dados extraídos da malha de 500 kV da região Sul do Brasil, acoplado com um trecho em 230 kV , formando um anel. O sistema é dividido em duas áreas A e B, interligadas por duas linhas de transmissão e um transformador, em pontos distintos da rede. A Figura 43 apresenta o diagrama unifilar e as Tabelas 43 e 44 apresentam os dados de barra e de linha do sistema. Essas informações são extraídas da referência [44].

Figura 43 - Diagrama unifilar do sistema-teste brasileiro 33 barras

Tabela 43 - Dados de barra do sistema 33 barras

Barra	Tipo	V [p.u.]	$\theta\left[{ }^{\circ}\right]$	Carga		Geração		Shunt
				MW	MVAr	MW	MVAr	MVAr
800	V θ	1,0100	0,0000	0,0	0,0	918,4	228,2	0,0
808	PV	1,0200	11,0000	0,0	0,0	1000,0	91,9	0,0
810	PV	1,0100	4,6600	0,0	0,0	1000,0	$-68,6$	0,0
814	PQ	1,0000	$-24,0000$	680,0	130,0	0,0	0,0	0,0
824	PQ	1,0570	$-7,2000$	0,0	0,0	0,0	0,0	0,0

839	PQ	1,0010	2,0700	0,0	0,0	0,0	0,0	0,0
840	PQ	0,9970	$-0,8700$	150,0	32,0	0,0	0,0	0,0
848	PQ	1,0070	3,5200	90,0	17,0	0,0	0,0	0,0
856	PQ	1,0590	$-1,9000$	0,0	0,0	0,0	0,0	0,0
895	PQ	1,0050	$-22,0000$	0,0	0,0	0,0	0,0	0,0
896	PQ	1,0580	3,7400	0,0	0,0	0,0	0,0	0,0
897	PQ	1,0670	4,8300	0,0	0,0	0,0	0,0	0,0
898	PQ	1,0230	6,8500	0,0	0,0	0,0	0,0	0,0
904	PV	1,0100	$-12,0000$	0,0	0,0	400,0	$-253,0$	0,0
915	PV	1,0200	$-9,0000$	0,0	0,0	400,0	$-74,7$	0,0
919	PV	1,0200	14,5000	0,0	0,0	700,0	124,9	0,0
925	PV	1,0450	7,4100	0,0	0,0	800,0	66,0	0,0
933	PQ	1,0560	$-7,6000$	0,0	0,0	0,0	0,0	0,0
934	PQ	1,0000	$-7,0000$	235,0	57,0	0,0	0,0	0,0
938	PQ	1,0360	$-27,0000$	0,0	0,0	0,0	0,0	0,0
939	PQ	1,0000	$-29,0000$	940,0	50,0	0,0	0,0	0,0
955	PQ	1,0850	$-17,0000$	0,0	0,0	0,0	0,0	0,0
959	PQ	1,0060	$-23,0000$	0,0	0,0	0,0	0,0	0,0
960	PQ	1,0000	$-25,0000$	790,0	330,0	0,0	0,0	0,0
964	PQ	1,0760	$-24,0000$	0,0	0,0	0,0	0,0	0,0
965	PQ	1,0000	$-27,0000$	700,0	49,0	0,0	0,0	0,0
976	PQ	1,0540	$-27,0000$	0,0	0,0	0,0	0,0	0,0
995	PQ	1,0830	$-14,0000$	0,0	0,0	0,0	0,0	0,0
1030	PQ	1,0850	$-15,0000$	0,0	0,0	0,0	0,0	0,0
1047	PQ	1,0290	7,8900	0,0	0,0	0,0	0,0	0,0
1060	PQ	1,0690	$-0,1700$	0,0	0,0	0,0	0,0	0,0
1210	PQ	1,0000	$-30,0000$	1100,0	400,0	0,0	0,0	0,0
2458	PQ	1,0000	1,7500	400,0	125,0	0,0	0,0	0,0

