
UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Heleno de Souza Campos Junior

A framework for test case prioritization in the

continuous software engineering

Juiz de Fora

2018

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Heleno de Souza Campos Junior

A framework for test case prioritization in the

continuous software engineering

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação,
do Instituto de Ciências Exatas da
Universidade Federal de Juiz de Fora como
requisito parcial para obtenção do t́ıtulo de
Mestre em Ciência da Computação.

Orientador: Marco Antônio Pereira Araújo

Juiz de Fora

2018

Ficha catalográfica elaborada através do programa de geração
automática da Biblioteca Universitária da UFJF,

com os dados fornecidos pelo(a) autor(a)

Campos Junior, Heleno de Souza.
 A framework for test case prioritization in the continuous software
engineering / Heleno de Souza Campos Junior. -- 2018.
 129 f.

 Orientador: Marco Antônio Pereira Araújo
 Dissertação (mestrado acadêmico) - Universidade Federal de
Juiz de Fora, Instituto de Ciências Exatas. Programa de Pós
Graduação em Ciência da Computação, 2018.

 1. Engenharia de Software. 2. Teste de Software. 3. Integração
contínua. 4. Manutenção de software. I. Araújo, Marco Antônio
Pereira, orient. II. Título.

Heleno de Souza Campos Junior

A framework for test case prioritization in the continuous

software engineering

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação,
do Instituto de Ciências Exatas da
Universidade Federal de Juiz de Fora como
requisito parcial para obtenção do t́ıtulo de
Mestre em Ciência da Computação.

Aprovada em 19 de Setembro de 2018.

BANCA EXAMINADORA

Prof. D.Sc. Marco Antônio Pereira Araújo - Orientador
Universidade Federal de Juiz de Fora

Prof. D.Sc. Rodrigo Oliveira Sṕınola
Universidade Salvador

Prof. D.Sc. Victor Ströele de Andrade Menezes
Universidade Federal de Juiz de Fora

ACKNOWLEDGMENTS

I’d like to thank everybody that contributed to this work.

CAPES.

UFJF.

Professors of PGCC.

Reviewers of SBES and WTDSoft 2017 conferences.

Colleagues from NEnC, our lab.

Colleagues and friends from IF Sudeste MG, my undergrad institute.

Reviewers of this work for their contribution, Rodrigo Sṕınola and Victor Ströele.

In special, I would like to thank my advisor Marco Antônio, for not measuring efforts

when needed and always providing me the best opportunities. Also, for his belief in my

work and allowance to follow the path I wanted.

Camila Paiva, for sharing ideas and always supporting my work.

Maria Luiza Falci, my partner in life, for always being by my side, supporting me in

every possible aspect.

Finally, my family, for providing all the necessary environment and support that al-

lowed me to continue studying.

”Wyrd bið ful aræd”

Anonymous author

The Wanderer

The Exeter Book

RESUMO

Testes de regressão são executados após cada mudança no software. Em ambientes de

desenvolvimento de software que adotam práticas da Engenharia de Software Cont́ınua,

como a Integração cont́ınua, por exemplo, software é modificado, e testado diversas vezes

em curtos prazos. Cada execução dos testes pode levar horas para terminar, gerando

atraso em relação à descoberta de falhas no projeto. Para prevenir esse atraso, técnicas

de otimização são utilizadas. Uma delas é a priorização de casos de testes (TCP). Nessa

técnica, a execução dos testes é reordenada de acordo com um objetivo, que normalmente

é a detecção de falhas. Dessa forma, testes que têm maior probabilidade de falhas são

executados primeiro. Um problema com essa abordagem é que existem diversas técnicas

na literatura, mas pouca evidência em relação ao seu uso. Além disso, quase não existe

infra estrutura para apoiar a adoção dessas técnicas no contexto industrial. O objetivo

deste trabalho é planejar e implementar um framework que permita o uso, experimentação

e implementação de técnicas de TCP. Esperamos que isso ajude praticantes a adotar es-

sas técnicas no contexto industrial, principalmente da engenharia de software cont́ınua.

Esperamos também que a criação dessa infra estrutura ajude pesquisadores a executar

mais estudos experimentais sobre a eficiência do uso dessas técnicas. Para mostrar a via-

bilidade do framework proposto, é executado um estudo experimental com 16 técnicas de

priorização diferentes, executadas em um total de 22 versões de 2 projetos open source. Os

resultados coletados sugerem que o uso das técnicas de priorização resultam em retornos

mais rápidos em relação à existência de falhas nos projetos, possivelmente resultando em

ciclos mais rápidos de desenvolvimento.

Palavras-chave: Manutenção de Software. Engenharia de Software. Teste de

Software. Integração Cont́ınua.

ABSTRACT

Regression tests are executed after every change in software. In a software development

environment that adopts Continuous Software Engineering practices such as Continuous

Integration, software is changed, built and tested many times in a short period. Each

execution can take hours to finish, delaying feedback about failures to the developer. To

prevent this, regression test optimization techniques are used. One such technique is test

case prioritization (TCP), which reorder the execution of the test cases according to some

goal. The most common goal is fault detection, in which test cases are ordered so that

those that have higher probability of detecting faults are executed first. One problem with

this approach is that there are lots of different available techniques in the literature, but the

amount of evidence of its use is low. Furthermore, there is almost no infrastructure support

to adopt those techniques at the industry context. The goal of this work is to design and

implement a framework that allows the use, experimentation and implementation of TCP

techniques. We hope that this will help practitioners on adopting these techniques at the

industry context, more specifically, in the continuous software engineering environment.

We also hope that creating this infrastructure will encourage researchers on performing

more empirical studies regarding test case prioritization techniques effectiveness. In order

to show the feasibility of the proposed framework, we perform an empirical study with

16 different TCP techniques executed on a total of 22 versions of 2 different open source

projects. Results suggest that using those TCP techniques result in faster feedback about

the existence of failures in the projects, possibly resulting in shorter development cycles.

Keywords: Software Maintenance. Software Engineering. Software Testing.

Continuous Integration.

LIST OF FIGURES

4.1 Typical continuous integration process. 41

4.2 Optimus framework architecture. 42

4.3 Example software project. 45

4.4 TCP techiniques API for Optimus Framework. 79

5.1 Optimus Framework implemented modules. 81

5.2 Sequence diagram of test process within Optimus Framework. 82

5.3 Fault seeding process in Optimus Framework. 85

5.4 Historical analyzer relational database model. 86

5.5 Example configuration of Optimus Framework. 89

5.6 Example run of Optimus Framework. 89

5.7 Information of example run of Optimus Framework. 92

5.8 Generated summary report for example run of Optimus Framework. 93

5.9 Generated raw report for example run of Optimus Framework. 93

5.10 Execution order in raw report for example run of Optimus Framework. 93

6.1 Example raw report generated from experiment run. 99

6.2 Example of Optimus Framework configuration to run the experiment. 100

6.3 Boxplot of APFD values obtained for CoreNLP project. 101

6.4 Normality test for T0 from CoreNLP. 103

6.5 Normality test for T1-C from CoreNLP. 105

6.6 Normality test for T1-M from CoreNLP. 106

6.7 Homoscedasticity test for T1-C and T1-M from CoreNLP. 107

6.8 Boxplot of APFD values obtained for Jackson-databind project. 109

6.9 Normality test for T0-C from Jackson-databind. 111

6.10 Normality test for T1-C from Jackson-databind. 111

6.11 Homoscedasticity test for T0-C and T1-C from Jackson-databind project. . . . 112

6.12 Normality test for T1-C from Jackson-databind. 115

6.13 Normality test for T1-M from Jackson-databind. 116

6.14 Homoscedasticity test for T1-C and T1-M from Jackson-databind. 116

LIST OF TABLES

2.1 Rank of authors per number of publications. 22

2.2 Papers amount per publication venue. 23

2.3 Most investigated TCP approaches. 24

2.4 Test coverage matrix. 25

2.5 Most used TCP effectiveness metrics. 27

2.6 Tools used for each different activity in selected TCP primary studies. 28

2.7 Summary of best APFD achieved on each application used by selected papers

on their empirical evaluations. 30

2.8 Possible APFD factors. 30

2.9 Summary of our relevant factors findings. 31

2.10 Amount of papers queried. 32

2.11 Literature evidence of TCP use in industrial settings. 34

3.1 Comparison of requirements among related work. 39

4.1 Variations of Total and Additional coverage techniques. 46

4.2 Variations of ART coverage technique. 47

4.3 Coverage matrix for the example project. 48

4.4 Total coverage for the example application. 49

4.5 Additional coverage for example application, first iteration. 52

4.6 Additional coverage for example application, second iteration. 52

4.7 Additional coverage for example application, third iteration. 53

4.8 Additional coverage for example application, fourth iteration. 53

4.9 Additional coverage for example application, fifth iteration. 55

4.10 Coverage strings for test cases. 55

4.11 Intersection calculation for Jaccard. 55

4.12 Union calculation for Jaccard. 56

4.13 Jaccard distances to ordered set, first iteration 56

4.14 Jaccard distances to ordered set, second iteration 57

4.15 Jaccard distances to ordered set, third iteration 57

4.16 Variations for history-based TCP techniques. 58

4.17 Historical results matrix. 58

4.18 Amount of historical failures per test case. 60

4.19 Recent failures score of test cases. 62

4.20 Variations of modification-based TCP techniques. 62

4.21 Total diff score for test cases of the example application. 66

4.22 Additional diff score for test cases of the example application, first iteration. . 67

4.23 Additional diff score for test cases of the example application, second iteration. 67

4.24 Additional diff score for test cases of the example application, third iteration. . 67

4.25 Additional diff score for test cases of the example application, fourth iteration. 68

4.26 Variations of similarity-based techniques. 68

4.27 Execution profile for test cases. 68

4.28 Frequency profile for test cases. 69

4.29 Ordered sequence for test cases. 69

4.30 Levenshtein distance value between test cases. 72

4.31 Minimum distances between test cases and ordered set, first iteration. 72

4.32 Minimum distances between test cases and ordered set, second iteration. . . . 74

4.33 Minimum distances between test cases and ordered set, third iteration. 74

4.34 Test cases clusters, first iteration. 74

4.35 Test cases clusters distances, first iteration. 75

4.36 Test cases clusters, second iteration. 75

4.37 Clusters frequency profile, second iteration. 75

4.38 Clusters ordered sequences, second iteration. 76

4.39 Test cases clusters distances, second iteration. 76

4.40 Test cases clusters, third iteration. 76

4.41 Clusters frequency profile, third iteration. 77

4.42 Clusters ordered sequences, third iteration. 77

4.43 Test cases clusters distances, third iteration. 78

4.44 Test cases clusters, fourth iteration. 78

5.1 Allowed configurations for Optimus Framework. 90

6.1 Experiment projects information. 97

6.2 TCP techniques used in the experiment. 97

6.3 Comparisons for RQ1 of CoreNLP experiment. 102

6.4 Hypotheses test results for RQ1 of CoreNLP. 104

6.5 Comparisons for RQ2 of CoreNLP experiment. 105

6.6 Normality and homoscedasticity analyses for RQ2 of CoreNLP. 108

6.7 Hypothesis tests results for RQ2 of CoreNLP. 108

6.8 Comparisons for RQ1 of Jackson-databind experiment. 110

6.9 Normality and homoscedasticity analyses for RQ1 of Jackson-databind. 113

6.10 Hypothesis tests results for RQ1 of Jackson-databind. 113

6.11 Comparisons for RQ2 of Jackson-databind experiment. 114

6.12 Hypothesis tests results for RQ2 of Jackson-databind. 117

LIST OF ACRONYMS

TCP Test Case Prioritization

MQ Mapping Question

RQ Research Question

APFDAverage Percentage of Faults Detected

SIR Software Infrastructure Repository

LOC Lines Of Code

TSL Test Script Language

RTORegression Testing Optimization

API Application Programming Interface

ART Adaptive Random Testing

FOS Farthest-first Ordered Sequence

GOS Greed-aided-clustering Ordered Sequence

CI Continuous Integration

PDF Portable Document Format

GQM Goal Question Metric

JDK Java Development Kit

KLOC Thousands of Lines Of Code

CONTENTS

1 INTRODUCTION . 15

1.1 RESEARCH QUESTIONS . 16

1.2 GOALS . 16

1.3 RESEARCH METHODOLOGY . 17

1.4 OUTLINE . 17

2 BACKGROUND . 18

2.1 INTRODUCTION . 18

2.2 CONTINUOUS SOFTWARE ENGINEERING . 18

2.3 SOFTWARE TESTING . 19

2.4 REGRESSION TESTING . 19

2.5 REGRESSION TESTING OPTIMIZATION . 20

2.6 TEST CASE PRIORITIZATION . 20

2.7 SYSTEMATIC REVIEW AND MAPPING OF THE LITERATURE 21

2.7.1 Systematic mapping results . 22

2.7.1.1 Coverage-based TCP techniques . 24

2.7.1.2 History-based techniques . 25

2.7.1.3 Modification-based techniques . 26

2.7.1.4 Similarity-based techniques. 26

2.8 SYSTEMATIC REVIEW RESULTS . 29

2.9 INDUSTRIAL ADOPTION . 31

2.10 FINAL CONSIDERATIONS . 32

3 RELATED WORKS . 35

3.1 TCP USAGE . 35

3.2 TCP IN CONTINUOUS SOFTWARE ENGINEERING 36

3.3 TCP USAGE AND CONTINUOUS SOFTWARE ENGINEERING 36

3.4 EXISTING APPROACHES COMPARISON . 37

3.5 FINAL CONSIDERATIONS . 39

4 OPTIMUS FRAMEWORK DESIGN. 40

4.1 INTRODUCTION . 40

4.2 REQUIREMENTS . 40

4.3 ARTIFACTS REPOSITORY . 41

4.4 EXPERIMENTS SUPPORT . 41

4.4.1 TCP Effectiveness Analyzer . 42

4.4.2 Reports generator . 43

4.5 ANALYZERS . 43

4.5.1 Coverage analyzer . 43

4.5.2 Historical data analyzer . 43

4.5.3 Execution trace analyzer . 44

4.5.4 Modifications analyzer . 44

4.6 TCP TECHNIQUES . 44

4.6.1 Coverage-based . 44

4.6.1.1 Total coverage . 48

4.6.1.2 Additional coverage . 48

4.6.1.3 Adaptive Random Testing. 52

4.6.2 History-based . 57

4.6.2.1 Most failures first . 58

4.6.2.2 Recent failures first . 60

4.6.3 Modification-based . 60

4.6.3.1 Total diff coverage . 63

4.6.3.2 Additional diff coverage . 63

4.6.4 Similarity-based . 66

4.6.4.1 Fartherst-first ordered sequence . 69

4.6.4.2 Greed-aided-clustering ordered sequence . 72

4.7 NEW TECHNIQUES IMPLEMENTATION . 77

4.8 FINAL CONSIDERATIONS . 78

5 OPTIMUS FRAMEWORK IMPLEMENTATION 80

5.1 OPTIMUS-COMMON . 80

5.2 OPTIMUS-FRAMEWORK . 80

5.3 OPTIMUS-TEST . 81

5.4 OSS FAULTS FINDER . 82

5.5 FAULT INJECTION PLUGIN . 82

5.6 OPTIMUS COVERAGE ANALYZER . 84

5.7 OPTIMUS HISTORICAL ANALYZER . 85

5.8 OPTIMUS MODIFICATION ANALYZER . 86

5.9 OPTIMUS EXECUTION TRACE ANALYZER . 87

5.10 OPTIMUS FRAMEWORK USAGE . 87

5.11 FINAL CONSIDERATIONS . 91

6 EVALUATION. 94

6.1 INTRODUCTION . 94

6.2 EXPERIMENTAL STUDY . 94

6.2.1 Objects of analysis . 95

6.2.2 Variables . 96

6.2.3 Experiment setup . 98

6.2.4 Data and analysis . 99

6.2.4.1 CoreNLP . 99

6.2.4.2 Jackson-databind .109

6.2.5 Threats to validity .118

6.3 DISCUSSION AND LESSONS LEARNED .118

6.4 FINAL CONSIDERATIONS .119

7 CONCLUSION . 121

7.1 RESEARCH LIMITATIONS .122

7.2 FUTURE WORKS .122

REFERENCES . 123

15

1 INTRODUCTION

Regression tests are executed after software modification in order to ensure that previously

developed software parts are working and that newly developed source code behaves like

it is supposed to. To cope with market’s necessity of rapid software deliveries, software

development companies have been widely adopting agile practices (FITZGERALD; STOL,

2017).

However, adopting those practices only at the development and operational level usu-

ally is not enough. It is also necessary to integrate the business strategy level in order

to achieve a continuous improvement of the development processes. This integration is

named Continuous Software Engineering (FITZGERALD; STOL, 2017).

Practices of Continuous Software Engineering include Continuous Integration, which

is concerned with merging every modification made on the software into the main devel-

opment branch. In a rapid development environment, a big amount of software updates

is delivered in a short time and each modification of the software implies the execution of

regression tests. Considering that the baseline approach of regression testing is to execute

every test case of the software, this scenario can result in a bottleneck in the development

process, since developers need to wait the completion of the regression test execution in

order to receive feedback about possible failures. Examples available in the literature

report regression test suites that take around 1000 machine hours to finish execution (DO

et al., 2010).

Regression tests optimization techniques are often used to solve the problem. They

are divided into three categories (YOO; HARMAN, 2012), minimization or reduction,

selection and prioritization. While minimization and selection techniques focus on a sub-

set of test cases to be executed, prioritization techniques still execute all test cases, but

in a specific order. For this reason, prioritization techniques are sometimes more reliable

and cost-effective (DO et al., 2010).

Test case prioritization (TCP) techniques modify the execution order of the test cases

according to some criterion. One common criterion is fault detection, where the goal of

such techniques is to detect the maximum amount of faults by executing the minimum

amount of test cases. In this way, if, for some reason, the execution of the test cases is

16

interrupted before finishing, a high amount of the faults will have already been detected.

Different approaches to prioritize test cases are used by those techniques. Some examples

include historical failure data, test coverage and software modifications (YOO; HARMAN,

2012).

It is shown in this work that current challenges faced by researchers and practitioners

interested in using TCP techniques are motivated by the high amount of different available

techniques in the literature, which use different input information that can not be trivially

obtained. These inputs are not always available in software projects, requiring the setup

of additional tools to gather and record them.

Furthermore, it is also shown that there is a low amount of empirical evidence sup-

porting the use of TCP techniques, which may hinder its potential benefits for different

contexts when practitioners need to choose an approach to employ in industrial applica-

tions.

1.1 RESEARCH QUESTIONS

To further explore the TCP research area, this work aim at analyzing the literature to

gather evidences of the above-mentioned problems. Based on these evidences, to propose

and evaluate a solution to support the TCP usage in software projects. The following

questions were formulated to guide the research:

• Q1: How is TCP being used in industry and literature?

• Q2: How to create a framework to support TCP usage and experimentation?

• Q3: How does the resulting framework support practitioners and researchers?

1.2 GOALS

The main goal of this work is to propose a framework to support the use and experimen-

tation of TCP techniques. This goal can be divided in specific goals, according to the

research questions. Those specific goals are:

• G1: to establish a systematic mechanism to analyze how TCP is being used in the

literature.

17

• G2: to develop a framework able to execute TCP techniques and measure its effec-

tiveness.

• G3: to evaluate TCP techniques on open source projects using the developed frame-

work.

1.3 RESEARCH METHODOLOGY

Methodology followed in this work includes the planning, execution and reporting of a

systematic literature review and mapping, following Kitchenham (2007) guidelines, in

order to gather knowledge about the studied topic. Based on results of the review and

mapping, the main proposal is designed and implemented. The resulting product is then

subjected to experimental studies, following guidelines provided in Wohlin et al. (2012).

Generated evidence from all the steps are used to answer the research questions.

1.4 OUTLINE

The remainder of this work is organized as follows: Chapter 2 describes theoretical founda-

tions about software testing, test case prioritization and continuous software engineering.

A systematic literature review and mapping is also presented. In Chapter 3 studies re-

lated to this work are discussed. Based on the foundations and findings from Chapter 2

and gaps identified from related works, a framework is designed in Chapter 4. Chapter 5

describes the implementation of such framework, which is evaluated through experimental

studies in Chapter 6 and finally in Chapter 7, final considerations, research limitations

and future works are presented.

