Universidade Federal de Juiz de Fora

Faculdade de Engenharia

Programa de Pós-Graduação em Engenharia Elétrica

JOÃO PAULO MACEDO COIMBRA

ESTUDO DE UM CONVERSOR BIDIRECIONAL ISOLADO BASEADO NA TOPOLOGIA LLC

Dissertação de Mestrado

Juiz de Fora

2018

João Paulo Macedo Coimbra

Estudo de Um Conversor Ressonante Bidirecional Isolado Baseado na Topologia LLC

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Juiz de Fora, na Área de Concentração: Sistemas Eletrônicos, como requisito parcial para a obtenção do título de Mestre em Engenharia Elétrica.

Orientador: Prof. Pedro Santos Almeida, Dr. Eng.

Juiz de Fora

Ficha catalográfica elaborada através do programa de geração automática da Biblioteca Universitária da UFJF, com os dados fornecidos pelo autor

Coimbra, João Paulo.

Estudo de Um Conversor Ressonante Bidirecional Isolado Baseado na Topologia LLC / João Paulo Macedo Coimbra. – 2018.

101 p.

Orientador: Prof. Pedro Santos Almeida, Dr. Eng. Dissertação de Mestrado – Universidade Federal de Juiz de Fora, Faculdade de Engenharia. Programa de Pós-Graduação em Engenharia Elétrica, 2018.

1. Nanorredes. 2. LLC meia-ponte ressonante. 3. Soft-switching. I. Coimbra, Prof. Dr. Pedro Santos Almeida, orient. II. Título.

João Paulo Macedo Coimbra

Estudo de Um Conversor Ressonante Bidirecional Isolado Baseado na Topologia LLC

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Juiz de Fora, na Área de Concentração: Sistemas Eletrônicos, como requisito parcial para a obtenção do título de Mestre em Engenharia Elétrica.

Aprovada em: 12 de setembro de 2018.

BANCA EXAMINADORA

Prof. Pedro Santos Almeida, Dr. Eng. Universidade Federal de Juiz de Fora - UFJF Orientador

Prof. Lenin Martins Ferreira Morais, Dr. Eng. Universidade Federal de Minas Gerais - UFMG

Prof. Henrique Antônio Caryalho Braga, Dr. Eng. Universidade Federal de Juiz de Fora - UFJF

edio Prof. Pedro Gomes Barbosh, D. Sc.

Universidade Federal de Juiz de Fora - UPJF

Dedico este trabalho ao meu Pai Eugênio Coimbra, por todo esforço proporcionado ao qual não seria possível esta conquista.

AGRADECIMENTOS

Agradeço de coração primeiramente à Deus em me proporcionar esta alegria tão grande que é a realização de um marco importante em minha vida e em minha carreira. Chegar até o Mestrado não estava em meus pensamentos quando pleiteava prestar um vestibular. Acredito que hoje, com toda a vivência e todo conhecimento adquirido por anos, sou uma pessoa melhor, com outra visão não somente de minha área de conhecimento, mas de todos os assuntos. A universidade e a vivência acadêmica nos fazem passar por momentos únicos e inesquecíveis. Tive a oportunidade de conhecer e conviver com pessoas incríveis.

Agradeço à todos aqueles que de alguma forma me ajudaram e me incentivaram durante estes anos: A toda família Coimbra por me apoiar em todos os momentos; aos amigos da faculdade ao qual sempre recordarei e levarei a amizade para toda a vida, em especial ao grande amigo Pastel (vulgo Luiz), por toda a tragetória juntos desde a graduação até o mestrado, aos diversos amigos do Laboratório de Iluminação Moderna (NIMO) da UFJF, por me socorrerem nas horas mais adversas e pela convivência com todo o conhecimento adquirido; à todos meus professores, em especial ao Professor Pedro Santos Almeida (UFJF), pela paciência em minha orientação ao longo deste trabalho; as instituições de fomento Capes e CNPq pela disponibilização da bolsa de mestrado, sem a qual não seria possível a realização desta pesquisa e principalmente ao meu pai, Eugênio Coimbra, que tudo fez para que eu possa estar aqui hoje, mas infelizmente o perdi ao longo desta jornada. Contudo, estará sempre em meu coração e em meus pensamentos por toda a vida.

"O sucesso é ir de fracasso em fracasso sem perder o entusiasmo." Winston Churchill

RESUMO

A crescente demanda de energia elétrica pela sociedade tem feito com que se busque novas formas de geração, exigindo um aumento da participação das fontes renováveis de energia na matriz energética global, dadas as restrições ambientais. Desse forma, as redes inteligentes de energia introduzem conceitos no sistema elétrico, como microrredes e nanorredes, as quais possuem sua geração baseada em fontes renováveis como eólica e solar. A produção de energia por essas fontes está atrelada a fatores naturais como irradiação solar e vento, o que leva à necessidade de sistemas de armazenamento de energia em banco de baterias para garantir o fornecimento à nanorrede com baixa ou nenhuma dependência da rede elétrica de distribuição. Neste contexto, este trabalho apresenta um estudo acerca de um conversor bidirecional CC-CC, para interface entre sistema de armazenamento de energia e barramento CC de uma nanorrede. Este conversor possui a finalidade do controle de fluxo de potência entre estes elementos, seja carregando o banco de baterias de 24V (modo direto) ou mantendo a tensão de 380V no barramento CC (modo reverso). Diante de várias topologias bidirecionais, foi escolhido um conversor a base de uma estrutura ressonante. Estes conversores caracterizam-se por processar energia com comutação suave nos interruptores eletrônicos. Dentre as várias topologias ressonantes, o conversor Meia-Ponte ressonante LLC série-paralelo isolado foi escolhido, adaptando-o para sua estrutura bidirecional, levando a uma topologia pouco explorada na literatura. A estrutura da nanorrede é apresentada e testes são realizados para análise do desempenho do conversor nos modos direto e reverso.

Palavras-chave: Fontes renováveis de energia. Nanorredes. Sistemas de armazenamento de energia. Banco de baterias. Conversor bidirecional CC-CC. Comutação-suave. Meia-ponte ressonante LLC série-paralelo isolado.

ABSTRACT

The growing demand for electricity by society has led to the search for new forms of generation, requiring an increase in the share of renewable energy sources in the global energy matrix, given the environmental constraints. In this way, the smartgrids introduce concepts in the electrical system, such as microgrids and nanogrids, which have their generation based on renewable sources such as wind and solar. The production of energy from these sources is linked to natural factors such as solar irradiation and wind, which leads to the need of energy storage systems in battery banks to guarantee the supply to the nanorede with low or no dependence of the electricity distribution network. In this context, this work presents a study about a bidirectional DC-DC converter, for interfacing between a power storage system and a nanogrid DC bus. This converter has the purpose of controlling the power flow between these elements, either by charging the battery bank of 24V (forward mode) or by maintaining the voltage of 380V in the DC bus (backward mode). In front of several bidirectional topologies, a converter was chosen based on a resonant structure. These converters are characterized by processing power with soft switching on the electronic switches. Among the several resonant topologies, the LLC series-parallel resonant Half-bridge converter was chosen, adapting it to its bidirectional structure, leading to a little explored topology in the literature. The structure of the nanoread is presented and tests are performed to analyze the performance of the converter in forward and backward modes.

Key-words: Renewable power sources. Nanogrids. Power storage systems. Battery bank. DC-DC bidirectional converter. Soft-switching. Isolated Bidirectional LLC Resonant Half-Bridge.

LISTA DE ILUSTRAÇÕES

Figura 1 –	Sistema de distribuição em corrente alternada (a) e corrente contínua (b)	21
Figura 2 –	Estrutura de uma nanorrede em um sistema elétrico de potência.	22
Figura 3 –	Topologias de conversores bidirecionais básicos não isolados, (a) Boost ou	
	Buck, (b) Buck-Boost, (c) Sepic ou Zeta e (d) Cuk (CARDOSO et al., 2012).	24
Figura 4 –	Etapas de operação do conversor bidirecional <i>buck-boost</i> : (a) E_1 , (b) E_2 , (c) E_3 ,	
	(d) E_4 . (CARDOSO <i>et al.</i> , 2012)	25
Figura 5 –	Traçado das principais formas de ondas do conversor buck-boost CC-CC.	
	bidirecional na (a) 1^a forma , (b) 2^a forma e (c) 3^a forma de funcionamento	
	(CARDOSO <i>et al.</i> , 2012)	26
Figura 6 –	Topologia geral de um conversor bidirecional isolado	27
Figura 7 –	Topologia do conversor bidirecional isolado Dual Half Bridge	27
Figura 8 –	Topologia do conversor bidirecional isolado Dual Active Bridge	28
Figura 9 –	(a) Circuito equivalente do MOSFET e (b) Formas de onda de corrente, tensão	
	e potência para um ciclo de comutação dissipativa, mostrando os mecanismos	
	típicos de perdas.	29
Figura 10 –	Formas de onda relativas ao processo de comutação suave por tensão nula	
	(ZVS)	30
Figura 11 –	Formas de onda ralativas ao processo de comutação suave por corrente nula	
	(ZCS)	30
Figura 12 –	Diagrama de blocos de um conversor ressonante unidirecional isolado	31
Figura 13 –	Diagrama de blocos de um conversor ressonante bidirecional isolado	32
Figura 14 –	Topologias de inversores de alta frequência alimentados por tensão: (a) meia-	
	ponte com barramento simétrico. (b) meia-ponte com barramento assimétrico.	
	(c) <i>push-pull</i> . (d) ponte completa	33
Figura 15 –	Topologias de filtros ressonantes: (a) LC série. (b) LC paralelo. (c) LLC	
	série-paralelo. (d) LCC série-paralelo.	34
Figura 16 –	Diagrama esquemático do conversor IBLLCRHB	35
Figura 17 –	Sinais de comando dos MOSFETs: (a) S_1 , (b) S_2 , (c) S_{R1} e (d) S_{R2} no modo	
	direto.	36
Figura 18 –	Circuito equivalente no domínio da frequência do filtro LLC série-paralelo	
	no modo direto para a componente fundamental da tensão de entrada	37
Figura 19 –	Circuito equivalente normalizado no domínio da frequência do filtro LLC	
	série-paralelo para o modo direto na componente fundamental da tensão de	
	entrada	38
Figura 20 –	Ganho direto como uma função normalizada da frequência de comutação	
	para diferentes estados de carga da bateria (COIMBRA, 2017)	39
Figura 21 –	Circuitos equivalentes das etapas de funcionamento para meio ciclo de opera-	
	ção do conversor IBLLCRHB no modo direto.	40

Figura 22 –	Formas de onda do conversor IBLLCRHB no modo de operação direto: (a)	
	V_{gs_S1} (b) v_{gs_S2} (c) v_{ds_S1} (d) V_{ds_S2} (e) i_{ds_S1} (f) i_{Ls} , i_{Lp} (g) v_{Cs1} (h) i_{ds_Sr1}	
	(i) v_{ds_Sr1}	41
Figura 23 –	Sinais de comando dos MOSFETs: (a) S_1 , (b) S_2 , (c) S_{R1} e (d) S_{R2} no modo	
	reverso	42
Figura 24 –	Circuito equivalente no domínio da frequência do circuito original do con-	
	versor ressonante LLC série-paralelo no modo reverso para: (a) componente	
	fundamental da tensão de entrada. (b) tensão de entrada normalizada	43
Figura 25 –	Curva característica CC do conversor LLC meia-ponte ressonante no modo	
	reverso (COIMBRA, 2017)	43
Figura 26 –	Circuitos equivalentes das etapas de funcionamento para meio ciclo de opera-	
	ção do conversor IBLLCRHB no modo reverso	45
Figura 27 –	- Formas de onda do conversor IBLLCRHB no modo de operação reverso: (a)	
	V_{gs_S1} (b) v_{gs_S2} (c) v_{ds_S1} (d) V_{ds_S2} (e) i_{ds_S1} (f) i_{Ls} , i_{Lp} (g) v_{Cs1} (h) i_{ds_Sr1}	
	(i) v_{ds_Sr1}	46
Figura 28 –	- Curvas de tensão da bateria e barramento CC em função da frequência de	
	comutação normalizada para diferentes correntes de carga da referente ao	
	Projeto 1 para os modos (a) Direto e (b) Reverso (considerando $V_B = 28V$),	
	respectivamente.	47
Figura 29 –	- Curvas de tensão da bateria e barramento CC em função da frequência de	
	comutação normalizada para diferentes correntes de carga da referente ao	
	Projeto 2 para os modos (a) Direto e (b) Reverso (considerando $V_B = 28V$),	
	respectivamente.	47
Figura 30 –	- Curvas de tensão da bateria e barramento CC em função da frequência de	
	comutação normalizada para diferentes correntes de carga da referente ao	
	Projeto 3 para os modos (a) Direto e (b) Reverso (considerando $V_B = 28V$),	
	respectivamente.	48
Figura 31 –	- Tensão da bateria em função da frequência de comutação normalizada para	
	diferentes correntes de carga da bateria referente ao Projeto 4	48
Figura 32 –	- Tensão do barramento CC em função da frequência de comutação normali-	
	zada para diferentes níveis de carga da nanorrede considerando $V_B = 20V$,	
	referente ao Projeto 4	49
Figura 33 –	- Tensão do barramento CC em função da frequência de comutação normali-	
	zada para diferentes níveis de carga da nanorrede considerando $V_B = 28V$,	
	referente ao Projeto 4	49
Figura 34 –	Modelo APR do transformador.	51
Figura 35 –	Disposição das bobinas do transformador de alta frequência utilizado no	
-	protótipo.	52
Figura 36 –	- Fotografia do protótipo do transformador de alta frequência utilizado no projeto.	52

Figura 37 – Fotografia do protótipo do conversor IBLLCRHB	54
Figura 38 – (a) Esquemático e (b) fotografia do protótipo do driver (ALBUQUERQUE et	
al., 2017)	54
Figura 39 – Fotografias da (a) placa de desenvolvimento do microcontrolador TIVA	
TM4C123G e (b) placa de interface confeccionada para compatibilizar o	
microcontrolador ao protótipo.	55
Figura 40 – Diagrama completo de conexão do protótipo, com microcontrolador e comu-	
nicação serial.	56
Figura 41 – Fotografia da fonte CA/CC <i>California Instruments</i> 3001 <i>iX</i>	56
Figura 42 – Fotografia do transformador trifásico utilizado para elevação de tensão para	
saída em 380V.	57
Figura 43 – Diagrama de conexão para obtenção do nível de 380V do barramento CC da	
nanorrede CC no modo direto.	57
Figura 44 – Fotografia do resistor utilizado como carga no modo direto	58
Figura 45 – Diagrama de conexão dos equipamentos da nanorrede CC no modo direto.	58
Figura 46 – Fotografia do resistor utilizado como carga no modo reverso	59
Figura 47 – Diagrama de conexão dos equipamentos da nanorrede CC no modo reverso.	59
Figura 48 – Curvas de ganho estático direto para análise teórica e de simulação do con-	
versor IBLLCRHB em (a) 20% (b) 40% (c) 60% e (d) 100% da carga nominal.	61
Figura 49 – Curvas de ganho estático direto para análise teórica e experimental do con-	
versor IBLLCRHB em (a) 20% (b) 40% (c) 60% e (d) 100% da carga nominal.	61
Figura 50 – Formas de onda de simulação de tensão e corrente dreno-fonte durante o	
modo direto dos MOSFETs (a) S_1 . (b) S_2 . (c) S_{R1} . (d) S_{R2}	63
Figura 51 – Formas de onda experimental da tensão e corrente durante o modo direto nos	
MOSFETs S_1 e S_{R1} .	64
Figura 52 – Formas de onda experimental de parâmetros dos elementos ressonantes e	
sinais microcontrolados para acionamento de S_1 e S_2	64
Figura 53 – Plano de fases entre os parâmetros dos elementos ressonantes $I_{Ls}xV_{CS2}$ no	
modo direto	65
Figura 54 – Curva de eficiência do conversor IBLLCRHB no modo direto	65
Figura 55 – Curvas de ganho estático reverso para análise teórica e de simulação do	
conversor IBLLCRHB em (a) 20% (b) 40% (c) 60% e (d) 100% da carga	
nominal	68
Figura 56 – Curvas de ganho estático reverso para análise teórica e experimental do	
conversor IBLLCRHB em (a) 20% (b) 40% (c) 60% e (d) 100% da carga	
nominal	68
Figura 57 – Formas de onda de tensão e corrente dreno-fonte durante o modo reverso dos	
MOSFETs (a) S_1 . (b) S_2 . (c) S_{R1} . (d) S_{R2}	69

Figura 58 – Formas de onda de tensão e corrente dreno-fonte durante o modo reverso dos	
MOSFETs (a) S_1 . (b) S_2 . (c) S_{R1} . (d) S_{R2}	70
Figura 59 – Formas de onda experimental da tensão e corrente durante o modo reverso	
nos MOSFETs S_1 e S_{R2}	71
Figura 60 – Formas de onda experimental de parâmetros dos elementos ressonantes e	
sinais microcontrolados para acionamento de S_1 e S_2 no modo reverso	71
Figura 61 – Plano de fases entre os parâmetros dos elementos ressonantes $I_{Ls}xV_{CS1}$ no	
modo reverso.	71
Figura 62 – Curva de eficiência do conversor IBLLCRHB para vários pontos de carga no	
modo reverso.	72
Figura 63 – Topologia de projeto do conversor IBLLCRHB	80
Figura 64 – Modelo escolhido do núcleo do transformador para o projeto (THORNTON,	
1994).	82
Figura 65 – Modelo escolhido do carretel do transformador para o projeto (THORNTON,	
1994).	82
Figura 66 – Esquemático de protótipo do circuito de potência do conversor IBLLCRHB.	86
Figura 67 – Esquemático de placa do circuito de potência do conversor IBLLCRHB	87
Figura 68 – Esquemático de circuito de interface do Microcontrolador TM4C123g	100
Figura 69 – Arquitetura da placa de interface confeccionada para compatibilizar o micro-	
controlador ao protótipo do conversor.	101

LISTA DE TABELAS

Tabela 1 –	Indicadores de crescimento e proporção no Brasil e no mundo	19
Tabela 2 –	Geração de eletricidade das centrais elétricas de serviço público, por combus-	
	tível	20
Tabela 3 –	Parâmetros da Nanorrede CC	45
Tabela 4 –	Restrições desejadas para o projeto do conversor.	45
Tabela 5 –	Parâmetros de operação do conversor IBLLCRHB para possíveis projetos	
	em análise	50
Tabela 6 –	Parâmetros de projeto do conversor IBLLCRHB	50
Tabela 7 –	Resultados Experimentais do conversor IBLLCRHB no modo direto para	
	uma resistência de carga fixa equivalente a 20% da carga nominal $(0, 2Q_{Dmax})$	60
Tabela 8 –	Resultados Experimentais do conversor IBLLCRHB no modo direto para	
	uma resistência de carga fixa equivalente a 40% da carga nominal $(0, 4Q_{Dmax})$	62
Tabela 9 –	Resultados Experimentais do conversor IBLLCRHB no modo direto para	
	uma resistência de carga fixa equivalente a 60% da carga nominal $(0, 6Q_{Dmax})$	62
Tabela 10 –	Resultados Experimentais do conversor IBLLCRHB no modo direto para	
	uma resistência de carga fixa equivalente a 100% da carga nominal (Q_{Dmax})	63
Tabela 11 –	Resultados Experimentais do conversor IBLLCRHB no modo reverso para	
	uma resistência de carga fixa equivalente a 30% da carga nominal $(0, 3Q_{Rmax})$	66
Tabela 12 –	Resultados Experimentais do conversor IBLLCRHB no modo reverso para	
	uma resistência de carga fixa equivalente a 60% da carga nominal $(0, 6Q_{Rmax})$	66
Tabela 13 –	Resultados Experimentais do conversor IBLLCRHB no modo reverso para	
	uma resistência de carga fixa equivalente a 80% da carga nominal $(0, 8Q_{Rmax})$	67
Tabela 14 –	Resultados Experimentais do conversor IBLLCRHB no modo reverso para	
	uma resistência de carga fixa equivalente a 100% da carga nominal (Q_{Rmax})	67
Tabela 15 –	Especificação dos interruptores semicondutores utilizadas para o projeto	85