Tabela 44 - Dados de linha do sistema 33 barras

De	Para	\mathbf{R} [p.u.]	\mathbf{X} [p.u.]	Bsh [p.u.]	Tap
814	895	0,0003	0,0115	0,0000	1,0070
814	895	0,0003	0,0117	0,0000	1,0070
824	800	0,0000	0,0112	0,0000	1,0240
824	933	0,0001	0,0012	0,1520	1,0000
824	933	0,0001	0,0013	0,1543	1,0000
839	840	0,0000	0,0664	0,0000	0,9926
839	840	0,0000	0,0629	0,0000	0,9926
839	898	0,0113	0,0699	0,1262	1,0000
839	1047	0,0122	0,0769	0,1381	1,0000
839	2458	0,0022	0,0109	0,0186	1,0000
839	2458	0,0017	0,0103	0,0205	1,0000
856	810	0,0000	0,0105	0,0000	1,0000
856	933	0,0005	0,0065	0,8049	1,0000
856	1060	0,0006	0,0070	0,8575	1,0000
896	897	0,0005	0,0073	0,7806	1,0000
897	808	0,0000	0,0102	0,0000	1,0240
898	848	0,0000	0,0636	0,0000	1,0030
898	1047	0,0015	0,0089	0,0163	1,0000
933	895	0,0020	0,0255	3,1272	1,0000
933	955	0,0016	0,0205	2,5017	1,0000
933	959	0,0020	0,0269	3,3640	1,0000
934	933	0,0003	0,0121	0,0000	0,9562
934	1047	0,0305	0,1574	0,2712	1,0000
934	1047	0,0304	0,1572	0,2709	1,0000
938	955	0,0026	0,0292	3,6040	1,0000
938	959	0,0013	0,0160	1,9589	1,0000
939	938	0,0003	0,0115	0,0000	0,9675
939	938	0,0003	0,0116	0,0000	0,9675
939	938	0,0000	0,0128	0,0000	0,9675
955	964	0,0019	0,0235	2,8724	1,0000
959	895	0,0005	0,0044	0,4758	1,0000
960	959	0,0003	0,0116	0,0000	1,0240
960	959	0,0003	0,0117	0,0000	1,0240
964	976	0,0007	0,0092	1,1217	1,0000
965	964	0,0002	0,0121	0,0000	0,9329

965	964	0,0002	0,0123	0,0000	0,9329
976	995	0,0028	0,0385	4,9370	1,0000
995	904	0,0001	0,0154	0,0000	1,0000
995	964	0,0016	0,0303	3,5488	1,0000
995	1030	0,0007	0,0092	1,1226	1,0000
995	1060	0,0017	0,0217	2,6516	1,0000
1030	915	0,0000	0,0413	0,0000	1,0000
1030	955	0,0005	0,0059	0,7182	1,0000
1047	919	0,0002	0,0170	0,0000	1,0250
1060	897	0,0008	0,0117	1,2458	1,0000
1060	925	0,0001	0,0152	0,0000	1,0240
1210	976	0,0003	0,0122	0,0000	0,9652
1210	976	0,0004	0,0114	0,0000	0,9652
1210	976	0,0004	0,0122	0,0000	0,9652
2458	896	0,0000	0,0127	0,0000	0,9614

APÊNDICE D - Sistema 107 Barras

Este apêndice apresenta os dados de barra e de linha do sistema-teste brasileiro 107 barras. Este sistema é elaborado a partir de dados reais do SIN extraídos das malhas de 500 e 345 , 230 kV e 138 kV das áreas Sul, Sudeste e Mato Grosso. A carga total é de 12.679 MW e conta com uma geração de até 22.080 MW . O diagrama unifilar é mostrado na Figura 44 e as Tabelas 45 e 46 apresentam os dados de barra e de linha do sistema. Essas informações são extraídas da referência [44].