18

2 BACKGROUND

2.1 INTRODUCTION

In this chapter, the main concepts that will be discussed and used in this work are ex-

plained. Initially, we introduce the concepts of Continuous Software Engineering, which

is the development environment where test case prioritization is analyzed in this work.

Then we discuss the use of software testing in this scenario, more specifically, test case

prioritization during regression testing.

A systematic literature review and mapping is reported, discussing the main aspects

of the state-of-the-art regarding this topic. Then a structured search is presented, aiming

to report the state-of-practice of the topic in industry.

2.2 CONTINUOUS SOFTWARE ENGINEERING

Software development scenario is going through many changes in the last years. Part of

these changes is to cope with market’s necessity of rapid software deliveries. Due to that,

software development companies have been adopting agile practices. However, adopting

practices that only change the development or operational level of companies is usually

not enough. Fitzgerald and Stol (2017) argue that a holistic view over the processes of

a company is needed in order to achieve a continuous improvement cycle. This is named

Continuous Software Engineering, which includes different continuous activities related

to development, operations and business strategy that combined, result in continuous

improvement of a company’s processes (FITZGERALD; STOL, 2017).

Among the activities in this scenario, Continuous Integration is concerned with merg-

ing development branches as developers commit them to the source code repository, in-

stead of keeping different active branches simultaneously. In order to make continuous

integration happen, build automation is essential to minimize human failures. Besides

automation, developers’ culture change is also necessary, since the responsibility of hav-

ing every commit integrated into the main branch is critical to the success of the process

(MEYER, 2014).

Evolving from continuous integration, continuous delivery ensures that the software is

19

ready to be delivered at any given time (CHEN, 2015). To make this happen, a pipeline

is used, which contains steps that a software modification has to go through in order to

be ready to be delivered. This delivery is not always to the production environment. The

stage at which a company is able to automatically deliver to the production environment

is named continuous deployment. To reach this stage, all development activities need

to be well executed and coordinated. Normally, these continuous practices are adopted

incrementally.

A software process that is within these development related activities is software test-

ing. The continuous activity related to software testing is often referred to as continuous

testing. In this activity, feedback from the execution of software tests is used to improve

the next executions, aiming to achieve a continuous improvement of the testing process

(FITZGERALD; STOL, 2017).

2.3 SOFTWARE TESTING

The process of verifying that the software does not have errors is called software testing

(MYERS et al., 2011). This process has been approached in different ways. For example,

black-box strategies group testing techniques that do not require access or analysis of the

source code. In the other hand, white-box strategies are concerned with the structure of

the program, and thus, require access to it.

White-box strategies include unit testing, the process of testing the correctness of the

smallest parts of a program, called units, and integration testing, which is concerned with

testing the interaction of different parts of a program.

A common misconception about testing definitions often occurs. According to Am-

mann and Offutt (2016), a software fault is a static defect in the software. The mani-

festation of faults is called a software error. A software failure is an incorrect behavior

according to the expectations with the software. It is common to find the term software

bug referring to all of these three definitions.

2.4 REGRESSION TESTING

Modifications are performed in the software to correct defects, to add functionalities,

to adapt it to different environments or even to maintain and evolve its structure aim-

20

ing to facilitate future modifications. Those activities are named software maintenance

(PFLEEGER; ATLEE, 2009). For every maintenance task, there is a high probability

that new defects are added, which are called regressions, implying that the software lost

quality (DO, 2016). Then, the main objective of regression tests is to ensure that after

maintenance is performed into the software, no regressions occurred.

A traditional regression test suite is composed of all previously developed tests for the

software. The approach of using this traditional test suite is named Retest-All, being the

default practice nowadays (DO, 2016). The problem with this approach is that the regres-

sion test execution can be very costly in terms of computational resources, requiring long

time to finish. The continuous integration process aggravates even more this, because the

software is regression-tested many times during the day. To solve this problem, regression

test optimization techniques are used.

2.5 REGRESSION TESTING OPTIMIZATION

Regression test optimization techniques can be divided into three types. Minimization or

Reduction techniques aim at reducing the size of the test suite by excluding redundant

test cases. Selection techniques aim at selecting a specific group of test cases from the test

suite to be executed. Prioritization techniques aim at reordering the execution sequence

of the test cases, such that those test cases that might reveal a failure are executed first

(DO, 2016).

While minimization and selection techniques focus on a sub-set of test cases to be

executed, prioritization techniques still execute all test cases, but in a specific order. For

this reason, prioritization techniques are sometimes more reliable and cost-effective (DO

et al., 2010).

2.6 TEST CASE PRIORITIZATION

Test case prioritization (TCP) problem is defined by Rothermel et al. (2001).

Definition 1. Given a test suite T , a permutation set of T named PT and f as a function

from PT to the real numbers.

Find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)].

21

In this way, according to their definition, PT is the set of all possible orderings of

T and f is a function that when applied to any ordering yields an award value for that

ordering.

In simpler words, TCP techniques reorder the execution order of the test cases ac-

cording to some criterion. One common criterion is fault detection, where the goal of the

technique is to detect the maximum amount of faults by executing the minimum amount

of test cases. In this way, if, for some reason, the execution of the test cases is inter-

rupted before finishing, a high amount or all faults have already been detected. Different

approaches to prioritize test cases are used by those techniques. Some examples include

historical failure data, test coverage, requirements and system models (YOO; HARMAN,

2012).

As an example, a simple technique that relies on test coverage information, order test

cases according to the descending amount of source code elements that each test case

cover. The assumption is that test cases that cover a higher amount of source code have

a greater probability of revealing a fault. In this way, it should be executed first than

others.

2.7 SYSTEMATIC REVIEW AND MAPPING OF THE LITERATURE

Systematic Literature Mapping (SLM) is a type of secondary study, with the goal of

surveying the literature to map knowledge of a particular topic. Systematic Literature

Review (SLR) has a more specific goal, aiming to investigate research questions more

deeply (KITCHENHAM, 2007).

Based on Kitchenham (2007) guidelines, we conducted a systematic literature review

and mapping to give an overview of the research area of test case prioritization. We aimed

to answer the following mapping (MQ) and review (RQ) questions:

• MQ1: Which are the most active researchers on TCP techniques?

• MQ2: Which publication venues have more primary studies on TCP?

• MQ3: Which are the most investigated TCP approaches?

• MQ4: What kinds of evaluation metrics are most frequently used in primary TCP

studies?

22

• MQ5: What is the existing infrastructure to support the different activities for TCP

evaluations?

• RQ1: What are the existing empirical evidences for TCP techniques?

– RQ1.1: Which techniques achieve the best results in terms of effectiveness for

common applications (i.e. applications that appear in more than one different

study)?

– RQ1.2: Which study context factors can affect effectiveness results obtained

by TCP techniques?

– RQ1.3: How TCP effectiveness results vary according to the used granularity?

(i.e. the scale used for a TCP technique input data)

For brevity reasons, we present only the main results and discussions of this systematic

literature review and mapping. For a complete description of the process, refer to Junior

et al. (2017).

A total of 1563 papers were analyzed. After going through all the steps of the selection

process, 90 papers remained, which were considered to answer the systematic mapping

questions. Applying quality assessment criteria further refined these 90 papers and 13

remained. Those were considered to answer the systematic review questions.

2.7.1 SYSTEMATIC MAPPING RESULTS

Tables 2.1 and 2.2 summarize results for MQ1 and MQ2.

Table 2.1: Rank of authors per number of publications.
Author Papers

Gregg Rothermel 17
Hyunsook Do 8

Dan Hao 7
Lu Zhang 7

Lingming Zhang 6
Ladan Tahvildari 5

Mark Harman 5
Bogdan Korel 5
Zhenyu Chen 4

Author Papers
Hong Mei 4

Sebastian Elbaum 4
Siavash Mirabab 4

Zheng Li 4
Bo Jiang 4

W. K. Chan 4
Luay Tahat 4

George Koutsogiannakis 4

A total of 64 different TCP techniques are proposed in the selected studies. These tech-

niques can be divided into categories according to different features (CATAL; MISHRA,

23

Table 2.2: Papers amount per publication venue.
Publication venue Papers

IEEE Transactions on Software Engineering 9
Lecture Notes in Computer Science 6
International Conference on Software Maintenance 5
International Computer Software and Applications Conference 4
International Conference on Software Engineering 4
International Symposium on Software Testing and Analysis 4
Software Testing, Verification and Reliability 3
International Symposium on Software Reliability Engineering 3
International Conference on Software Quality, Reliability and Security 3
International Conference on Software Testing, Verification and Validation 3
International Symposium on Foundations of Software Engineering 3
International Journal of Software Engineering and Knowledge Engineering 3
Journal of Systems and Software 3
Software Quality Journal 3
Others 34

2012; SINGH et al., 2012). These features include, for example, the input data that they

need or on which assumptions they are based on.

Considering the input data required for proposed techniques in literature, selected

studies describe techniques that use source code, binary form of the source code, call

graphs, requirements/specifications, the whole system being tested, fault matrix, time

budget, test suite, coverage information, source code change information, test input data,

test execution history, execution trace and different software quality metrics.

Considering TCP techniques base approach, a previous secondary study by Singh et

al. (2012) identified 6 different types of approaches. We identified 6 more. They are

genetic based, modification based, coverage based, history based, fault based, similarity

based, requirements based, model based, oracle based, fault diagnosis based, search based

and program structure based techniques. As MQ3 is concerned with the most frequently

used approaches, their usage among selected studies is listed in Table 2.3. Note that

some techniques can be considered in more than one category approach. Example of this

is the Bayesian Network technique proposed by Mirarab and Tahvildari (2008), which

uses information about source code change and coverage and thus, can be considered as

coverage based and modification based.

24

Table 2.3: Most investigated TCP approaches.
Approach Amount of techniques

Coverage based 31
History based 12
Modification based 8
Similarity based 8
Genetic based 7
Model based 5
Requirements based 4
Search based 4
Fault based 2
Program structure based 2
Oracle based 1
Fault diagnosis based 1

2.7.1.1 Coverage-based TCP techniques

The assumption for coverage-based TCP techniques is that higher test coverage means

better fault revealing ability. In this way, this kind of techniques prioritize test cases that

cover more elements of the source code.

These kinds of techniques require that the software being tested be analyzed to collect

the coverage information. This analysis can be dynamic, that is, it is collected on the fly,

as test cases are executed or static, when source code is statically analyzed.

Two different approaches using test case coverage information can be found in litera-

ture. They are the total coverage and additional coverage approaches.

Techniques that use the total coverage approach, order test cases according to the sum

of source code elements they cover. When there is a tie between two or more test cases,

one of them is chosen randomly. Proposed by Rothermel et al. (1999), it is currently the

most investigated TCP approach.

The additional coverage approach was proposed in the same paper as the total coverage

(ROTHERMEL et al., 1999). Their difference is that the additional approach considers

which source code elements are already covered by test cases already ordered during the

ordering process. Thus, if a test case cannot provide additional coverage to the already

ordered test cases, it is not considered to be important to be run first. When there is

no test case that can increase the coverage of ordered test cases, then the information of

already covered source code elements is emptied so that the remaining test cases can also

be included in the ordered test cases. In this approach, ties are also resolved randomly.

25

Table 2.4: Test coverage matrix.
E1 E2 E3 E4 E5

T1 1 0 1 0 0
T2 0 1 1 1 1
T3 1 1 1 0 0
T4 0 1 0 0 0

To illustrate how the above approaches work, consider the coverage matrix in Table

2.4. In this example, each row represents a test case (T) of the program being tested and

each column represents an element (E) of the source code. This element can be a method,

a statement or a branch. A cell value of 1 means that the test case covers the element

represented by that cell and a value of 0 means that it does not.

Considering the total coverage approach, the total coverage of each test would be: T1

= 2, T2 = 4, T3 = 3 and T4 = 1. Thus, one possible execution order for this setting

would be T2, T3, T1 and T4. Now considering the additional coverage approach, the test

case that covers the biggest amount of source code would be chosen first, which is T2

and the list for already covered code would contain E2, E3, E4 and E5. This means that

the next chosen test need to cover the biggest amount of not yet covered source code.

Since there is a tie between T1 and T3, each covering 1 not yet covered element (E1),

one of them is chosen randomly. Consider that T1 is chosen. Now, since it is not possible

to cover additional source code elements with the not yet chosen test cases, the covered

source code list is emptied and the test case which covers the most elements of not yet

covered source code is chosen (T3) and then the remaining test case T4. One possible

final execution order for this setting would be T2, T1, T3 and T4.

2.7.1.2 History-based techniques

History-based techniques use test cases historical data to determine the order for the

current execution. The underlying assumption of these kinds of techniques is that test

cases that failed in the past tend to also fail in the future.

A simple approach in this category is to order test cases according to the descending

amount of times they failed in previous execution. Kim and Porter (2002) propose a

more sophisticated approach, in which the ordering of each test case is based on three

features from past executions: frequency of execution, fault revealing ability and source

code coverage. In an empirical evaluation, they found that historical data might be useful

26

to increase the effectiveness of regression testing.

Marijan and Liaaen (2016) investigate how the amount of historical data used in these

kinds of prioritization techniques impacts on its fault detection effectiveness. They define

history time window as being the amount of previous test case execution data to be

considered in the process. They found that the variation of this time window impacts on

the history-based TCP techniques effectiveness.

2.7.1.3 Modification-based techniques

Modification-based techniques use source code change information as input to prioritize

test cases. The underlying assumption is that modifying the source code can lead to the

injection of new faults. In this way, prioritizing changed source code might reveal new

faults first. Do et al. (2006) investigate the use of a technique in this category. The

technique combines coverage and modification information to order the test cases. In

the total diff method coverage prioritization technique, test cases are sorted by the total

descending amount of coverage of changed methods between two versions of a program.

On the other hand, the additional diff method coverage prioritization technique uses

additional coverage to already ordered tests to sort them.

Mirarab and Tahvildari (2008) use modification information as one of the inputs for

a Bayesian Network aiming at ordering test cases. (EGHBALI; TAHVILDARI, 2016)

evaluate the technique. They found that the Bayesian Network and Additional Bayesian

Network approach are outperformed by the simple total coverage technique in almost all

experimented software projects.

2.7.1.4 Similarity-based techniques

Similarity-based TCP techniques use test case similarity metrics values as input. The

underlying idea is to order test cases according to their (dis) similarities so that firstly

executed test cases are the more diverse possible. In this way, they can possible discover

faults that are different between them.

Research in this category typically lies on finding a similarity metric that is more

suitable to be used. For example, (WANG et al., 2015) propose a similarity-based TCP

technique and perform an experiment comparing 5 different similarity measures: Jac-

card Index, Gower-Legendre, Soka-Sneath, Euclidian Distance, Cosine Similarity and

27

Table 2.5: Most used TCP effectiveness metrics.
Metric Amount of studies

APFD (Average Percentage of Faults Detected) 63
APFDc (Cost-cognizant Average Percentage of Faults Detected) 8
f-measure 6
Relative Position 5
APSC (Average Percentage of Statement Coverage) 4

Proportional Distance. As results, they found that the Euclidian Distance yields the

best effectiveness with their proposed approach and is comparable to the coverage-based

techniques.

A total of 24 different TCP effectiveness metrics are used by selected studies in our

systematic literature mapping. However, many of them are only used in one or two studies.

A rank of most used metrics is shown in Table 2.5, answering MQ4.

The most commonly used TCP effectiveness metric is the Average Percentage of Faults

Detected (APFD), proposed by Rothermel et al. (2001). Its values range from 0 to 1,

where higher values mean faster fault detection rates. APFD values are calculated using

Equation 2.1.

APFD = 1− TF1 + TF2 + ...+ TFm

nm
+

1

2n
(2.1)

In Equation 2.1, n is the amount of test cases, m is the amount of faults and TFi

represents the execution order of the first test case that detects the fault i. Its value ranges

from 0 to 1, where the closest to 1, the higher effectiveness. It is worth noting that an

APFD value of 1 is hard to achieve because it would mean that all faults are detected by

the first executed test case. It is thus often necessary to calculate the theoretical optimal

APFD value for each execution scenario when reporting an APFD measure for a TCP

technique, since it can vary according to the amount of faults and test cases.

Authors use different tools to support their activities during TCP techniques execution

and evaluation. We collected data about used tools for each activity in selected studies,

which are depicted in Table 2.6, answering MQ5. A large amount of tools is used for source

code coverage information gathering and source code mutation. This concentration can

possibly be explained by the fact that the vast majority of TCP techniques are coverage

based, as shown in Table 2.3.

Source code mutation tools are used by researchers to seed artificial faults into software.

28

T
ab

le
2.

6:
T

o
ol

s
u
se

d
fo

r
ea

ch
d
iff

er
en

t
ac

ti
v
it

y
in

se
le

ct
ed

T
C

P
p
ri

m
ar

y
st

u
d
ie

s.

A
c
ti

v
it

y
T

o
o
ls

a
m

o
u
n
t

T
o
o
ls

n
a
m

e

C
o
d
e

co
v
er

ag
e

in
fo

rm
at

io
n

12
C

o
d

eC
ov

er
,

g
co

v
,

E
m

m
a
,

C
o
b

er
tu

ra
,

J
a
C

o
C

o
,

C
a
n
ta

ta
+

+
,

m
m

a
,

S
o
fy

a
,

x
S

u
d
s,

L
D

R
A

T
es

tb
ed

,
A

T
A

C
,

F
a
u
lt

T
ra

ce
r

S
ou

rc
e

co
d
e

m
u
ta

ti
on

11
P

IT
,

M
u

J
av

a
,

P
ro

te
u
m

,
M

u
tG

en
,

J
av

a
la

n
ch

e,
J
u

m
b
le

,
M

a
jo

r
M

u
ta

ti
o
n

F
ra

m
ew

or
k
,

J
es

te
r,

S
o
fy

a
,

Z
o
lt

a
r

P
ri

or
it

iz
at

io
n

to
ol

/f
ra

m
ew

or
k

4
x
S
u
d

s,
A

p
ro

s,
M

O
T

C
P

+
,

M
O

T
C

P
S
ou

rc
e

co
d
e

m
et

ri
cs

in
fo

rm
at

io
n

4
S
L

O
C

C
ou

n
t,

ck
jm

,
C

L
O

C
,

S
W

T
-M

et
ri

cs
E

x
ec

u
ti

on
tr

ac
e

in
fo

rm
at

io
n

4
va

lg
ri

n
d

,
d
a
ik

o
n
,

A
sp

ec
tJ

,
g
co

v
B

y
te

co
d

e
m

an
ip

u
la

ti
on

/a
n
al

y
si

s
4

F
au

lt
T

ra
ce

r
to

o
l,

A
S

M
,

G
a
li
ll
eo

,
S
o
fy

a
C

h
an

ge
an

al
y
si

s
3

sa
n
d

m
ar

k
,

d
iff

,
C

el
a
d
o
n

L
in

e
a
r

in
te

g
e
r

p
ro

g
ra

m
m

in
g

so
lv

e
r:

G
U

R
O

B
I

op
ti

m
iz

at
io

n
,

IL
O

G
C

P
L

E
X

;
te

st
sc

ri
p

ts
g
e
n
e
ra

ti
o
n
/
c
re

a
ti

o
n

:
T

S
L

,
A

u
to

B
la

ck
T

es
t;

te
st

e
x
e
c
u
ti

o
n

in
fo

rm
a
ti

o
n

:
ti

m
e,

an
t;

so
ft

w
a
re

re
p

o
si

to
ry

:
S
IR

;
a
rt

if
a
c
ts

tr
a
c
e
a
b
il
it

y
:

T
ra

ce
cl

ip
se

;
m

u
lt

i-
o
b

je
c
ti

v
e

o
p
ti

m
iz

a
ti

o
n

fr
a
m

e
w

o
rk

:
J
m

et
a
l;

a
n
a
ly

si
s

o
f

d
y
n
a
m

ic
b
in

a
ry

c
o
d
e
:

V
u

lc
an

;
B

a
y
e
si

a
n

N
e
tw

o
rk

fr
a
m

e
w

o
rk

:
S
m

il
e

L
ib

ra
ry

;
fa

u
lt

lo
c
a
li
z
a
ti

o
n

:
Z

o
lt

a
r;

te
st

a
n
a
ly

si
s:

x
S

u
d

s;
fa

u
lt

h
is

to
ry

:
L

D
R

A
T

es
tb

ed
;
c
lu

st
e
ri

n
g

:
M

at
la

b
;
in

fo
rm

a
ti

o
n

re
tr

ie
v
a
l

fr
a
m

e
w

o
rk

:
In

d
ri

to
o
lk

it
;
c
o
n
tr

o
l

fl
o
w

g
ra

p
h

in
fo

rm
a
ti

o
n

:
A

ri
st

o
tl

e;
re

fa
c
to

ri
n
g

d
iff

:
re

f-
fi
n
d

er
.