LISTA DE ABREVIATURAS E SIGLAS

ADC	Conversor Analógico-Digital (do inglês, Analog to Digital Converter)			
APR	Todo referido ao primário (do inglês, All Primary Referred)			
CA	Corrente alternada			
CC	Corrente contínua			
CCE	Crescimento anual do consumo de eletricidade			
ССМ	Modo de condução contínuo (do inglês, Continuous Conduction Mode)			
CPE	Crescimento anual da produção de energia primária			
DAB	Dual Active Bridge			
DCM	Modo de condução descontínuo (do inglês, Discontinuous Conduction Mode)			
DHB	Dual Half-bridge			
DSP	Processador de sinais digital (do inglês, Digital signals processor)			
EMI	Interferência eletromagnética (do inglês, Electromagnetic Interference)			
FHA	Aproximação em primeira hormônica (do inglês, First Harmonic Aproxima- tion)			
FP	Fator de potência			
HF	Alta frequência (do inglês, High-frequency)			
IBDC	Conversor CC-CC bidirecional isolado (do inglês, Isolated Bidirectional DC-DC Converter)			
IBLLCRHB	Meia-ponte ressonante LLC bidirecional isolado (do inglês, Isolated Bidi- rectional LLC Resonant Half-bridge)			
MD	Modo de Operação Direta			
MOSFET	Transistor de efeito campo de metal-óxido-semicondutor (do inglês, Metal- Oxide Semiconductor Field-Effect Transistor)			
MR	Modo de Operação Reversa			
NIMO	Núcleo de Iluminação Moderna			

PIB	Produto interno bruto
PWM	Modulação da largura de pulso (do inglês, Pulse Width Modulation)
RSE	Resistência série equivalente do capacitor
SAE	Sistema de armazenamento de energia
UART	Universal Asynchronous Receiver/Transmitter
UFJF	Universidade Federal de Juiz de Fora
UTP	Cabo de par trançado (do inglês, Unshielded twisted pair)
ZCS	Comutação por corrente nula (do inglês, Zero Current Switching)
ZVS	Comutação por tensão nula (do inglês, Zero Voltage Switching)

LISTA DE SÍMBOLOS

λ	Relação entre as indutâncias série e paralela
Ω	Relação entre as frequencias de comutação e frequencia de ressonância série
C_s	Capacitância série do conversor
f_0	Frequência de ressonância série
f_p	Frequência de ressonância série-paralela
f _{sw}	Frequência de comutação
i _B	Corrente drenada da bateria
i _{pri}	Corrente no primário do transformador de alta frequência.
<i>i</i> sec ₁	Corrente no primeiro enrolamento secundário do transformador de alta frequência
i _{sec2}	Corrente no segundo enrolamento secundário do transformador de alta frequência
<i>i</i> Ls	Corrente no indutor ressonante
i _m	Corrente de magnetização vista do enrolamento de alta tensão do transfor- mador de alta frequência
<i>i</i> _{DC}	Corrente drenada do barramento CC da nanorrede
L_s	Indutância série do conversor
L_p	Indutância paralela do conversor
M_d	Ganho de tensão do modo direto
M_r	Ganho de tensão do modo reverso
n	Relação de espiras do transformador
η_D	Eficiência do modo de operação direto
η_R	Eficiência do modo de operação reverso
P _{DIS}	Potência máxima dissipada pelo MOSFET
Q_d	Fator de qualidade no modo direto
Q_r	Fator de qualidade no modo reverso

<i>R</i> _{acB}	Resistência equivalente CA da bateria
<i>R_{acDC}</i>	Resistência equivalente CA do barramento CC
Т	Tempo de um ciclo completo de comutação
V_B	Tensão da bateria
V _{DC}	Tensão do barramento CC da nanorrede
Z_0	Impedância característica do tanque ressonante

SUMÁRIO

1	INTRODUÇÃO	19
1.1	OBJETIVOS DA DISSERTAÇÃO	22
1.2	ESTRUTURA DO TEXTO	23
2	TOPOLOGIAS DE CONVERSORES BIDIRECIONAIS CC-CC	24
2.1	CONVERSORES BIDIRECIONAIS CC-CC NÃO ISOLADOS	24
2.2	CONVERSORES BIDIRECIONAIS CC-CC ISOLADOS	27
2.3	TOPOLOGIAS DE CONVERSORES RESSONANTES	28
2.3.1	Inversor / retificador de alta frequência	32
2.3.2	Topologias de filtros ressonantes	32
2.4	CONCLUSÕES DO CAPÍTULO	33
3	CONVERSOR MEIA-PONTE LLC RESSONANTE BIDIRECIONAL	
	ISOLADO	35
3.1	ANÁLISE TEÓRICA	35
3.1.1	Modo de Operação Direta	35
3.1.2	Modo de Operação Reversa	41
3.2	PROJETO DO CONVERSOR MEIA-PONTE LLC RESSONANTE RESSO-	
	NANTE BIDIRECIONAL ISOLADO	44
4	PROTÓTIPO DO CONVERSOR IBLLCRHB E NANORREDE CC	51
4.1	PROTÓTIPO DO CONVERSOR IBLLCRHB	51
4.2	PROTÓTIPO DA NANORREDE CC PARA OPERAÇÃO NO MODO DIRETO	55
4.3	VERSO	58
5	VALIDAÇÃO E RESULTADOS EXPERIMENTAIS	60
51		60
5.2	VALIDAÇÃO EM MR	66
6	CONCLUSÃO E PROPOSTAS DE TRABALHOS FUTUROS	73
	REFERÊNCIAS	77
	APÊNDICE A – DIMENSIONAMENTO DOS COMPONENTES DO	0.2
	CONVERSOR IBLLCRHB	80

A.1	DIMENSIONAMENTO DO TRANSFORMADOR)
A.1.1	Dimensionamento do núcleo	1
A.1.2	Dimensionamento dos condutores	3
A.1.2.1	Enrolamento de alta tensão 83	3
A.1.2.2	Enrolamento de baixa tensão 84	1
A.1.2.3	Fator de utilização	1
A.2	INTERRUPTORES SEMICONDUTORES E DIODOS	1
A.3	CAPACITORES DE SAÍDA 85	5
	APÊNDICE B – PROTÓTIPO DO CONVERSOR IBLLCRHB 80	5
B .1	ESQUEMÁTICO DO CONVERSOR IBLLCRHB	5
B.2	ARQUITETURA DO PROTÓTIPO DO CONVERSOR IBLLCRHB 87	7
	APÊNDICE C – CÓDIGO FONTE DO MICROCONTROLADOR TIVA	
	TM4C123G	3
C.1	CÓDIGO FONTE DO MICROCONTROLADOR TIVA TM4C123G EM MD 88	3
C.2	CÓDIGO FONTE DO MICROCONTROLADOR TIVA TM4C123G EM MR 94	1
	APÊNDICE D – PROTÓTIPO DA PLACA DE INTERFACE PARA	
	COMPATIBILIZAR O MICROCONTROLADOR TIVA	
	TM4C123G 100)
D.1	ESQUEMÁTICO DA PLACA DE INTERFACE PARA COMPATIBILIZAR	
	O MICROCONTROLADOR AO PROTÓTIPO DO CONVERSOR 100)
D.2	ARQUITETURA DA PLACA DE INTERFACE PARA COMPATIBILIZAR	
	O MICROCONTROLADOR AO PROTÓTIPO DO CONVERSOR 10	1

1 INTRODUÇÃO

Energia, ar e água são bens indispensáveis para a sobrevivência humana. As sociedades primitivas foram privilegiadas por recursos naturais e energéticos ainda não explorados. A energia era obtida das florestas para atividades simples do dia a dia, como cozinhar por exemplo. Não havia preocupação com recursos naturais ou questões ambientais devido à abundância de matéria prima e falta de conhecimento das populações primitivas (GOLDEMBERG; LUCON, 2007). Com a energia elétrica não é diferente, desde os primórdios aos dias atuais vivencia-se um aumento na demanda desta energia para atender às necessidades crescentes da sociedade devido ao desenvolvimento socioeconômico em todo o mundo. Contudo, o mal planejamento na produção e utilização de energia prejudicou de forma acentuada o meio ambiente em geral, contribuindo para o aquecimento global e a poluição atmosférica (SILVA, 2013). Pode-se observar pela Tabela 1, que o crescimento do consumo de energia elétrica (CCE) nacional e mundial é maior do que o crescimento na produção de energia (CPE).

Indicador	Região	Período				
		1971-1980	1980-1990	1990-2000	2000-2003	2004-2005
PIB	Brasil	8.34 %	1.57 %	2.65 %	1.26 %	2.28 %
	Mundo	3.77 %	2.90~%	2.80~%	4.97 %	4.40 %
CCE	Brasil	11.83 %	5.90 %	4.30 %	1.05 %	4.24 %
	Mundo	5.18 %	3.60 %	2.62 %	2.72 %	nd
CPE	Brasil	5.39 %	1.78 %	3.32 %	1.45 %	1.75 %
	Mundo	3.05 %	1.90 %	1.45 %	2.02 %	nd

Tabela 1 – Indicadores de crescimento e proporção no Brasil e no mundo.

Fonte: (GOLDEMBERG; LUCON, 2007)

Grande parte da demanda de eletricidade é suprida por fontes fósseis, o que representa cerca de 80% do consumo de energia mundial (ZHONGCHENG; TONG, 2010). O aumento da demanda de energia elétrica não pode ser atendido por estas fontes devido às limitações ambientais que ao passar dos anos vêm se consolidando através da criação de leis e atuação de organizações que têm como objetivo o uso consciente e a preservação dos recursos naturais.

Medidas para minimização do aquecimento global e poluição atmosférica estão sendo realizadas em todo o mundo. No entanto, é fundamental o aumento da participação de energias renováveis como eólica e solar. Deste modo, não somente diminui-se a produção de energia com base em combustíveis poluentes como gera-se uma modificação na matriz energética. Tal mudança é importante na dinâmica de energia de um país, pois a dependência de uma única fonte torna o sistema vulnerável, o que não é interessante tanto para a manutenção das redes elétricas quanto para a economia, já que neste molde, a alta suscepitibilidade a falhas poderia levar a interrupções de indústrias, hospitais dentre outros consumidores que necessitam de um sistema ininterrupto de energia. No Brasil, por exemplo, as hidrelétricas são as principais

fontes de energia devido a seu grande potencial hídrico. No entanto, não evitam a utilização de geração com base em fontes fósseis em períodos de estiagem e altos níveis de consumo como ocorrido no final do ano de 2012, onde foi necessário o acionamento de usinas termoelétricas (SILVA, 2013). Este consumo acelerado deve ser atendido pelas concessionárias de energia que estão preocupadas em melhorar a relação de oferta e procura, através do desenvolvimento dos sistemas nacionais de geração e distribuição de energia elétrica, como por exemplo a utilização de sistemas de geração distribuída. Esta que pode ser definida como a produção de energia junto ao local de consumo, independente da quantidade, tecnologia ou de sua fonte primária (SHAYANI; OLIVEIRA; CAMARGO, 2006).

Na diversificação do uso de fontes de energia, o sistema de geração estará melhor assegurado, pois em uma possível situação adversa, outras fontes primárias poderão compensá-lo ou complementá-lo. A Tabela 2 mostra a distribuição na utilização dos recursos para a geração de energia elétrica ao longo dos anos, onde pode-se observar a dependência da utilização da energia hidráulica e o crescimento da utilização de fontes fósseis.

Ano	1970	1980	1990	2000	2004
Carvão vapor	3%	2%	1%	2%	2%
Gás natural	0%	0%	0%	0%	4%
Óleo diesel	1%	1%	1%	1%	2%
Óleo combustível	5%	1%	0%	2%	0%
Urânio	0%	0%	1%	2%	3%
Hidráulica	91%	96%	97%	92%	88%
Total	100%				

Tabela 2 – Geração de eletricidade das centrais elétricas de serviço público, por combustível.

Fonte: (Ministério de Minas e Energia, 2005).

No Brasil, o processo de construção de hidroelétricas vem se estendendo há alguns anos com o objetivo do atendimento à demanda de energia. No entanto, esse processo vem ocorrendo de maneira lenta e problemática. Em 2010, por exemplo, 77% das obras de geração apresentaram dificuldades (SHAYANI; OLIVEIRA; CAMARGO, 2006), muitas delas ligadas à questões ambientais, sendo em alguns casos interditadas por organizações deste setor. Porém a necessidade e a dependência dos recursos hídricos na produção de energia, faz com que o poder político sobreponha questões sócio-ambientais impondo a construção das hidroelétricas, mesmo com tantos problemas.

Na maioria dos países, o fluxo de potência nas redes de distribuição é predominantemente unidirecional, ou seja, a energia produzida segue um único sentido das usinas de geração para os consumidores residenciais, comerciais e industriais. Atualmente, iniciam-se projetos em modificações da dinâmica do sistema de distribuição. Esta mudança exige o desenvolvimento dos novos métodos de controle, automação e otimização da operação do sistema elétrico onde contará com a atuação de conversores bidirecionais em um novo cenário energético mundial. Deste modo, o consumidor poderá ter um papel fundamental na capacidade de atuação no sistema. Podendo assim, contribuir com a geração de energia no próprio local de consumo, sem contar com o aumento da eficiência energética do sistema elétrico como um todo, com base na ampliação de sua controlabilidade (SILVA, 2013). Este novo modelo do sistema de energia é conhecido como *Smart Grid* ou redes inteligentes.

Neste contexto, faz-se necessário o estudo e implementação das nanorredes. Estas que podem ser definidas como um sistema elétrico de potência em pequena escala, baseadas na utilização de duas ou mais fontes de geração distribuída, tendo como fonte primária energias limpas. Atendem cargas a um raio máximo de 5km e possuem uma potência máxima de 25kW (SILVA, 2013). Podem possuir arquitetura baseada na distribuição em corrente alternada (CA) ou corrente contínua (CC), ilustradas pelas Figuras 1 (a) e 1 (b), respecticamente.

Figura 1 Sistema de distribuição em corrente alternada (a) e corrente contínua (b).

A opção em CA, é vantajosa em função do atual padrão de distribuição de energia em baixa tensão. No entanto, sua utilização pode tornar-se mais complexa visto fatores de qualidade de energia (correção de fator de potência, compensação em frequência, etc.) (GUERRERO *et al.*, 2013). Além disso, o processamento de energia tem maiores perdas se comparada à arquitetura em CC, devido a um maior número de processos de retificação/inversão ocorridos nos sistemas em CA.

Embora pouco utilizado, a distribuição CC tem suas vantagens quanto a não haver necessidade de sincronismo, controle de reativos e correção do fator de potência, além da simplificação e redução de perdas no processamento de energia como citado anteriormente. Esta simplificação certamente exige uma adaptação do sistema atual. No entanto, vem ganhando espaço e incentivo nos últimos anos.

Tendo como fato um aumento contínuo da demanda de energia elétrica e a crescente em equipamentos eletrônicos, além das vantagens mencionadas anteriormente, torna-se interessante a utilização de sistemas com distribuição CC. Uma nanorrede CC está ilustrada na Figura 2.

Figura 2 Estrutura de uma nanorrede em um sistema elétrico de potência.

Inserido nesta nanorrede, está o barramento CC que é um elemento de interconexão dos dispositivos de uma nanorrede com a utilização de corrente contínua em seus terminais. Dentre estes dispositivos, estão cargas, fontes de energia, como também o banco de baterias, responsável por armazenar e fornecer energia ao barramento CC. Estes e outros conceitos serão abordados com maiores detalhes no Capítulo 2.

1.1 OBJETIVOS DA DISSERTAÇÃO

Esta dissertação tem por objetivo o estudo, projeto e implementação em malha aberta de um conversor bidirecional CC-CC que fará o fluxo de potência entre o barramento de uma nanorrede CC doméstica e um banco de baterias, promovendo o suprimento de energia ao barramento CC e também o carregamento do banco de baterias.

Como objetivos secundários, foram elencados os seguintes pontos:

• Estudar diferentes topologias de conversores bidirecionais CC-CC e sistemas de armazenamento de energia;

- Utilizar um conversor bidirecional como regulador de tensão do barramento CC de uma nanorrede através da interface com sistema de baterias;
- Estudar e simular o conversor bidirecional operando tanto no processo de carga da bateria quanto na alimentação da nanorrede CC;
- Implementar um conversor bidirecional com interface em microcontroladores;
- Validar o processo de fluxo de potência bidirecional do conversor CC-CC entre a nanorrede e o banco de baterias através de resultados experimentais;
- Comparar os resultados teóricos com simulações e resultados experimentais.

1.2 ESTRUTURA DO TEXTO

Além da presente Introdução, esta dissertação contém mais cinco capítulos organizados da seguinte forma:

O Capítulo 2 faz uma revisão bibliográfica de conversores bidirecionais isolados e não isolados. São apresentadas várias topologias, tendo-se um destaque para as topologias ressonantes, que se caracterizam pela interação entre os elementos passivos (capacitores e indutores) do conversor no processo de transferência de energia, podendo-se deste modo variar a impedância equivalente na operação por frequência de comutação variável. Além disso, essa categoria de conversores é conhecida pela comutação suave dos interruptores semicondutores de sua estrutura. Após este estudo, é proposta uma topologia bidirecional isolada em meia-ponte ressonante LLC série-paralela para realizar o fluxo de potência bidirecional entre banco de baterias e barramento CC.

O Capítulo 3 é dedicado à análise e projeto do conversor Meia-Ponte LLC Ressonante Bidirecional Isolado ou *Isolated Bidirectional LLC Resonant Half-Bridge* (IBLLCRHB) para a operação entre banco de baterias e barramento CC de uma nanorrede. São apresentados modelos de aproximações matemáticas para descrever as características de ganho estático de tensão para as operações no modos direto e reverso, obtendo-se deste modo os parâmetros para a realização da protopipação do conversor.

O Capítulo 4 foi reservado para apresentação dos protótipos do conversor e construção da nanorrede CC nos modos direto e reverso.

O Capítulo 5 é destinado a validação do protótipo do conversor IBLLCRHB, bem com a apresentação e discussão dos resultados experimentais e de simulação obtidos para vários pontos de operação desta topologia.

Por fim, o Capítulo 7 apresenta as conclusões finais deste trabalho bem como as propostas para trabalhos futuros.

2 TOPOLOGIAS DE CONVERSORES BIDIRECIONAIS CC-CC

Com o objetivo de fornecer energia tanto ao barramento CC quanto ao banco de baterias, alguns modelos de conversores bidirecionais serão apresentados. Estes que podem ser divididos em isolados e não isolados.

2.1 CONVERSORES BIDIRECIONAIS CC-CC NÃO ISOLADOS

Dentre as topologias de conversores bidirecionais CC-CC não isolados, pode-se citar alguns modelos como *Buck* ou *Boost*, *Buck-Boost*, *Sepic* e *Cuk*, mostrados na Figura 3.

Figura 3 Topologias de conversores bidirecionais básicos não isolados, (a) *Boost* ou *Buck*, (b) *Buck-Boost*, (c) *Sepic* ou *Zeta* e (d) *Cuk* (CARDOSO *et al.*, 2012).

Basicamente, o funcionamento em regime de condução contínua destes conversores é dividido em 4 etapas, onde pode-se exemplificar o modelo *Buck-Boost* ilustrado na Figura 3 (b).