Tabela 45 - Dados de barra do sistema 107 barras

Barra	Tipo	V [p.u. $]$	$\theta\left[{ }^{\circ}\right]$	Carga		Geração		Shunt
				MW	MVAr	MW	MVAr	MVAr
12	PV	1,000	$-24,150$	0,00	0,00	300,00	$-202,60$	0,00
16	PV	1,000	$-26,170$	0,00	0,00	800,00	$-133,89$	0,00
18	V θ	1,020	$-24,000$	0,00	0,00	995,76	$-399,60$	0,00
20	PV	1,010	$-22,360$	0,00	0,00	900,00	$-321,02$	0,00
21	PV	1,000	$-62,320$	0,00	0,00	140,00	$-22,09$	0,00
22	PV	1,000	$-19,850$	0,00	0,00	150,00	$-20,57$	0,00
35	PV	1,000	$-26,910$	0,00	0,00	200,00	$-49,63$	0,00
48	PV	1,000	$-42,720$	0,00	0,00	0,00	$-461,07$	0,00
86	PQ	1,030	$-42,720$	66,00	1,20	0,00	0,00	0,00
100	PQ	1,060	$-28,480$	0,00	0,00	0,00	0,00	0,00
101	PQ	1,070	$-36,280$	0,00	0,00	0,00	0,00	$-200,00$
102	PQ	1,060	$-42,950$	0,00	0,00	0,00	0,00	$-100,00$
103	PQ	1,070	$-43,230$	0,00	0,00	0,00	0,00	0,00
104	PQ	1,060	$-51,700$	910,00	235,00	0,00	0,00	0,00
106	PQ	1,050	$-52,570$	0,00	0,00	0,00	0,00	$-100,00$
120	PQ	1,040	$-41,220$	180,00	90,00	0,00	0,00	0,00
122	PQ	1,070	$-41,650$	200,00	38,00	0,00	0,00	0,00
123	PQ	1,040	$-46,010$	450,00	175,00	0,00	0,00	0,00
126	PQ	1,040	$-43,460$	290,00	95,00	0,00	0,00	0,00
131	PQ	1,030	$-27,260$	0,00	0,00	0,00	0,00	0,00
134	PQ	1,030	$-26,380$	0,00	0,00	0,00	0,00	0,00
136	PQ	1,030	$-33,040$	54,00	23,00	0,00	0,00	0,00
138	PQ	1,040	$-44,100$	72,00	34,00	0,00	0,00	0,00
140	PQ	1,020	$-53,680$	700,00	250,00	0,00	0,00	0,00
210	PQ	1,050	$-27,560$	0,00	0,00	0,00	0,00	0,00
213	PQ	1,050	$-28,740$	93,00	39,00	0,00	0,00	0,00
216	PQ	1,050	$-27,830$	53,00	25,00	0,00	0,00	0,00

217	PQ	1,050	-32,260	364,00	58,00	0,00	0,00	0,00
218	PQ	1,020	-40,040	600,00	200,00	0,00	0,00	0,00
219	PQ	1,030	-38,910	0,00	0,00	0,00	0,00	0,00
220	PQ	1,050	-31,930	0,00	0,00	0,00	0,00	0,00
225	PQ	1,010	-34,590	0,00	0,00	0,00	0,00	0,00
228	PQ	1,020	-40,610	86,00	34,00	0,00	0,00	0,00
231	PQ	1,010	-49,300	89,70	31,90	0,00	0,00	0,00
233	PQ	1,040	-36,200	0,00	0,00	0,00	0,00	0,00
234	PQ	1,030	-39,010	1000,00	350,00	0,00	0,00	0,00
300	PV	1,020	-18,950	0,00	0,00	700,00	-183,59	0,00
301	PV	1,010	-19,400	0,00	0,00	300,00	-128,48	0,00
302	PV	1,020	-18,280	0,00	0,00	400,00	-124,94	0,00
303	PV	1,020	-24,280	0,00	0,00	200,00	-279,14	0,00
305	PV	1,000	-22,120	0,00	0,00	300,00	-60,37	0,00
320	PQ	1,050	-24,050	0,00	0,00	0,00	0,00	0,00
325	PQ	1,050	-23,690	0,00	0,00	0,00	0,00	0,00
326	PQ	1,030	-25,910	274,00	104,00	0,00	0,00	0,00
360	PQ	1,050	-22,440	0,00	0,00	0,00	0,00	0,00
370	PQ	1,050	-25,410	0,00	0,00	0,00	0,00	0,00
396	PQ	1,040	-25,840	0,00	0,00	0,00	0,00	0,00
500	PV	1,020	-21,560	0,00	0,00	800,00	-118,07	0,00
535	PQ	1,040	-26,010	0,00	0,00	0,00	0,00	0,00
536	PQ	1,020	-28,800	700,00	150,00	0,00	0,00	0,00
800	PV	1,020	-7,110	0,00	0,00	1100,00	138,38	0,00
808	PV	1,020	3,500	0,00	0,00	1150,00	114,39	0,00
810	PV	1,020	-4,030	0,00	0,00	1200,00	-72,20	0,00
814	PQ	1,000	-37,540	735,40	191,00	0,00	0,00	0,00
824	PQ	1,040	-17,410	0,00	0,00	0,00	0,00	0,00
834	PQ	0,990	-28,790	13,40	4,20	0,00	0,00	0,00
839	PQ	1,000	-6,400	0,00	0,00	0,00	0,00	0,00
840	PQ	0,990	-9,390	159,00	36,00	0,00	0,00	0,00
848	PQ	1,000	-5,520	94,00	18,00	0,00	0,00	0,00
856	PQ	1,030	-10,890	0,00	0,00	0,00	0,00	0,00
895	PQ	1,040	-35,290	0,00	0,00	0,00	0,00	0,00
896	PQ	1,030	-4,280	0,00	0,00	0,00	0,00	0,00
897	PQ	1,040	-3,010	0,00	0,00	0,00	0,00	0,00
898	PQ	1,010	-2,130	0,00	0,00	0,00	0,00	0,00