29

In this way, they can measure the effectiveness of TCP techniques. It is also notable a

huge amount of studies that use the Software Infrastructure Repository (SIR) to find

artifacts to be used in their evaluation. In fact, it is the only cited repository that we

found among the analyzed studies.

2.8 SYSTEMATIC REVIEW RESULTS

Our systematic literature review questions are mainly concerned with empirical results

obtained by using TCP techniques reported by selected studies. Moreover, we are also

interested on investigating relationships among factors that affect the effectiveness of these

techniques.

In order to answer RQ1.1, APFD values were collected from selected studies experi-

ments. After that, they were classified according to the software applications from where

they were collected. Based on that, we highlighted the biggest APFD values for each

application investigated by these studies, in order to find which techniques achieved those

values. Results for this analysis are listed in Table 2.7. A complete list of collected APFD

values is available in Junior et al. (2017).

Different factors can affect these results and one should not exclusively use this table

to infer the best TCP technique. Instead, we provide different quantitative analysis over

data collected during this review, aiming to identify relevant factors that can affect the

results obtained by using TCP techniques.

Possible APFD factors candidates considered in this review are motivated by Do and

Rothermel (2006) study. They make a qualitative analysis of results obtained by the use

of TCP techniques on five different studies. They consider as possible factors: program

size, indicated by Lines of Code (LOC) metric; test case source, i.e., who developed the

test cases; test case type, number of faults in each version of the tested program and the

type of these faults. In addition to the factors analyzed by them, we also considered type

of seeded faults, TCP techniques and test case granularity. Each factor and its values for

selected studies are described in Table 2.8.

For all analysis, the dependent variable is the APFD result obtained from selected

studies. Usually the process followed by studies to obtain APFD values involves executing

regression test suites from different applications, using different TCP techniques. For this

reason, usually, each study reports a number of different APFD values. All of the analysis

30

Table 2.7: Summary of best APFD achieved on each application used by selected papers
on their empirical evaluations.

Application Technique APFD
XML-Security ART-st 0.970
Jdepend add-cov 0.902
Checkstyle t-block-cov 0.684
tcas a-block-cov 0.840
schedule2 a-block-cov 0.720
schedule a-block-cov 0.720
tot info t-block-cov 0.758
print tokens t-block-cov 0.808
print tokens2 t-block-cov 0.761
replace t-stmt-cov 0.966
space t-stmt-cov 0.997
ant a-stmt-cov 0.954
jmeter a-branch-cov 0.883
jtopas a-branch-cov 0.970
Altitude Switch (ASW) t-branch-cov 0.766
Wheel Brake System (WBS) t-branch-cov and a-fn-cov 0.821
Flight Guidance System (FGS) a-fn-cov 0.801
NoiseGen a-fn-cov 0.742
Galileo BNA-block 0.940
NanoXML a-fn-cov 0.945
Techniques summary: ART-st: statement ART; add-cov: additional cover-
age; t-block-cov: total block coverage; a-block-cov: additional block cover-
age; t-stmt-cov: total statement coverage; a-stmt-cov: additional statement
coverage; a-branch-cov: additional branch coverage; t-branch-cov: total
branch coverage; BNA-block: additional bayesian network with block cover-
age; a-fn-cov: additional function coverage

Table 2.8: Possible APFD factors.
Factor Values (treatments)

Faults type Seeded / real
Average number of faults per version Continuous values
Test case source Provided / generated
Test case type JUnit / TSL
Program size (LOC) Continuous values
Faults seeding type Manual / mutation
TCP technique coverage granularity Branch / statement / block / method and

function
Test case granularity Method level / class level

31

Table 2.9: Summary of our relevant factors findings.
Factor P-value Effect on APFD

Fault type 0.000 Significant
Average amount of faults per version 0.009 Significant

Test case source 0.032 Significant
Test case type 0.689 Not significant

LOC 0.958, 0.708 Not significant
Seeded faults type 0.000 Significant

TCP technique granularity 0.000 Significant
Test granularity 0.014 Significant

process was performed using the statistical tool Minitab 17. Table 2.9 summarizes the

results found. For detailed process, check Junior et al. (2017).

We found that 6 out of 8 candidate factors achieved a significant result. When com-

pared to Do and Rothermel (2006) qualitative analysis, we could confirm all 3 factors

that they considered relevant to the APFD result. They are fault type, average amount

of faults per version and test case source. These results can be used to guide future re-

search in the topic. For example, to develop TCP techniques that execute test cases at

the method level, achieving better effectiveness.

2.9 INDUSTRIAL ADOPTION

The systematic review and mapping presented in Section 2.7 does not focus on usage of

TCP in industry. For this reason, to strengthen the understanding of the practice of TCP

in industry, we perform a structured search in literature with the goal of finding evidence

about the use of TCP techniques in the industrial setting, i.e. in projects being developed

by real companies.

Research question for this search is: at what level TCP is used in industry?

The strategy to answer this question is to query digital libraries using a Boolean string

composed of keywords related to our goal. The main reason for choosing this strategy is

to prevent the retrieval of papers that are not peer-reviewed.

Search string: (Test or testing) AND (prioritization OR prioritisation) AND (adoption

OR industry OR experience OR case OR report). It was used in four different digital

libraries: IEEE Xplore, ACM digital Library, Science Direct and Scopus. The amount of

papers returned by each one is described in Table 2.10.

In total, the digital libraries returned 1581 papers. Each of these papers was analyzed

32

Table 2.10: Amount of papers queried.

Digital library Amount of papers

IEEE 398
ACM 393

Science Direct 51
Scopus 739

Total 1581

based on its title, abstract and keywords to check if they could help answering our research

question. Papers that were clearly related to our search were fully read. In the end of

this process, 11 papers were selected. Their references are listed in Table 2.11.

Most (9) of the selected papers only report the usage of TCP techniques in empiri-

cal studies, using software objects from industrial partners, like Microsoft Carlson et al.

(2011), Sony Ericsson Engström et al. (2011), Westermo Research and Development AB

Strandberg et al. (2016), Salesforce.com Busjaeger and Xie (2016) and Cisco Wang et al.

(2016). These studies do not report the use of TCP techniques after the studies were

performed.

Only 2 of 11 selected papers report usage of TCP techniques in the daily routine of real

companies. Czerwonka et al. (2011) report the use of a tool named CRANE in Microsoft.

This tool provides data that may be useful during Windows products maintenance and in-

tegrates with a TCP tool, named Echellon, which is internal and proprietary to Microsoft.

Prioritization is performed based on coverage criteria. They also report that the use of

this tool brought benefits related to costs and efficiency. Strandberg et al. (2016) report

a case study in a real industrial environment with the company Westermo Research and

Development AB. They apply the use of an automation and TCP tool, which was later

integrated into the company development process.

Analyzed evidence from literature suggests that the available tools and frameworks

are specific for some cases, like an empirical study or environment and TCP might not

yet be ready to be used in industrial settings.

2.10 FINAL CONSIDERATIONS

In this chapter, we aimed to explain the main concepts that will be used throughout

this work. We also aimed to answer our first research question: “How is TCP being

33

used in industry and literature?”. This is done through the systematic literature review

and mapping, discussed in Section 2.7, answering how TCP is being used in literature

and through a structured search of the literature for industrial reports of TCP usage, in

Section 2.9.

All techniques that were considered in our review analysis are coverage-based. This

indicates the necessity for more quality empirical studies regarding different TCP tech-

niques. There are plenty of empirical studies, as demonstrated by the number of accepted

studies in the mapping (90), but when our quality assessment was applied, only thirteen

studies remained. Furthermore, the amount of rejected papers in the mapping and review

suggests that authors are proposing many TCP techniques but they are not empirically

evaluating them. This fact can be a problem. Since there is a low amount of empirical

studies, practitioners and researchers do not have a reliable amount of empirical evidence

to choose a suitable TCP technique for their needs.

Regarding TCP usage in industry, our structured search indicates that TCP is not

mature enough yet and is not being widely used. We found only two reports of indus-

trial usage. The majority of our findings show the use of industrial software projects in

empirical studies but no further usage in the day-to-day development process.

Findings from this chapter indicate the necessity of actions seeking to mature the

research in TCP techniques in order to help practitioners on adopting its approaches in

industry. An initial step for this might be to provide reliable and easy ways to use and

experiment TCP techniques.

34

T
ab

le
2.

11
:

L
it

er
at

u
re

ev
id

en
ce

of
T

C
P

u
se

in
in

d
u
st

ri
al

se
tt

in
gs

.

R
e
f.

T
it

le
Y

e
a
r

In
d
u
st

ri
a
l

p
a
rt

n
e
r

A
d
o
p
t

T
C

P
?

(Y
A

N
G

et
a
l.
,

20
1
7)

A
n

In
d
u

st
ri

al
S
tu

d
y

o
f

N
at

u
ra

l
L

an
gu

ag
e

P
ro

ce
ss

in
g

B
as

ed
T

es
t

C
as

e
P

ri
o
ri

ti
za

ti
on

2
01

7
E

ve
ry

d
ay

N
et

w
o
rk

C
o
.

L
td

.
X

(P
A

R
E

J
O

et
a
l.
,

2
01

6
)

M
u
lt

i-
ob

je
ct

iv
e

te
st

ca
se

p
ri

or
it

iz
at

io
n

in
h
ig

h
ly

co
n

fi
gu

ra
b
le

sy
st

em
s:

A
ca

se
st

u
d

y
2
01

6
N

am
e

n
ot

re
p

or
te

d
X

(S
T

R
A

N
D

B
E

R
G

et
a
l.
,

2
0
16

)
E

x
p

er
ie

n
ce

R
ep

or
t:

A
u

to
m

at
ed

S
y
st

em
L

ev
el

R
eg

re
ss

io
n

T
es

t
P

ri
o
ri

ti
za

ti
on

U
si

n
g

M
u

lt
ip

le
F

ac
to

rs
2
01

6
W

es
te

rm
o

R
es

ea
rc

h
a
n
d

D
ev

el
o
p

m
en

t
A

B

X

(B
U

S
J
A

E
G

E
R

;
X

IE
,

20
1
6
)

L
ea

rn
in

g
fo

r
te

st
p
ri

or
it

iz
at

io
n

:
an

in
d
u

st
ri

al
ca

se
st

u
d
y

2
01

6
S
a
le

sf
or

ce
.c

om
X

(W
A

N
G

et
a
l.
,

20
1
6)

E
n

h
a
n
ci

n
g

T
es

t
C

as
e

P
ri

or
it

iz
at

io
n

in
an

In
d
u

st
ri

al
S

et
ti

n
g

w
it

h
R

es
ou

rc
e

A
w

a
re

n
es

s
an

d
M

u
lt

i-
ob

je
ct

iv
e

S
ea

rc
h

2
01

6
C

is
co

N
o
rw

ay
X

(M
A

R
IJ

A
N

et
a
l.
,

2
01

3
)

T
es

t
C

a
se

P
ri

or
it

iz
a
ti

on
fo

r
C

on
ti

n
u

ou
s

R
eg

re
ss

io
n

T
es

ti
n

g:
A

n
In

d
u
st

ri
a
l

C
as

e
S
tu

d
y

2
01

3
N

am
e

n
ot

re
p

or
te

d
X

(N
A

R
D

O
et

al
.,

20
1
3
)

C
ov

er
a
ge

-B
as

ed
T

es
t

C
as

e
P

ri
or

it
is

at
io

n
:

A
n

In
d

u
st

ri
al

C
as

e
S
tu

d
y

2
01

3
N

am
e

n
ot

re
p

or
te

d
X

(S
R

IK
A

N
T

H
;

C
O

H
E

N
,

2
0
11

)
R

eg
re

ss
io

n
te

st
in

g
in

S
of

tw
ar

e
as

a
S

er
v
ic

e:
A

n
in

d
u
st

ri
al

ca
se

st
u

d
y

2
01

1
N

am
e

n
ot

re
p

or
te

d
X

(C
Z

E
R

W
O

N
K

A
et

al
.,

20
1
1
)

C
R

A
N

E
:

F
a
il
u
re

P
re

d
ic

ti
on

,
C

h
an

ge
A

n
al

y
si

s
an

d
T

es
t

P
ri

-
or

it
iz

a
ti

o
n

in
P

ra
ct

ic
e

–
E

x
p

er
ie

n
ce

s
fr

om
W

in
d

ow
s

2
01

1
M

ic
ro

so
ft

X

(C
A

R
L

S
O

N
et

al
.,

2
01

1
)

A
cl

u
st

er
in

g
ap

p
ro

ac
h

to
im

p
ro

v
in

g
te

st
ca

se
p
ri

or
it

iz
at

io
n
:

A
n

in
d
u

st
ri

a
l

ca
se

st
u
d
y

2
01

1
M

ic
ro

so
ft

X

(E
N

G
S
T

R
Ö

M
et

a
l.
,

20
1
1)

Im
p

ro
v
in

g
R

eg
re

ss
io

n
T

es
ti

n
g

T
ra

n
sp

ar
en

cy
an

d
E

ffi
ci

en
cy

w
it

h
H

is
to

ry
-B

as
ed

P
ri

or
it

iz
at

io
n

–
A

n
In

d
u

st
ri

al
C

as
e

S
tu

d
y

2
01

1
S
o
n
y

E
ri

cs
so

n
M

ob
il
e

C
om

m
u
n
i-

ca
ti

on
s

X

35

3 RELATED WORKS

Related works are separated into three categories. The first one is for works that allow the

use of TCP techniques. The second one is for works that allow the TCP usage and can

be integrated into the continuous integration process. Finally, the third one is for works

that describe TCP approaches for continuous software engineering but did not describe

any means to execute it, like a tool or framework.

3.1 TCP USAGE

In this subsection, works that describe stand-alone tools that can execute TCP techniques

are discussed.

Do et al. (2006) discuss the use of a JUnit framework extension together with a byte-

code analyzer tool, named Galileo. This extension is then used in an empirical study

to evaluate implemented TCP techniques effectiveness. Implemented techniques include

coverage and modification-based approaches.

Kauffman and Kapfhammer (2012) propose two tools that are part of a test case pri-

oritization/reduction framework. According to authors, the goal of using this framework

is to support empirical studies on these types of techniques and also to enable practition-

ers to use them in their daily development tasks. The framework includes search-based

and coverage-based TCP techniques. The framework is also able to measure produced

outputs for prioritization and reduction approaches and offer visualizations so researchers

can analyze experiment results. It integrates with JUnit and Cobertura1. Although it

seems promising for usage in this work, it has not been updated in the last six years.

Alves et al. (2016) use an open source TCP tool, called PriorJ, which allows the use

of TCP techniques on Java language applications that use JUnit test framework. Among

its offered TCP techniques, there are coverage-based ones, using source code coverage at

method and statement level, a change-based technique and a refactoring-based approach.

It does not offer any kind of integration with build automation tools, being a standalone

tool, which can hinder its usage on a Continuous Integration environment.

1https://github.com/cobertura/cobertura

36

(SÁNCHEZ; SEGURA, 2017) propose a tool named SmarTest, which is a test priori-

tization tool for accelerating the detection of faults in Drupal environment. It prioritizes

test cases based on the number of commits made in the code, or based on the tests that

failed in last executions. Authors do not discuss any means of integrating this tool into a

continuous integration process.

3.2 TCP IN CONTINUOUS SOFTWARE ENGINEERING

In this sub-section, works that discuss the use of TCP techniques in continuous software

engineering environment are discussed.

Elbaum et al. (2014) propose TCP techniques that are modeled specifically for contin-

uous integration environments. The techniques are based on the notion of time window

for testing and are based on historical execution data. The techniques are experimented

on test data from Google and results show that the proposed techniques can reduce delay

to detect faults during the test process.

Marijan and Liaaen (2016) also investigate the use of time windows for prioritizing test

cases in continuous regression testing. However, they use different type of historical test

data than Elbaum et al. (2014). They investigate the effect of varying the amount of his-

torical data to be considered when prioritizing test cases using historical-based approaches

on a project.

3.3 TCP USAGE AND CONTINUOUS SOFTWARE ENGINEERING

In this section, we discuss studies that intersect the previous two sub-sections. That is,

works that propose or discuss the use of a TCP tool or framework that can be used with

automated build tools and thus integrated into continuous software engineering activities,

such as continuous integration.

Plewnia (2015) proposes a Regression Test Optimization (RTO) platform named Lazzer

that eases the implementation of RTO techniques and their usage on existing software. It

considers two different types of RTO approaches, namely selection and prioritization tech-

niques. It is not currently publicly available. Implemented TCP techniques are history-

based. It offers a Maven integration, which can allow its usage on continuous integration

processes. The platform is only evaluated qualitatively and has not been used in any TCP

37

experiment.

Öhlin (2017) proposes a framework to evaluate TCP approaches effectiveness. It is

used to evaluate approaches with test data from Spotify Company. Approaches include

history-based, modification-based and machine learning-based. Author found as results

that the approaches that performed better were history-based. He did not, however,

integrate the developed framework into the CI process of the company.

Spieker et al. (2017) propose an automatic reinforcement learning method to prioritize

and select test cases in a continuous integration environment named Retecs. The technique

is based on historical information about test executions.

Test Load Balancer2 (TLB) is a tool that allows the partitioning of test cases in equal

parts to be run in parallel. Moreover, it allows the use of a TCP technique, executing

test cases that failed in the previous build first or allowing developers to implement their

own prioritization technique. TLB supports integration with automated build tools, like

Maven or Ant and also support different programming languages, like Java and Ruby.

Clover – Atlassian3 is a test management framework. It offers coverage information and

tests optimization. Among the optimizations, the prioritization uses information about

failed tests in previous run to determine the order of the next run. Tests are ordered

according to coverage of modified code and ascending by invocation run time.

Maven Surefire4 is a Maven plugin to execute test cases during the build process of

projects using custom configurations, like parallel processing or inclusion of external tests.

It also generates reports about executed tests in different formats. Moreover, it offers the

option to reorder the tests to be executed, executing those that failed on previous run

first.

3.4 EXISTING APPROACHES COMPARISON

In the previous Chapter, the following problems were identified in literature.

1. Low amount of empirical studies.

2. Low amount of industry usage evidence.

3. Diversity of TCP techniques input data.

2http://test-load-balancer.github.io/
3https://www.atlassian.com/software/clover
4http://maven.apache.org/surefire/maven-surefire-plugin/

38

4. Possibility of improving TCP rate of fault detection effectiveness using method test

granularity.

Taking into account the necessity of automation of builds in the continuous software

engineering environment and the problems listed above, we derive requirements that a

solution must have to address the problems. The first requirement is that the solution

must integrate into the automated build process. This can possibly be achieved with

automated build tools plugins.

The second requirement is derived from the low amount of empirical studies in litera-

ture. We conjecture that this might be due to the difficulties associated with performing

an empirical study in this topic. To address this, we believe that a solution needs to

provide an API so that researchers can implement the TCP techniques that they need

to experiment. Furthermore, the solution must also provide means of measuring the

effectiveness of implemented TCP techniques.

Another problem that possibly hinder the use of TCP is that different TCP techniques

need different project data information, like test coverage, historical execution and modi-

fication information. In this way, another derived requirement is that a solution needs to

provide these types of data.

To be able to further investigate the use of test-method granularity, a solution must

provide a mechanism to achieve this.

Finally, we conjecture that the low amount of industry usage evidence might be due to

the combination of most of the discussed problems. Providing a solution that can execute

different TCP techniques, which use different project data information, at the test-method

granularity and able to provide measurements of its effectiveness, can possibly encourage

researchers on performing and reporting more empirical studies. More empirical evidence

may enable practitioners to choose adequate techniques for industrial usage. In this sense,

a good solution might also need to be publicly available.

Requirements:

1. Build cycle integration

2. API to implement new TCP techniques

3. TCP techniques effectiveness measurement

4. Provision of project data

39

5. Test execution at the method granularity

6. Publicly available

Based on those requirements, we present a comparison in Table 3.1 to reason about how

related works address them.