Para o fluxo de potência de V_1 para V_2 , tem-se as etapas E_1 e E_2 :

- Na etapa E_1 (interruptor S_1 fechado e interruptor S_2 aberto), há um fluxo de corrente no sentido de saída do terminal positivo de V_1 , magnetizando o indutor que está exposto a tensão V_1 em seus terminais, deste modo, faz com que não haja condução em D_2 ;
- Na etapa E_2 (interruptores S_1 e S_2 abertos), após a magnetização do indutor, este manterá o sentido de sua corrente de V_1 para V_2 , conduzindo D_2 . Deste modo, há um fluxo de potência no sentido de V_1 para o terminal positivo de V_2 .

Para o fluxo de potência de V_2 para V_1 , tem-se as etapas E_3 e E_4 :

- Na etapa E_3 (interruptor S_1 aberto e interruptor S_2 fechado), há um fluxo de corrente de V_2 para V_1 , magnetizando o indutor no sentido contrário à etapa 1;
- A etapa E₄ possui a mesma configuração que a etapa E₂. Tanto S₁ e S₂ não estão conduzindo. A diferença está no sentido da corrente no indutor, que desta vez, manterá o sentido da etapa E₃ e agora fará a descarga de corrente de V₂ para o terminal positivo de V₁, ocorrendo assim o fluxo de potência oposto à etapa E₂.

Figura 4 Etapas de operação do conversor bidirecional *buck-boost*: (a) E_1 , (b) E_2 , (c) E_3 , (d) E_4 . (CARDOSO *et al.*, 2012).

Não é necessária a passagem por todas as etapas para a operação contínua do conversor. Tanto este como outras topologias bidirecionais já citadas podem operar em apenas 2 etapas. No caso do conversor *Buck-Boost* dado como exemplo, esta divisão pode ser expressa em Etapa *Buck* ($E_1 \ e \ E_2$), onde o sentido do fluxo de potência está de V_1 para V_2 (Figura 4 a), ou etapa *Boost* ($E_3 \ e \ E_4$) que possui o sentido de fluxo de potência oposto (Figura 4 c). Como também operar nas 4 etapas, onde o que vai decidir qual será o sentido do fluxo de potência médio é o tempo de ciclo ativo para cada interruptor (Figura 4 b). Lembrando que $S_1 \ e \ S_2$ não podem conduzir ao mesmo tempo, pois isto ocasionaria um curto-circuito.

A topologia do conversor CC-CC bidirecional *Buck-Boost* não isolado ajusta-se às características de um sistema fotovoltaico composto por um barramento de tensão contínua

Figura 5 Traçado das principais formas de ondas do conversor *buck-boost* CC-CC. bidirecional na (a) 1^a forma , (b) 2^a forma e (c) 3^a forma de funcionamento (CARDOSO *et al.*, 2012).

com um nível superior ao do banco de baterias, o que ocorre na maior parte dos sistemas. Esta topologia apresenta robustez e simplicidade, o que facilita o projeto e torna viável sua implementação. Todavia, algumas características como qualidade dos sinais gerados, alta complexidade na modelagem e a limitação na transmissão de potência limitam sua utilização. Sua utilização é adequada em sistemas com baixa relação entre tens]ao de entrada e saída do conversor.

Neste trabalho, tendo os níveis de tensão de 380V e 24V para o barramento CC e banco de baterias respectivamente, pode-se concluir que não é interessante a implementação de modelos que utilizam arquiteturas de conversores não isolados.

2.2 CONVERSORES BIDIRECIONAIS CC-CC ISOLADOS

Os conversores CC-CC bidirecionais isolados IBDC (*Isolated Bidirectional DC-DC Converter*) possuem um transformador de alta frequência (HF) que faz a isolação galvânica e permite obter grandes relações de transformação através da adequação das tensões das fontes por seus enrolamentos. O transformador HF é considerado superior se comparado a um transformador de baixa frequência, uma vez que seu volume decresce com o aumento da frequência, impactando positivamente tanto ao custo quanto em seu desempenho, seja por aumento da eficiência, redução de perdas, por exemplo (HAEBERLIN, 2001).

A Figura 6 apresenta um diagrama básico dos conversores CC-CC bidirecionais isolados a serem utilizados nesse sistema. São dois elementos retificadores/inversores separados por um transformador. Dependendo do sentido do fluxo de potência estes elementos assumem o papel de retificador ou inversor.

Figura 6 Topologia geral de um conversor bidirecional isolado.

Na literatura, existem vários modelos de conversores bidirecionais isolados (KRISMER, 2010; RUSELER *et al.*, 2011; CARDOSO *et al.*, 2012; ISLAM; GUO; ZHU, 2014). Dentre os de maior densidade de potência estão o *Dual half bridge* (DHB) e o *Dual Active Bridge* representados pelas Figuras 7 e 8, respectivamente.

Figura 7 Topologia do conversor bidirecional isolado Dual Half Bridge.

Figura 8 Topologia do conversor bidirecional isolado Dual Active Bridge.

2.3 TOPOLOGIAS DE CONVERSORES RESSONANTES

Nos últimos anos, na eletrônica de potência tem-se uma preocupação em redução de peso, volume e interferência eletromagnética adicionalmente ao aumento da eficiência e confiabilidade dos conversores estáticos (MAINALI; ORUGANTI, 2010).

O aumento da frequência de comutação possibilita a redução de volume do conversor, dada a diminuição do volume dos elementos magnéticos, no entanto as perdas por comutação aumentam além de diminuir a vida útil dos interruptores eletrônicos empregados, criando uma limitação no processamento de energia (DESCHAMPS, 1990).

Grande maioria das topologias de conversores possuem comutação dissipativa ou *hard-switching* nas transições de estado dos interruptores semicondutores. A Figura 9 ilustra este processo de comutação. No intervalo $[t_0, t_1]$ há uma considerável sobreposição entre tensão e corrente nos terminais da chave, neste instante há uma dissipação da energia nesta comutação. Entre t_1 e t_2 , a chave está acionada, havendo somente as perdas por condução. Novamente, no intervalo $[t_0, t_1]$ ocorre uma sobreposição dos sinais entre tensão e corrente ocasionando nova dissipação de energia na comutação do MOSFET que deve ser removida através do sistema de dissipação.

No intuito de aumentar a eficiência do processamento de energia dos conversores, podese utilizar topologias de conversores ressonantes. Aproveitando-se o fenômeno da ressonância, permite-se empregar sinais com frequência de comutação cada vez mais elevadas na operação com baixas perdas nos interruptores eletrônicos através da comutação suave (*soft-switching*) que é garantida pelas transições suaves nos interruptores eletrônicos. A ressonância do circuito ocorre em uma frequência de comutação particular onde a impedância entre a entrada e a saída do circuito é mínima (BERSANI; DUMAIS; KHARE, 2010). Basicamente, ocorre quando a

Figura 9 (a) Circuito equivalente do MOSFET e (b) Formas de onda de corrente, tensão e potência para um ciclo de comutação dissipativa, mostrando os mecanismos típicos de perdas.

soma entre a reatância indutiva (X_L) e a reatância capacitiva (X_C) do filtro ressonante é igual a zero, ou seja, o efeito das reatâncias promovem uma redução significativa na impedância do circuito.

Este processo de comutação suave pode ser classificado em dois grupos, de acordo com o modo em que ocorram as mudanças de estado nos interruptores: comutação por corrente nula (ZCS: *zero current switching*), ou comutação por tensão nula (ZVS: *zero voltage switching*) (POMILIO, 1995). A Figura 10 ilustra o processo de ZVS. No periodo de transição de um estado para o outro a tensão é zero. Pela multiplicação temporal entre v_{ds} e i_{ds} não há perdas por comutação. O ZVS é demonstrado apenas quando o MOSFET é acionado. Primeiramente, a capacitância intrínseca C_{ds} é descarregada. Em seguida, o sinal de PWM permite que a corrente através do MOSFET comece a aumentar. Quando o PWM é desativado, a tensão dreno-fonte começa a subir, mas a corrente ainda flui através do MOSFET. A partir desta animação, é possível ver que ao acionar o interruptor não há perdas por comutação no MOSFET, pois a tensão dreno-fonte é zero. No desligamento do interruptor, pode-se ver que haverá uma quantidade significativa de corrente e tensão no estado de transição que se traduz em perdas de comutação.

A Figura 11 ilustra o processo de comutação por corrente nula. No período de transição de um estado para o outro a corrente é zero. Pela multiplicação temporal entre v_{ds} e i_{ds} não

Figura 10 Formas de onda relativas ao processo de comutação suave por tensão nula (ZVS).

há perdas por comutação. O ZCS é demonstrado apenas quando o MOSFET é desacionado. Primeiro, o sinal de PWM está ativado e a corrente através do MOSFET começa a aumentar à medida que a queda de tensão v_{ds} do MOSFET. Uma vez que a corrente através do MOSFET se torna nula, desativa-se o MOSFET. Neste instante, a tensão v_{ds} começa a aumentar. Esse é o ponto em que ocorre a comutação por corrente nula. A partir da animação, pode-se observar que no desligamento do interruptor ocorre a eliminação das perdas por comutação do MOSFET, pois a multiplicação entre v_{ds} e i_{ds} é nula quando o MOSFET é desacionado. No entanto, verifica-se que haverá uma quantidade significativa de corrente e tensão no outro estado de transição que se traduz em perdas de comutação.

Figura 11 Formas de onda ralativas ao processo de comutação suave por corrente nula (ZCS).

Em geral, a técnica ZVS é preferível em MOSFETs e ZCS é preferível em IGBTs, considerando operação em alta frequência devido a capacitância intrínseca do interruptor. Quando o interruptor semicondutor é acionado em ZCS com tensão em seus terminais, a carga armazenada nesta capacitância é dissipada sobre o componente. Este fenômeno se torna mais significativo em frequências muito elevadas. Por outro lado, nenhuma perda ocorre quando se usa a técnica ZVS (POMILIO, 1995).

Apesar de a comutação suave reduzir as perdas por comutação no processamento de energia, essa operação traz uma desvantagem de que para ser realizada, é necessário que haja uma circulação de potência reativa no circuito, o que pode efetuar no aumento das perdas por condução e perdas ôhmicas nos componentes passivos devido ao aumento do valor eficaz da corrente no circuito ressonante (ALMEIDA *et al.*, 2014). Outra desvantagem das topologias ressonantes baseia-se na sua variável de controle, normalmente este tipo de conversor opera por frequência variável, o que torna sua análise mais complexa em relação aos demais conversores acionados por modulação PWM (ERICKSON; MAKSIMOVIC, 2007). Diante dessa prerrogativa, um projeto cuidadoso do circuito ressonante deve ser realizado de modo que reduza a circulação de potência reativa no filtro ressonante.

A estrutura de um conversor CC-CC ressonante unidirecional isolado está ilustrada na Figura 12. Basicamente, ela é formada por um inversor de alta frequência, um filtro ressonante (tanque ressonante), um transformador de alta frequência, um retificador e um filtro de saída. Baseando-se na estrutura de um conversor unidirecional, é possível torná-lo bidirecional pela substituição dos elementos retificadores por outro elemento inversor de alta frequência, que também poderá realizar a função de retificação, dependendo do sentido do fluxo de potência ao qual o conversor está sendo submetido.

Figura 12 Diagrama de blocos de um conversor ressonante unidirecional isolado.

A Figura 13 ilustra a estrutura de um conversor ressonante bidirecional isolado.

As seções a seguir tratam do estudo das principais elementos que compõem conversores ressonantes bidirecionais, mostrando suas características, vantagens e desvantagens na arquitetura de um conversor capaz de operar entre banco de baterias e barramento CC de uma forma satisfatória em termos de projeto e operação.

Figura 13 Diagrama de blocos de um conversor ressonante bidirecional isolado.

2.3.1 Inversor / retificador de alta frequência

Na literatura (ALMEIDA *et al.*, 2014; KHAZAEI *et al.*, 2015) os inversores de alta frequência estão divididos em 2 tipos: inversores fonte de tensão e inversores fonte de corrente. Os conversores fonte de tensão geram uma forma de onda quadrada (ou *quasi* quadrada) de tensão enquanto que os conversores fonte de corrente geral uma forma de onda quadrada (ou *quasi* quadrada) de corrente para alimentar o tanque ressonante.

Algumas topologias de inversores se associam a topologias de retificadores, dependendo da direção do fluxo de potência. Inversores em meia-ponte estão associados a retificadores de meia onda, assim como inversores em ponte completa associam-se a retificadores de onda completa. Esta associação faz-se pela utilização dos diodos intrínsecos de cada interruptor da topologia.

A Figura 14 mostra algumas das principais topologias de inversores de alta frequência. As topologias *half-bridge* são bastante utilizadas pela sua simplicidade e número reduzido de interruptores semicondutores em relação as topologias *full-bridge*. Outra característica marcante é que o pico de tensão sobre os MOSFETs é igual a tensão de entrada, ao contrario da topologia *push-pull* que possui o pico de tensão como o dobro da tensão de entrada nos terminais dos MOSFETs (GU; LIU, 1996). As topologias *full-bridge* são mais utilizadas em conversores com mais alto nível de potência (SABATE *et al.*, 1990).

2.3.2 Topologias de filtros ressonantes

Os filtros ressonantes são utilizados para operar numa frequência sintonizada próxima a do inversor, de forma que as ondas sejam aproximadamente senoidais, o que implica na comutação suave dos MOSFETs, possibilitando a operação em mais altas frequências, aumento da eficiência visto a redução de perdas por comutação e consequentemente alta densidade de potencia do conversor.

A Figura 15 ilustra algumas das mais utilizadas topologias de filtros ressonantes (ou tanques ressonantes) em conversores CC-CC.

Figura 14 Topologias de inversores de alta frequência alimentados por tensão: (a) meia-ponte com barramento simétrico. (b) meia-ponte com barramento assimétrico. (c) *push-pull*. (d) ponte completa.

2.4 CONCLUSÕES DO CAPÍTULO

Este Capítulo apresentou as principais topologias de conversores bidirecionais CC-CC isolados e não-isolados, mostrando a estrutura destes conversores. Por impor uma demanda bastente adversa na relação de ganho (muito abaixador no modo de carga da bateria e muito elevador no modo de suprimento da nanorrede), faz-se necessária a utilização de um conversor isolado no qual um transformador de alta frequência pode fornecer uma melhor adequação dos níveis de tensão (380V / 24V).

Nas estruturas de conversores isolados, foi mostrado que estas são formadas por um elo de pontes inversoras/ retificadoras de alta frequência por meio de um transformador. Algumas topologias amplamente utilizadas como DHB e DAB utilizam-se da modulação *phase-shift* que caracteriza por transmitir potência pela defasagem entre as formas de onda entre as pontes retificadoras /inversoras, mantendo uma frequência constante na operação do conversor. Esta relação de deslocamento de fase implica na inserção de reativos no processo de transmissão de energia, fazendo com que a faixa de comutação suave seja altamente limitada visto as variações de tensão do banco de baterias e variações de carga no barramento CC da nanorrede. Já os conversores com topologias ressonantes são modulados por frequência e possuem ampla faixa

Figura 15 Topologias de filtros ressonantes: (a) LC série. (b) LC paralelo. (c) LLC série-paralelo. (d) LCC série-paralelo.

de comutação suave, o que os torna interessantes para operações com variações de parâmetros como tensão e potência de entrada e saída.

Das várias estruturas de inversores, as topologias em meia-ponte se destacam pela simplicidade e menor número de interruptores a serem controlados em relação as topologias de ponte completa. Embora a topologia em meia-ponte assimétrica (sem o braço adicional de capacitores) seja mais simples, esta possui elevado *ripple* da corrente de entrada se comparada a topologia em meia-ponte simétrica. Além disso, pode-se aproveitar o braço de capacitores como a capacitância do filtro ressonante.

Para o tanque ressonante, aproveitando-se da capacitância do inversor meia-ponte simétrico e das características do transformador que pode ser representado pelo modelo todo referido ao primário (ou *APR*, do inglês *all primary referred*) por duas indutâncias (serie e paralela), chega-se ao circuito LLC, onde a capacitância série pode ser dividida entre os capacitores do inversor. As indutâncias série e paralela são a indutância de dispersão e a indutância de magnetização do transformador, respectivamente.

Para o lado de baixa tensão, a topologia do inversor *push-pull* foi escolhida devido a sua operação simplificada por dois interruptores. Esta estrutura é amplamente utilizada em aplicações de baixa tensão. Em tensões de entrada de nível elevado, ocorre no processo de comutação grandes esforços de tensão nos semicondutores (SIERRA; KAISER, 2000).

Deste modo, tem-se a formação da topologia resultante utilizada neste trabalho: Conversor Meia-ponte ressonante LLC bidirecional isolado (IBLLCRHB). A análise deste conversor será desenvolvida no próximo capítulo.
3 CONVERSOR MEIA-PONTE LLC RESSONANTE BIDIRECIONAL ISOLADO

3.1 ANÁLISE TEÓRICA

Como apresentado no capítulo anterior, o conversor utilizado neste trabalho será o Meia-Ponte LLC Ressonante Bidirecional Isolado ou *Isolated Bidirectional LLC Resonant Half-Bridge* (IBLLCRHB). Sua estrutura baseia-se na utilização do inversor/ retificador em meia-ponte com barramento assimétrico no lado de alta tensão, o tanque ressonante LLC série-paralelo, o transformador de alta frequência com 2 enrolamentos secundários e o inversor/ retificador *push-pull* no lado de baixa tensão. A Figura 16 ilustra a topologia escolhida.

Figura 16 Diagrama esquemático do conversor IBLLCRHB.

A análise deste conversor será dividida em duas partes:

- modo de operação direta (MD);
- modo de operação reversa (MR).

No modo direto, o nanorrede fornecerá energia a bateria de modo a fazer o seu carregamento. Já no modo reverso, a bateria fornecerá energia ao barramento CC da nanorrede. As seções seguintes serão dedicadas para o desenvolvimento da análise e projeto do conversor nos modos de operação direto e reverso.

3.1.1 Modo de Operação Direta

No modo direto, o conversor pode ser analisado como uma topologia em meia-ponte LLC ressonante unidirecional clássica (JUNG; KWON, 2007; YANG *et al.*, 2002; YANG; CHEN;

LEE, 2002). Esta topologia tem como característica uma frequência de ressonância LC série (f_0) e uma frequência de ressonância LC série-paralela (f_{sp}) descritas pelas equações (3.1) e (3.2). Os parâmetros das indutâncias série (L_s) e série-paralela (L_{sp}) estão relacionados com as indutâncias de dispersão e indutância de magnetização do transformador, respectivamente.

$$f_o = \frac{1}{2\pi\sqrt{C_s L_s}} \tag{3.1}$$

$$f_{sp} = \frac{1}{2\pi\sqrt{C_{s}(L_{s} + L_{p})}}$$
(3.2)

O conversor possui operação em frequência variável e *duty-cycle* fixo próximo a 0.5 incluindo o *dead-time*. A Figura 17 ilustra os sinais de comando dos MOSFETs no modo direto. O par de MOSFETs do lado de alta tensão (S_1) e (S_2) juntamente com os capacitores ressonantes (C_1) e (C_2) aplicam uma forma de onda quadrada $v_{HB}(t)$ com frequência f_{sw} nos terminais de alta tensão do transformador. Este sinal contém além da componente fundamental, outras harmônicas de ordens 3, 5, 7... Ao passar pelo circuito ressonante, os sinais de mais alta frequência (componentes harmónicas) são filtrados. Deste modo, a corrente que passa pelo indutor série possui apenas a componente fundamental da frequência de comutação dos MOSFETs. Esta análise dá-se pelo nome de aproximação em primeiro harmônico ou *First Harmonic Approximation* (FHA) (UZDIN; FRIEDLAND; GAT, 2014; HAGA; KUROKAWA, 2017). Vale salientar que durante a comutação do par de semicondutores S_1/S_2 , não há acionamento do par S_{R1}/S_{R2} .

Figura 17 Sinais de comando dos MOSFETs: (a) S_1 , (b) S_2 , (c) S_{R1} e (d) S_{R2} no modo direto.