904	PV	1,020	$-15,120$	0,00	0,00	700,00	$-236,40$	0,00
915	PV	1,020	$-12,980$	0,00	0,00	700,00	$-109,43$	0,00
919	PV	1,000	5,760	0,00	0,00	700,00	89,06	0,00
925	PV	1,020	$-0,120$	0,00	0,00	950,00	73,05	0,00
933	PQ	1,040	$-17,780$	0,00	0,00	0,00	0,00	0,00
934	PQ	1,000	$-17,950$	237,00	59,00	0,00	0,00	0,00
938	PQ	1,040	$-37,340$	0,00	0,00	0,00	0,00	0,00
939	PQ	1,000	$-39,750$	1149,00	53,06	0,00	0,00	0,00
955	PQ	1,060	$-23,700$	0,00	0,00	0,00	0,00	0,00
959	PQ	1,030	$-35,000$	0,00	0,00	0,00	0,00	100,00
960	PQ	1,000	$-37,520$	844,70	469,10	0,00	0,00	0,00
964	PQ	1,040	$-31,020$	0,00	0,00	0,00	0,00	0,00
965	PQ	1,000	$-33,480$	755,60	56,24	0,00	0,00	0,00
976	PQ	1,010	$-33,700$	0,00	0,00	0,00	0,00	0,00
995	PQ	1,050	$-19,440$	0,00	0,00	0,00	0,00	0,00
1015	PQ	1,000	$-39,700$	70,00	2,00	0,00	0,00	0,00
1030	PQ	1,050	$-20,730$	0,00	0,00	0,00	0,00	0,00
1047	PQ	1,020	$-1,140$	0,00	0,00	0,00	0,00	0,00
1060	PQ	1,040	$-8,080$	0,00	0,00	0,00	0,00	0,00
1210	PQ	1,000	$-36,450$	1228,00	425,00	0,00	0,00	0,00
1503	PQ	1,060	$-49,510$	0,00	0,00	0,00	0,00	0,00
1504	PQ	1,030	$-53,480$	145,00	63,00	0,00	0,00	0,00
2458	PQ	1,000	$-6,630$	403,00	126,00	0,00	0,00	0,00
4501	PQ	1,030	$-60,740$	31,40	7,10	0,00	0,00	$-45,00$
4521	PQ	1,030	$-66,410$	0,00	0,00	0,00	0,00	0,00
4522	PQ	1,030	$-68,510$	0,00	0,00	0,00	0,00	$-20,00$
4523	PV	1,010	$-60,720$	0,00	0,00	50,00	$-9,08$	0,00
4530	PQ	1,020	$-73,070$	0,00	0,00	0,00	0,00	0,00
4532	PQ	1,040	$-73,070$	0,00	0,00	0,00	0,00	0,00
4533	PQ	1,010	$-73,410$	75,40	16,10	0,00	0,00	0,00
4542	PQ	1,030	$-72,270$	0,00	0,00	0,00	0,00	0,00
4552	PQ	1,010	$-79,880$	12,60	1,20	0,00	0,00	$-20,00$
4562	PQ	1,010	$-88,160$	23,80	7,40	0,00	0,00	0,00
4572	PQ	1,010	$-85,220$	18,00	6,40	0,00	0,00	0,00
4582	PQ	1,020	$-91,000$	65,50	16,70	0,00	0,00	30,00
4592	PQ	1,020	$-67,370$	0,00	0,00	0,00	0,00	0,00
4596	PV	1,000	$-68,520$	0,00	0,00	230,00	$-28,66$	0,00