Table 3.1: Comparison of requirements among related work.

Solution
Requirements

1 2 3 4 5 6

(DO et al., 2006) X X X Coverage X X
(KAUFFMAN;
KAPFHAMMER, 2012)

X X X Coverage X X

(ALVES et al., 2016) - Pri-
orJ

X X X Coverage, Refactor-
ing, Modifications

X X

(SÁNCHEZ; SEGURA,
2017) - SmarTest

X X X Coverage, Historical N/A X

(PLEWNIA, 2015) Maven X X Historical X X
(ÖHLIN, 2017) X X X Historical, Modifica-

tions
N/A X

(SPIEKER et al., 2017) X X X Historical N/A X
Test Load Balancer (TLB) Ant, Buildr X X Historical X X
Clover – Atlassian Maven, Ant X X Coverage, Historical X X
Maven Surefire Maven X X Historical X X

3.5 FINAL CONSIDERATIONS

In this chapter we reasoned about existing works and how they address problems identified

in the last Chapter. As can be observed in Table 3.1, existing solutions do not address all

the requirements to solve the problems. For this reason, in the next Chapter we propose

Optimus Framework. It is a test framework aiming at providing means for executing and

experimenting different TCP techniques.

40

4 OPTIMUS FRAMEWORK DESIGN

4.1 INTRODUCTION

In this chapter we design a framework aiming to solve the problems discussed in the last

sections. The main goal of the framework is to allow the execution, implementation and

experimentation of TCP techniques in a continuous integration environment.

4.2 REQUIREMENTS

As discussed in the last Chapter, requirements for this proposal were derived from prob-

lems identified in the literature and not met by related works.

• R1: to allow the usage of such framework in the continuous integration environment,

it needs to provide integration with automated build tools.

• R2: to allow the inclusion of new TCP techniques, the framework must provide an

API.

• R3: to support the conduction of experiments with TCP techniques, the framework

must provide means of measuring TCP techniques effectiveness.

• R4: to support the development of new techniques, the framework must provide

different project data to be used as input. In order to maximize the diversity of

possible techniques, the most used approaches need to be addressed. In this case,

coverage-based, history-based, modification-based and similarity-based, according

to our systematic literature mapping.

• R5: to allow investigation of different test granularities, the framework must allow

the execution of test cases at the method and class granularity.

• R6: to encourage the adoption of TCP techniques, the framework must be publicly

available and easy to be used.

Regression testing is one of the activities performed during the project build. The

process is outlined in Figure 4.1 to provide a better understanding of how it happens in

a continuous integration environment.

41

Figure 4.1: Typical continuous integration process.

Based on this process, test case prioritization is performed during the regression test

execution, which is executed during the software build.

Considering that the focus of the framework is to meet the needs of both industry

and researchers, it must provide two different means of executing TCP techniques. One,

aiming at practitioners from industry, is to simply execute a TCP technique during the

build process of a project. The other, aiming at researchers from academia, is to execute

different TCP techniques and configurations over a software project, aiming to measure

and compare their effectiveness.

In this way, we propose the framework depicted in Figure 4.2. Each of its components

is described next.

The framework interfaces with an automated build tool. It must be called during the

regression testing phase of the build by the build tool, execute and then return the control

to the build tool.

4.3 ARTIFACTS REPOSITORY

This module is responsible for storing data and providing access to configuration of the

framework and artifacts of the project, generated during its execution. Example: test

case results, experiments reports, coverage data.

4.4 EXPERIMENTS SUPPORT

Two modules in the architecture are dedicated to support the experimentation of TCP

techniques: TCP effectiveness analyzer and Reports generator.

42

Figure 4.2: Optimus framework architecture.

4.4.1 TCP EFFECTIVENESS ANALYZER

This module is responsible for measuring the effectiveness of TCP techniques and helping

with the conduction of experiments. It includes four sub-modules: fault seeder, faults

finder, test execution simulator and automation of experiments.

Fault seeder: to allow the experimentation of TCP techniques, the project in which

they are executed must contain faults. According to Andrews et al. (2005), in absence of

real faults, mutation faults can be used instead. The aim of this sub-module is to seed

faults into projects using mutation of the source code.

Faults finder: according to Paterson et al. (2018), using mutation faults for measuring

TCP techniques effectiveness is not always representative of real faults. For this reason,

this sub-module is responsible for searching and downloading versions of open source

projects that contain real failing tests.

Test execution simulator: executing the regression tests incur in executing all test

cases of a project. This task may require hours to finish, making it difficult to measure

43

the effectiveness of many TCP techniques and compare them. For this reason, this sub-

module is responsible for accelerating this process by executing the test cases once to

gather the necessary data and then simulate the execution for the TCP techniques.

Automation of experiments: executing experiments to measure and compare the effec-

tiveness of different TCP techniques require the manual trigger of the regression tests for

each desired configuration. To support this laborious task, this sub-module is responsible

for automating this process, by setting all the configurations to be run and executing each

of them.

4.4.2 REPORTS GENERATOR

This module is responsible for generating reports after the execution of experiments using

the framework. Those reports must contain detailed data about the execution of each test

case and each TCP technique. Furthermore, a summary report must also be generated,

aggregating the results of different TCP techniques to allow its comparison.

4.5 ANALYZERS

Analyzers are responsible for extracting and providing project data as input for the TCP

techniques. Types of project data included are motivated by the most used approaches

in literature, according to our systematic mapping.

4.5.1 COVERAGE ANALYZER

This module is responsible for collecting and analyzing coverage data. This coverage

information is relative to the source code covered by test cases. In this way, this module

must provide per-test coverage information. Moreover, it should also be provided in

different granularities of source code elements, like statements, branches and methods.

4.5.2 HISTORICAL DATA ANALYZER

This module is responsible for collecting historical data about test cases execution. In

this way, after the execution of each test case, generated information must be stored to be

used in the future. Thus, this module should also provide access for stored information.

44

4.5.3 EXECUTION TRACE ANALYZER

This module is responsible for collecting execution traces of test cases. Execution traces

are used by similarity-based TCP techniques. An execution trace differ from coverage

information in the sense that the latter informs if each source code element was executed

by each test case, while the former informs how many times each source code element was

executed by each test case. Besides collecting such information, this module must also

provide access to it.

4.5.4 MODIFICATIONS ANALYZER

This module is responsible for managing, collecting and providing access to source code

modification information between versions of a project. Such information includes, for

example, source code elements that were modified and amount of lines modified.

4.6 TCP TECHNIQUES

This module provides a set of TCP techniques that can be used in the framework. New

techniques can be developed and added at any time. A total of 9 TCP techniques were

selected, based on our systematic review and mapping of the literature, to be included in

the first version of the framework. They are described next.

To illustrate each technique example, consider a simple software project designed as

depicted in the UML class diagram in Figure 4.3. Source code classes are represented in

blue and test classes are represented in green.

In the example, there are 3 classes, with a test class for each one and a test class

that tests the integration between ClassA and ClassB. Moreover, arrows in the diagram

indicate the dependency between them. For example, ClassA depends on ClassB, because

there is an attribute of type ClassB.

4.6.1 COVERAGE-BASED

As it was already described, coverage-based TCP techniques use coverage information

to determine the order of the test cases. Three coverage-based techniques are included

in our framework. They are total coverage and additional coverage, which were already

described in Section 2.7.1.1 and Adaptive Random Testing (ART). Considering planned

45

Figure 4.3: Example software project.

coverage granularities to be included in the framework, those techniques are included in 3

different versions (statement, branch and method); 2 different versions considering the test

execution granularity (method-level and class-level) and 3 different versions considering

their base approach (Total, Additional or ART). ART technique is also available with 3

different versions regarding its selection function (Max, Min and Avg). In this way, the

framework provides 6 variations of total coverage, 6 variations of additional coverage and

18 variations of ART, totaling 30 different options of coverage-based TCP techniques, as

listed in Table 4.1 and Table 4.2. Their base approaches are described next and examples

are given considering the method test-level, method coverage granularity and the Min

selection function for ART.

For demonstration purposes of coverage-based approaches, a coverage matrix is dis-

played in Table 4.3, relative to the example project depicted in Figure 4.3. In Table 4.3,

the cell value “1” means that the method in that column is covered by the test case in its

row. A value of 0 means the opposite. For example, method1 of the ClassB is covered by

test cases #3 and #6.

46

Table 4.1: Variations of Total and Additional coverage techniques.
Name Technique Coverage

granularity
Test granularity

Total statement coverage at test
method level

Total coverage

Statement
Method-level

Total branch coverage at test
method level

Branch

Total method coverage at test
method level

Method

Total statement coverage at test
class level

Statement
Class-level

Total branch coverage at test class
level

Branch

Total method coverage at test class
level

Method

Additional statement coverage at
test method level

Additional coverage

Statement
Method-level

Additional branch coverage at test
method level

Branch

Additional method coverage at test
method level

Method

Additional statement coverage at
test class level

Statement
Class-level

Additional branch coverage at test
class level

Branch

Additional method coverage at test
class level

Method

47

Table 4.2: Variations of ART coverage technique.
Name Coverage

granular-
ity

Test granular-
ity

Selection function

ART Max statement at test method
level

Statement
Method-Level

Max
ART Max branch at test method
level

Branch

ART Max method at test method
level

Method

ART Max statement at test class
level

Statement
Class-Level

ART Max branch at test class level Branch
ART Max method at test class level Method

ART Min statement at test method
level

Statement
Method-Level

Min
ART Min branch at test method
level

Branch

ART Min method at test method
level

Method

ART Min statement at test class
level

Statement
Class-Level

ART Min branch at test class level Branch
ART Min method at test class level Method

ART Avg statement at test method
level

Statement
Method-Level

Avg
ART Avg branch at test method
level

Branch

ART Avg method at test method
level

Method

ART Avg statement at test class
level

Statement
Class-Level

ART Avg branch at test class level Branch
ART Avg method at test class level Method

48

Table 4.3: Coverage matrix for the example project.

Tests cases
Source Code

ClassA ClassB ClassC
method1 method2 method1 method1 method2

1
ClassATest.

method1Test
1 1 0 0 0

2
ClassATest.

method2Test
0 1 0 0 0

3
ClassBTest.
method1Test

0 0 1 0 0

4
ClassCTest.
method1Test

1 1 0 1 0

5
ClassCTest.
method2Test

0 0 0 0 1

6
ClassABTest.

method1 method1Test
1 0 1 0 0

4.6.1.1 Total coverage

The total coverage approach, described in Algorithm 1, order test cases according to the

total amount of source code elements covered. If a tie occurs between two or more test

cases that cover the same amount of source code elements, one of them is chosen randomly.

Considering the coverage matrix displayed in Table 4.3, the total coverage for each

test case is displayed in Table 4.4.

According to Algorithm 1 and the total coverage for each test case displayed in Table

4.4, firstly test case #4 would be chosen, since it covers 3 source code elements, which

is the biggest amount among the test cases. Then, a tie occurs between test cases #1

and #6, with each of them covering 2 source code elements. Thus, one of them is chosen

randomly. Suppose that #6 is chosen. In the next iteration #1 is chosen, and then a tie

occurs again between test cases #2, #3 and #5. The process repeats until all test cases

are ordered. One possible final order for this approach in this scenario is: #4, #6, #1,

#3, #2 and #5.

4.6.1.2 Additional coverage

The additional coverage approach is similar to the total one. The main difference is that

a list of already covered source code elements by already ordered test cases is maintained

and updated after each iteration. This is done to allow the calculation of the additional

coverage that a test case can yield to the already ordered test cases if it is chosen. In this

49

Algorithm 1: Total coverage base algorithm

Input: Test coverage matrix C, test cases set T
Output: Ordered test cases set T ′

T ′ ← ∅;
while T not empty do

MaxT ← ∅;
MaxC ← 0;
foreach t in T do

totalCoverage← getTotalCoverage(t,C);
if totalCoverage > MaxC then

MaxT ← ∅
end if
if totalCoverage ≥MaxC then

Add t to MaxT ;
MaxC ← totalCoverage;

end if

end foreach
chosenT ← random(MaxT);
Add chosenT to T ′;
Remove chosenT from T ;

end while
Function getTotalCoverage(t, C):

totalCoverage← 0;
foreach covered element of t in C do

totalCoverage← totalCoverage+ 1;
end foreach

return totalCoverage

Table 4.4: Total coverage for the example application.

Tests cases Total coverage

1 ClassATest.method1Test 2
2 ClassATest.method2Test 1
3 ClassBTest.method1Test 1
4 ClassCTest.method1Test 3
5 ClassCTest.method2Test 1
6 ClassABTest.method1 method1Test 2

50

way, it is expected that test cases executed firstly cover the greatest amount of source

code elements possible for that test suite. If a tie occurs between the additional coverage

of two of more test cases, one of them is chosen randomly. Furthermore, if no test cases

can provide additional coverage to the already ordered set, the already covered elements

list is emptied so that the process can start over. The base algorithm for this approach is

displayed in Algorithm 2.

Considering the coverage matrix displayed in Table 4.3, the initial additional coverage

for each test case is displayed in Table 4.5. In the first iteration, this information is always

the same for total and additional approaches.

According to Algorithm 2, the first chosen test case would be #4, since it yields the

greatest amount of additional coverage to the ordered set of test cases, which is empty,

since this is the first iteration. After adding test case #4 to the ordered test cases set, the

covered elements list contains: ClassA.method1, ClassA.method2 and ClassC.method1.

The additional coverage for each test case is recalculated and displayed in Table 4.6.

Since there is a tie between the additional coverage of test cases #3, #5 and #6, one

of them is chosen randomly. Suppose that #5 is chosen. Now, the covered elements list

contains: ClassA.method1, ClassA.method2, ClassC.method1 and ClassC.method2. The

additional coverage for each test is case is recalculated and displayed in Table 4.7.

Since there is a tie between test cases #3 and #6, one of them is chosen randomly. Sup-

pose that #3 is chosen. The covered elements list contains: ClassA.method1, ClassA.method2,

ClassC.method1, ClassC.method2 and ClassB.method1. The ordered test cases set con-

tains: #4, #5 and #3. The additional coverage for each test case is recalculated and

displayed in Table 4.8.

Considering that there is no additional source code element that can be covered by not

yet ordered tests, the covered elements list is emptied. The process restarts and additional

coverage is recalculated as displayed in Table 4.9.

Since there is a tie between test cases #1 and #6, one of them is chosen randomly.

Suppose that #6 is chosen. The covered elements list contains: ClassA.method1 and

ClassB.method1. The ordered test cases set contains: #4, #5, #3 and #6. The process

continues until all test cases have been ordered. One possible final order for this scenario

would be: #4, #5, #3, #6, #2 and #1.

51

Algorithm 2: Additional coverage base algorithm

Input: Test coverage matrix C, test cases set T
Output: Ordered test cases set T ′

L← ∅ ; . temporary set of covered elements

T ′ ← ∅;
while T not empty do

MaxAdditionalT ← ∅;
MaxAdditionalC ← 0;
foreach t in T do

AdditionalC ← getTotalCoverage(t,C,L);
if AdditionalC > MaxAdditionalC then

MaxAdditionalT ← ∅
end if
if AdditionalC ≥MaxAdditionalC then

Add t to MaxAdditionalT ;
MaxAdditionalC ← AdditionalC;

end if

end foreach
if MaxAdditionalC = 0 then

L← ∅;
else

t← random(MaxAdditionalT);
Add covered elements by t to L;
Add t to T ′;
Remove t from T ;

end if

end while
Function getAdditionalCoverage(t, C):

additionalCoverage← 0;
foreach covered element of t in C do

additionalCoverage← additionalCoverage+ 1;
end foreach

return getAdditionalCoverage

52

Table 4.5: Additional coverage for example application, first iteration.

Tests cases Additional coverage

1 ClassATest.method1Test 2
2 ClassATest.method2Test 1
3 ClassBTest.method1Test 1
4 ClassCTest.method1Test 3
5 ClassCTest.method2Test 1
6 ClassABTest.method1 method1Test 2

Table 4.6: Additional coverage for example application, second iteration.

Tests cases Additional coverage

1 ClassATest.method1Test 0
2 ClassATest.method2Test 0
3 ClassBTest.method1Test 1
5 ClassCTest.method2Test 1
6 ClassABTest.method1 method1Test 1

4.6.1.3 Adaptive Random Testing

The Adaptive Random Testing (ART) technique also uses coverage information to execute.

As its name suggests, it is based on randomness. According to Jiang et al. (2009), the

main idea is to spread the distribution of test cases as evenly as possible across the input

domain, which in this case is the coverage of source code elements.

The algorithm is based on two main steps. One is the generate procedure, which builds

a candidate set of test cases to be selected. Test cases are randomly added to this set as

long as they can increase the test coverage of the whole set, in other words, as long as

their additional coverage is not 0. In this way, if a test case that does not add coverage

to the set is drawn, the algorithm continues to the next step.

The goal of the next step is to select one test case from the candidate set to be included

in the final ordered set. Test cases are selected based on their distance from the ordered

set. Distance is measured using the Jaccard Distance metric with coverage data as input.

Three different functions can be used in this step to select a test case based on their

distance. They are minimum, average or maximum distances values. If, for example, the

minimum distance is used, then the test case selected will have the greatest minimum

distance to the ordered set of test cases. The choice of a distance function is a research

topic itself. Algorithm 3 describes ART approach in detail.

53

Table 4.7: Additional coverage for example application, third iteration.

Tests cases Additional coverage

1 ClassATest.method1Test 0
2 ClassATest.method2Test 0
3 ClassBTest.method1Test 1
6 ClassABTest.method1 method1Test 1

Table 4.8: Additional coverage for example application, fourth iteration.

Tests cases Additional coverage

1 ClassATest.method1Test 0
2 ClassATest.method2Test 0
6 ClassABTest.method1 method1Test 0

Definition 2. Jaccard distance is a dissimilarity index based on the original Jaccard

index proposed by Jaccard (1901). It can be used to measure the dissimilarity between

two sets. In this work, it measures the dissimilarity between two test cases, according to

their coverage information. To represent the coverage information of a test case, a Boolean

string is constructed with as many characters as there are coverable source code elements

in the program. A character value of“1” in the string means that the corresponding source

code element is covered by that test case and a value of 0 means otherwise. The distance

value is given by Equation 4.1. Bigger the value, bigger the dissimilarity between A and

B.

J(A,B) = 1− |A ∩B|
|A ∪B|

(4.1)

Considering the coverage information from Table 4.3, an example of the execution

of this technique is described following. Consider also that the selection function is the

Minimum one.

The first step consists of randomly generating a candidate set of test cases. Suppose

that the first test case drawn is #5. The next one is #3, which has an additional coverage

score of 1. Suppose that the next one drawn is #6, which also has an additional coverage

score of 1, considering the candidate set. The next one is #4, with an additional score

of 2. Any next test case will have an additional coverage score of 0, since all source code

elements are already covered by the current candidate set. In this way, we will use this

candidate set (#3, #4, #5 and #6) in the next step.

54

Algorithm 3: ART base algorithm

Input: Test coverage matrix C, test cases set T
Output: Ordered test cases set T ′

T ′ ← ∅;
while T not empty do

candidateSet← generate(T,C);
t′ ← select(candidateSet);
Add t′ to T ′;
Remove t′ from T ;

end while
Function generate(T , C):

candidateSet← ∅;
additionalC ← 1;
t← random(T);
while additionalC 6= 0 do

Add t to candidateSet;
t← random(T);
additionalC ← get additional coverage for t in candidateSet, using C;

end while

return candidateSet
Function select(candidateSet, T ′):

maxDistanceT ← ∅;
maxDistance← -1;
foreach cs in CS do

distance← selectFunction(cs, T’) ; . returns the Maximum, Average

or Minimum distance from T ′

if distance > maxDistance then
maxDistanceT ← cs;
maxDistance← distance;

end if

end foreach

return maxDistanceT

55

Table 4.9: Additional coverage for example application, fifth iteration.

Tests cases Additional coverage

1 ClassATest.method1Test 2
2 ClassATest.method2Test 1
6 ClassABTest.method1 method1Test 2

The next step selects one test case from the candidate set, according to their distance

from the ordered test case set. Since our selection criterion is the Minimum distance

function, the test case with the greatest minimum distance will be selected.

Jaccard distance is calculated considering the coverage string of the test cases. Table

4.10 displays the coverage string for each candidate set test case.

Table 4.10: Coverage strings for test cases.