Por FHA, $v_{hb}(t)$ pode ser representada pela equação (3.3).

$$v_{HB}(t) = \frac{2 \,\mathrm{V_{in}}}{\pi} \sin(\omega_{\mathrm{S}} t) \tag{3.3}$$

onde $\omega_{\rm S} = 2 \pi f_{\rm s}$ é a frequência angular de comutação (em rad/s).

O modelo equivalente CA do conversor no modo direto está ilustrado na Figura 18.

Figura 18 Circuito equivalente no domínio da frequência do filtro LLC série-paralelo no modo direto para a componente fundamental da tensão de entrada.

A resistência equivalente CA da bateria (R_{acB}) referida ao primário do transformador pode ser descrita pela equação (3.4) (FEI; LEE; LI, 2017):

$$R_{acB} = \frac{8 n^2 \mathrm{V_B}^2}{\pi^2 P}$$
(3.4)

As equações (3.5) - (3.9) descrevem alguns parâmetros deste conversor.

$$\lambda = \frac{L_s}{L_p} \tag{3.5}$$

$$n = \frac{V_{\rm DC}}{2V_{\rm B}} \tag{3.6}$$

$$Z_0 = \sqrt{\frac{\mathbf{L}_s}{\mathbf{C}_s}} \tag{3.7}$$

$$Q_d = \frac{Z_0}{R_{acB}}$$
(3.8)

$$\Omega = \frac{\omega_{\rm s}}{\omega_0} \tag{3.9}$$

onde λ é a relação entre as indutâncias série e paralela, *n* é a relação de transformação do transformador, Z_0 é a impedância característica do filtro ressonante, Q_f é o fator de qualidade no modo direto e Ω é a frequência normalizada.

A partir dos parâmetros descritos das equações de Rbac a omega, é interessante fazer uma análise normalizada do circuito ressonante, visto que não há dependência de grandezas físicas. Uma análise mais detalhada sobre a normalização deste circuito ressonante encontra-se em Almeida *et al.* (2014). Deste modo, o circuito original pode ser analisado por normalização através da Figura 19.

Figura 19 Circuito equivalente normalizado no domínio da frequência do filtro LLC série-paralelo para o modo direto na componente fundamental da tensão de entrada

Por análise de circuitos, chega-se a equação de ganho de tensão no modo direto descrita na equação (3.10)

$$|M_d(\Omega, Q_d)| = \frac{\Omega^2}{2n\sqrt{[\Omega^2(\lambda+1) - \lambda]^2 + \Omega^2 Q_d^2 (1 - \Omega^2)^2}}$$
(3.10)

A Figura 20 mostra as curvas de ganho de tensão para várias condições de carga do conversor no modo direto. Para frequências de comutação maiores do que f_0 o conversor se comporta como um tanque série ressonante. Pode-se ver que o ganho depende da frequência de comutação e resistência de carga. Se a resistência de carga aumenta, consequentemente o ganho aumenta (quanto menor a carga, maior o ganho).

Na região R1 ($\Omega \ge 1$), o conversor opera de modo similar ao conversor série ressonante (VORPERIAN; CUK, 1982; MUROYAMA; SAKAKIBARA, 1986). Nesta região, L_p não entra em ressonância com os capacitores ressonantes C_s ; e atua como a carga do tanque série ressonante. Com esta carga passiva, o conversor LLC ressonante é capaz de operar em condições a vazio sem a penalidade de atingir frequência de comutação elevada. Além disso, com carga passiva, a comutação em ZVS pode ser assegurada para qualquer condição de carga (YANG *et al.*, 2002).

Na região R2 ($\Omega_{sp} \leq \Omega \leq 1$), a operação do conversor ressonante LLC é mais complexa e interessante. Em primeiro momento, o conversor opera com ressonância série entre L_s e C_s . Quando a corrente de L_s atinge o mesmo nível que a corrente de L_p , a ressonância entre L_s e C_s pára. Neste instante, L_p irá participar da ressonância, iniciando a operação com ressonância série-paralela entre $L_p + L_s$ e C_s . A partir deste aspecto, o conversor ressonante LLC é um dado como multi-ressonante, uma vez que a frequência de ressonância em diferentes intervalos

Figura 20 Ganho direto como uma função normalizada da frequência de comutação para diferentes estados de carga da bateria (COIMBRA, 2017)

de tempo. Devido à ressonância entre L_p e C_s , um pico no ganho aparece na frequência de ressonância de $L_p + L_s$ e C_s . Nesta região o conversor opera em condição de ZVS.

Na região R3 ($\Omega \le \Omega_{sp}$), o conversor opera em condições de ZCS. O que deve ser evitado por efeitos de capacitâncias intrínsecas do MOSFET, como explicado anteriormente.

Para a região R2, o conversor IBLLCRHB no modo direto pode ser dividido em 6 etapas (MORITA, 1998; ZHANG *et al.*, 2007; LIU *et al.*, 2006) descritos a seguir:

- Etapa 1 (E₁): Esta atapa começa quando o MOSFET S₂ desliga. Durante este período, a corrente i_{ds1} que flui através do MOSFET S₁ é negativa e descarrega o capacitor parasita S₁ para garantir a operação em ZVS. Este estado termina com a tensão V_{ds1} igual a zero e e V_{ds2} igual a tensão de entrada V_{DC} do conversor;
- Etapa 2 (*E*₂): A corrente *i*_{ds1} flui através do diodo de *S*₁. Este estado termina quando o MOSFET *S*₁ for acionado;
- Etapa 3 (E_3): Esta atapa começa quando S_1 é acionado em tensão nula. A corrente *dreno-source* de S_1 flui do sentido reverso sob efeito da corrente de ressonância negativa. A energia armazenada nos elementos ressonantes L_s , $C_s/2$ e L_p retorna aos terminais de

entrada, descarregando um dos capacitores $C_s/2$. Esta etapa termina quando a corrente do indutor série se iguala a corrente de magnetização do transformador;

- Etapa 4 (E_4): Quando a corrente do indutor série ressonante se iguala a corrente de magnetização, o diodo intrínseco de S_{R2} entra em condução. Neste estado, uma parte da energia retorna a fonte de entrada e outra parte é direcionada a saída. Esta etapa termina com a corrente i_{ds1} igual a zero;
- Etapa 5 (E_5): ao acionar S_1 a corrente do indutor série ressonante torna-se positiva e carrega um dos capacitores ressonantes;
- Etapa 6 (E_6): esta etapa inicia quando a corrente do indutor série é igual a corrente de magnetização. Deste modo, a energia proveniente dos terminais de entrada carrega os componentes ressonantes L_s , L_p e um dos capacitores ressonantes $C_s/2$. A corrente i_{ds2} no lado de baixa tensão torna-se zero e o capacitor de saída descarrega sobre a carga.

As Figuras 21 e 22 ilustram o circuito e as formas de onda do conversor, respectivamente, para cada etapa descrita acima no modo de operação direta.

Figura 21 Circuitos equivalentes das etapas de funcionamento para meio ciclo de operação do conversor IBLLCRHB no modo direto.

A análise do ciclo complementar é análoga a esta para o par de MOSFETs S_2 , S_{R2} .

Figura 22 Formas de onda do conversor IBLLCRHB no modo de operação direto: (a) V_{gs_S1} (b) v_{gs_S2} (c) v_{ds_S1} (d) V_{ds_S2} (e) i_{ds_S1} (f) i_{Ls} , i_{Lp} (g) v_{Cs1} (h) i_{ds_Sr1} (i) v_{ds_Sr1}

3.1.2 Modo de Operação Reversa

No modo reverso, o conversor pode ser analisado como uma topologia ressonante *pushpull* isolada. A Figura 23 ilustra os sinais de comando dos MOSFETs no modo reverso. Desta vez, o par de MOSFETs do lado de baixa tensão (S_{R1} e S_{R2}) aplicam uma forma de onda quadrada $v_{pp}(t)$ com frequência f_{sw} nos terminais de baixa tensão do transformador. O par de MOSFETs do lado de alta tensão permanece desativado neste modo de operação.

Figura 23 Sinais de comando dos MOSFETs: (a) S_1 , (b) S_2 , (c) S_{R1} e (d) S_{R2} no modo reverso.

O circuito equivalente CA no modo reverso estão ilustrados nas Figuras 24 (a) e 24 (b). A tensão de entrada $v_{PP}(t)$ possui forma de onda quadrada com as características da tensão de entrada nos terminais do transformador de um conversor *push-pull*. Em uma aproximação senoidal, $v_{pp}(t)$ pode ser definido pela equação (3.11). $V_{PP}(s)$ é uma representação de $v_{pp}(t)$ no domínio da frequência.

$$v_{pp}(t) = \frac{4 \, n \mathrm{V}_{\mathrm{B}}}{\pi} \sin(\omega_{\mathrm{S}} t) \tag{3.11}$$

A carga equivalente CA da nanorrede para o circuito equivalente CA $R_{DC_{ac}}$ é definida pela equação (3.12):

$$R_{DC_{ac}} = \frac{2R_{DC}}{\pi^2} \tag{3.12}$$

onde R_{DC} é a carga equivalente CC da nanorrede. Consequentemente, o fator de qualidade do modo reverso Q_b , pode ser redefinido em relação ao modo direto pela equação (3.13):

$$Q_r = \frac{Z_0}{R_{DC_{ac}}} \tag{3.13}$$

A impedância característica do filtro ressonante Z_O permanece a mesma do modo direto. Deste modo, a função de transferência de ganho CC do conversor no modo de operação reversa, $M_r(\Omega, Q_r)$ é definida pela equação (3.14):

Figura 24 Circuito equivalente no domínio da frequência do circuito original do conversor ressonante LLC série-paralelo no modo reverso para: (a) componente fundamental da tensão de entrada. (b) tensão de entrada normalizada.

$$|M_r(\Omega, Q_r)| = \frac{2n\Omega}{\sqrt{Q_r^2(\Omega^2 - 1)^2 + \Omega^2}}$$
 (3.14)

Para um $\lambda = 0, 167$, algumas curvas de ganho são ilustradas na Figura 25 para diferentes valores de Q_r . A operação em ZCS ocorre para frequências de comutação abaixo da frequência de ressonância série. Para $\Omega < 1$ o conversor opera em ZCS, assim como para $\Omega \ge 1$ o conversor opera em ZVS. Apenas um pico de ressonância aparece na frequência de ressonância série. Pode ser observado também que o ganho estático de tensão não depende da carga.

Figura 25 Curva característica CC do conversor LLC meia-ponte ressonante no modo reverso (COIMBRA, 2017).

A seguir são descritas as etapas de operação no modo reverso, para $\Omega \ge 1$. Neste caso, o conversor opera na região R2 (em ZVS) para os interruptores S_{R1} e S_{R2} , ou seja, com frequência de comutação maior que a frequência de ressonância série. Em meio ciclo de comutação, a operação do conversor LLC ressonante no modo reverso pode ser dividida em 5 etapas descritas a seguir:

- Etapa 1 (E_1): Esta etapa se inicia quando o MOSFET S_{R1} é desacionado. Durante esse período, a corrente $i_{ds_{R2}}$ é negativa, e o capacitor parasita de S_{R2} descarrega para assegurar a operação em ZVS. Esta etapa termina com a tensão $V_{ds_{R2}}$ atinge zero.
- Etapa 2 (E_2): A corrente $i_{ds_{R2}}$ flui através do diodo. O sinal de *gate* de S_{R2} é inserido para ligar S_{R2} sob tensão nula.
- Etapa 3 (E₃): Esta etapa começa quando S_{R2} aciona sob tensão zero. A corrente drenosource de S_{R2} (i_{dsR2}) flui no sentido reverso por causa da corrente de ressonância negativa. Esta etapa termina quando a corrente do indutor série ressonante se iguala a corrente de magnetização.
- Etapa 4 (E_4): Quando a corrente do indutor série atinge a corrente de magnetização, o diodo intrínseco de S_1 entra em condução. A corrente dreno-source de S_{R2} flui negativamente. Esta etapa termina com a corrente do indutor série atingir valor nulo.
- Etapa 5 (E_5): Esta etapa se inicia quando a corrente i_{Ls} torna-se positiva. A corrente dreno-source de S_{R2} torna-se positiva. A energia é fornecida a partir do banco de baterias carregando um dos capacitores ressonantes e é transferida para os terminais de saída do barramento através do diodo intrínseco de S_1 .

As Figuras 26 e 27 ilustram as etapas de funcionamento e as formas de onda do conversor, respectivamente.

A análise da operação é a mesma para o ciclo de comutação complementar para o par de MOSFETs S_2 / S_{R2} .

3.2 PROJETO DO CONVERSOR MEIA-PONTE LLC RESSONANTE RESSONANTE BIDIRECIONAL ISOLADO

A Tabela 3 especifica os parâmetros da nanorrede para o projeto do conversor.

Para a operação do conversor, é escolhido utilizar a comutação em ZVS nos MOSFET's do lado primário, tanto para os modos direto e reverso.

Diante das equações de ganho dos modos direto e reverso obtidas nas seções anteriores, foram levantados diferentes projetos que atendem as faixas de tensão do banco de baterias e do

Figura 26 Circuitos equivalentes das etapas de funcionamento para meio ciclo de operação do conversor IBLLCRHB no modo reverso.

labela 3 – Parametros da Nanorrede CC

Parâmetro	Símbolo	Valor
Tensão do barramento CC	V _{DC}	380 V
Tensão da bateria	V_B	24V (20V - 28V)
Corrente máxima da bateria	I _{Bmax}	10 A
Faixa de carga no barramento CC	R_{DC}	20% - 100%

barramento CC considerando as variações de carga. As Figuras 28 a 33 ilustram as curvas de ganho para 4 desses possíveis projetos. Em todos eles, considerou-se n = 10.

Com a variação de tantos parâmetros, foram estabelecidas algumas restrições de projeto listadas na Tabela 4.

Tabela 4 – Restrições desejadas para o projeto do conversor.

Parâmetro	Especificação
Frequência de comutação mínima	15 kHz
Frequência de comutação máxima	150 kHz
Modo de comutação suave	ZVS

No projeto 4 será analisado mais detalhadamente e segue ilustrado pelas Figuras 31 a 33.

Figura 27 Formas de onda do conversor IBLLCRHB no modo de operação reverso: (a) V_{gs_S1} (b) v_{gs_S2} (c) v_{ds_S1} (d) V_{ds_S2} (e) i_{ds_S1} (f) i_{Ls} , i_{Lp} (g) v_{Cs1} (h) i_{ds_Sr1} (i) v_{ds_Sr1}

Diante desses 4 exemplos de projeto, foram observados alguns parâmetros de operação do conversor IBLLCRHB listados na Tabela 5.

Através de estudos e modificações em diversos parâmetros e levantamento de diversas curvas de ganho no modo direto e reverso, utilizando-se das equações da seção anterior e

Figura 28 Curvas de tensão da bateria e barramento CC em função da frequência de comutação normalizada para diferentes correntes de carga da referente ao Projeto 1 para os modos (a) Direto e (b) Reverso (considerando $V_B = 28V$), respectivamente.

Figura 29 Curvas de tensão da bateria e barramento CC em função da frequência de comutação normalizada para diferentes correntes de carga da referente ao Projeto 2 para os modos (a) Direto e (b) Reverso (considerando $V_B = 28V$), respectivamente.

observando a Tabela 5, é possível concluir que uma baixa frequência de ressonância série é requerida para que o projeto do conversor, visto que no modo reverso a combinação dos fatores de variação de tensão da bateria e carga drenada pela nanorrede impõe uma variação considerável na frequência de comutação do conversor, considerando uma operação em ZVS, com limite inferior na frequência de ressonância série e limite superior podendo atingir níveis bem elevados. No entanto, esta ressonância série não pode ser tão baixa, pois no modo direto a faixa de frequência

Figura 30 Curvas de tensão da bateria e barramento CC em função da frequência de comutação normalizada para diferentes correntes de carga da referente ao Projeto 3 para os modos (a) Direto e (b) Reverso (considerando $V_B = 28V$), respectivamente.

Figura 31 Tensão da bateria em função da frequência de comutação normalizada para diferentes correntes de carga da bateria referente ao Projeto 4.

poderá atingir valores menores que esta frequência de ressonância série.

De acordo com a analise em FHA do conversor nos modos direto e reverso, para os 4 projetos observados através das Figuras 28 - 33, com seus respectivos parâmetros analisados na Tabela 5, juntamente com as restrições de projeto listadas na Tabela 4, o projeto mais adequado

Figura 32 Tensão do barramento CC em função da frequência de comutação normalizada para diferentes níveis de carga da nanorrede considerando $V_B = 20V$, referente ao Projeto 4.

Figura 33 Tensão do barramento CC em função da frequência de comutação normalizada para diferentes níveis de carga da nanorrede considerando $V_B = 28V$, referente ao Projeto 4.

a ser realizado é o de número 4. O projeto de número 3, embora passe um pouco da frequência de operação máxima no modo reverso, possui uma faixa de operação consideravelmente estreita no modo direto, inviabilizando sua construção.

	Projeto 1	Projeto 2	Projeto 3	Projeto 4
$L_p(H)$	600µ	1,6 <i>m</i>	1 <i>m</i>	1,29m
$C_s/2(F)$	27n	47 <i>n</i>	56n	44n
$L_s(H)$	180μ	800μ	600μ	720μ
$f_o(Hz)$	51 <i>k</i>	18, 4k	19,4 <i>k</i>	20k
$f_{sw(min)D}(Hz)$	32,7 <i>k</i>	12,8k	15, 5k	15, 3k
$f_{sw(max)D}(Hz)$	48k	17,8k	18, 4k	19,7 <i>k</i>
$\Delta_{fswD}(Hz)$	15, 3k	5k	2,9k	4,4k
$1/\lambda$	3,33	2,00	1,67	1,79
$f_{sw(min)R}(Hz)$	128k	33 <i>k</i>	38,8 <i>k</i>	24,8k
$f_{sw(min)R}(Hz)$	510k	119 <i>k</i>	155k	149 <i>k</i>
$\Delta_{fswR}(Hz)$	382 <i>k</i>	86k	116k	124 <i>k</i>

Tabela 5 – Parâmetros de operação do conversor IBLLCRHB para possíveis projetos em análise.

A partir da escolha do Projeto 4, demais parâmetros foram definidos e listados através da Tabela 6.

Tabela 6 - Parâmetros de projeto do conversor IBLLCRHB

Parâmetro	Símbolo	Valor
Relação de transformação	п	10
Frequência de ressonância série	f_o	20 kHz
Capacitância série	C_s	2 x 44 <i>n</i> F
Indutância série	L_s	720µH
Indutância de magnetização do transformador	L_p	1,29 <i>m</i> H
Razão entre indutâncias série/paralela	λ	0,5581
Impedância característica do filtro ressonante	Z_0	90,45
Fator de qualidade máximo no modo direto	Q_{dmax}	0,465
Fator de qualidade máximo no modo reverso	Qrmax	0,742

Os capítulos a seguir serão dedicados ao desenvolvimento do protótipo do conversor IBLLCRHB e obtenção de resultados experimentais.

4 PROTÓTIPO DO CONVERSOR IBLLCRHB E NANORREDE CC

4.1 PROTÓTIPO DO CONVERSOR IBLLCRHB

Foi construído um protótipo do conversor com o objetivo de validação da análise teórica, fluxo de potência bidirecional, regulação da tensão de barramento e carregamento de uma bateria.

O protótipo do conversor IBLLCRHB foi projetado para uma potência de 240W, sendo a potencia nominal da análise realizada no capítulo anterior. Os níveis de tensão do barramento CC e bateria foram mantidos em 380V e 24V, respectivamente.

Tendo o transformador como elemento mais complexo do conversor a ser construído, sua prototipação requer um projeto bem elaborado e cuidados em seu processo construtivo.