4623	PQ	1,020	$-71,440$	128,20	40,76	0,00	0,00	0,00
4703	PQ	1,000	$-74,530$	182,10	29,75	0,00	0,00	0,00
4804	PV	1,000	$-74,860$	0,00	0,00	50,00	$-16,77$	0,00
4805	PQ	1,020	$-78,590$	0,00	0,00	0,00	0,00	0,00
4807	PQ	1,020	$-79,850$	128,90	36,30	0,00	0,00	0,00
4862	PQ	1,050	$-78,130$	0,00	0,00	0,00	0,00	$-30,00$

Tabela 46 - Dados de linha do sistema 107 barras

De	Para	\mathbf{R} [p.u.]	\mathbf{X} [p.u.]	Bsh MVAr	Tap
86	48	0,000	0,715	0,000	1,000
86	122	0,000	1,913	0,000	1,000
86	122	0,000	1,913	0,000	1,000
100	20	0,000	1,264	0,000	1,000
100	101	0,172	2,720	231,400	-
100	101	0,171	2,700	230,200	-
100	210	0,209	2,935	254,600	-
100	213	0,000	2,357	0,000	1,000
100	535	0,153	2,400	203,800	-
101	102	0,156	2,460	208,500	-
101	103	0,152	2,390	202,600	-
102	120	0,000	2,403	0,000	1,000
102	1503	0,110	1,910	161,850	-
103	123	0,000	2,419	0,000	1,000
104	103	0,196	3,100	264,900	-
104	1503	0,050	0,820	69,360	-
106	104	0,152	2,390	202,700	-
106	104	0,152	2,390	203,100	-
106	140	0,000	2,923	0,000	1,000
106	140	0,000	2,668	0,000	1,000
122	103	0,105	1,619	136,350	-
123	120	0,359	3,945	66,680	-
126	86	0,109	1,826	51,180	-
126	86	0,109	1,824	51,180	-
126	120	0,600	5,950	92,800	-
126	120	0,606	6,020	93,800	-
131	22	0,000	8,833	0,000	1,000

134	12	0,000	1,335	0,000	0,999
134	131	0,092	1,010	16,900	-
134	396	0,320	3,509	59,240	-
136	16	0,000	1,536	0,000	1,000
136	120	0,436	4,300	66,600	-
136	120	0,436	4,300	66,600	-
136	131	0,348	3,420	52,800	-
136	134	0,375	4,130	69,900	-
136	138	0,649	6,460	100,800	-
136	138	0,558	6,190	105,700	-
140	138	0,652	6,500	101,400	-
140	138	0,558	6,190	105,700	-
210	18	0,000	0,667	0,000	1,000
210	217	0,000	1,720	0,000	1,000
210	217	0,000	1,720	0,000	1,000
210	370	0,147	2,320	196,600	-
213	216	0,219	2,420	40,700	-
216	396	0,129	1,414	23,770	-
217	216	0,565	6,248	106,730	-
217	218	0,507	5,610	95,600	-
217	218	0,507	5,610	95,600	-
218	234	0,430	4,799	82,200	-
218	234	0,430	4,799	82,200	-
219	234	0,035	0,433	7,340	-
219	234	0,035	0,433	7,340	-
220	35	0,000	4,497	0,000	1,025
220	217	0,226	2,396	43,235	-
220	219	0,726	7,704	138,010	-
225	217	0,000	2,721	0,000	0,955
225	217	0,000	2,938	0,000	0,955
225	231	4,100	19,760	36,080	-
225	231	1,270	13,620	49,470	-
228	219	0,000	3,595	0,000	1,000
231	4501	4,510	21,690	40,250	-
231	4501	1,490	16,090	55,400	-
233	210	0,280	3,990	355,360	-
233	320	0,270	3,870	344,030	-

234	233	0,000	1,113	0,000	1,000
234	233	0,000	1,000	0,000	1,000
320	210	0,125	1,937	149,960	-
320	300	0,000	1,357	0,000	1,000
320	360	0,082	1,256	98,990	-
325	301	0,000	2,633	0,000	1,000
325	326	0,000	2,160	0,000	1,000
325	326	0,000	2,160	0,000	1,000
325	360	0,100	1,519	119,670	-
325	370	0,280	4,840	419,500	-
326	134	0,070	0,760	12,287	-
326	396	0,240	2,740	45,470	-
360	302	0,000	1,937	0,000	1,000
370	303	0,000	1,058	0,000	1,000
370	535	0,093	1,376	112,300	-
396	305	0,000	2,200	0,000	1,025
535	500	0,000	1,025	0,000	1,000
536	535	0,000	1,533	0,000	1,000
536	535	0,000	1,420	0,000	1,000
814	895	0,032	1,146	0,000	0,965
814	895	0,030	1,165	0,000	0,965
824	800	0,000	1,680	0,000	1,024
824	933	0,010	0,124	15,204	-
824	933	0,010	0,126	15,428	-
834	934	2,444	12,652	21,706	-
839	840	0,000	6,640	0,000	1,000
839	840	0,000	6,290	0,000	1,000
839	898	1,130	6,990	12,617	-
839	1047	1,220	7,690	13,810	-
839	2458	0,220	1,090	1,860	-
839	2458	0,170	1,030	2,054	-
856	810	0,000	1,050	0,000	1,000
856	933	0,052	0,654	80,493	-
856	1060	0,056	0,697	85,746	-
895	122	0,308	3,958	444,840	-
895	122	0,308	3,958	444,840	-
896	897	0,050	0,730	78,060	-