Test case # Coverage string

#3 0,0,1,0,0
#4 1,1,0,1,0
#5 0,0,0,0,1
#6 1,0,1,0,0

Considering that the ordered test case set is still empty, all the calculations will con-

sider B from Equation 4.1 as 00000. Thus, for example, to calculate the distance for test

case #3 (00100), the Equation 4.2 calculation is followed.

J(00100, 00000) = 1− |00100 ∩ 00000|
|00100 ∪ 00000|

(4.2)

To calculate intersection (first line of the fraction), we perform a character by character

comparison, using the AND operator, counting how many characters are both of value 1

and have the same index in the string, like Table 4.11 displays.

Table 4.11: Intersection calculation for Jaccard.
A 0 0 1 0 0
B 0 0 0 0 0
Result x x x x x

In the case of Table 4.11, the result of the intersection is 0. To calculate the union

(second line of the fraction), a comparison is made to check whether one or the other

character in the same index from the string is of value 1, as shown in Table 4.12.

56

Table 4.12: Union calculation for Jaccard.
A 0 0 1 0 0
B 0 0 0 0 0
Result x x X x x

In the case of Table 4.12, the result of the union is 1. Now, the calculation is performed,

dividing the result of the intersection by the result of the union, in this case, 1-0/1, which

is equal to 1. Thus, the distance from test case #3 to an empty test case is 1. After all

calculations, Table 4.13 displays Jaccard distance values obtained for each test case.

Table 4.13: Jaccard distances to ordered set, first iteration

Candidate set elements Distance to ordered set

#3 1
#4 1
#5 1
#6 1

Since all distance values are 1, the first one in the iteration will be selected. In this

case, #3 is the first test case added to the ordered set. Now the execution goes back

to the first step, to generate a new candidate set. Suppose that test case #1 is drawn.

Then, test case #2, which does not add any coverage to the candidate set. In this way,

the generate procedure stops and continues to the next step. The candidate set contains

only test case #1.

In the next step, the Jaccard distance for test case #1 and the ordered set, which

contains only test case #3, is calculated. Equation 4.3 shows how the calculation proceeds.

J(11000, 00100) = 1− |11000 ∩ 00100|
|11000 ∪ 00100|

= 1− 0

3
= 1 (4.3)

Since the candidate set only has one element, it is added to the ordered set of test cases,

which now contains: #3 and #1. Going back to the generate procedure, suppose that

test case #4 is drawn. The next one drawn is #6, which yields one additional coverage

score to the set, and then #2, which does not add any coverage. Thus, the candidate set

considered for the next step contains test cases #4 and #6. Distance values are calculated

to each test case from the ordered set, as displayed in Table 4.14.

Minimum values are 0.34 for candidate test case #4 and 0.5 for candidate test case

#6. The greatest minimum value is 0.5 and thus, test case #6 is selected and included to

57

Table 4.14: Jaccard distances to ordered set, second iteration

Candidate set elements
Distance to ordered set
#3 #1

#4 1 0.34
#6 0.5 0.67

the ordered set, which now contains test cases: #3, #1 and #6.

Back to the candidate set generation, suppose that test case #4 is drawn and then

#2. Since #2 does not add any coverage to the candidate set, only #4 is considered for

the next step. Considering that the candidate set only has one value, it is added to the

ordered test cases set, which now contains: #3, #1, #6 and #4.

Going back to the generation step, suppose that #2 is drawn. After that, only #5 is

left to be drawn. The candidate set contains #2 and #5. Distances of the candidate set

elements to the ordered set elements are calculated as displayed in Table 4.15.

Table 4.15: Jaccard distances to ordered set, third iteration

Candidate set elements
Distance to ordered set
#3 #1 #6 #4

#2 1 0.5 1 0.67
#5 1 1 1 1

Minimum values are 0.5 for test case #2 and 1 for test case #5. The greatest minimum

value between the candidate set and the ordered set is 1, for test case #5. In this way, it

is added to the ordered set. Considering that only #2 remains as not yet ordered, it is

finally added to the ordered set of test cases. The final test cases order for this technique

would be #3, #1, #6, #4, #5 and #2.

4.6.2 HISTORY-BASED

History-based techniques as its name suggests, use historical test cases information as

input for calculating the order of execution in the current build. Two history-based are

included in our framework. They are most failures first and recent failures first. They

can be used at the method-level and at the class-level test granularity. Thus, there are 4

different variations of history-based techniques available, as listed in Table 4.16.

For demonstration purposes of history-based approaches, a historical results matrix

is displayed in Table 4.17, relative to the example project depicted in Figure 4.3. In

Table 4.17, a cell value “1” means that the referred test case represented by the row has

58

Table 4.16: Variations for history-based TCP techniques.
Name Test granularity

Most failures first at test method level
Method-level

Recent failures first at test method level
Most failures first at test class level

Class-level
Recent failures first at test class level

successfully been executed in the past execution represented by the column. A value of

“0” means that the test case has failed in that execution. For example, test case #2 has

failed in executions 1 and 3. Executions are counted chronologically. This means that

execution 1 happened before 2, which happened before 3 and so on. The most recent

execution in this example is execution 5.

Table 4.17: Historical results matrix.

Test case
Past execution results

1 2 3 4 5
1 ClassATest.method1Test 1 1 1 1 1
2 ClassATest.method2Test 0 1 0 1 1
3 ClassBTest.method1Test 1 0 1 1 1
4 ClassCTest.method1Test 1 1 1 1 0
5 ClassCTest.method2Test 1 1 0 1 1
6 ClassABTest.method1 method1Test 1 1 1 0 0

4.6.2.1 Most failures first

This technique is based on the total amount of failures that each test case has revealed

in past executions. It is based on Algorithm 4. If a tie occurs between test cases, one of

them is chosen randomly.

As an example execution of this technique, consider the historical results matrix in

Table 4.17. The amount of failures per test case is represented in Table 4.18.

Since there is a tie between test cases #2 and #6, with 2 historical failures each, one

of them is chosen randomly. Suppose that #6 is chosen. One possible execution order

would be #6 and #2. Now there is another tie between test cases #3, #4 and #5. One

possible execution order would be #6, #2, #4, #5 and #3. Since test case #1 has not

failed yet, it is ordered for the last position. One possible final execution order for this

scenario, using the most failures first technique would be: #6, #2, #4, #5, #3 and #1.

59

Algorithm 4: Most failures first algorithm

Input: Test cases execution results history matrix H, test cases set T
Output: Ordered test cases set T ′

T ′ ← ∅;
while T not empty do

MaxT ← ∅;
MaxH ← 0;
foreach t in T do

failuresAmount← getFailuresAmount(t, H);
if failuresAmount > MaxH then

MaxT ← ∅;
end if
if failuresAmount ≥MaxH then

Add t to MaxT ;
MaxH ← failuresAmount;

end if

end foreach
chosenT ← random(MaxT);
Add chosenT to T ′;
Remove chosenT from T ;

end while
Function getFailuresAmount(t,H):

failuresAmount← 0;
foreach r in Ht do

if Htr = 0 then
failuresAmount← failuresAmount+ 1;

end if

end foreach

return failuresAmount

60

Table 4.18: Amount of historical failures per test case.

Test case Amount of failures

1 ClassATest.method1Test 0
2 ClassATest.method2Test 2
3 ClassBTest.method1Test 1
4 ClassCTest.method1Test 1
5 ClassCTest.method2Test 1
6 ClassABTest.method1 method1Test 2

4.6.2.2 Recent failures first

This technique is based on the freshness of failures for each test case. If a test case failed

recently, it receives a bigger weight when calculating its score than if it failed a long time

ago. This means that recently failed test cases have bigger priority. Ties are resolved

randomly.

The score for each test case is based on the execution results history, which contains

all executions for each test case and its result. If a test case failed in the n− th execution

and n− 1− th execution, its score is n+ (n− 1), for example. Test cases are then ordered

according to the descending value of scores. The score is calculated according to Equation

4.4.

scoreTi =

execi∑
j=1

freshnessij, wherefreshnessij =

j, if Hij = 0

0, if Hij = 1

(4.4)

Where i is the i− th test case, j is the j − th execution of the test case, Hij is the result

of the j− th execution of the i− th test case in the execution results history matrix. exec

is the total of executions for the test case. Algorithm 5 details how this technique works.

As an example of this technique, consider the historical results matrix in Table 4.17.

The calculated score for each test case is represented in Table 4.19.

Considering the scores displayed in Table 4.19, the execution order in this scenario,

using this technique would be: #6, #4, #2, #5, #3 and #1.

4.6.3 MODIFICATION-BASED

Modification-based TCP techniques use source code modification information to determine

the order that test cases will be executed. We include two approaches in this category,

which are also based on the total and additional coverage approach, described in Section

61

Algorithm 5: Recent failures first algorithm

Input: Test cases execution results history matrix H, test cases set T
Output: Ordered test cases set T ′

T ′ ← ∅;
while T not empty do

MaxT ← ∅;
MaxScore← 0;
foreach t in T do

score← getScore(t, H);
if score > MaxScore then

MaxT ← ∅;
end if
if score ≥MaxScore then

Add t to MaxT ;
MaxScore← score;

end if

end foreach
chosenT ← random(MaxT);
Add chosenT to T ′;
Remove chosenT from T ;

end while
Function getScore(t,H):

score← 0;
foreach j in Ht do

if Htj = 0 then
score← score+ j;

end if

end foreach

return score

62

Table 4.19: Recent failures score of test cases.

Test case Score

1 ClassATest.method1Test 0
2 ClassATest.method2Test 4
3 ClassBTest.method1Test 2
4 ClassCTest.method1Test 5
5 ClassCTest.method2Test 3
6 ClassABTest.method1 method1Test 9

4.6.1. Included approaches are named total diff coverage and additional diff coverage.

Two consecutive versions of the project being tested are considered in these approaches.

This means that the source code of the current version of the project is compared with

the source code of the previous version.

The two approaches in this category are offered in different versions, regarding its test

and source code granularity. Two variations are included regarding the test granularity,

method-level and class-level. Regarding source code granularity, method and class are

available as option. In this way, there are 8 (2 x 2 x 2) modification-based techniques

included, which are listed in Table 4.20.

Table 4.20: Variations of modification-based TCP techniques.

Name Base approach
Source code
granularity

Test granularity

Total method diff coverage at
test method level

Total coverage
Method

Method-level

Total class diff coverage at
test method level

Class

Total method diff coverage at
test method level

Total coverage
Method

Class-level

Total class diff coverage at
test method level

Class

Additional method diff cover-
age at test method level

Additional
coverage

Method
Method-level

Additional class diff coverage
at test method level

Class

Additional method diff cover-
age at test method level

Additional
coverage

Method
Class-level

Additional class diff coverage
at test method level

Class

For demonstration purposes of included modification-based approaches, consider the

coverage matrix displayed in Table 4.3. Furthermore, consider that the following methods

were modified since the last version of the project: ClassA.method2 and ClassC.method1.

63

4.6.3.1 Total diff coverage

This technique is based on the total coverage of source code elements that were changed

since the last version. In this way, coverage information is also used. Test cases are

ordered according to the descending amount of total modified elements covered. Ties are

resolved randomly. Algorithm 6 details the approach.

As an example of this technique, consider the coverage matrix in Table 4.3 and the

modified elements ClassA.method2 and ClassC.method1. The diff score for each test case

is displayed in Table 4.21.

Based on the scores from Table 4.21, one possible final order for the test cases is: #4,

#2, #1, #3, #6 and #5.

4.6.3.2 Additional diff coverage

The additional diff coverage technique is based on the additional coverage technique, with

the addition of the modification information. In this way, tests are ordered considering the

additional coverage of modified elements provided to already ordered tests. If all modified

elements have already been covered by already ordered tests, ordering continues with the

traditional additional coverage algorithm. Ties are resolved randomly. Algorithm 7 details

the approach.

Considering the coverage matrix displayed in Table 4.3 and the modified elements

ClassA.method2 and ClassC.method1, the initial additional diff coverage for each test

case is displayed in Table 4.22.

According to Algorithm 7, the first chosen test case would be #4, since it yields the

greatest amount of additional coverage of modified elements to the ordered set of test cases,

which is empty, since this is the first iteration. After adding test case #4 to the ordered

test cases set, the covered elements list contains: ClassA.method1, ClassA.method2 and

ClassC.method1. Since all modified elements have been already covered by #4, execution

continues considering the traditional additional coverage algorithm. The additional diff

coverage for each test case is recalculated and displayed in Table 4.23.

Since there is a tie between the additional coverage of test cases #3 and #5, one of

them is chosen randomly. Suppose that #3 is chosen. Now, the covered elements list

contains: ClassA.method1, ClassA.method2, ClassB.method1 and ClassC.method1. The

additional coverage for each test is case is recalculated and displayed in Table 4.24.

64

Algorithm 6: Total diff coverage algorithm

Input: Test cases coverage matrix C, test cases set T , modified source code
elements M

Output: Ordered test cases set T ′

T ′ ← ∅;
while T not empty do

MaxT ← ∅;
MaxC ← 0;
foreach t in T do

totalCoverage← getTotalDiffCoverage(t, C, M);
if totalCoverage > MaxC then

MaxT ← ∅;
end if
if totalCoverage ≥MaxC then

Add t to MaxT ;
MaxC ← totalCoverage;

end if

end foreach
chosenT ← random(MaxT);
Add chosenT to T ′;
Remove chosenT from T ;

end while
Function getTotalDiffCoverage(t, C,M):

totalDiffCoverage← 0;
foreach covered element e of t in C do

if e ∃M then
totalDiffCoverage← totalDiffCoverage+ 1;

end if

end foreach

return totalDiffCoverage

65

Algorithm 7: Additional diff coverage algorithm

Input: Test cases coverage matrix C, test cases set T , modified source code
elements M

Output: Ordered test cases set T ′

T ′ ← ∅;
L← ∅;
while T not empty do

MaxAdditionalT ← ∅;
MaxAdditionalC ← 0;
foreach t in T do

additionalC ← getAdditionalDiffCoverage(t, C, M, L);
if additionalC > MaxAdditionalC then

MaxAdditionalT ← ∅;
end if
if additionalC ≥MaxAdditionalC then

Add t to MaxAdditionalT ;
MaxAdditionalC ← additionalC;

end if

end foreach
if MaxAdditionalC = 0 then

L← ∅;
else

t← random(MaxAdditionalT);
Add covered elements by t to L;
Add t to T ′;
Remove t from T ;
Remove covered elements by t from M ;

end if

end while
Function getAdditionalDiffCoverage(t, C,M,L):

additionalDiffC ← 0;
foreach covered element e of t in C do

if M is not empty then
if e @L and e ∃M then

additionalDiffC ← additionalDiffC + 1;
end if

else
if e @L then

additionalDiffC ← additionalDiffC + 1;
end if

end if

end foreach

return additionalDiffC

66

Table 4.21: Total diff score for test cases of the example application.

Test case Score

1 ClassATest.method1Test 1
2 ClassATest.method2Test 1
3 ClassBTest.method1Test 0
4 ClassCTest.method1Test 2
5 ClassCTest.method2Test 0
6 ClassABTest.method1 method1Test 0

Test case #5 has additional diff coverage of 1, while the remaining test cases have 0. In

this way, it is chosen as the next test. The ordered test case set contains: #4, #3 and #5.

The covered elements list contains: ClassA.method1, ClassA.method2, ClassB.method1,

ClassC.method1 and ClassC.method2. Considering that all elements of the source code

are already been covered by the already ordered tests, the coverage list is emptied and ex-

ecution continues. The additional coverage for each test case is recalculated and displayed

in Table 4.25.

Since there is a tie between test cases #1 and #6, one of them is chosen randomly.

Suppose that #1 is chosen. The covered elements list contains: ClassA.method1 and

ClassA.method2. The ordered test case set contains: #4, #3, #5 and #1. The process

continues until all test cases have been ordered. One final order for this scenario would

be: #4, #3, #5, #1, #2 and #6.

4.6.4 SIMILARITY-BASED

Similarity-based TCP techniques use information about test cases to calculate their sim-

ilarity. We include two approaches in this category. They are the Farthest-first Ordered

Sequence (FOS) and Greed-aided-clustering Ordered Sequence (GOS), both proposed by

Fang et al. (2013). The two approaches in this category are offered in different versions,

regarding the granularity of the test cases, as displayed in Table 4.26.

These techniques use the notion of ordered sequence of program elements to calculate

the similarities between test cases.

Execution profile is the summary of source code elements executed by a test case.

Based on execution profiles, these techniques use the frequency profile, which contains the

counting of how many times each element was executed by each test case. Furthermore,

an ordered sequence is the ordered frequency profile of a test case. In this way, consider

67

Table 4.22: Additional diff score for test cases of the example application, first iteration.

Tests cases Additional diff coverage

1 ClassATest.method1Test 1
2 ClassATest.method2Test 1
3 ClassBTest.method1Test 0
4 ClassCTest.method1Test 2
5 ClassCTest.method2Test 0
6 ClassABTest.method1 method1Test 0

Table 4.23: Additional diff score for test cases of the example application, second iteration.

Tests cases Additional diff coverage

1 ClassATest.method1Test 0
2 ClassATest.method2Test 0
3 ClassBTest.method1Test 1
5 ClassCTest.method2Test 1
6 ClassABTest.method1 method1Test 0

Table 4.24: Additional diff score for test cases of the example application, third iteration.

Tests cases Additional diff coverage

1 ClassATest.method1Test 0
2 ClassATest.method2Test 0
5 ClassCTest.method2Test 1
6 ClassABTest.method1 method1Test 0

68

Table 4.25: Additional diff score for test cases of the example application, fourth iteration.

Tests cases Additional diff coverage

1 ClassATest.method1Test 2
2 ClassATest.method2Test 1
6 ClassABTest.method1 method1Test 2

Table 4.26: Variations of similarity-based techniques.
Name Test granularity

Farthest-first Ordered Sequence
Method-level

Greed-aided-clustering Ordered Sequence
Farthest-first Ordered Sequence

Class-level
Greed-aided-clustering Ordered Sequence

the example software depicted in Figure 4.3.

Using the coverage information, represented in Table 4.3, it is possible to derive the

execution profile of ClassATest.method1Test, for example.

The execution profile can be represented using a binary string, containing as much

characters as there are source code elements in the program being tested. For this example

scenario, the string representing the execution profile of the test cases would have 5

characters. Each character represents the execution (“1”) or not (“0”) of the source code

element, as displayed in Table 4.27.

Table 4.27: Execution profile for test cases.

Test case Execution profile

1 ClassATest.method1Test {1, 1, 0, 0, 0}
2 ClassATest.method2Test {0, 1, 0, 0, 0}
3 ClassBTest.method1Test {0, 0, 1, 0, 0}
4 ClassCTest.method1Test {1, 1, 0, 1, 0}
5 ClassCTest.method2Test {0, 0, 0, 0, 1}
6 ClassABTest.method1 method1Test {1, 0, 1, 0, 0}

Based on these execution profiles, the frequency profile can also be represented as a

string, where each character represents how many times that source code element was

executed by that test case. Table 4.28 display frequency profile values created to support

our examples. To clarify, as an example, test case #1 executes the first source code

element 2 times and the second source code element 1 time.

Having the frequency profile for each test case, the ordered sequence is derived by

simply ordering the characters for the frequency profile string and displaying their original

69

Table 4.28: Frequency profile for test cases.

Test case Frequency profile

1 ClassATest.method1Test {2, 1, 0, 0, 0}
2 ClassATest.method2Test {0, 3, 0, 0, 0}
3 ClassBTest.method1Test {0, 0, 1, 0, 0}
4 ClassCTest.method1Test {5, 2, 0, 1, 0}
5 ClassCTest.method2Test {0, 0, 0, 0, 1}
6 ClassABTest.method1 method1Test {2, 0, 2, 0, 0}

index from the frequency profile, as displayed in Table 4.29. These ordered sequences

will be used to display examples of each technique in this category in the next sections.

Consider for example, the test case #4, where the frequency profile is 5, 2, 0, 1, 0. The

value for each index in the set is: 1: 5, 2: 2, 3: 0, 4: 1, 5:0. In this way, after ordering

the frequency profile for this test case, the resulting (index) sequence is: 3, 5, 4, 2 and 1.

Table 4.29: Ordered sequence for test cases.