Considerando o transformador pelo modelo APR (SIMONE *et al.*, 2006) que tem por base apenas duas indutâncias: uma indutância série (equivalente a indutância de dispersão) e uma indutância paralela (equivalente a indutância de magnetização), este modelo está ilustrado na Figura 34.

Figura 34 Modelo APR do transformador.

A principal vantagem de se usar este modelo no projeto do transformador baseia-se na utilização de apenas um elemento magnetizante na estrutura do conversor, tornando-o mais compacto (menor volume) e mais interessante no ponto de vista de arquitetura de placas. No entanto, uma vez que tem-se apenas um elemento magnético há uma menor flexibilidade entre os valores de L_s e L_m .

Para fins construtivos, este transformador pode ter a disposição das bobibas baseada na Figura 35. Os enrolamentos foram dispostos de maneira desagregada através de um elemento separador. Esta separação permite o aumento proposital da dispersão, de forma que a relação L_s/L_p obtenha níveis mais elevados se comparados a transformadores com enrolamentos sobrepostos (BARBI; FONT; ALVES, 2002), sendo interessante esta aplicação visto que neste projeto $L_s/L_p = 0,55$.

Figura 35 Disposição das bobinas do transformador de alta frequência utilizado no protótipo.

No processo de construção do transformador, os enrolamentos secundários foram entrelaçados. Este procedimento foi necessário, visto uma uniformidade nas indutâncias dos dois enrolamentos. Deste modo, tem-se o transformador elaborado para este projeto na Figura 36. Os cálculos para a realização do projeto deste transformador estão detalhados no Apêndice A deste trabalho.

Figura 36 Fotografia do protótipo do transformador de alta frequência utilizado no projeto.

Para obter os valores de L_s e L_p basta realizar as medições nos testes de circuito aberto e curto-circuito. Abaixo, encontram-se as medições para as condições listadas a seguir:

- $L_{SO} = L_p + L_s = 2,01 mH$ (indutância primária com enrolamentos secundários em aberto);
- $L_{SS} = L_s = 720 \mu H$ (indutância primária com enrolamentos secundários em curto-circuito).

Deste modo, tem-se:

$$L_s = 720\mu HA;$$

 $L_p = 2,01m - 720\mu = 1,29mH.$

Foram utilizados MOSFETs em anti-paralelo com diodos, sendo estes últimos auxiliares no processo de retificação dependendo do modo de operação do conversor, visto que os diodos intrínsecos dos MOSFETs possuem certa limitação operacional. Os cálculos e a especificação detalhada destes semicondutores estão descritos no Apêndice A.

Com auxilio do software *Altium Designer* foi feito o protótipo do conversor IBLLCRHB. Esta placa possui além dos componentes básicos do circuito de potência outros elementos como: 3 slots para sensores, 4 slots para *drivers* de MOSFET, 2 divisores de tensão e *jumpers* de seleção. A utilização desses *jumpers* permite o protótipo operar em malha aberta ou malha fechada. Inserindo o jumper, a leitura de tensão será do divisor de tensão. Retirando o jumper, a leitura será do sinal de tensão ou corrente resultante de modo condicionado. A Figura 37 mostra o protótipo do conversor IBLLCRHB.

O desenvolvimento completo do esquemático e a arquitetura de protótipo do conversor IBLLCRHB são apresentados no Apêndice B.

Os *drivers* para acionamento dos MOSFETs foram projetados por alunos do Laboratório de Iluminação Moderna (NIMO) da UFJF. O projeto deste prioriza a simplicidade sem comprometer a eficácia. O optoacoplador foi utilizado para obter a amplificação e isolamento do sinal desejado. O acoplador ótico usado é adequado para aplicações de acionamento de *gate* dos interruptores semicondutores e permite a comutação de semicondutores de até 2A de corrente de pico de *gate*. A tensão de alimentação de 15V para o optoacoplador vem do conversor isolado CC-CC DCH010515S, cuja tensão de entrada é de 5V (ALBUQUERQUE *et al.*, 2017). O esquemático e o protótipo do *driver* podem ser ilustrados nas Figuras 38 (a) e 38 (b).

O microcontrolador utilizado para controle digital foi um processador de sinais digital (DSP) da *Texas Instruments* TIVA TM4C123G. Este microcontrolador, apesar de ser relativamente de baixo custo, possui um poderoso núcleo *ARM Cortex-M4F* de 32*bits*, funcionando a 80*MHz* com um desempenho de 100*DMIPS*, contendo uma unidade de ponto flutuante de precisão simples (compatível com *IEEE*754), 32*KB* de SRAM, 256 kB de memória *Flash* e periféricos que incluem, entre outros: 8 geradores de PWM com 2 saídas cada (16 saídas no total), 2 conversores A/D de 12*bits* e $1MS/s^5$ (com 12 canais analógicos de entrada), 8 módulos de comunicação serial assíncrona (*UART*) e 2 comparadores analógicos com capacidade de gerar interrupções externas para o processador. Pelo fato deste microcontrolador realizar cálculos

Figura 37 Fotografia do protótipo do conversor IBLLCRHB.

Figura 38 (a) Esquemático e (b) fotografia do protótipo do driver (ALBUQUERQUE et al., 2017).

diretamente em aritmética de ponto flutuante, não é necessário converter equações de diferenças em uma representação em ponto fixo (utilizando, por exemplo, a notação no formato numérico inteiro-quociente – IQ), facilitando em muito a implementação digital do controle. Esta placa foi utilizada neste trabalho para a implementação em malha aberta do conversor, podendo em trabalhos futuros ser utilizada em malha fechada. O código fonte de operação do conversor dos modos direto e reverso são apresentados no Apêndice C. A placa de desenvolvimento contendo o processador citado é mostrada na Figura 39, em conjunto a uma placa de interface especificamente projetada para acionamento do conversor. Nesta placa, baseiam-se os *buffers* analógicos necessários para tratar os dados de saída e fazer as leituras dos parâmetros (v_B , $i_B e v_{DC}$), assim como os *buffers* digitais que enviam os pulsos do PWM para os *drivers* dos MOSFETs encaixados à placa do conversor. Esta placa também é responsável por distribuir a alimentação necessária aos circuitos auxiliares do conversor (sensores e *drivers*). A conexão entre o conversor e a placa de interface é feita com dois cabos UTP (*unshielded twisted pair*), com 4 pares trançados, através de dois conectores RJ-45, sendo um conector responsável por receber sinais analógicos dos sensores e outro conector para enviar sinais digitais para os *drivers*, permitindo assim uma conexão robusta e flexível, ainda que compacta, entre controlador e conversor. O esquemático e a arquitetura da placa de interface com a placa de desenvolvimento do microcontrolador TIVA TM4C123G são apresentados no Apêndice D.

Figura 39 Fotografias da (a) placa de desenvolvimento do microcontrolador TIVA TM4C123G e (b) placa de interface confeccionada para compatibilizar o microcontrolador ao protótipo.

O diagrama completo de conexão do protótipo é mostrado na Figura 40.

Utilizando as equações de projeto e as análises feitas para o conversor IBLLCRHB nos modos direto e reverso, pode-se propor dois protótipos de nanorredes CC. Estas foram desenvolvidas no Núcleo de Iluminação Moderna (NIMO) da UFJF, baseada na operação do conversor bidirecional nos dois modos. Os dois modos de operação do conversor foram separados nas seções descritas a seguir.

4.2 PROTÓTIPO DA NANORREDE CC PARA OPERAÇÃO NO MODO DIRETO

Para emular os parâmetros do barramento CC, foi utilizada a fonte CA/CC 3001iX da *California Instruments* com faixa de tensão de 0 - 300VCA/CC e potência nominal de 15kVA ilustrada na Figura 41, no modo de saída em corrente alternada.

Microcontrolador TM4C123G

Figura 40 Diagrama completo de conexão do protótipo, com microcontrolador e comunicação serial.

Figura 41 Fotografia da fonte CA/CC California Instruments 3001iX.

Para atingir o nível de 380V, foi necessário realizar um ganho de tensão, visto que o valor máximo de saída da fonte é 300V. A partir desta condição, foi utilizado um nível CA de saída da fonte, em 60Hz acoplado a um transformador elevador, com relação de transformação N (1 : 3,5) e uma fonte linear. Sendo esta última para retificação e filtro de saída.

O transformador utilizado é mostrado na Figura 42 e possui os seguintes parâmetros: transformador trifásico 1.1kVA/60Hz, isolação em 0.6kV, 220/69.2V, conexão estrela/triângulo da marca EASA. Neste trabalho, foi realizada a conexão de apenas uma de suas pernas vista a necessidade de uma ligação monofásica do transformador.

A fonte California, neste experimento, está programada para uma saída CA em nível muito abaixo dos 380V. Logo após, uma ligação monofásica no transformador dá o ganho necessário para que o pico de tensão esteja próximo ao nível desejado para o barramento CC.

Figura 42 Fotografia do transformador trifásico utilizado para elevação de tensão para saída em 380V.

Para finalizar, a fonte linear faz a retificação e filtra as componentes CA para uma saída em tensão contínua e *ripple* em condições satisfatórias de utilização. A Figura 43 ilustra as condições de realização dos experimentos da nanorrede no modo direto.

Figura 43 Diagrama de conexão para obtenção do nível de 380V do barramento CC da nanorrede CC no modo direto.

No intuito de emular os parâmetros de uma bateria, foi utilizada uma carga resistiva com potencia nominal de 240W. O resistor utilizado no modo direto está ilustrado na Figura 44. Ele possui uma faixa entre $0 - 5.8\Omega$ e corrente nominal de 8.7*A* cada, da marca CENCO. Sendo utilizados 2 resistores em paralelo, totalizando uma resistência equivalente de 2.4 Ω e corrente nominal de 5*A* cada.

Deste modo, o esquemático da nanorrede CC em MD pode ser ilustrado pela Figura 45, sendo V_{DC} a tensão equivalente de saída do protótipo da nanorrede.

Figura 44 Fotografia do resistor utilizado como carga no modo direto.

Figura 45 Diagrama de conexão dos equipamentos da nanorrede CC no modo direto.

4.3 PROTÓTIPO DA NANORREDE CC PARA OPERAÇÃO NO MODO REVERSO

No modo reverso, tendo o conversor a finalidade de transferir potência da bateria para a nanorrede, foram criadas situações para resultar em uma tensão de entrada da bateria de 24*V* e corrente nominal de 10*A*.

A fonte CC de entrada (bateria, neste caso) foi implementada pela fonte 3000*iX* da *California Instruments*, mesma utilizada anteriormente no modo direto, porém neste caso no modo de corrente contínua, e não CA como na seção anterior. Nesta oportunidade, não foram necessários quaisquer elemento para adaptação de parâmetros elétricos, visto que esta fonte possui os níveis de tensão e corrente necessários para a realização do experimento. Para as cargas do barramento CC, optou-se por utilizar bancos de resistores da marca TRIEL, modelo CR-30E, ilustrado na Figura 46. Foram utilizados até 3 bancos associados em série para uma faixa de operação entre $600\Omega - 5k\Omega$, equilaventes a uma variação de 100% - 20% da carga nominal do barramento CC, respectivamente.

Figura 46 Fotografia do resistor utilizado como carga no modo reverso.

Deste modo, a Figura 47 ilustra o diagrama de conexão da nanorrede com o fluxo de potência da bateria para o barremento CC.

Figura 47 Diagrama de conexão dos equipamentos da nanorrede CC no modo reverso.

A partir desta estrutura, são realizados simulações e testes no conversor nos modos de operação direto e reverso, onde serão coletados vários resultados experimentais para uma futura análise.

5 VALIDAÇÃO E RESULTADOS EXPERIMENTAIS

Através do protótipo e das montagens realizadas para a nanorrede CC com o objetivo de testar o conversor em vários pontos de operação, fluxo de potência bidirecional, regulação da tensão de barramento e carregamento de uma bateria, foram obtidos resultados experimentais e de simulação deste conversor. Os dados dos experimentos foram coletados através do medidor de potência YOKOGAWA WT-230, como mostrado anteriormente e serão utilizados para análise dos modos de operação direta e reversa.

5.1 VALIDAÇÃO EM MD

Na primeira condição de verificação de funcionamento do conversor, foi realizado o processo de coleta dos níveis de diversos parâmetros experimentais como tensão, corrente e potência de entrada e saída em vários pontos de operação para análise da função de ganho direto $M_d(\Omega, Q_d)$, entre outras. As Tabelas 7, 8, 9 e 10 mostram as variações desses parâmetros para variações de carga em 20%, 40%, 60% e 100% da carga, respectivamente, considerando parâmetros nominais de saída como $V_B = 24V$ e $I_B = 10A$.

$f_{sw}(\mathbf{kHz})$	$V_{in}(\mathbf{V})$	$I_{in}(A)$	$P_{in}(\mathbf{W})$	$V_{out}(\mathbf{V})$	$I_{out}(A)$	$P_{out}(W)$	$\eta(\%)$	M_d
15	379,70	0,3758	142,60	35,30	3,0019	106,00	74,3	0,092968
16	380,53	0,2797	106,40	30,09	2,6126	78,60	73,9	0,079074
17	379,98	0,2682	101,90	29,41	2,6200	77,30	75,9	0,077399
18	380,11	0,2200	83,60	26,33	2,4121	63,50	76,0	0,069269
19	379,85	0,1858	70,60	23,93	2,2343	53,50	75,8	0,062999
20	379,80	0,1619	61,50	22,22	2,0945	46,50	75,6	0,058504
25	380,08	0,1067	40,50	17,80	1,7117	30,50	75,3	0,046832
30	380,01	0,0874	33,20	15,92	1,5498	24,70	74,4	0,041894
40	380,31	0,0714	27,10	14,21	1,3909	19,80	73,1	0,037364
50	380,21	0,0643	24,50	13,28	1,3091	17,40	71,0	0,034928
60	380,40	0,0605	23,00	12,73	1,2561	16,00	69,6	0,033465
80	380,63	0,0560	21,30	11,96	1,1833	14,20	66,7	0,031422

Tabela 7 – Resultados Experimentais do conversor IBLLCRHB no modo direto para uma resistência de carga fixa equivalente a 20% da carga nominal $(0, 2Q_{Dmax})$

Através das Figuras 48 e 49 é possível comparar o ganho estático teórico (já analisado no Capítulo 3) com os de simulação e experimental, respectivamente, para as mesmas condições em vários níveis de carga. Para a simulação do conversor IBLLCRHB no modo direto, uma tensão de 380V foi fixada no barramento CC. Foram coletadas amostras com Ω variando entre $0.75 \le \Omega \le 4$, que corresponde a uma variação na frequência de comutação entre 15kHz - 80kHz, faixa esta que contorna o ponto de operação para uma tensão de barramento $V_{DC} = 380V$ e tensão da bateria de $V_B = 24V$.

Figura 48 Curvas de ganho estático direto para análise teórica e de simulação do conversor IBLLCRHB em (a) 20% (b) 40% (c) 60% e (d) 100% da carga nominal.

Figura 49 Curvas de ganho estático direto para análise teórica e experimental do conversor IBLLCRHB em (a) 20% (b) 40% (c) 60% e (d) 100% da carga nominal.

$f_{sw}(\mathbf{kHz})$	$V_{in}(\mathbf{V})$	$I_{in}(A)$	$P_{in}(\mathbf{W})$	$V_{out}(\mathbf{V})$	$I_{out}(A)$	$P_{out}(W)$	$\eta(\%)$	M_d
15	379,98	0,6837	259,8	34,30	6,1408	210,6	81,1	0,090267
16	379,28	0,4815	182,6	29,22	5,0895	148,7	81,4	0,077041
17	380,00	0,4138	157,2	27,13	4,7217	128,1	81,5	0,071395
18	378,93	0,3702	140,3	25,78	4,4794	115,5	82,3	0,068034
19	379,74	0,3083	117,0	23,54	4,0783	96,0	82,1	0,06199
20	380,04	0,2658	101,0	21,84	3,7784	82,5	81,7	0,057468
25	380,04	0,1682	63,9	17,18	2,9558	50,8	79,5	0,045206
30	379,99	0,1320	50,1	15,08	2,5874	39,0	77,8	0,039685
40	380,29	0,1018	38,7	12,93	2,2301	28,9	74,7	0,034000
50	380,03	0,0879	33,4	11,86	2,0351	24,1	72,2	0,031208
60	379,96	0,0796	30,2	11,10	1,9026	21,1	69,9	0,029214
80	380,00	0,0691	26,3	10,05	1,7217	17,3	65,8	0,026447

Tabela 8 – Resultados Experimentais do conversor IBLLCRHB no modo direto para uma resistência de carga fixa equivalente a 40% da carga nominal $(0, 4Q_{Dmax})$

Tabela 9 – Resultados Experimentais do conversor IBLLCRHB no modo direto para uma resistência de carga fixa equivalente a 60% da carga nominal $(0, 6Q_{Dmax})$

$f_{sw}(\mathbf{kHz})$	$V_{in}(\mathbf{V})$	$I_{in}(\mathbf{A})$	$P_{in}(W)$	$V_{out}(\mathbf{V})$	$I_{out}(A)$	$P_{out}(\mathbf{W})$	$\eta(\%)$	M_d
15	380,08	0,708	269,09	32,20	7,028	226,33	84,1	0,084719
16	380,21	0,608	231,30	29,00	6,678	193,60	83,7	0,076274
17	380,13	0,535	203,20	26,96	6,314	170,20	83,8	0,070923
18	380,09	0,444	168,80	24,33	5,810	141,40	83,8	0,064011
19	380,35	0,381	144,70	22,36	5,404	120,80	83,5	0,058788
20	380,17	0,338	128,40	20,82	5,134	106,90	83,3	0,054765
25	380,11	0,217	82,30	16,20	4,068	65,90	80,1	0,042619
30	380,39	0,167	63,70	14,07	3,508	49,40	77,6	0,036988
40	380,10	0,126	48,00	11,75	2,983	35,10	73,1	0,030913
50	380,00	0,106	40,40	10,43	2,669	27,80	68,8	0,027447
60	380,08	0,094	35,80	9,59	2,453	23,50	65,6	0,025232
80	380,27	0,080	30,40	8,45	2,149	18,20	59,9	0,022221

É possível identificar algumas diferenças entre os modelos matemático, digital (obtido por simulação) e real (experimental). De modo geral, os ganhos mantiveram-se próximos da análise teórica, sendo maiores para frequências mais baixas (onde o conversor drena maior potência) e menores para para frequências mais altas (onde o conversor drena menor potência). Isto pode ser explicado por vários fatores como: diferenças entre o modelo APR e o modelo real do transformador, diferenças na análise em FHA e modelo real do conversor, variação das indutâncias L_s e L_p pela variação da frequência de comutação e processos construtivos do transformador.

Em uma segunda condição de verificação de funcionamento do conversor, foram realizados testes em condições nominais de operação. Novamente, numa comparação entre simulação e resultados experimentais, as Figuras 50 e 51 mostram as formas de onda dos parâmetros de

$f_{sw}(\mathbf{kHz})$	$V_{in}(\mathbf{V})$	$I_{in}(\mathbf{A})$	$P_{in}(W)$	$V_{out}(\mathbf{V})$	$I_{out}(A)$	$P_{out}(W)$	$\eta(\%)$	M_d
15	380,21	1,200	459,8	30,99	12,57	389,4	84,69	0,081502
16	380,88	0,877	334,0	26,47	10,74	284,2	85,09	0,069500
17	380,37	0,792	301,2	25,18	10,19	256,5	85,17	0,066204
18	380,56	0,698	266,5	23,70	9,58	227,0	85,17	0,062277
19	380,07	0,598	227,2	21,93	8,81	193,2	85,03	0,057711
20	380,29	0,511	194,3	20,43	8,08	165,1	84,99	0,053727
25	380,86	0,313	119,2	15,45	6,16	95,1	79,79	0,040562
30	380,13	0,232	88,2	12,92	5,15	66,5	75,43	0,033991
40	380,13	0,164	62,5	10,21	4,10	41,9	66,96	0,026862
50	380,28	0,135	51,3	8,84	3,53	31,2	60,89	0,023248
60	380,14	0,116	43,9	7,89	3,16	24,9	56,75	0,020746
80	380,29	0,101	38,5	6,71	2,68	18,0	46,64	0,017642

Tabela 10 – Resultados Experimentais do conversor IBLLCRHB no modo direto para uma resistência de carga fixa equivalente a 100% da carga nominal (Q_{Dmax})

tensão e corrente nos MOSFETs nos lado de alta e baixa tensão do transformador para simulação e experimental, respectivamente. Como observado em S_1 e S_{R1} , os MOSFETs do lado de alta tensão comutam em ZVS, enquanto que no lado de baixa tensão os MOSFETs operam como diodos em ZCS.