897	808	0,000	1,020	0,000	1,024
898	848	0,000	6,360	0,000	1,000
898	1047	0,150	0,890	1,632	-
933	895	0,200	2,550	312,720	-
933	955	0,162	2,048	250,170	-
933	959	0,200	2,690	336,400	-
934	933	0,031	1,207	0,000	0,975
934	1047	3,045	15,738	27,123	-
934	1047	3,041	15,718	27,089	-
938	955	0,256	2,922	360,400	
938	959	0,127	1,603	195,890	-
939	938	0,031	1,150	0,000	0,959
939	938	0,032	1,163	0,000	0,959
939	938	0,000	1,277	0,000	0,959
939	1015	1,271	6,562	11,305	
939	1015	1,283	6,564	11,522	
955	964	0,188	2,347	287,240	-
959	895	0,050	0,440	47,580	
960	834	2,210	11,475	19,687	-
960	959	0,032	1,163	0,000	0,992
960	959	0,031	1,166	0,000	0,992
960	1015	1,892	9,776	16,845	
960	1015	1,895	9,704	17,029	
964	976	0,073	0,916	112,170	
965	964	0,020	1,211	0,000	0,972
965	964	0,020	1,233	0,000	0,972
976	995	0,282	3,852	493,700	
995	904	0,000	1,154	0,000	1,000
995	964	0,164	3,034	354,880	-
995	1030	0,073	0,920	112,260	-
995	1060	0,172	2,170	265,160	-
1030	915	0,000	2,066	0,000	1,000
1030	955	0,047	0,590	71,818	-
1047	919	0,000	1,702	0,000	1,025
1060	897	0,076	1,171	124,580	-
1060	925	0,000	1,515	0,000	1,024
1210	976	0,030	1,219	0,000	1,011

1210	976	0,039	1,138	0,000	1,011
1210	976	0,036	1,217	0,000	1,011
1503	1504	0,000	5,200	0,000	1,000
2458	896	0,000	1,270	0,000	0,994
4501	4522	3,760	20,680	35,660	-
4501	4522	1,640	12,460	61,500	-
4521	4523	0,000	20,710	0,000	1,000
4522	4521	1,530	7,600	14,250	-
4522	4532	3,250	17,920	32,750	-
4522	4532	3,250	17,920	32,750	-
4522	4623	0,000	7,950	0,000	1,000
4522	4623	0,000	7,950	0,000	1,000
4532	4530	0,000	14,300	0,000	1,000
4532	4533	0,000	8,600	0,000	1,000
4532	4533	0,000	8,600	0,000	1,000
4532	4533	0,000	8,600	0,000	1,000
4532	4542	1,620	9,680	19,150	-
4533	4596	0,000	3,764	0,000	1,000
4542	4552	1,830	10,930	18,600	-
4552	4572	1,400	8,380	17,000	-
4562	4572	0,940	5,590	10,644	-
4562	4582	1,240	7,380	13,280	-
4592	21	0,000	6,400	0,000	1,000
4592	4542	1,000	6,170	12,600	-
4623	4533	17,060	45,500	11,390	-
4703	4533	0,900	2,310	0,580	-
4703	4533	0,900	2,310	0,580	-
4805	4804	0,000	13,333	0,000	1,000
4805	4807	3,089	8,134	2,085	-
4805	4807	3,089	8,134	2,085	-
4862	4532	2,570	23,680	97,420	-
4862	4532	2,570	23,680	97,420	-
4862	4807	0,000	4,050	0,000	1,000

Figura 44 - Diagrama unifilar do sistema-teste brasileiro 107 barras