Test case Ordered sequence

1 ClassATest.method1Test {3, 4, 5, 1, 2}
2 ClassATest.method2Test {1, 3, 4, 5, 2}
3 ClassBTest.method1Test {1, 2, 4, 5, 3}
4 ClassCTest.method1Test {3, 5, 4, 2, 1}
5 ClassCTest.method2Test {1, 2, 3, 4, 5}
6 ClassABTest.method1 method1Test {2, 4, 5, 1, 3}

4.6.4.1 Fartherst-first ordered sequence

The Fartherst-first Ordered Sequence (FOS) technique as its name suggests, uses the

ordered sequence information of test cases as input to order them. Its goal is to give

priority to test cases that are the most diverse between themselves, so that by executing

the test set in that order, a diversity of source code elements are covered by the tests.

The algorithm for this technique works by firstly selecting a test case that can yield

the greatest code coverage. Then, next test cases are selected based on two distances,

measured by Levenshtein Distance, which is explained in Definition 3. One is the distance

between two test cases. The other is related to the distance between a test case and the

set of already ordered test cases. To calculate the latter, first all the distances between

the candidate test case and already ordered test cases are calculated. Then, the minimum

distance is used as representative for the distance between the candidate test case and the

70

ordered set. Three different strategies can be used for this distance, namely, the minimum,

the average and the maximum distance. We chose the minimum distance based on the

results of an empirical study conducted by Fang et al. (2013). The algorithm for this

technique is displayed in Algorithm 8.

Definition 3. Levenshtein distance is a metric proposed by Levenshtein (1965), which

is used to determine the minimum number of operations needed to transform one string

into another. Allowed operations are insertion, deletion and substitution. This metric is

used in this work to represent similarity between two strings.

Considering the ordered sequence for the test cases of our example scenario, displayed

in Table 4.29, an execution of this technique would occur like the following.

The first test case to be selected would be the one with the greatest total coverage, in

this case, test case #4. From now on, it is needed to consider the Levenshtein distances

between the ordered set of test cases and all other not yet ordered test cases. The dis-

tances between each test case ordered sequence is displayed in Table 4.30. These will be

considered in the following iterations of the technique.

The ordered test case set contains test case #4. The greatest minimum distance

between a test case from the not yet ordered set and the ordered test is 5, provided

by test cases #5 and #6. In this case, two test cases yields this maximum distance.

The one that appears first is selected, since no tie resolving mechanism is defined in the

original algorithm. In this way, test case #5 is added to the ordered test case set, which

now contains test cases #4 and #5. The minimum distances for the next iteration are

displayed in Table 4.31. Those were extracted from Table 4.30.

The greatest minimum distance is 4. Test cases that have this value are #1, #2 and

#3. The one that appears first is selected, which is #1. Now the ordered test set contains

#4, #5 and #1. The minimum distances for the next iteration are displayed in Table

4.32.

The greatest minimum distance now is still 4. Test cases with this value are #2 and

#3. The one that appears first is selected, which is #2. Now the ordered test set contains

#4, #5, #1 and #2. The minimum distances for the next iteration are displayed in Table

4.33.

The greatest minimum distance now is still 4.Test case with this value is #3, which is

added to the ordered test set. Now the ordered test set contains #4, #5, #1, #2 and #3.

71

Algorithm 8: Farthest-first ordered sequence base algorithm

Input: Test coverage matrix C, test cases set T , test cases ordered sequence set O
Output: Ordered test cases set T ′

T ′ ← ∅;
t← test with the highest total coverage in C;
Add t to T ′;
Remove t from T ;
while T not empty do

t← selectNextTestCase(T, T’, O);
Add t to T ′;
Remove t from T ;

end while
Function selectNextTestCase(T, T ′, O):

maxDistanceT ← ∅;
maxDistance← −1;
foreach t in T do

minDistance← a big value;
foreach t′ in T ′ do

orderedSequenceT ← Ot;
orderedSequenceT ′ ← Ot′ ;
distance← levenshtein(orderedSequenceT, orderedSequenceT’);
if distance < minDistance then

minDistance← distance;
end if

end foreach
if minDistance > maxDistance then

maxDistance← minDistance;
maxDistanceT ← t;

end if

end foreach

return maxDistanceT

72

Table 4.30: Levenshtein distance value between test cases.

Test cases number #1 #2 #3 #4 #5 #6

#1 0 4 5 4 5 2
#2 4 0 2 4 4 5
#3 5 2 0 4 3 4
#4 4 4 4 0 5 5
#5 5 4 3 5 0 5
#6 2 5 4 5 5 0

Table 4.31: Minimum distances between test cases and ordered set, first iteration.

Test case Minimum distance value Minimum distance test case

#4 4 #1, #2, #3
#5 3 # 3

Since only one test case remains in the not yet ordered test set, it is added to the ordered

set, completing the execution with the final test case order for this technique being #4,

#5, #1, #2, #3 and #6.

4.6.4.2 Greed-aided-clustering ordered sequence

The Greed-aided-clustering Ordered Sequence (GOS) technique also uses ordered sequence

information of test cases as input to order them. It combines the strategies of the addi-

tional coverage strategy and clustering of test cases. The algorithm takes as input the

amount of clusters to be used, ordered sequence information for the test cases, test cover-

age information and the test suite to be prioritized. It works by creating single test cases

clusters initially. Then clusters are merged with another cluster that has the minimum

distance among all others to the current cluster. Distance is calculated using Levenshtein

Distance, between the ordered sequences of a pair of clusters. This process is repeated

until the target amount of clusters, which is given as input to the algorithm, is hit. Once

this happens, each cluster is individually prioritized using the additional coverage algo-

rithm. The next step is to iteratively select one test case from each cluster to be included

in the final prioritized order until all test cases have been included. Algorithm 9 details

the approach.

Considering the ordered sequence for the test cases of our example scenario, displayed

in Table 4.29, an execution of this technique would occur like the following.

Initially, six test case clusters are created, each one containing one single test case, as

73

Algorithm 9: Greed-aided-clustering ordered sequence base algorithm

Input: Test coverage matrix C, test cases set T , test cases ordered sequence set O,
amount of clusters n

Output: Ordered test cases set T ′

T ′ ← ∅;
K ← |T | single test case clusters;
while |K| ≤ n do

Find a pair of clusters with minimum Levenshtein distance, using O;
Merge the pair of clusters;
Remove both clusters from K;
Add the merged cluster to K;

end while
foreach k in K do

Prioritize k test cases using additional coverage and C;
end foreach
i← 0;
while |K| > 0 do

t′ ← first test case from Ki;
Remove t′ from Ki;
if |Ki| = 0 then

Remove Ki from K;
end if
Add t′ to T ′;
i← i+ 1;
if i ≥ |K| then

i← 0;
end if

end while

74

Table 4.32: Minimum distances between test cases and ordered set, second iteration.

Test case Minimum distance value Minimum distance test case

#4 4 #2, #3
#5 3 #3
#1 2 #6

Table 4.33: Minimum distances between test cases and ordered set, third iteration.

Test case Minimum distance value Minimum distance test case

#4 4 #3
#5 3 #3
#1 2 #6
#2 2 #3

displayed in Table 4.34.

Table 4.34: Test cases clusters, first iteration.

Cluster Test cases

1 #1
2 #2
3 #3
4 #4
5 #5
6 #6

The second step of the algorithm is to merge clusters until the target amount of

clusters, provided as input, is hit. In our case, suppose that our target amount of clusters

is 3.

To merge clusters, it is necessary to calculate the distance between them, considering

the ordered sequence information. Considering that clusters only have one test case, the

distance between clusters is the same as the distance between the test cases, as displayed

in Table 4.35.

There are two pairs of clusters with the minimum distance (2) between them: #1,

#6 and #2, #3. As in the Farthest-first Ordered Sequence algorithm, no tie resolving

mechanism is used in the original algorithm. In this case, the first pair found by the

algorithm is chosen to be merged. Thus, clusters #1 and #6 are merged into one cluster.

The updated clusters and their test cases are displayed in Table 4.36.

Considering that there is a cluster (#1) with more than one test case, it is needed

75

Table 4.35: Test cases clusters distances, first iteration.

Clusters distance #1 #2 #3 #4 #5 #6

#1 0 4 5 4 5 2
#2 4 0 2 4 4 5
#3 5 2 0 4 3 4
#4 4 4 4 0 5 5
#5 5 4 3 5 0 5
#6 2 5 4 5 5 0

Table 4.36: Test cases clusters, second iteration.

Cluster Test cases

1 #1, #6
2 #2
3 #3
4 #4
5 #5

to merge the ordered sequence of both test cases (#1 and #6), to represent the ordered

sequence of the whole cluster.

To generate the new ordered sequence information, it is needed to add together the

frequency profiles of test cases that are in the same cluster. Thus, considering the original

frequency profiles, as displayed in Table 4.28, the updated frequency profile for each cluster

is displayed in Table 4.37.

Table 4.37: Clusters frequency profile, second iteration.

Cluster # Test cases # Frequency profile

#1 #1, #6 {4, 1, 2, 0, 0}
#2 #2 {0, 3, 0, 0, 0}
#3 #3 {0, 0, 1, 0, 0}
#4 #4 {5, 2, 0, 1, 0}
#5 #5 {0, 0, 0, 0, 1}

Now that we have the updated frequency profile for each cluster, it is possible to

generate the ordered sequence for them, as displayed in Table 4.38.

The updated Levenshtein distances between each pair of clusters, considering their

ordered sequences, is displayed in Table 4.39.

Considering the updated distances between each pair of clusters, the minimum distance

is 2, between clusters #3 and #2. In this way, both clusters are merged into one. The

76

Table 4.38: Clusters ordered sequences, second iteration.

Cluster # Test cases # Ordered sequence

#1 #1, #6 {4, 5, 2, 3, 5}
#2 #2 {1, 3, 4, 5, 2}
#3 #3 {1, 2, 4, 5, 3}
#4 #4 {3, 5, 4, 2, 1}
#5 #5 {1, 2, 3, 4, 5}

Table 4.39: Test cases clusters distances, second iteration.

Clusters distance #1 #2 #3 #4 #5

#1 0 5 5 4 4
#2 5 0 2 4 4
#3 5 2 0 4 3
#4 4 4 4 0 5
#5 4 4 3 5 0

updated clusters and their test cases are displayed in Table 4.40.

Table 4.40: Test cases clusters, third iteration.

Cluster Test cases

1 #1, #6
2 #2, #3
3 #4
4 #5

Now the frequency profiles of each cluster, as displayed in Table 4.41, are used to

recalculate their ordered sequences, displayed in Table 4.42.

The updated Levenshtein distances between each pair of cluster, considering their

ordered sequences, is displayed in Table 4.43.

Considering the updated distances between each pair of clusters, the minimum distance

is 4, between clusters #1 and #3. In this way, both clusters are merged into one. The

updated clusters and their test cases are displayed in Table 4.44.

Considering that the target amount of clusters is hit, which is 3, the execution contin-

ues to the next step. In this step, test cases are prioritized within each cluster, considering

their coverage and using the additional coverage algorithm. The coverage information is

displayed in Table 4.3.

For cluster #1, the test case that yields the greatest coverage needs to be chosen as

the first one. In this case, #4 is chosen. The additional coverage score for test cases #1

77

Table 4.41: Clusters frequency profile, third iteration.

Cluster # Test cases # Frequency profile

#1 #1, #6 {4, 1, 2, 0, 0}
#2 #2, #3 {0, 3, 1, 0, 0}
#3 #4 {5, 2, 0, 1, 0}
#4 #5 {0, 0, 0, 0, 1}

Table 4.42: Clusters ordered sequences, third iteration.

Cluster # Test cases # Ordered sequence

#1 #1, #6 {4, 5, 2, 3 1}
#2 #2, #3 {1, 4, 5, 3, 2}
#3 #4 {3, 5, 4, 2, 1}
#4 #5 {1, 2, 3, 4, 5}

and #6 are recalculated. #1 gives 0 additional coverage and #6 gives 1. In this way, test

case #6 is chosen. Thus, the order for cluster #1 is: #4, #6 and #1.

For cluster #2, both test cases (#2 and #3) yield the same amount of coverage, which

is 1. In this way, one is chosen randomly. One possible order for cluster #2 is: #3 and

#2.

For cluster #3, there is only one test case (#5). In this way, there is no need to apply

the additional coverage algorithm to order it.

The next step of GOS algorithm is to iteratively select one test case from each ordered

cluster to be added to the final ordered test case set. In this way, the final order for our

example scenario, using the GOS algorithm is: #4, #3, #5, #6, #2 and #1.

4.7 NEW TECHNIQUES IMPLEMENTATION

Considering the requirements of the designed modules, the framework should be exten-

sible, providing ways of implementing new TCP techniques. This extensibility may help

researchers willing to conduct experiments with TCP techniques, in the sense that they

may need to implement their new TCP approaches. With this scenario in mind, we

developed an API that all TCP techniques in the architecture must adhere.

We reduce TCP techniques to two base strategies, which we call Default and Addi-

tional, respectively.

In the Default approach, all test cases can be directly compared to each other, ac-

78

Table 4.43: Test cases clusters distances, third iteration.

Clusters distance #1 #2 #3 #4

#1 0 5 4 4
#2 5 0 5 4
#3 4 5 0 5
#4 4 4 5 0

Table 4.44: Test cases clusters, fourth iteration.

Cluster Test cases

1 #1, #6, #4
2 #2, #3
3 #5

cording to some criterion. For example, using the total amount of source code elements

covered. Based on these comparisons, a set of test cases can be ordered before execution.

In the Additional approach, test cases cannot be compared to each other, because to

determine the order, it is needed to analyze the already ordered test cases. For example,

using the additional amount of source code elements covered, it is needed to calculate the

source code elements of already ordered test cases, before determining the order of the

next test case.

Considering the explained two approaches and examples, TCP techniques must follow

the design depicted Figure 4.4, implementing the interface Orderer and if using the Default

strategy, implementing also the Comparator interface. In this example, TotalCoverage and

AdditionalCoverage are two implemented TCP techniques.

4.8 FINAL CONSIDERATIONS

In this chapter we discussed the design of the proposed framework to support TCP tech-

niques usage and experimentation. It was designed according to problems identified in the

literature. This Chapter answers our second research question ”How to create a framework

to support TCP usage and experimentation?”. In the next chapter, the implementation

of the framework will be discussed.

79

Figure 4.4: TCP techiniques API for Optimus Framework.

80

5 OPTIMUS FRAMEWORK IMPLEMENTATION

Based on the design described in the last Chapter, we implemented the architecture.

Considering the requirement of integration with an automated build tool, Maven was

used. In this way, as the Maven framework itself uses the Java language, we also focused

on it.

The test phase of a Maven build life cycle is conducted by the Maven Surefire plugin.

Maven Surefire allow its functionalities extension through test providers. For this reason,

we implemented a Maven Surefire test provider, which is responsible for providing test

cases to be executed by the JUnit framework.

The JUnit framework is the most used test framework for Java programming lan-

guage. A typical JUnit test is composed of a test class with test methods. Test classes

can be grouped in test suites. Normally, all test methods of a test class are executed

one after another. In this way, by simply using the default JUnit framework, it is not

possible to execute test methods from different classes arbitrarily, as requested by our

requirements. However, as the test provider is responsible for providing test cases to the

JUnit framework, we can provide independent test methods to be executed, fulfilling this

requirement.

The architecture implementation was divided in 8 different modules, depicted in Figure

5.1, according to the attributions of each one, which will be described next.

5.1 OPTIMUS-COMMON

The main goal of this module is to provide access to source code that is common to other

modules, including domain classes that model our environment. Moreover, it also provides

the feature to extract information from tested projects, like the location of each source

code class and its methods, for example.

5.2 OPTIMUS-FRAMEWORK

This module implements a Maven plugin, which is executed during the regression test

phase of the Maven life cycle. It is also a wrapper to use our framework. In this way, the

81

Figure 5.1: Optimus Framework implemented modules.

user only needs to add this dependency to his project in order to use our provided features.

Another responsibility of this module is to orchestrate the execution of the prioritization,

by calling the optimus-test provider, described next.

5.3 OPTIMUS-TEST

This module implements the Maven Surefire provider. It is responsible for providing test

cases to be executed by the JUnit framework.

Considering that it provides the test cases to be executed, TCP techniques are applied

in this module. In this way, a prioritization technique is applied to order the test case set

before it is sent to the JUnit framework.

Figure 5.2 depicts the testing process. It starts in Maven Surefire. In this step, tests of

the project are discovered and the entire testing environment is prepared. Maven Surefire

then send the discovered test cases to a provider. In this case, it calls our provider,

82

OptimusProvider. Our provider then calls the TestsSorter to sort the test cases received.

TestsSorter calls a TCP technique, which implements the Orderer interface. The ordered

tests are returned to our provider, which calls the JUnitExecutor to provide JUnit the

set of ordered tests to be executed. JUnit calls all the JUnitListeners to broadcast test

execution messages. When all tests are executed, control is given back to our provider,

which reports to MavenSurefire that the execution is over.

Figure 5.2: Sequence diagram of test process within Optimus Framework.

5.4 OSS FAULTS FINDER

This module is currently independent from the others, meaning that the user must execute

it manually. However, it can be used to support the experimentation process of TCP

techniques by downloading open source project versions that contain failing tests.

This module makes use of the Travis CI API to query for open source projects historical

data. If it finds a build that contains failing tests, it automatically downloads the source

code from the Github repository. These downloaded source code can be used to measure

and compare the effectiveness of TCP techniques through experiments.

5.5 FAULT INJECTION PLUGIN

This module is responsible for injecting (seeding) mutation faults into the source code of

a project. The mutated source code can then be used during the experimentation process.

83

We use the PIT Mutation Test tool to generate mutated versions of the source code

of the project. If the tests of a project can detect a mutation, we say that the mutation

can be killed. In this way, the mutated source code can be used as a faulty version of the

project.

Different mutation operators can be applied by PIT. We use the seven default ones

listed bellow.

• Conditional Boundary Mutator: this mutation operator swaps expression conditions

in the source code. As an example, a condition if (x >= y) will be changed to

if (x > y).

• Increments mutator: this mutation operator acts on increments and decrements in

the source code. An increment becomes a decrement and vice versa. As an example,

x++ becomes x−−.

• Invert negatives mutator: this mutation operator inverts negative numbers/variables

in the source code, changing them to positive. As an example, −x becomes x.

• Math mutator: this mutation operator swaps math operators in the source code,

replacing them with an opposite operator. For example, x=y∗2 becomes x=y/2.

• Negate conditional mutator: this mutation operator negates conditional expressions

in the source code. As an example, if (a == b) becomes if (a != b).

• Return values mutator: this mutation operator acts on return values of methods

of the source code. As an example, a method that returns an integer value of 0 is

changed to return 1.

• Void method calls mutator: this mutation operator removes method calls from the

structure of other methods. In this way, if there is a method call that does not have

a return value, when mutated, it will be removed from the execution flow.

Equivalence of mutants is a problem that happens with mutation testing, when gener-

ated mutants are equivalent and not effective. This is not a problem in our case because

we are not interested on measuring the effectiveness of the test suite itself, but rather on

creating faulty versions of the source code.

84

To prevent inserting mutants that override themselves, we limited the addition of one

mutant per method of classes of the project being seeded. Moreover, PIT mutation tool

perform the mutation process on the bytecode generated by the compiler. In this way, we

use a decompiler to generate the source code text for mutations.

The process of fault seeding with this module is depicted in Figure 5.3 and explained

below.

• Starting from the original source code classes, PIT runs and generates mutations,

which are contained in Java bytecode files. One file is generated for each generated

mutation.

• Mutations that can be killed, i.e. that can be detected by existing test cases, are

selected and the remaining are discarded.

• For each generated bytecode file that contains a killed mutation:

– Bytecode is transformed into Java source code text. In our case, we are using

Procyon Decompiler1, version 4.0.0.Final.

– If no mutation was already added to the method of this mutation, merge this

mutation to the source code of the seeded project.

• Generate a copy of the original project, containing the seeded mutation faults.

5.6 OPTIMUS COVERAGE ANALYZER

This module is responsible for collecting and providing project coverage information as

input for TCP techniques. Coverage is collected using the JaCoCo2 coverage agent during

run-time. In this way, every time the project is built, for every test case executed, coverage

information is collected and recorded in the artifacts repository.

Coverage information provided by this analyzer is relative to the previous build of the

software. This is done to prevent the double execution of the test suite, since the test

cases need to be executed with the updated software if updated coverage information is

needed.