Figura 50 Formas de onda de simulação de tensão e corrente dreno-fonte durante o modo direto dos MOSFETs (a) S_1 . (b) S_2 . (c) S_{R1} . (d) S_{R2} .

Figura 51 Formas de onda experimental da tensão e corrente durante o modo direto nos MOSFETs S_1 e S_{R1} .

Pode-se identificar que as formas de onda nos MOSFETs tem as mesmas características de valores de pico e médio para a mesma frequência de comutação, tanto para as simulações quanto para os resultados experimentais.

A Figura 52 mostra as formas de onda da corrente no indutor série-ressonante (L_s) e tensão nos capacitores série-ressonante superior (C_{s1}, C_{s2}) , além dos sinais de disparo enviados pelo microcontrolador aos interruptores S_1 e S_2 . O conversor opera com frequência de comutação de 16.5*kHz* (abaixo da frequência de ressonância série de 20*kHz*), podendo-se observar uma aproximação da corrente ressonante série em uma forma de onda senoidal, como já esperado na análise teórica e simulações anteriores.

Figura 52 Formas de onda experimental de parâmetros dos elementos ressonantes e sinais microcontrolados para acionamento de S_1 e S_2 .

Complementando a visualização dos resultados experimentais, a Figura 53 mostra o plano de fases experimental entre $I_{Ls}xV_{CS2}$.

Figura 53 Plano de fases entre os parâmetros dos elementos ressonantes $I_{Ls}xV_{CS2}$ no modo direto.

Através dos testes de eficiência mostrados na Figura 54, foi verificado que o protótipo no modo direto teve um rendimento máximo de 86%, o que não fica muito distante dos rendimentos encontrados para conversores com topologias semelhantes a esta na literatura (92% em Jung e Kwon (2007) e 92% em Hua, Fang e Lin (2016)). A vantagem encontrada foi um maior rendimento para cargas mais leves, se comparado com estas mesmas topologias encontradas na literatura.

Figura 54 Curva de eficiência do conversor IBLLCRHB no modo direto.

5.2 VALIDAÇÃO EM MR

No modo reverso, o mesmo processo de coleta dos níveis de parâmetros de entrada e saída do conversor foi realizado. As Tabelas 11 ,12 ,13 e 14 mostram as variações desses parâmetros considerando as cargas em 30%, 60%, 80% e 100% da carga, respectivamente, considerando parâmetros nominais como $V_B = 24V$ e $I_B = 10A$.

Tabela 11 – Resultados Experimentais do conversor IBLLCRHB no modo reverso para uma resistência de carga fixa equivalente a 30% da carga nominal $(0, 3Q_{Rmax})$

$f_{sw}(\mathbf{kHz})$	$V_{in}(\mathbf{V})$	$I_{in}(\mathbf{A})$	$P_{in}(\mathbf{W})$	$V_{out}(\mathbf{V})$	$I_{out}(A)$	$P_{out}(W)$	$\eta(\%)$	M_d
20	24,07	3,845	0,0925	371,26	0,191	0,0706	76,3	15,42418
25	24,09	3,704	0,0892	370,66	0,190	0,0703	78,8	15,38647
30	24,00	3,558	0,0854	356,32	0,182	0,0649	76,0	14,84667
40	24,03	3,282	0,0789	335,30	0,170	0,0571	72,4	13,95339
50	24,06	3,063	0,0737	318,43	0,161	0,0514	69,7	13,23483
60	24,08	2,866	0,0690	303,68	0,154	0,0467	67,7	12,61130
80	24,02	2,545	0,0611	277,20	0,141	0,0390	63,8	11,54038
100	24,06	2,275	0,0547	254,89	0,130	0,0330	60,3	10,59393
120	24,00	2,030	0,0487	235,06	0,120	0,0281	57,7	9,794167
140	24,02	1,827	0,0439	217,35	0,111	0,0240	54,7	9,048709
160	24,04	1,676	0,0403	201,79	0,103	0,0207	51,4	8,393927
180	24,06	1,510	0,0363	186,11	0,095	0,0177	48,8	7,735245
200	24,08	1,364	0,0329	172,37	0,088	0,0152	46,2	7,158223

Tabela 12 – Resultados Experimentais do conversor IBLLCRHB no modo reverso para uma resistência de carga fixa equivalente a 60% da carga nominal $(0, 6Q_{Rmax})$

$f_{sw}(\mathbf{kHz})$	$V_{in}(\mathbf{V})$	$I_{in}(\mathbf{A})$	$P_{in}(\mathbf{W})$	$V_{out}(\mathbf{V})$	$I_{out}(A)$	$P_{out}(W)$	$\eta(\%)$	M_d
20	24,02	6,208	149,1	351,24	0,345	121,1	81,2	14,62281
25	24,06	5,995	144,2	335,35	0,330	110,7	76,8	13,93807
30	24,02	5,464	131,2	309,78	0,305	94,6	72,1	12,89675
40	24,04	4,518	108,6	267,78	0,264	70,7	65,1	11,13894
50	24,04	3,841	92,3	236,89	0,234	55,5	60,1	9,853993
60	24,09	3,364	81,0	214,46	0,213	45,6	56,3	8,902449
80	24,09	2,670	64,3	179,94	0,178	32,1	49,9	7,469489
100	24,03	2,212	53,1	155,71	0,154	23,9	45,0	6,479817
120	24,08	1,865	44,9	137,79	0,136	18,7	41,6	5,722176
140	24,01	1,600	38,4	122,97	0,121	14,9	38,8	5,121616
160	24,04	1,425	34,2	111,42	0,110	12,3	36,0	4,634775
180	24,06	1,254	30,2	101,28	0,100	10,2	33,8	4,209476
200	24,09	1,117	26,9	92,96	0,092	8,6	32,0	3,858863

Análogo à seção anterior, nesta condição o barramento CC é exposto a variações da frequência de comutação para uma carga resistiva em vários níveis de carga da nanorrede. Considerando $V_B = 24V$, através das Figuras 55 e 56 é possível comparar o ganho estático teórico

$f_{sw}(\mathbf{kHz})$	$V_{in}(\mathbf{V})$	$I_{in}(\mathbf{A})$	$P_{in}(\mathbf{W})$	$V_{out}(\mathbf{V})$	$I_{out}(A)$	$P_{out}(\mathbf{W})$	η(%)	M_d
20	24,11	7,950	191,7	344,53	0,456	157,1	82,0	14,28992
25	24,08	7,450	179,4	318,32	0,420	133,7	74,5	13,21927
30	24,00	6,422	154,1	283,09	0,373	105,5	68,5	11,79542
40	24,05	4,947	119,0	232,94	0,307	71,5	60,1	9,685655
50	24,01	4,009	96,2	199,07	0,262	52,2	54,3	8,291129
60	24,02	3,390	81,5	175,18	0,231	40,4	49,6	7,293089
80	24,03	2,650	63,7	144,35	0,190	27,4	43,0	6,007074
100	24,02	2,135	51,3	122,27	0,160	19,6	38,2	5,090341
120	24,06	1,774	42,7	106,86	0,140	14,9	34,9	4,441397
140	24,00	1,510	36,2	94,68	0,124	11,7	32,3	3,945000
160	24,02	1,340	32,2	85,38	0,112	9,6	29,8	3,554538
180	24,04	1,179	28,3	77,62	0,102	7,9	27,9	3,228785
200	24,05	1,047	25,2	71,17	0,093	6,6	26,2	2,959252

Tabela 13 – Resultados Experimentais do conversor IBLLCRHB no modo reverso para uma resistência de carga fixa equivalente a 80% da carga nominal $(0, 8Q_{Rmax})$

(já analisado nos capítulos anteriores) com os ganhos de simulação e o ganho experimental, respectivamente. Foram coletadas amostras com Ω variando entre $1 \le \Omega \le 10$, que corresponde a uma variação na frequência de comutação na faixa de 20kHz - 200kHz, faixa esta que contorna o ponto de operação para uma tensão da bateria de $V_B = 24V$ e tensão do barramento de $V_{DC} = 380V$.

Tabela 14 – Resultados Experimentais do conversor IBLLCRHB no modo reverso para uma resistência de carga fixa equivalente a 100% da carga nominal (Q_{Rmax})

$f_{sw}(\mathbf{kHz})$	$V_{in}(\mathbf{V})$	$I_{in}(\mathbf{A})$	$P_{in}(\mathbf{W})$	$V_{out}(\mathbf{V})$	$I_{out}(\mathbf{A})$	$P_{out}(W)$	η(%)	M_d
20	24,08	9,533	229,6	337,15	0,557	187,9	81,8	14,00125
25	24,01	8,597	206,4	300,47	0,497	149,3	72,3	12,51437
30	24,00	7,205	172,9	261,16	0,432	112,9	65,3	10,88167
40	24,06	5,282	127,1	206,98	0,343	71,0	55,9	8,602660
50	24,01	4,176	100,2	172,92	0,286	49,5	49,4	7,201999
60	24,01	3,445	82,7	149,29	0,247	36,9	44,6	6,217826
80	24,02	2,565	61,6	118,30	0,197	23,3	37,8	4,925062
100	24,08	2,073	49,9	99,81	0,165	16,5	33,1	4,144934
120	24,03	1,708	41,1	86,34	0,142	12,3	29,9	3,593009
140	24,06	1,458	35,1	76,47	0,126	9,7	27,6	3,178304
160	24,09	1,295	31,2	68,95	0,114	7,9	25,3	2,862183
180	24,02	1,131	27,2	62,27	0,103	6,4	23,5	2,592423
200	24,02	1,009	24,2	57,26	0,095	5,4	22,3	2,383847

Figura 55 Curvas de ganho estático reverso para análise teórica e de simulação do conversor IBLLCRHB em (a) 20% (b) 40% (c) 60% e (d) 100% da carga nominal.

Figura 56 Curvas de ganho estático reverso para análise teórica e experimental do conversor IBLLCRHB em (a) 20% (b) 40% (c) 60% e (d) 100% da carga nominal.

Para os resultados de simulação, houve uma grande aproximação com os resultados teóricos. Já para os resultados experimentais, neste caso, os ganhos manteram-se abaixo da análise teórica, principalmente para frequências mais baixas (onde o conversor drena maior potência). Isto pode ser explicado por alguns fatores como: diferença entre o modelo APR e o modelo real do transformador, análise em FHA e modelo real do conversor, variação das indutâncias L_s e L_p pela variação da frequência de comutação e processos construtivos do transformador.

Uma segunda observação deste caso está no comportamento dos dispositivos semicondutores do conversor. Para identificar a comutação suave em toda a faixa de operação, foram observadas as formas de onda de simulação em todos os MOSFET's em casos extremos como: carga máxima e tensão mínima de entrada e carga mínima na nanorrede e tensão máxima da bateria. Estas situações são mostradas nas Figuras 57 e 58, respectivamente. Através desta simulação é possível identificar que para casos extremos de operação no modo reverso o conversor IBLLCRHB opera em ZVS para os MOSFET'S S_{R1} / S_{R2} e ZCS para S_1 / S_2 , verificando a condição de comutação-suave para todos os interruptores em condições extremas do projeto.

Figura 57 Formas de onda de tensão e corrente dreno-fonte durante o modo reverso dos MOSFETs (a) S_1 . (b) S_2 . (c) S_{R1} . (d) S_{R2} .

Como observado nestas simulações, os ganhos do modo reverso obtiveram níveis satisfatórios quando comparados aos ganhos de projeto (teóricos). Em relação a comutação suave,

Figura 58 Formas de onda de tensão e corrente dreno-fonte durante o modo reverso dos MOSFETs (a) S_1 . (b) S_2 . (c) S_{R1} . (d) S_{R2} .

foram estudadas 2 duas operações extremas de projeto: carga máxima e tensão mínima da bateria, assim como carga mínima de projeto e tensão máxima da bateria. Para ambos os casos, foi observados que os MOSFETs ativos (neste caso S_{R1} e S_{R2}) operavam ZVS enquanto que os MOSFETs passivos (neste caso S_1 e S_2) operavam em ZCS, mantendo um padrão de comutação suave para todos os MOSFET's em ambos os modos de operação.

Para resultados experimentais, foram realizados testes em condições nominais de operação. A Figura 59 mostra os parâmetros de tensão e corrente nos MOSFETs nos lado de alta e baixa tensão do transformador. Como observado, em S_1 e S_{R1} , os MOSFETs do lado de alta tensão comutam em ZVS, enquanto que no lado de baixa tensão os MOSFETs operam como diodos em ZCS.

A Figura 60 mostra as formas de onda da corrente no indutor série-ressonante (L_s) e tensão nos capacitores série-ressonante superior (C_{s1}, C_{s2}) , além dos sinais de disparo enviados pelo microcontrolador aos interruptores S_{R1} e S_{R2} . O conversor opera com frequência de comutação de 20kHz (na frequência de ressonância série), podendo-se observar uma corrente ressonante série em uma forma senoidal, como já esperado na análise teórica e simulações anteriores.

Complementando a visualização dos resultados experimentais, a Figura 61 mostra o plano de fases entre $I_{Ls}xV_{CS1}$.

Figura 59 Formas de onda experimental da tensão e corrente durante o modo reverso nos MOSFETs S_1 e S_{R2} .

Figura 60 Formas de onda experimental de parâmetros dos elementos ressonantes e sinais microcontrolados para acionamento de S_1 e S_2 no modo reverso.

Figura 61 Plano de fases entre os parâmetros dos elementos ressonantes ILsxVCS1 no modo reverso.

Através dos testes de eficiência mostrados na Figura 62, foi verificado que o protótipo no modo reverso teve um rendimento máximo de 82%, tomando-se como um rendimento comum diante de conversores bidirecionais de outra categoria, porém abaixo do esperado tratando-se de um conversor com comutação suave. No entanto, a vantagem encontrada foi um maior rendimento para cargas leves, se comparado a outras topologias, sendo que o barramento CC possui uma faixa extensa de carga.

Figura 62 Curva de eficiência do conversor IBLLCRHB para vários pontos de carga no modo reverso.

6 CONCLUSÃO E PROPOSTAS DE TRABALHOS FUTUROS

Neste trabalho, inicialmente, apresentou-se o panorama sobre energia elétrica no Brasil e no mundo, justificando a necessidade sobre o aumento de oferta de energia elétrica, as limitações da utilização de combustíveis fósseis, as vantagens da diversificação de fontes geradoras de energia não poluentes. Foram apresentadas as mudanças que vem ocorrendo no sistema elétrico de potência. Consequentemente, a introdução de microgeração e surgimento de novos conceitos como nanorredes que se apresentam de forma promissora para a sustentação da produção da energia elétrica.

A nanorrede, tema desta dissertação, foi apresentada, ressaltando algumas vantagens na utilização da arquitetura em tensão contínua e justificando os níveis de tensão nos barramentos de tensão que esta microrrede deverá atuar. Também foi discutida a necessidade de um sistema de armazenamento de energia como forma a aumentar a disponibilidade de energia elétrica do sistema, de forma a adequar os picos de geração com o consumo de energia. A utilização de um sistema de armazenamento de energia, numa nanorrede de tensão contínua, demanda a necessidade de um conversor bidirecional, proporcionando o fluxo de potência entre banco de baterias e barramento, de forma bidirecional de acordo ao estado da energia num determinado momento. Atrelada a essa necessidade, apresentou-se a proposta do conversor bidirecional denominado de Meia-ponte LLC Ressonante, como uma interface entre o barramento CC e o banco de baterias, de forma a regular a tensão no barramento ou realizar o carregamento do banco de bateria.

Foram estudadas algumas topologias de conversores bidirecionais isolados e não isolados. Por características do projeto (níveis de ganho estático), optou-se por uma topologia isolada. Dentre os vários tipos destas topologias, os conversores ressonantes possuem uma faixa extensa para comutação suave, tanto para os interruptores semicondutores primários quanto para os secundários, seja por ZVS ou ZCS, o que não ocorre em outras topologias bidirecionais isoladas já consolidadas como o DHB e DAB, onde sua faixa de comutação suave tem consideráveis restrições.

Entre os conversores ressonantes, o IBLLCRHB mostrou-se interessante quanto às características construtivas e de ganho estático, visto que um único elemento pode ser aproveitado desenpenhando todos os elementos magnéticos da estrutura do conversor ($L_s e L_p$). Portanto, temse que o transformador é aproveitado tanto em suas características de dispersão, magnetização e obviamente por relação de ganho, não havendo necessidade de projeto de qualquer outro elemento magnético. No entanto, sendo um único elemento a representar todos os magnéticos, essa relação entre indutâncias λ torna-se "amarrada", impondo um projeto de magnético mais complexo e uma execução minuciosa deste elemento, se comparado a estruturas com magnéticos independentes. A escolha por dispor os enrolamentos de maneira desagregada, através de um elemento separador, permitiu um aumento proposital da dispersão, vista a necessidade do projeto. E por último, a proposta por divisão da capacitância série, resultando em uma redução dos níveis de corrente *drain-source* nos MOSFETs de alta tensão se comparado a estrutura LLC série-paralela convencional.

Através das requisições, estudo e análise da topologia, curvas de ganho direto e reverso foram analisadas para vários projetos, sendo exemplificados quatro deles neste trabalho. Foram modificados vários parâmetros entre cada projeto e constatado que para uma operação de interruptores ativos em ZVS, o conversor IBLLCRHB deveria operar na faixa de frequências estabelecidas entre (f_{sp} , f_o) para o modo direto e maior que f_o no modo reverso. Diante destas condições, foi identificado que f_o não deveria ser alto em termos de níveis de frequência de comutação, pois isto implicaria em operações em frequências bastante elevadas no modo reverso, para baixas cargas na nanorrede. No entanto, caso ela seja muito baixa, poderia entrar em faixas de operação incomodas ao ouvido humano, no modo direto. A partir daí, várias combinações entre elementos ressonantes foram estabelecidas, onde chegou-se ao Projeto 4 a ser executado, com boa faixa de frequência de comutação e operação em ZVS para os interruptores ativos nos modos direto e reverso.

Estudos de casos foram realizados através de simulações nos modos direto e reverso. Foi constatada a fidelidade dos ganhos de tensão em ambos os modos de operação, quando comparados à análise teórica do conversor. Para comutação suave, foi identificado operação em ZVS para interruptores ativos e ZCS para interruptores passivos nos 2 modos, tendo o conversor sido exposto a condições extremas de operação no modo reverso (Q_{Rmin}, V_{Bmax} e Q_{Rmax}, V_{Bmin}).

Em termos de estrutura, o processo de montagem da nanorrede CC consagrou-se com sucesso, visto a reprodução dos parâmetros nominais do banco de baterias e barramento CC nos modos de operação direta e reversa, respectivamente.

Através dos resultados experimentais foi possível a validação da bidirecionalidade do protótipo, visto a transferência de potência para os 2 modos de operação. No modo direto, o conversor operou em ZVS para os MOSFETs do lado de alta tensão e ZCS para os MOSFETs de baixa tensão. No modo reverso, o conversor operou em ZVS para os MOSFETs do lado de baixa tensão e ZCS para os MOSFETs de alta tensão. As formas de onda encontradas possuem as mesmas características que a análise teórica e resultados de simulação.

Para os ganhos estáticos, houve no modo direto uma grande aproximação dos resultados experimentais se comparados aos ganhos teóricos. Já no modo reverso, ocorreu uma diferença considerável entre ganhos estáticos teórico e experimental, porém com mesmas características. Estas variações podem ser explicadas por diferenças entre os modelos matemático e o modelo real, além do processo construtivo, principalmente do transformador que envolvem dois elementos magnéticos com valores dependentes no mesmo componente.

Em termos de eficiência, foi identificado um rendimento máximo de 86% no modo direto e 82% no modo reverso, sendo um pouco abaixo do esperado para conversores desta

categoria, porém mais elevado que outros IBDCs não ressonantes. Alguns fatores puderam contribuir para que este rendimento não chegasse ao esperado, como a utilização de inversores com apenas 2 interruptores semicondutores (*half-bridge* para MD e *push-pull* para MR), impondo nestes componentes grandes esforços de tensão e corrente, se comparados aos inversores *full-bridge*. Para o *push-pull*, em especial, devido ao alto fator na relação de ganho de tensão, qualquer perda mínima durante o processamento de energia ocasiona uma redução considerável na tensão de saída. Vale salientar também que não foram utilizados os componentes mais adequados na construção do conversor, impactando negativamente no rendimento. É esperado um aumento deste nível de eficiência com a melhoria dos processos construtivos deste conversor, principalmente do transformador. O modelo APR foi utilizado para projeto, não havendo um estudo mais aprofundado sobre este elemento ou outro modelo a ser utilizado, visto o foco da dissertação estar concentrado na análise da topologia como um todo. Deixando, deste modo uma oportunidade para serem pesquisados novos modelos e estruturas de transformadores a serem empregados neste conversor.

Para trabalhos futuros, pode-se refinar as aproximações matemáticas e melhorar os processos construtivos, principalmente do transformador HF do conversor. Uma implementação com baterias também seria interessante para que se possa abordar sobre características específicas de carga e descarga destes dispositivos. Além disso, um estudo e implementação da modelagem em pequenos sinais e controle do conversor poderiam ser realizados. Esta modelagem, torna-se mais complexa em conversores que operam por frequência de comutação variável, pois os métodos tradicionais por modelos médios, amplamente difundidos entre conversores PWM, eliminam as informações da frequência de comutação, perdendo deste modo, propriedades dinâmicas do conversor (PARK *et al.*, 2015; SHAHZAD; IQBAL; TAIB, 2014). Algumas das alternativas para a modelagem em pequenos sinais, poderia ser o método da função por descrição estendida (YANG, 1994) ou métodos envolvendo processamento digital de sinais através de identificação de sistemas (DRGONA; FRIVALDSKY; SIMONOVÁ, 2011). Por último, para aumentar a eficiência do conversor, a implementação da retificação síncrona (REUSCH; STRYDOM, 2014; ZHANG *et al.*, 2012) poderia ser aplicada.

PRODUÇÃO CIENTÍFICA RESULTANTE DESTE MESTRADO

Artigos publicados em congressos nacionais:

COIMBRA, J. P; PONTARA, R; LOURES, L; ALMEIDA, P. An Isolated Bidirectional Softswitching Converter Based on LLC Resonant Half-bridge With Synchronous Rectification, Brazilian Power Electronics Conference, IEEE, Juiz de Fora, 2017.

REFERÊNCIAS

ALBUQUERQUE, V. *et al.* Development of a compact platform for power converter prototyping. IEEE, p. 1–6, 2017.

ALMEIDA, P. S. *et al.* Síntese de conversores ressonantes com alto fator de potência e alta eficiência para o acionamento de diodos emissores de luz. Universidade Federal de Juiz de Fora, 2014.

BARBI, I.; FONT, C. H. I.; ALVES, R. L. **Projeto físico de indutores e transformadores**. *Documento Interno (INEP–2002)*, 2002.

BERSANI, A.; DUMAIS, A.; KHARE, S. **DC/dc llc reference design using the dspic dsc**. *Microchip Technology Inc., Application Note AN1336*, p. 1–82, 2010.

CARDOSO, R. L. *et al.* Conversores CC-CAs bidirecionais isolados em alta frequência. Florianópolis, SC, 2012.

COIMBRA, J. P. An Isolated Bidirectional Soft-switching Converter Based on LLC Resonant Half-bridge With Synchronous Rectification. *Brazilian Power Electronics Conference*, IEEE, 2017.

CORTIZO, P. Revisão de circuitos magnéticos - notas de aula da disciplina Fontes CC e CA. UFMG, 2014.

DESCHAMPS, E. Análise de conversores ressonantes com método no domínio da frequência e realização de controle do fluxo de potência com frequência de ressonância variável. 1990.

DRGONA, P.; FRIVALDSKY, M.; SIMONOVÁ, A. A New Approach of Control System Design for LLC Resonant Converter. In: *MATLAB for Engineers-Applications in Control, Electrical Engineering, IT and Robotics.* [S.1.]: InTech, 2011.

ERICKSON, R. W.; MAKSIMOVIC, D. **Fundamentals of power electronics**. Springer Science & Business Media, 2007.

FEI, C.; LEE, F. C.; LI, Q. **High-Efficiency High-Power-Density LLC Converter With an Integrated Planar Matrix Transformer for High-Output Current Applications**. *IEEE Transactions on Industrial Electronics*, IEEE, v. 64, n. 11, p. 9072–9082, 2017.

GOLDEMBERG, J.; LUCON, O. Energia e meio ambiente no Brasil. *Estudos Avançados*, SciELO Brasil, v. 21, n. 59, p. 7–20, 2007.

GU, W.-J.; LIU, R. *High frequency push-pull converter with input power factor correction*. [S.l.]: Google Patents, 1996. US Patent 5,510,974.

GUERRERO, J. M. *et al.* Advanced control architectures for intelligent microgrids—Part **II: Power quality, energy storage, and AC/DC microgrids**. *IEEE Transactions on Industrial Electronics*, IEEE, v. 60, n. 4, p. 1263–1270, 2013.

HAEBERLIN, H. Evolution of inverters for grid connected PV-systems from 1989 to 2000. *measurement*, v. 2, n. 1, 2001.

HAGA, H.; KUROKAWA, F. Modulation Method of a Full-Bridge Three-Level LLC Resonant Converter for Battery Charger of Electrical Vehicles. *IEEE Transactions on Power Electronics*, IEEE, v. 32, n. 4, p. 2498–2507, 2017.

HUA, C.-C.; FANG, Y.-H.; LIN, C.-W. LLC resonant converter for electric vehicle battery chargers. *IET Power Electronics*, IET, v. 9, n. 12, p. 2369–2376, 2016.

ISLAM, M. R.; GUO, Y.; ZHU, J. A high-frequency link multilevel cascaded mediumvoltage converter for direct grid integration of renewable energy systems. *IEEE Transactions on Power Electronics*, IEEE, v. 29, n. 8, p. 4167–4182, 2014.

JUNG, J.-h.; KWON, J.-g. Theoretical analysis and optimal design of LLC resonant converter. *Power Electronics and Applications, 2007 European Conference on*, IEEE, p. 1–10, 2007.

KHAZAEI, J. *et al.* Real-time digital simulation-based modeling of a single-phase singlestage PV system. *Electric Power Systems Research*, Elsevier, v. 123, p. 85–91, 2015.

KRISMER, F. *Modeling and optimization of bidirectional dual active bridge DC-DC converter topologies*. Tese (Doutorado) — Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 19177, 2010, 2010.

LIU, T. *et al.* A novel precise design method for LLC series resonant converter. *Telecommunications Energy Conference, 2006. INTELEC'06. 28th Annual International*, IEEE, p. 1–6, 2006.

MAINALI, K.; ORUGANTI, R. Conducted EMI mitigation techniques for switch-mode power converters: A survey. *IEEE Transactions on Power Electronics*, IEEE, v. 25, n. 9, p. 2344–2356, 2010.

MORITA, K. Novel ultra low-noise soft switch-mode power supply. *Telecommunications Energy Conference, 1998. INTELEC. Twentieth International*, IEEE, p. 115–122, 1998.

MUROYAMA, S.; SAKAKIBARA, K. **Operating frequency range reduction in a series resonant converter**. *Electronics and Communications in Japan (Part I: Communications)*, Wiley Online Library, v. 69, n. 12, p. 82–89, 1986.

PARK, K.-H. *et al.* **Design consideration of CC-CV controller of LLC resonant converter for Li-ion battery charger**. *Future Energy Electronics Conference (IFEEC), 2015 IEEE 2nd International*, IEEE, p. 1–6, 2015.

POMILIO, J. A. Fontes chaveadas. publicação FEE, 1995.

REUSCH, D.; STRYDOM, J. Evaluation of gallium nitride transistors in high frequency resonant and soft-switching DC-DC converters. *Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE*, IEEE, p. 464–470, 2014.

RUSELER, A. *et al.* Conversor CC-CC Zeta-Sepic bidirecional isolado com grampeamento ativo e interleaving. Florianópolis, SC, 2011.

SABATE, J. *et al.* Design considerations for high-voltage high-power full-bridge zero-voltage-switched PWM converter. In: *Proc. IEEE APEC*. [S.l.: s.n.], 1990. v. 90, p. 275–284.

SHAHZAD, M. I.; IQBAL, S.; TAIB, S. LLC series resonant converter with PID controller for battery charging application. *Energy Conversion (CENCON), 2014 IEEE Conference on*, IEEE, p. 84–89, 2014.

SHAYANI, R. A.; OLIVEIRA, M. d.; CAMARGO, I. d. T. **Comparação do custo entre energia** solar fotovoltaica e fontes convencionais. *V Congresso Brasileiro de Planejamento Energético, Brasília*, UnB, 2006.

SIERRA, J. A.; KAISER, W. Comparison of fluorescent lamp stabilization methods in the current-fed push-pull inverter. *IEEE Transactions on Industry Applications*, IEEE, v. 36, n. 1, p. 105–110, 2000.

SILVA, W. W. A. G. *Estudo e implementação de um conversor bidirecional como interface na regulação de tensão em barramento cc e carregamento de baterias em um Sistema Nanorrede*. Dissertação (Mestrado) — Universidade Federal de Minas Gerais, 2013.

SIMONE, S. D. *et al.* **Design-oriented steady-state analysis of LLC resonant converters based on FHA**. *Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006. International Symposium on*, IEEE, p. 200–207, 2006.

STULER, R. Introduction to LLC resonant converters. In: ONSEMI. *On Semiconductor*. [S.1.], 2012.

THORNTON. Catálogo de Ferrite. Sao Paulo, Brazil, 1994.

UZDIN, R.; FRIEDLAND, L.; GAT, O. **First-harmonic approximation in nonlinear chirpeddriven oscillators**. *Physical Review E*, APS, v. 89, n. 1, p. 012902, 2014.

VORPERIAN, V.; CUK, S. A complete dc analysis of the series resonant converter. *Power Electronics Specialists conference, 1982 IEEE*, IEEE, p. 85–100, 1982.

YANG, B.; CHEN, R.; LEE, F. C. **Integrated magnetic for LLC resonant converter**. *Applied Power Electronics Conference and Exposition, 2002. APEC 2002. Seventeenth Annual IEEE*, IEEE, v. 1, p. 346–351, 2002.

YANG, B. *et al.* **LLC resonant converter for front end DC/DC conversion**. *Applied Power Electronics Conference and Exposition, 2002. APEC 2002. Seventeenth Annual IEEE*, IEEE, v. 2, p. 1108–1112, 2002.

YANG, E. X.-Q. *Extended describing function method for small-signal modeling of resonant and multi-resonant converters*. Tese (Doutorado) — Virginia Tech, 1994.

ZHANG, W. *et al.* Evaluation and comparison of silicon and gallium nitride power transistors in LLC resonant converter. *Energy Conversion Congress and Exposition (ECCE), 2012 IEEE*, IEEE, p. 1362–1366, 2012.

ZHANG, Y. et al. **1MHz-1kW LLC resonant converter with integrated magnetics**. *Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE*, IEEE, p. 955–961, 2007.

ZHONGCHENG, L.; TONG, Y. **Renewable energy basing on smart grid**. *Wireless Communications Networking and Mobile Computing (WiCOM), 2010 6th International Conference on*, IEEE, p. 1–4, 2010.

APÊNDICE A – DIMENSIONAMENTO DOS COMPONENTES DO CONVERSOR IBLLCRHB

Para o projeto do conversor IBLLCRHB, possuindo inicialmente a topologia ilustrada na Figura 63, dá-se início ao dimensionamento dos componentes.

Figura 63 Topologia de projeto do conversor IBLLCRHB.

A.1 DIMENSIONAMENTO DO TRANSFORMADOR

Para o projeto proposto, utilizando a modulação por frequência, tem-se os dados especificados abaixo:

- Tensão nominal no barramento CC (V_{DC}): 380 V;
- Tensão nominal no banco de baterias (V_B): 24 V;
- Capacitância Série Ressonante (*C_s*): 2 x 44*nF*;
- Frequência de comutação (f_{sw}): $15kHz \le fs \le 150kHz$;
- Frequência de ressonância série (f_0) : 20kHz;
- Indutância de dispersão do transformador (L_s): 720 μ H;
- Indutância de magnetização do transformador (*L_p*): 1.29*mH*;
- Potência de saída (*P*₀): 240*W*;

Assumindo a queda de tensão dos diodos em anti-paralelo com os MOSFETs como 0,7V e tempo de condução dos interruptores ($T_{ONSW}=0,5 T_S$). Sendo $T_S = 1/f_S$ e respectivamente N_P e N_S os números de espiras dos enrolamentos de alta e baixa tensão do transformador, tem-se (A.1):

$$n = \frac{N_{\rm P}}{N_{\rm S}} = \frac{V_{\rm DC}}{2V_{\rm B} + 2.0,7} = 7.7 \tag{A.1}$$

Para facilitar o processo de construção, visto o numero de espiras dos enrolamentos de baixa tensão, assume-se n = 10. Deste modo, segue o dimensionamento de suas partes construtivas.

A.1.1 Dimensionamento do núcleo

Para o dimensionamento do núcleo, segue a nomenclatura das variáveis:

- A_e: Área da secção transversal do núcleo;
- A_w : Área da janela do núcleo;
- *A_p*: Área do enrolamento primário;
- *A_{cu}*: Área do condutor;
- *I*_{ef}: Corrente eficaz no primário;
- *J*: Densidade de corrente no condutor;
- *l_e*: comprimento do carretel;
- l_g : comprimento do entreferro *gap* no transformador;
- *N_P*: Número de espiras do enrolamento de alta tensão do transformador (lado referente ao barramento);
- *N_S*: Número de espiras do enrolamento de baixa tensão do transformador (lado referente a bateria).

Escolhe-se o núcleo NEE - 55/28/21 - 6500 - IP12R (sem entreferro) juntamente com o carretel CE - 55/28/21 - 1/0 - POM ambos fabricados pela Thornton Eletrônica Ltda, ilustrados nas Figuras 64 e 65, respectivamente.

Para o número de espiras do primário do transformador, tem-se (A.2) (JUNG; KWON, 2007):

$$N_{P_{min}} = \frac{V_{DC}}{A_e \Delta B f_{sw}} = 75,33 \tag{A.2}$$

Escolhe-se $N_P = 90$. Deste modo, tem-se (A.3)

Parâmetros Efetivos do Núcleo:

ΣΙ/Α	0,34	mm-1
Le	120,0	mm
Ae	354,0	mm ²
Amin		mm ²
Ve	42500,0	mm ³

Peso Aprox. (pç) 109,0 g

Figura 64 Modelo escolhido do núcleo do transformador para o projeto (THORNTON, 1994).

Figura 65 Modelo escolhido do carretel do transformador para o projeto (THORNTON, 1994).

$$N_S = \frac{N_P}{n} = 9 \tag{A.3}$$

Para um $l_e = 250mm$, tem-se o gap pela equação (A.4) (JUNG; KWON, 2007):

$$l_g = \frac{A_e N_P^2 \mu_0 \mu_r - L_p l_e}{L_p \mu_r} = 2,65mm$$
(A.4)

A.1.2 Dimensionamento dos condutores

Para o dimensionamento dos condutores, faz-se necessário o cálculo das correntes rms dos lados de alta e baixa tensão do transformador. Deste modo, por Stuler (2012), tem-se (A.5) e (A.6) como as correntes nominais dos enrolamentos primário e secundário, respectivamente.

$$I_{pri_{rms}} = \sqrt{\frac{\pi^2 I_B^2}{8n^2} + \frac{V_{DC}^2}{192 L_P^2 f_s^2}} = 1,8A$$
(A.5)

$$I_{sec_{rms}} = \frac{\pi \,\mathrm{I}_{\mathrm{B}}}{4} = 7.85A \tag{A.6}$$

$$I_{sec_{pk}} = \frac{\pi I_{B}}{2} = 15,7A$$
 (A.7)

A densidade de corrente J em um fio condutor é dada por:

$$J = \frac{I_{\rm rms}}{A_{\rm fio}} \tag{A.8}$$

Onde I_{rms} é a corrente eficaz que passa pelo condutor e A_{fio} é a área da seção do condutor. Para o transformador com uso contínuo é estabelecida uma faixa para os valores de os enrolamentos, tal que: $1 \le J \le 5(A/mm^2)$ (CORTIZO, 2014).

A.1.2.1 Enrolamento de alta tensão

Determinando uma densidade de corrente do enrolamento de alta $J_{pri} = 5(A/mm^2)$, tem-se que a seção total de condutores do enrolamento primário é dada por (A.9):

$$A_{fio_{pri}} = \frac{I_{pri_{rms}}}{J_{pri}} = 0,4mm^2$$
(A.9)

Utilizando o condutor de 20 AWG com isolação, cuja área da seção transversal é $0.6244mm^2$, tem-se que o número de fios em paralelo para este enrolamento é:

$$N_{f//p} = \frac{A_{\text{fio}_{\text{pri}}}}{J_{\text{pri}}} \cong 1 condutor$$
(A.10)

Deste modo, a área ocupada pelos fios do enrolamento de alta tensão na janela é:

$$A_{pri} = N_P A_{cu+iso} N_{f//P} = 56,16mm^2$$
 (A.11)

A.1.2.2 Enrolamento de baixa tensão

Para o enrolamento de baixa ou secundário, utilizando uma densidade de corrente $J_S = 4mm^2$, seguindo-se os mesmos passos utilizados no enrolamento de alta tensão, tem-se a área total utilizada pelo enrolamento de baixa tensão:

$$A_{fio_S} = \frac{\mathbf{I}_{\text{sec}_{\text{rms}}}}{\mathbf{J}_{\text{S}}} = 2,5mm^2 \tag{A.12}$$

Utilizando o condutor de 21 AWG com isolação, cuja área da seção transversal é $0,5004mm^2$, tem-se que o número de fios em paralelo é:

$$N_{f//s} = \frac{A_{\text{fio}_{\text{sec}}}}{0,5004} \cong 5$$
 (A.13)

Sendo 2 enrolamentos no lado de baixa tensão, a área ocupada pelos fios deste enrolamento enrolamento na janela é:

$$A_S = 2N_S A_{cu+iso} N_{f//s} = 45,036mm^2$$
(A.14)

A.1.2.3 Fator de utilização

Sendo A_{SEP} a área do elemento separador entre os enrolamentos primário e secundário de valor 2,4*mm*², o fator de utilização é dado por:

$$Fu = \frac{A_{\rm P} + A_{\rm S} + A_{\rm SEP}}{A_{\rm W}} = 0,414$$
 (A.15)

O fator de utilização recomendado está na faixa de $0.4 \le Fu \le 0.5$ (CORTIZO, 2014). Deste modo, o valor de 0.414 é adequado para a realização do projeto.