1https://bitbucket.org/mstrobel/procyon/wiki/Home
2https://github.com/jacoco/jacoco

85

Figure 5.3: Fault seeding process in Optimus Framework.

Collected coverage is provided in three different source code granularities: statement

(line), branch and method.

5.7 OPTIMUS HISTORICAL ANALYZER

This module is responsible for storing and providing historical information about test cases

execution. To simplify the implementation and use of the framework, a self-contained

relational database is used, in our case SQLite version 3.2.1. In this way, no additional

tools need to be installed to use the framework, like a database server.

Considering history-based TCP techniques, historical information that is needed as

input include test case result (failed or passed) and execution time. Moreover, it is

important to be able to query how many times and when a test case was executed along

the execution history. Thus, the relational model depicted in Figure 5.4 is used to provide

and store all the necessary information in the database.

86

Figure 5.4: Historical analyzer relational database model.

To collect the data, a JUnit listener is used in the optimus-test module. The listener

is called after the execution of each test case and thus, the result and details are recorded

in the database.

5.8 OPTIMUS MODIFICATION ANALYZER

This module is responsible for maintaining and analyzing modifications between versions

of a project. It must be able to provide information like how many lines of a method from

a class were changed since the last build or which methods were changed.

To allow the collection of this type of information, if used, the module stores a full

copy of the source code after building the project. This copy is used to compare with the

current version of the project. The copy is updated after each build and the comparison is

87

done using Diff Utils3 library, which can provide the difference between two versions of a

text, in our case, of every class of the project. We extract methods using the JavaParser4

library.

5.9 OPTIMUS EXECUTION TRACE ANALYZER

This module is responsible for providing execution trace information. Execution trace

refers to how many times each source code element was executed by each test case.

Different granularities can be used for execution trace, like in coverage information.

We provide this information at the line granularity.

To collect such information, we use the Cobertura tool. It is a coverage tool that

provides information on how many times each line was executed. The problem is that it

does not allow collecting this information for each test case, providing only a report in

the end of the tests execution, containing aggregated data. For this reason, we created

a JUnit listener in the optimus-test module that is used to intermediate the process of

collection. After the execution of each test case, Cobertura data is retrieved and stored.

5.10 OPTIMUS FRAMEWORK USAGE

In order to use the framework, the user must download and locally install the project,

which is available in a open source repository5 on Github.

After installing the framework, the user must setup his project Maven configuration

file (pom.xml). It is necessary to add the framework dependency information, so that

during the build of the project, Maven can look up for the framework binaries and include

it in the user project classpath. The configuration is added to the <build> and <plugin>

groups of the configuration file, like the example in Listing 5.1. This example shows

the default information needed to execute the framework using the total coverage TCP

technique, using the statement coverage granularity and the class-level test execution

granularity, which is set by default. This simple configuration is enough for industrial

use. A practitioner intending to use the framework, only has to choose a TCP technique

and set it in the configuration. After that, all builds of his project will execute using the

3https://github.com/wumpz/java-diff-utils
4https://github.com/javaparser/javaparser
5https://github.com/helenocampos/optimus

88

order given by the chosen technique.

Listing 5.1: Example configuration for Optimus Framework.

<bui ld>
<plug ins>
<plugin>
<groupId>i o . g ithub . helenocampos</groupId>
<a r t i f a c t I d>optimus−framework</a r t i f a c t I d>
<vers ion >1.0.1</ vers ion>
<execut ions>
<execut ion>
<goa ls>
<goal>experiment</goal>

</goa ls>
</execut ion>

</execut ions>
<con f i gu ra t i on>
<p r i o r i t i z a t i o n >t o t a l statement coverage</

p r i o r i t i z a t i o n >
</con f i gu ra t i on>

</plugin>
</plug ins>

</bui ld>

There are two types of execution of the framework: prioritization and experiment.

Those are set in the <goal> tag.

Prioritization execution mode simply executes the test cases of the project using a

single TCP technique.

Experiment execution mode can execute more than one TCP technique and compare

them by calculating the effectiveness as measured by the APFD metric. Furthermore,

report files are generated to allow the user to compare the techniques.

Within the experiment execution mode, there are three types of experiment that can

be used. They are mutation, versions and local.

Mutation experiment mode uses the fault-injection-plugin in order to create a faulty

version of the project being built and tested. After that, chosen TCP techniques are used

to execute the test cases in the calculated order. The order in which the seeded faults are

detected by the test cases is recorded, to allow the calculation of the APFD metric. In

the end of the process, collected data is printed to a report file.

Local experiment mode assumes that faults already exist in the project being built

and tested. Test cases are executed in the order calculated by the TCP techniques chosen

by the user and a report file is generated in the end of the process, showing the APFD

that each technique achieved during the execution.

89

Versions experiment is similar to the local one. However, it also assumes that there

are different versions of the project, each one in a separated folder, which should be

experimented with the TCP techniques chosen by the user. In this way, the reports

generated in the end of the process are aggregated to allow the comparison of the TCP

techniques across different versions of the project.

Different configurations can be included inside the <configuration> tag. A list of

allowed configurations is displayed in Table 5.1.

To illustrate the usage of the framework, an example configuration is displayed in

Figure 5.5. In this configuration, the framework will execute in the experiment mutation

mode, executing the TCP techniques default (no prioritization), random and total state-

ment coverage, at the method test level. The random technique will execute 5 times and

executions will be simulated.

Figure 5.5: Example configuration of Optimus Framework.

A project with this configuration is run with the “mvn test” command, as displayed in

Figure 5.6.

Figure 5.6: Example run of Optimus Framework.

The framework executes, displaying some basic information about which technique

90
T

ab
le

5.
1:

A
ll
ow

ed
co

n
fi
gu

ra
ti

on
s

fo
r

O
p
ti

m
u
s

F
ra

m
ew

or
k
.

T
a
g

D
e
sc

ri
p
ti

o
n

V
a
lu

e
s

<
p
ri

or
it

iz
at

io
n
>

D
efi

n
es

a
si

n
gl

e
T

C
P

te
ch

n
iq

u
e

to
b

e
u

se
d
.

T
C

P
te

ch
n
iq

u
es

n
a
m

e.
E

.g
.

to
ta

l
st

a
te

m
en

t
co

ve
ra

g
e.

<
p
ri

or
it

iz
at

io
n
T

ec
h
n

iq
u

es
>

D
efi

n
es

a
li
st

of
T

C
P

te
ch

n
iq

u
es

to
b

e
u
se

d
.

E
a
ch

el
em

en
t

o
f

th
e

li
st

m
u
st

b
e

b
et

w
ee

n
<

te
ch

n
iq

u
e>

ta
g
.

E
.g

.
<

te
ch

n
iq

u
e>

to
ta

l
st

a
te

m
en

t
co

ve
ra

g
e<

/
te

ch
n
iq

u
e>

<
te

ch
n
iq

u
e>

ra
n

d
o
m
<

/
te

ch
n
iq

u
e>

<
re

p
or

ts
>

D
efi

n
es

a
li
st

of
re

p
or

ts
to

b
e

g
en

er
a
te

d
.

E
a
ch

el
em

en
t

o
f

th
e

li
st

m
u
st

b
e

b
et

w
ee

n
<

re
p

or
t>

ta
g
.

A
va

il
a
b
le

o
p
ti

o
n

s
a
re

“
su

m
m

a
ry

”
a
n

d
“
ra

w
”

re
p

o
rt

s.
If

n
o
n
e

is
d

efi
n
ed

,
b
y

d
ef

a
u

lt
b

o
th

a
re

g
en

er
a
te

d

<
gr

an
u
la

ri
ty
>

D
efi

n
es

th
e

gr
an

u
la

ri
ty

in
w

h
ic

h
th

e
te

st
ca

se
s

w
il
l

b
e

ex
ec

u
te

d
.

A
va

il
a
b
le

o
p
ti

o
n

s
a
re

“
m

et
h
o
d

”
o
r

“
cl

a
ss

”.

<
d
b

P
at

h
>

D
efi

n
es

th
e

p
at

h
w

h
er

e
st

a
ti

st
ic

s
w

il
l

b
e

st
o
re

d
.

T
h
es

e
st

a
ti

st
ic

s
ar

e
u
se

d
b
y

h
is

to
ry

-b
as

ed
T

C
P

te
ch

n
iq

u
es

.
A

p
a
th

to
a

.d
b

fi
le

(t
h
e

fi
le

is
cr

ea
te

d
a
u

to
m

a
ti

ca
ll
y

a
t

th
e

sp
ec

ifi
ed

p
a
th

.)
E

.g
.

C
:\

m
y
p
ro

je
ct
\m

y
d
b

.d
b

<
ex

p
er

im
en

tO
u

tp
u

tD
ir

ec
to

ry
>

D
efi

n
es

th
e

p
at

h
to

sa
v
e

m
u
ta

te
d

co
p
ie

s
o
f
th

e
p

ro
je

ct
b

ei
n
g

te
st

ed
.

P
a
th

to
a

d
ir

ec
to

ry
.

E
.g

.
C

:\
ex

p
er

im
en

ts

<
ex

p
er

im
en

tT
y
p

e>
S
p

ec
ifi

es
th

e
ty

p
e

of
th

e
ex

p
er

im
en

t
to

b
e

ru
n

.
A

ll
ow

ed
va

lu
es

a
re

:
“
m

u
ta

ti
o
n
”,

“
v
er

si
o
n

s”
o
r

“
lo

ca
l”

.

<
p
ri

n
tL

og
s>

E
n

ab
le

s
th

e
p
ri

n
ti

n
g

of
lo

gs
d

u
ri

n
g

th
e

ex
ec

u
ti

o
n

o
f
th

e
fr

a
m

ew
o
rk

.
F

a
ls

e
(d

ef
a
u
lt

)
o
r

tr
u
e.

<
cl

u
st

er
sA

m
ou

n
t>

S
p

ec
ifi

es
th

e
am

ou
n
t

of
cl

u
st

er
s

to
b

e
u
se

d
w

it
h

G
O

S
T

C
P

te
ch

-
n
iq

u
e.

A
n
u

m
er

ic
a
l

va
lu

e.
E

.g
.

2
.

<
b
ac

k
u

p
S
ou

rc
eC

o
d
e>

E
n

ab
le

s
th

e
b

ac
k
u

p
of

th
e

so
u

rc
e

co
d
e

o
f

th
e

p
ro

je
ct

b
et

w
ee

n
ve

rs
io

n
s.

If
en

ab
le

d
,

th
e

sr
c

fo
ld

er
o
f

th
e

cu
rr

en
t

ve
rs

io
n

w
il
l

b
e

st
or

ed
to

b
e

u
se

d
in

th
e

n
ex

t
ve

rs
io

n
.

T
h

is
is

u
se

d
b
y

M
o
d

ifi
ca

ti
o
n
-

b
as

ed
te

ch
n
iq

u
es

.

F
a
ls

e
(d

ef
a
u
lt

)
o
r

tr
u
e.

<
b
ac

k
u

p
P

at
h
>

S
p

ec
ifi

es
th

e
p
at

h
w

h
er

e
th

e
b
a
ck

u
p

o
f

th
e

so
u

rc
e

co
d
e

is
to

b
e

st
or

ed
.

P
a
th

to
a

d
ir

ec
to

ry
.

E
.g

.
C

:\
m

y
p
ro

je
ct
\b

k
p

<
si

m
u
la

te
E

x
ec

u
ti

on
>

E
n

ab
le

s
th

e
si

m
u

la
ti

on
of

th
e

ex
ec

u
ti

o
n

o
f

T
C

P
te

ch
n
iq

u
es

.
F

a
ls

e
(d

ef
a
u
lt

)
o
r

tr
u
e.

<
ve

rs
io

n
sF

ol
d

er
>

S
p

ec
ifi

es
th

e
p
at

h
to

th
e

ro
o
t

fo
ld

er
w

h
er

e
ve

rs
io

n
s

o
f

th
e

p
ro

je
ct

ca
n

b
e

fo
u

n
d
.

T
h
is

is
u

se
d

ex
cl

u
si

ve
ly

b
y

th
e

ve
rs

io
n
s

ex
p

er
im

en
t

ex
ec

u
ti

on
m

o
d
e.

P
a
th

to
a

d
ir

ec
to

ry
.

E
.g

.
C

:\
m

y
p
ro

je
ct
\v

er
si

o
n
s

<
ex

ec
u
ti

on
T

im
es
>

S
p

ec
ifi

es
h
ow

m
an

y
ti

m
es

th
e

ex
p

er
im

en
t

is
g
o
in

g
to

ru
n
.

T
h

is
is

u
se

d
b
y

th
e

m
u

ta
ti

on
ex

p
er

im
en

t
ex

ec
u
ti

o
n

m
o
d
e.

E
ve

ry
ru

n
ge

n
er

at
es

a
n

ew
co

p
y

of
th

e
p

ro
je

ct
,

w
it

h
(p

o
te

n
ti

a
ll
y
)

n
ew

m
u
-

ta
ti

on
s.

A
n
u

m
er

ic
a
l

va
lu

e.
D

ef
a
u
lt

va
lu

e
is

1
.

<
ra

n
d
om

R
ep

ea
t>

S
p

ec
ifi

es
h

ow
m

an
y

ti
m

es
th

e
T

C
P

te
ch

n
iq

u
e

“
ra

n
d
o
m

”
is

g
o
in

g
to

ru
n
.

A
n
u

m
er

ic
a
l

va
lu

e.
D

ef
a
u
lt

va
lu

e
is

1
.

91

were executed and when, as displayed in Figure 5.7.

In the end of the process, reports are generated. Figure 5.8 shows the summary report,

containing aggregated information and the comparison between the techniques executed

in the experiment. This report is generated using the Portable Document Format (PDF)

format.

Figure 5.9 shows the raw report, containing all collected information during the tech-

niques execution. This report is generated using the xlsx format, which can be opened

using the Microsoft Excel program.

This report also includes sheets containing the test cases execution order for each exe-

cuted technique, as displayed in Figure 5.10, for the default (no prioritization) technique

in this example.

5.11 FINAL CONSIDERATIONS

In this chapter, we discussed the implementation and usage of the proposed framework

to support TCP techniques usage and experimentation. In the next chapter, the imple-

mented framework will be evaluated through experiments with real software.

92

Figure 5.7: Information of example run of Optimus Framework.

93

Figure 5.8: Generated summary report for example run of Optimus Framework.

Figure 5.9: Generated raw report for example run of Optimus Framework.

Figure 5.10: Execution order in raw report for example run of Optimus Framework.

94

6 EVALUATION

6.1 INTRODUCTION

In this chapter, the proposed framework is evaluated through an empirical experiment,

according to Wohlin et al. (2012) guidelines. The main goal of this evaluation is to

demonstrate that the framework can be used to support the experimentation of TCP

techniques, generating evidence about their effectiveness on real software.

6.2 EXPERIMENTAL STUDY

In order to achieve the goal of the evaluation, an experimental study comparing TCP

techniques on open source software, using the proposed framework is performed.

The goal of the experiment is defined according to the Goal Question Metric (GQM)

template, proposed by Caldiera and Rombach (1994). The GQM is used to guide the

experiment definition, by first defining a goal, then deriving research questions that should

be answered to achieve the goal. To answer the questions, metrics are used. In this way,

the goal is to analyze open source software test suite executions for the purpose of

evaluation, with respect to the rate of faults detection using TCP techniques with

Optimus Framework, from the viewpoint of researchers.

Based on the experiment goal, the research questions for this experiment are derived

as follows.

RQ1: does the use of Optimus Framework implemented TCP techniques improve the

rate of faults detection on open source Java projects?

This question aims to investigate the impact in the build process if the original devel-

opers of the experimented projects had used a TCP technique.

RQ2: can test suite execution granularity impact the effectiveness of Optimus Frame-

work implemented techniques on open source Java projects?

This question is motivated by Do et al. (2006) study, which experimentally evaluated

the same question on 4 Java projects and also by the findings of our systematic literature

review, which suggests that TCP techniques executed at the method test granularity

achieve higher effectiveness than those executed at the class granularity. Based on this,

95

we want to find if this is also valid for different open source Java projects.

A series of experimental activities are needed to answer these research questions. These

activities are not trivial to be executed manually, requiring the execution of test cases from

software projects using different configurations. In this way, we believe that if we find

answers for these research questions, we have evidence to answer the third question of

this work, which aim to demonstrate how our proposed framework support practitioners

and researchers.

6.2.1 OBJECTS OF ANALYSIS

Considering that we are interested on investigating open source Java projects and the

use of the proposed framework by researchers and practitioners, we used the following

approach to choose representative projects to be used in the experiment.

• We used Github website, since it is the most famous open source platform.

• Since we are interested in Java language projects, we used the website search tool

to query for projects written in Java.

• The list of projects returned by the query was ordered by amount of stars, showing

the most famous projects in the platform.

• Based on this list, we searched for projects that meet the following requirements.

– Is not an example/tutorial project.

– Written in Java language.

– Use Maven dependency manager (identified by projects that have a file named

pom.xml).

– Have JUnit test cases.

– Has a public continuous integration environment setup on TravisCI.

– Has at least one build that failed due to test failures.

– Does not contain Maven sub modules, since sub modules are required to be

compiled in a specific order and thus it would not be possible to reschedule

test execution order from sub modules within a project.

96

Following the retrieved list of projects from Github and applying above requirements,

CoreNLP and Jackson-databind projects were selected. Within the selected projects, we

selected builds in the build history that were not completed due to test failures. The build

is also required to be reproducible on a local machine without any further configuration,

like download of external libraries, models or older versions of the Java Development Kit

(JDK). Successive builds that had the same failures were not selected since they would

have the same result.

CoreNLP is a project from Stanford that provides a set of natural language analysis

tools written in Java language, according to their homepage1. By the moment that this

experiment was performed, the public continuous integration (CI) server2 of the project

contained a total of 2803 builds, while the Github repository sums a total of 14673 com-

mits. For this experiment, the OSSFaultsFinder found 11 faulty builds on the build history

repository. Details about each build are described in Table 6.1.

Jackson-databind is a sub project from the Jackson project, which is a fast and compli-

ant streaming JSON parser and writer, according to their homepage3. Jackson-databind

contains general-purpose data-binding functionality for the project. When this experiment

was performed, its CI server4 contained about 2869 builds, and its Github repository5,

a total of 4918 commits. OSSFaultsFinder found 54 faulty builds in the build history,

however, when those builds were downloaded and reproduced on a local machine, only

15 failed. From those 15 faulty builds, it was observed that 4 of them were identical

to another build and thus they were removed from the experiment, in order to prevent

duplicated data. A total of 11 builds of this project were used in this experiment. Its

details are described in Table 6.1.

6.2.2 VARIABLES

Independent variables for this experiment are prioritization techniques implemented in

the Optimus Framework, whose treatment values are listed in Table 6.2 and described in

Section 4.6; and test suite granularity, whose treatment values are class level and method

level.

1https://github.com/stanfordnlp/CoreNLP
2https://travis-ci.org/stanfordnlp/CoreNLP/builds
3http://fasterxml.com/projects.html
4https://travis-ci.org/FasterXML/jackson-databind/builds
5https://github.com/FasterXML/jackson-databind

97

Table 6.1: Experiment projects information.

Project
Build

number
Failures
amount

Source code under test JUnit test suite
Classes KLOC #Test classes #Test methods

CoreNLP

#55 58 1907 729.7 164 825
#60 18 1907 729.7 164 825
#65 17 1907 729.8 164 825
#89 18 1938 734.4 165 830
#110 19 1938 725.9 165 830
#218 42 1949 743.2 166 840
#277 17 1957 737.9 165 827
#430 57 1968 742 166 836
#432 21 1968 741.9 166 836
#449 58 1968 742 166 836
#450 21 1968 742 166 836

Jackson-
databind

#1568 3 769 154.8 16 1620
#1650 3 771 155.7 17 1641
#1983 3 786 157.9 18 1698
#2142 3 869 172.3 18 1979
#2402 2 808 160.8 18 1754
#2717 3 934 174.2 17 2140
#2718 3 934 174.3 17 2141
#2720 3 934 174.3 17 2141
#2724 3 934 174.3 17 2142
#2745 5 911 178.9 19 2109
#2824 3 919 180.1 19 2130

Table 6.2: TCP techniques used in the experiment.