A.2 INTERRUPTORES SEMICONDUTORES E DIODOS

Utilizando-se MOSFETs como interruptores nos lados de alta e baixa tensão, faz-se necessário o cálculo da corrente rms em cada interruptor. Por (STULER, 2012), tem-se a corrente eficaz nos interruptores primários (A.16).

$$I_{s1_{rms}} = \sqrt{\frac{\pi^2 I_B^2}{16n^2} + \frac{V_{DC}^2}{384 L_P^2 f_s^2}} = 1,8A$$
(A.16)

Para os interruptores secundários, tem-se que a corrente dos enrolamentos secundários é igual a corrente dos MOSFETs. Como já calculado anteriormente:

$$I_{sr1_{rms}} = 7,85A;$$

Para os diodos em anti-paralelo, tem-se as correntes médias definidas por (A.17)

$$I_{sr1} = I_{sr2} = I_B/2 = 5A \tag{A.17}$$

Assim, chega-se a especificação dos interruptores semicondutores pela Tabela 15.

	Mosfet	Tipo	V _{DS}	Ι	P _{DIS}	$R_{DS}(on)$	Encapsulamento
Lado HV	SPP08N80C3	NCHANNEL	800V	8A	104W	0.65 Ω	TO-220
Lado LV	IR540	NCHANNEL	100V	33A	130W	0.044 Ω	TO-220

Tabela 15 - Especificação dos interruptores semicondutores utilizadas para o projeto.

A.3 CAPACITORES DE SAÍDA

Para o dimensionamento dos capacitores de filtro, considerando um *ripple* de tensão ΔV_B especificado de 0,24V (1% da tensão nominal da bateria) tem-se:

$$C_B = \frac{I_B (\pi - 2)}{2 V_{\text{rip}_B} f_{\text{sw}_{\min}} \pi \sqrt{3}} = 291 \mu F$$
(A.18)

De maneira análoga, para o capacitor de filtro do barramento CC, espera-se um *ripple* máximo de 0,38V (0.1% da tensão nominal do barramento. Deste modo, tem-se

Para o projeto proposto, especifica-se um ripple de tensão ΔV_C de 1% (0,38 V), tem-se (A.19):

$$C_{DC} = \frac{I_D C (\pi - 2)}{2 V_{rip_{DC}} f_{sw_{min}} \pi \sqrt{3}} = 8,71 \mu F$$
(A.19)

B.1 ESQUEMÁTICO DO CONVERSOR IBLLCRHB

Figura 66 Esquemático de protótipo do circuito de potência do conversor IBLLCRHB.

B.2 ARQUITETURA DO PROTÓTIPO DO CONVERSOR IBLLCRHB

Figura 67 Esquemático de placa do circuito de potência do conversor IBLLCRHB.

APÊNDICE C – CÓDIGO FONTE DO MICROCONTROLADOR TIVA TM4C123G

C.1 CÓDIGO FONTE DO MICROCONTROLADOR TIVA TM4C123G EM MD

/////// PROGRAMA LLC RESSONANTE – MALHA ABERTA //////

// Includes e Defines #include <stdint.h> #include <stdbool.h> #include "inc/hw_memmap.h" #include "inc/hw_types.h" #include "inc/tm4c123gh6pm.h" #include "driverlib/sysctl.h" #include "inc/hw_types.h" *#include"driverlib/interrupt.h" #include*"*driverlib*/*timer.h*" *#include*"*driverlib*/*gpio.h*" *#include*"*driverlib*/*debug.h*" *#include*"*driverlib*/*pwm.h*" *#include*"*driverlib*/*pin_map.h*" *#include*"*inc*/*hw*_g*pio*.*h*" *#include*"*driverlib*/*adc.h*" #include"math.h" #definefreqTimer40000

float VB; int i=1;

uint $32_t duty = 0;$ $uint 32_t dutyN = 0;$ $uint 32_t ui32Period;$ $uint 32_t ui32Load;$ $uint 32_t fsw = 20000;$ $uint 32_t ui32ADC0Value[4];$

volatile uint32_t ui32Tensao;

int main(void)

{

/* ______*/

// MCU settings

/* ______ */

//Enable System clock at 80 Mhz with a PLL, with crystal 16Mhz (PLL = 200 MHz, //Clock = PLL/div)

SysCtlClockSet(SYSCTL_SYSDIV_2_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_

//Habilita??o Perif?ricos

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); /* Habilita o clk para o pero GPIO PFx */ SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM1); // Habilita PWM SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD); // Habilita porta D que sera saida do PWM SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0); // Habilita o perif?rico do timer // SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0); // Habilita conversor AD SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE); // Habilita porta E, conversor AD

```
// Inicializacao PINOS
// Desbloqueio da porta F, pinos 0 e 4
HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
HWREG(GPIO_PORTF_BASE + GPIO_O_CR) |= 0x01;
HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = 0;
IntPrioritySet(INT_GPIOF, 0x00);
GPIOIntTypeSet(GPIO_PORTF_BASE, GPIO_PIN_4|GPIO_PIN_0, GPIO_FALLING_EDGE);
GPIOIntEnable(GPIO_PORTF_BASE, GPIO_PIN_4|GPIO_PIN_0);
IntEnable(INT_GPIOF);
GPIOPadConfigSet(GPIO_PORTF_BASE, GPIO_PIN_4|GPIO_PIN_0, GPIO_STRENGTH_2MA, GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_0, GPIO_STRENGTH_2MA, GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_0, GPIO_STRENGTH_2MA, GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_0, GPIO_STRENGTH_2MA, GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_STRENGTH_2MA, GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_STRENGTH_2MA, GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPIO_PIN_4|GPI
```

//Habilita??odoClockTIMER
TimerConfigure(TIMER0_BASE,TIMER_CFG_PERIODIC);
ui32Period = (SysCtlClockGet()/freqTimer);
TimerLoadSet(TIMER0_BASE,TIMER_A,ui32Period);

TimerEnable(*TIMER*0_*BASE*, *TIMER_A*);//*Habilitaotimer*.

//Habilitacao do clock PWM
SysCtlPWMClockSet(SYSCTL_PWMDIV_1); // Clk=clk do processador, 80MHz

// Habilitacao de saidas PWM
GPIOPinTypePWM(GPIO_PORTD_BASE, GPIO_PIN_0); // Referente a chave S1
GPIOPinTypePWM(GPIO_PORTD_BASE, GPIO_PIN_1); // S2

GPIOPinConfigure(GPIO_PD0_M1PWM0); // Configura??o Modulo 1 do PWM0 GPIOPinConfigure(GPIO_PD1_M1PWM1); //modulo1 pwm1

PWMGenConfigure(PWM1_BASE, PWM_GEN_0, PWM_GEN_MODE_UP_DOWN); // Definicao do tipo de PWM usado

PWMOutputState(PWM1_BASE, PWM_OUT_0_BIT, true); PWMOutputState(PWM1_BASE, PWM_OUT_1_BIT, true);

PWMGenEnable(PWM1_BASE, PWM_GEN_0); TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

//Habilitacao das Interrupcao

IntEnable(INT_TIMER0A); // Habilita o vetor espec?fico associado ao timer 0A TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

// Configuracao ADC
GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_3);
ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);

```
ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_IE);
ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_IE);
ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_IE);
ADCSequenceStepConfigure(ADC0_BASE, 1, 3, ADC_CTL_IE | ADC_CTL_END | ADC_CTL_CH0);
ADCSequenceEnable(ADC0_BASE, 1);
```

// inverter as saidas PWM
PWMOutputInvert(PWM1_BASE, PWM_OUT_0_BIT,true);
PWMOutputInvert(PWM1_BASE, PWM_OUT_1_BIT,true);

```
while(1)
{
}
}
void Timer0IntHandler(void)
{
// Clear the timer interrupt
TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
ADCIntClear(ADC0_BASE, 1); // Limpando a flag do conversor ADC
ADCProcessorTrigger(ADC0_BASE, 1);
while(!ADCIntStatus(ADC0_BASE, 1, false)) // Aguardando o processo de convers?o AD
{
}
// Soft-Starter
// Condicao para entrar no loop apenas no inicio do acionamento do conversor
if(i==1)
```

```
for (fsw=100000; fsw>50000; fsw=fsw-50) {
    PWMGenPeriodSet(PWM1_BASE, PWM_GEN_0, SysCtlClockGet() / fsw);
    ui32Load=SysCtlClockGet() / (fsw*2);
    duty=ui32Load;
    PWMPulseWidthSet(PWM1_BASE, PWM_OUT_0, duty); //S1
    PWMDeadBandEnable(PWM1_BASE, PWM_GEN_0, 24, 24);
    delayMS(2);
    }
    i++;
```

}

```
if(i==3) // Mudar a frequencia manualmente
for (fsw=23000; fsw>16000; fsw=fsw-1000)
PWMGenPeriodSet(PWM1_BASE, PWM_GEN_0, SysCtlClockGet() / fsw);
ui32Load=SysCtlClockGet() / (fsw*2);
duty=ui32Load;
PWMPulseWidthSet(PWM1_BASE, PWM_OUT_0, duty); //S1
PWMDeadBandEnable(PWM1_BASE, PWM_GEN_0, 24, 24); // cada 1 vale 12.5 ns
delayMS(500);
}
```

ADCSequenceDataGet(ADC0_BASE, 1, ui32ADC0Value); // Lendo os dados e armazenando no vetor ui32ADC0Value ui32Tensao=(ui32ADC0Value[0]+ui32ADC0Value[1]+ui32ADC0Value[2])/(3); // calculo da m?dia das amostras VB = (float) ui32Tensao*3.3/4096; ui32Load=2048*(4096)/(ui32Tensao); fsw=5*0.98*ui32Tensao+10000;

fsw=SysCtlClockGet() / (ui32Load*2);

// Limitando a frequencia de comutação entre 15kHz (LoadMax) e 20kHz (LoadMin)

if (fsw<15000) fsw=15000;

if (fsw>20000) fsw=20000;

PWMGenPeriodSet(PWM1_BASE, PWM_GEN_0, SysCtlClockGet() / fsw);

ui32Load=SysCtlClockGet() / (fsw*2); duty=ui32Load; dutyN=duty;

PWMPulseWidthSet(PWM1_BASE, PWM_OUT_0, duty); //S1 PWMPulseWidthSet(PWM1_BASE, PWM_OUT_1, dutyN); //S2

PWMDeadBandEnable(PWM1_BASE, PWM_GEN_0, 24, 24);
}

```
void InteExtInttHandler(void)
{
    if(GPIOPinRead(GPIO_PORTF_BASE,GPIO_PIN_4)==0x00);
    {
        PWMOutputState(PWM1_BASE, PWM_OUT_0_BIT, false);
        PWMGenDisable(PWM1_BASE, PWM_GEN_0);
     }
     if(GPIOPinRead(GPIO_PORTF_BASE,GPIO_PIN_0)==0x00)
    {
        PWMOutputState(PWM1_BASE, PWM_0UT_0_BIT, true);
        PWMGenEnable(PWM1_BASE, PWM_GEN_0);
     }
}
```

```
}
}
```

C.2 CÓDIGO FONTE DO MICROCONTROLADOR TIVA TM4C123G EM MR

// PROGRAMA LLC RESSONANTE BIDIRECIONAL - MALHA ABERTA - MODO REVERSO

// Includes e Defines include <stdint.h> include <stdbool.h> include "inc/hw*memmap.h*" include"inc/hwtypes.h"include"inc/tm4c123gh6pm.h" include"driverlib/sysctl.h" include"inc/hwtypes.h" include"driverlib/interrupt.h" include"driverlib/timer.h" include"driverlib/gpio.h" include"driverlib/debug.h" include"driverlib/pwm.h" include"driverlib/pinmap.h" include"inc/hwgpio.h" include"driverlib/adc.h" include"math.h"

floatVB;inti = 1;

define freqTimer 100000

uint $32_t duty = 0$; uint $32_t dutyN = 0$; uint $32_t ui32Period$; uint $32_t ui32Load$; uint $32_t fsw$; uint $32_t ui32ADC0Value[4]$;//armazenarADC

volatileuint32tui32Tensao;

voiddelayMS(unsignedintms)SysCtlDelay((SysCtlClockGet()/(3*1000))*ms);

/* _____

* ______ */ /* ____ MAIN FUNCTION - void main ____ */ /* ______ */

int main(void)

/*	*/
// MCU settings	

//Enable System clock at 80 Mhz with a PLL, with crystal 16Mhz (PLL = 200 MHz, Clock = PLL/div)

 $SysCtlClockSet(SYSCTL_SYSDIV_2_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_SYSDIV_2_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_SYSDIV_2_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_SYSDIV_2_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_SYSDIV_3$

//Habilitacao Perif?ricos

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

SysCtlPeripheralEnable(SYSCTL_PERIPH_PWM1);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);

SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

// Inicializacao PINOS // Desbloqueio da porta F, pinos 0 e 4 HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY; HWREG(GPIO_PORTF_BASE + GPIO_O_CR) = 0x01; HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = 0; IntPrioritySet(INT_GPIOF, 0x00); GPIOIntTypeSet(GPIO_PORTF_BASE, GPIO_PIN_4|GPIO_PIN_0, GPIO_FALLING_EDGE); GPIOIntEnable(GPIO_PORTF_BASE, GPIO_PIN_4|GPIO_PIN_0); IntEnable(INT_GPIOF); GPIOPadConfigSet(GPIO_PORTF_BASE, GPIO_PIN_4|GPIO_PIN_0, GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);

//Habilitacao do Clock TIMER
TimerConfigure(TIMER0_BASE, TIMER_CFG_PERIODIC); //Configura o timer 0 em 32 bits
no modo peri?dico //

ui32Period = (SysCtlClockGet() / freqTimer); // Frequencia do Timer = TIMER_FREQUENCY // TimerLoadSet(TIMER0_BASE,TIMER_A,ui32Period); // TimerEnable(TIMER0_BASE,TIMER_A); //Habilitaotimer

//Habilitacao do clock PWM
SysCtlPWMClockSet(SYSCTL_PWMDIV_1); // Clock igual ao clock do processador, 80MHz

// Habilitacao de saidas PWM
GPIOPinTypePWM(GPIO_PORTA_BASE, GPIO_PIN_6); // Referente a chave SR1
GPIOPinTypePWM(GPIO_PORTA_BASE, GPIO_PIN_7); // SR2

GPIOPinConfigure(GPIO_PA6_M1PWM2); // Configuracao Modulo 1 do PWM0 GPIOPinConfigure(GPIO_PA7_M1PWM3); //modulo1 pwm1 //PWMGenEnable(PWM1_BASE, PWM_GEN_1);

PWMGenConfigure(PWM1_BASE, PWM_GEN_1, PWM_GEN_MODE_UP_DOWN); // Def. PWM

PWMOutputState(PWM1_BASE, PWM_OUT_2_BIT, true); PWMOutputState(PWM1_BASE, PWM_OUT_3_BIT, true);

PWMGenEnable(PWM1_BASE, PWM_GEN_1); TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

//Habilitacao das Interrupcao
IntEnable(INT_TIMER0A);
TimerIntEnable(TIMER0_BASE,TIMER_TIMA_TIMEOUT);//
IntMasterEnable();//Interrupcaomaster
//GPIOPinTypeGPIOInput(GPIO_PORTE_BASE,GPIO_PIN_1);

// Configuração ADC GPIOPinTypeADC(GPIO_PORTE_BASE, GPIO_PIN_0); ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 1); //3proximaslinhasadicionadasparateste4linhaonde?3era0 ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_CH3); ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_CH3); ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_CH3|ADC_CTL_IE|ADC_CTL_END); ADCSequenceEnable(ADC0_BASE, 1);

// inverter as saidas PWM

```
PWMOutputInvert(PWM1_BASE, PWM_OUT_2_BIT,true);
PWMOutputInvert(PWM1_BASE, PWM_OUT_3_BIT,true);
```

// Soft-start

```
// Condicao para entrar no loop apenas no inicio do acionamento do conversor
if(i==1)
for (fsw=140000; fsw>100000; fsw-)
PWMGenPeriodSet(PWM1_BASE, PWM_GEN_0, SysCtlClockGet() / fsw);
ui32Load=SysCtlClockGet() / (fsw*2);
duty=ui32Load;
PWMPulseWidthSet(PWM1_BASE, PWM_OUT_0, duty); //SR1
PWMDeadBandEnable(PWM1_BASE, PWM_GEN_0, 24, 24); //
delayMS(2);
}
i++;
}
while(1)
{
}
}
   void Timer0IntHandler(void)
{
// Clear the timer interrupt
TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);
ADCIntClear(ADC0_BASE, 2); // Limpando a flag do conversor ADC
ADCProcessorTrigger(ADC0_BASE, 1);
while(!ADCIntStatus(ADC0_BASE, 1, false)) // Aguardando o processo de conversao AD
{
}
```

//i++; // Condicao para entrar no loop apenas no inicio do acionamento do conversor

for (fsw=140000; fsw>60000; fsw=fsw-50) {

if(i==1) {

```
PWMGenPeriodSet(PWM1_BASE, PWM<sub>G</sub>EN<sub>1</sub>, SysCtlClockGet()/fsw);
ui32Load = SysCtlClockGet()/(fsw * 2);
duty = ui32Load;
PWMPulseWidthSet(PWM1<sub>B</sub>ASE, PWM_OUT_2, duty);//S1
PWMDeadBandEnable(PWM1_BASE, PWM_GEN_1, 24, 24);
delayMS(2);
}
i++;
}
```

ADCSequenceDataGet(ADC0_BASE, 1, ui32ADC0Value); ui32Tensao=(ui32ADC0Value[0]+ui32ADC0Value[1]+ui32ADC0Value[2])/(3); VB = (float) ui32Tensao*3.3/4096;

fsw=SysCtlClockGet() / (ui32Load*2);

```
// Limitando a frequencia de comutação entre 20kHz (LoadMax) e 140kHz (LoadMin)
```

```
if (fsw<20000) fsw=20000;
```

```
if (fsw>140000) fsw=140000;
```

```
PWMGenPeriodSet(PWM1_BASE, PWM_GEN_1, SysCtlClockGet() / fsw);
```

```
ui32Load=SysCtlClockGet() / (fsw*2);
duty=ui32Load;
dutyN=duty;
```

```
PWMPulseWidthSet(PWM1_BASE, PWM_OUT_2, duty); //S1
PWMPulseWidthSet(PWM1_BASE, PWM_OUT_3, dutyN); //S2
```

```
PWMDeadBandEnable(PWM1_BASE, PWM_GEN_1, 24, 24);
}
```

```
void InteExtInttHandler(void)
{
if(GPIOPinRead(GPIO_PORTF_BASE,GPIO_PIN_4)==0x00);
{
PWMOutputState(PWM1_BASE, PWM_OUT_2_BIT, false);
PWMGenDisable(PWM1_BASE, PWM_GEN_1);
```

```
}
if(GPIOPinRead(GPIO_PORTF_BASE,GPIO_PIN_0) == 0x00)
{
PWMOut putState(PWM1_BASE,PWM_OUT_2_BIT,true);
PWMGenEnable(PWM1_BASE,PWM_GEN_1);
```

```
}
```

APÊNDICE D – PROTÓTIPO DA PLACA DE INTERFACE PARA COMPATIBILIZAR O MICROCONTROLADOR TIVA TM4C123G.

D.1 ESQUEMÁTICO DA PLACA DE INTERFACE PARA COMPATIBILIZAR O MICRO-CONTROLADOR AO PROTÓTIPO DO CONVERSOR

Figura 68 Esquemático de circuito de interface do Microcontrolador TM4C123g.

D.2 ARQUITETURA DA PLACA DE INTERFACE PARA COMPATIBILIZAR O MICRO-CONTROLADOR AO PROTÓTIPO DO CONVERSOR

Figura 69 Arquitetura da placa de interface confeccionada para compatibilizar o microcontrolador ao protótipo do conversor.