Acronym Technique name

T0 Traditional (no prioritization)
T1 Random
T2 Theoretical optimal
T3 Total statement coverage
T4 Total branch coverage
T5 Total method coverage
T6 Additional statement coverage
T7 Additional branch coverage
T8 Additional method coverage
T9 Total diff method coverage
T10 Additional diff method coverage
T11 Total diff class coverage
T12 Additional diff class coverage
T13 Maxmin branch ART
T14 Maxmin statement ART
T15 Maxmin method ART
T16 Most failures first
T17 Recent failures first

98

TCP techniques for this experiment were chosen based on their viability of execution

for selected projects. For instance, implemented similarity-based techniques were left out

of the experiment because they are too costly to execute on big projects. We tried to use

the Farthest-first Ordered Sequence technique on one build of CoreNLP, for example, and

after 12 hours, the technique was still calculating the final test cases order. According to

Wu et al. (2012), who proposed the ordered sequence techniques, it can be fairly expensive

to employ and may not reduce the overall regression testing cost. ART techniques are also

costly. According to Jiang et al. (2009), the time complexity of the algorithm is O(m3n)

on the worst case, where m is the amount of test cases and n is the total amount of source

code elements of the project. For this reason, despite the availability of 18 variations of

ART in the proposed framework, we choose only 6 (T13, T14 and T15 at the method and

class test granularity) of them to be included in the experiment. This choice was based

on results found by Jiang et al. (2009) in an empirical experiment.

The dependent variable is the rate of fault detection achieved by the execution of the

test cases using each of the treatment values on each of the object of analysis (a build

from the selected open source projects).

The rate of fault detection is measured by the Average Percentage of Faults Detected

(APFD) value. This is the most common metric used to measure effectiveness of TCP

techniques. Its value is calculated according to Equation 2.1.

6.2.3 EXPERIMENT SETUP

Faulty builds of the selected projects were found and downloaded using the OSSFaults-

Finder module of the Optimus Framework.

With all the faulty versions of the selected project downloaded, the framework was

executed in the versions experiment mode, iterating over each version of the projects and

executing the selected TCP techniques for each configuration.

Selected TCP techniques for this experiment are listed in Table 6.2. The traditional

”technique” (T0), named ”default” in the framework, represents the natural execution

order of test cases, as done by default when executing the test suite. The random TCP

technique (T1) was executed 100 times to generate a mean APFD for each build, since

each execution produces a different test case order and thus a different APFD value.

Each configuration execution in Optimus Framework generates a report file, like the one

99

Figure 6.1: Example raw report generated from experiment run.

depicted in Figure 6.1, containing the APFD value and execution order for each executed

TCP technique and project version.

The optimal technique (T2) is the theoretical optimal APFD that could be achieved

by a TCP technique in a specific run, considering the amount of faults and test cases.

The framework configuration to run the experiment was similar to the one depicted

in Figure 6.2. Four configuration files were needed to run the entire experiment. The

differences between them were the test granularity and the versions folder for the subject

project.

6.2.4 DATA AND ANALYSIS

Since there are two different projects as objects of analysis, they will be analyzed indi-

vidually regarding the research questions. All analyses were performed using Minitab6 17

statistical tool.

6.2.4.1 CoreNLP

To summarize collected data, box plots are depicted in Figure 6.3 for all executed TCP

techniques for CoreNLP project. In techniques names, the letter C represents the tech-

6http://www.minitab.com

100

Figure 6.2: Example of Optimus Framework configuration to run the experiment.

101

Figure 6.3: Boxplot of APFD values obtained for CoreNLP project.

nique executed at the class test level and M at the method test level.

Research question 1 is concerned with comparing the use of different TCP techniques

against the non-use, which is the control technique T0-C in Table 6.2. Thus, the design

of this analysis is a series of sixteen sub-experiments with one factor, which is the use

or not of a TCP technique, and two treatments, whose values are APFD obtained using

T0-C (fixed) and using the remaining techniques displayed in Table 6.2 (T1-C and T3-C

through T17-C). Sub-experiment comparisons are listed in Table 6.3.

For this analysis it is used 11 builds of the CoreNLP software project with 15 different

test case orderings from TCP techniques T3 through T17 and 100 orderings from T1 for

each build. This results in a total of 1276 different APFD values (trials) collected for this

research question.

All normality distribution checking of the samples were done with Shapiro-Wilk test,

since for each sample analyzed we have 11 data points (builds) and that this test is

recommended when samples have less than 30 data points. Furthermore, checking the

normality of the fixed treatment (T0-C), a p-value of less than 0.010 is obtained. As it

is less than the significance level of 0.05, the sample can be characterized as non-normal.

102

Table 6.3: Comparisons for RQ1 of CoreNLP experiment.

Comparison

1 T0-C x T1-C
2 T0-C x T3-C
3 T0-C x T4-C
4 T0-C x T5-C
5 T0-C x T6-C
6 T0-C x T7-C
7 T0-C x T8-C
8 T0-C x T9-C
9 T0-C x T10-C
10 T0-C x T11-C
11 T0-C x T12-C
12 T0-C x T13-C
13 T0-C x T14-C
14 T0-C x T15-C
15 T0-C x T16-C
16 T0-C x T17-C

Since it is not normal, it is necessary to use a non-parametric hypothesis test in all

following analysis for this research question. The non-parametric test recommended for

this type of design is Mann-Whitney test. The output of the normality test is depicted in

Figure 6.4, which is produced by the statistical tool.

Sub-experiment #1 compares APFD values obtained when no TCP technique (T0-C)

was used against when the random TCP technique (T1-C) was used. Hypotheses are

defined as:

• H0: Medians obtained using T0-C are equal to medians obtained using T1-C.

• H1: Medians obtained using T0-C are significantly different to medians obtained

using T1-C.

Hypothesis test output is displayed in Listing 6.1. Obtained p-value is 0.0031, which is

less than the significance level of 0.05. This indicates the rejection of H0 and suggests

that the samples from the two groups are significantly different.

103

Figure 6.4: Normality test for T0 from CoreNLP.

Listing 6.1: Hypothesis test result for sub-experiment #1 of RQ1 from CoreNLP.

Mann−Whitney Test and CI : T0−C, T1−C

N Median
T0−C 11 0.2283
T1−C 11 0.5067

Point e s t imate f o r η1 − η2 i s −0.2892
95 .1 Percent CI f o r η1 − η2 i s (−0.3267 ,−0.0269)

W = 81.0
Test o f η1 = η2 vs η1 6= η2 i s s i g n i f i c a n t at 0 .0031

To prevent repetitive text for each sub-experiment, remaining sub-experiment analyses

are summarized in Table 6.4. All sub-experiments used Mann-Whitney hypothesis test,

since the fixed treatment distribution is not normal.

81% of the comparisons result in a TCP technique achieving statistically better effec-

tiveness than the non-use of a TCP technique, as shown by highlighted rows in Table 6.4,

for RQ1 analysis of CoreNLP project. The remaining 19% of the comparisons resulted

in statistically equivalent effectiveness, despite the fact that the medians were higher for

TCP techniques when compared to the non-use of a TCP technique.

104

Table 6.4: Hypotheses test results for RQ1 of CoreNLP.

Comparison Hypothesis test result APFD comparison result

1 T0-C x T1-C T0-C 6= T1-C p-value (0.0031) T0-C (0.2283) < T1-C (0.5067)
2 T0-C x T3-C T0-C 6= T3-C p-value (0.0151) T0-C (0.2283) < T3-C (0.4895)
3 T0-C x T4-C T0-C 6= T4-C p-value (0.0003) T0-C (0.2283) < T4-C (0.5319)
4 T0-C x T5-C T0-C 6= T5-C p-value (0.0126) T0-C (0.2283) < T5-C (0.4944)
5 T0-C x T6-C T0-C = T6-C p-value (0.2122) T0-C (0.2283) = T6-C (0.3425)
6 T0-C x T7-C T0-C = T7-C p-value (0.1007) T0-C (0.2283) = T7-C (0.4677)
7 T0-C x T8-C T0-C 6= T8-C p-value (0.0104) T0-C (0.2283) < T8-C (0.5058)
8 T0-C x T9-C T0-C 6= T9-C p-value (0.0126) T0-C (0.2283) < T9-C (0.4944)
9 T0-C x T10-C T0-C 6= T10-C p-value (0.0215) T0-C (0.2283) < T10-C (0.5011)
10 T0-C x T11-C T0-C 6= T11-C p-value (0.0126) T0-C (0.2283) < T11-C (0.4944)
11 T0-C x T12-C T0-C 6= T12-C p-value (0.0058) T0-C (0.2283) < T12-C (0.5021)
12 T0-C x T13-C T0-C = T13-C p-value (0.2122) T0-C (0.2283) = T13-C (0.3692)
13 T0-C x T14-C T0-C 6= T14-C p-value (0.0031) T0-C (0.2283) < T14-C (0.5845)
14 T0-C x T15-C T0-C 6= T15-C p-value (0.0256) T0-C (0.2283) < T15-C (0.4023)
15 T0-C x T16-C T0-C 6= T16-C p-value (0.0002) T0-C (0.2283) < T16-C (0.9465)
16 T0-C x T17-C T0-C 6= T17-C p-value (0.0002) T0-C (0.2283) < T17-C (0.9362)

Research question 2 is concerned with comparing TCP techniques effectiveness when

executed at the method and class test level. Thus, the design of this analysis is a series

of sixteen sub-experiments with one factor, which is the granularity of the tests, and two

treatments, whose values are method and class level.

In this analysis, the same project builds are subjected to the same intervention (TCP

technique) for each of the treatments. For this reason, we say that the analysis is paired.

For this analysis it is used 11 builds of the CoreNLP software with 15 different test

case orderings from TCP techniques T3 through T17 and 100 orderings from T1 for each

build. Furthermore, for each ordering we have two different test granularities being used.

This results in a total of 2530 different APFD values (trials) collected for this research

question. Sub-experiments are listed in Table 6.5.

As in RQ1 analysis, the first sub-experiment data analysis is described in details and

the remaining are summarized.

Sub-experiment #1 compares T1 executed at the class level test granularity (T1-C)

and at the method level granularity (T1-M). Using Shapiro-Wilk to test normality for each

sample, results in a p-value > 0.100 for T1-C, as depicted in Figure 6.5 and for T1-M,

as depicted in Figure 6.6. As both p-values are greater than the established significance

level of 0.05, it suggests that the samples are normally distributed.

Homoscedasticity of the samples are checked, since they both have normal distribu-

105

Table 6.5: Comparisons for RQ2 of CoreNLP experiment.

Control x intervention

1 T1-C x T1-M
2 T3-C x T3-M
3 T4-C x T4-M
4 T5-C x T5-M
5 T6-C x T6-M
6 T7-C x T7-M
7 T8-C x T8-M
8 T9-C x T9-M
9 T10-C x T10-M
10 T11-C x T11-M
11 T12-C x T12-M
12 T13-C x T13-M
13 T14-C x T14-M
14 T15-C x T15-M
15 T16-C x T16-M
16 T17-C x T17-M

Figure 6.5: Normality test for T1-C from CoreNLP.

106

Figure 6.6: Normality test for T1-M from CoreNLP.

tions, using Levene’s test, depicted in Figure 6.7. A p-value of 0.008 is obtained, which is

less than the significance level of 0.05, indicating that the samples are not homoscedastic.

As the samples are normal but not homoscedastic, a non-parametric hypothesis test

must be used. Since we have a paired design of 1 factor and 2 treatments, Wilcoxon signed-

rank test is used, which is the non-parametric alternative for Paired T-Test. Hypotheses

for this analysis are defined as:

• H0: APFD median obtained using T1-C is equal to the median obtained using

T1-M.

• H1: APFD median obtained using T1-C is significantly different from the median

obtained using T1-M.

The hypothesis test output from Minitab is displayed in Listing 6.2. The p-value

obtained is 0.563, which is bigger than the significance level of 0.05. This result indi-

cates that the null hypothesis H0 cannot be rejected and thus suggests that the medians

obtained using T1-C and T1-M are statistically equivalent.

107

Figure 6.7: Homoscedasticity test for T1-C and T1-M from CoreNLP.

Listing 6.2: Hypothesis test result for sub-experiment #1 of RQ2 from CoreNLP.

Wilcoxon Signed Rank Test : (T1−C) − (T1−M)

Test o f median = 0.000000 ver sus median 6= 0.000000

N f o r Wilcoxon Estimated
N Test S t a t i s t i c P Median

(T1−C) − (T1−M) 11 11 40 .0 0 .563 0.002923

To prevent repetitive text for each sub-experiment, analyses of normality, homoscedas-

ticity and hypothesis test used for each sub-experiment is listed in Table 6.6. Hypothesis

test results are displayed in Table 6.7.

According to Table 6.7, no comparison resulted in better effectiveness for a TCP

technique executed at the method granularity when compared to it executed at the class

granularity. 38% of the comparisons resulted in statistically equivalent effectiveness for

both granularities and the remaining 62% performed better at the class than at the method

granularity.

108

Table 6.6: Normality and homoscedasticity analyses for RQ2 of CoreNLP.
Comparison Normality Homoscedasticity Hypothesis test

1 T1-CxT1-M X Not homoscedastic (p-value = 0.008) Wilcoxon Signed Rank
2 T3-CxT3-M T3-C not normal (p-value <0.01) - Wilcoxon Signed Rank
3 T4-CxT4-M T4-C not normal (p-value = 0.028) - Wilcoxon Signed Rank
4 T5-C x T5-M T5-M not normal (p-value = 0.035) - Wilcoxon Signed Rank
5 T6-C x T6-M X X Paired T-Test
6 T7-C x T7-M X X Paired T-Test
7 T8-C x T8-M T8-C not normal (p-value <0.01) - Wilcoxon Signed Rank
8 T9-C x T9-M T9-M not normal (p-value = 0.035) - Wilcoxon Signed Rank
9 T10-C x T10-M T10-C not normal (p-value <0.01) - Wilcoxon Signed Rank
10 T11-C x T11-M T11-M not normal (p-value = 0.035) - Wilcoxon Signed Rank
11 T12-C x T12-M T12-C not normal (p-value <0.01) - Wilcoxon Signed Rank
12 T13-C x T13-M X Not homoscedastic (p-value = 0.002) Wilcoxon Signed Rank
13 T14-C x T14-M X Not homoscedastic (p-value = 0.031) Wilcoxon Signed Rank
14 T15-C x T15-M X Not homoscedastic (p-value = 0.000) Wilcoxon Signed Rank
15 T16-C x T16-M T16-C not normal (p-value <0.01) - Wilcoxon Signed Rank
16 T17-C x T17-M T17-C not normal (p-value <0.01) - Wilcoxon Signed Rank

Table 6.7: Hypothesis tests results for RQ2 of CoreNLP.

Comparison Hypothesis test result APFD comparison result

1 T1-CxT1-M T1-C = T1-M p-value (0.563) (0.50669) T1-C = T1-M (0.49933)
2 T3-CxT3-M T3-C 6= T3-M p-value (0.029) (0.4895) T3-C >T3-M (0.466)
3 T4-CxT4-M T4-C 6= T4-M p-value (0.009) (0.5319) T4-C >T4-M (0.4814)
4 T5-C x T5-M T5-C 6= T5-M p-value (0.018) (0.4944) T5-C >T5-M (0.4556)
5 T6-C x T6-M T6-C = T6-M p-value (0.064) (0,366) T6-C = T6-M (0,2884)
6 T7-C x T7-M T7-C 6= T7-M p-value (0.000) (0,4508) T7-C >T7-M (0,361)
7 T8-C x T8-M T8-C 6= T8-M p-value (0.004) (0.5058) T8-C >T8-M (0.3882)
8 T9-C x T9-M T9-C 6= T9-M p-value (0.018) (0.4944) T9-C >T9-M (0.4556)
9 T10-C x T10-M T10-C 6= T10-M p-value (0.004) (0.5011) T10-C >T10-M (0.3879)
10 T11-C x T11-M T11-C 6= T11-M p-value (0.018) (0.4944) T11-C >T11-M (0.4556)
11 T12-C x T12-M T12-C 6= T12-M p-value (0.004) (0.5021) T12-C >T12-M (0.3813)
12 T13-C x T13-M T13-C = T13-M p-value (0.398) (0.3692) T13-C = T13-M (0.3095)
13 T14-C x T14-M T14-C 6= T14-M p-value (0.005) (0.5845) T14-C >T14-M (0.2314)
14 T15-C x T15-M T15-C = T15-M p-value (0.083) (0.4023) T15-C = T15-M (0.2785)
15 T16-C x T16-M T16-C = T16-M p-value (0.308) (0.9465) T16-C = T16-M (0.9564)
16 T17-C x T17-M T17-C = T17-M p-value (0.308) (0.9362) T17-C = T17-M (0.9539)

109

Figure 6.8: Boxplot of APFD values obtained for Jackson-databind project.

6.2.4.2 Jackson-databind

To summarize collected data, box plots are depicted in Figure 6.8 for all executed TCP

techniques for Jackson-databind project.

Research question 1 is concerned with comparing the use of different TCP techniques

against the non-use, which is the control technique T0-C in Table 6.2. Thus, the design

of this analysis is a series of sixteen sub-experiments with one factor, which is the use

or not of a TCP technique, and two treatments, whose values are APFD obtained using

T0-C (fixed) and using the remaining techniques displayed in Table6.2 (T1-C and T3-C

through T17-C). Sub-experiment comparisons are listed in Table 6.8.

For this analysis it is used 11 builds of the Jackson-databind software with 15 different

test case orderings from TCP techniques T3 through T17 and 100 orderings from T1 for

each build. This results in a total of 1276 different APFD values (trials) collected for this

research question.

All normality distribution checking of the samples were done with Shapiro-Wilk test,

since for each sample analyzed we have 11 data points (builds) and that this test is

recommended when samples have less than 30 data points.

110

Table 6.8: Comparisons for RQ1 of Jackson-databind experiment.

Comparison

1 T0-C x T1-C
2 T0-C x T3-C
3 T0-C x T4-C
4 T0-C x T5-C
5 T0-C x T6-C
6 T0-C x T7-C
7 T0-C x T8-C
8 T0-C x T9-C
9 T0-C x T10-C
10 T0-C x T11-C
11 T0-C x T12-C
12 T0-C x T13-C
13 T0-C x T14-C
14 T0-C x T15-C
15 T0-C x T16-C
16 T0-C x T17-C

The normality test of the fixed treatment (T0-C) results in a p-value > 0.1. As it is

greater than the significance level of 0.05, the sample can be characterized as normal. The

output of the normality test is depicted in Figure 6.9, which is produced by the statistical

tool.

Sub-experiment #1 compares APFD values obtained when no TCP technique (T0-C)

was used against when the random TCP technique (T1-C) was used.

The normality test of T1-C results in a p-value > 0.1. As it is greater than the

significance level of 0.05, the sample can be characterized as normal. The output of the

normality test is depicted in Figure 6.10.

Since both T0-C and T1-C have normal distribution, the homoscedasticity are also

checked. Levene’s test is used for this purpose and the result is displayed in Figure 6.11.

The resulting p-value of 0.02, which is less than the significance level of 0.05, suggests

that the sample is not homoscedastic.

Considering that both variables have normal distribution but are not homoscedastic, a

non-parametric hypothesis test must be used. Since the design of this analysis is 1 factor

and 2 treatments, Mann-Whitney test is chosen. Thus, hypotheses are defined as:

• H0: Medians obtained using T0-C are equal to medians obtained using T1-C.

• H1: Medians obtained using T0-C are significantly different to medians obtained

111

Figure 6.9: Normality test for T0-C from Jackson-databind.

Figure 6.10: Normality test for T1-C from Jackson-databind.

112

Figure 6.11: Homoscedasticity test for T0-C and T1-C from Jackson-databind project.

using T1-C.

Hypothesis test output is displayed in Listing 6.3. Obtained p-value is 0.0878, which is

greater than the significance level of 0.05. This result indicates that H0 cannot be rejected

and suggests that the medians are statistically equivalent.

Listing 6.3: Hypothesis test result for sub-experiment #1 of RQ1 from Jackson-databind.

Mann−Whitney Test and CI : T0−C, T1−C

N Median
T0−C 11 0.50739
T1−C 11 0.50030

Point e s t imate f o r η1 − η2 i s 0 .03134
95 .1 Percent CI f o r η1 − η2 i s (−0.00745 ,0 .06282)

W = 153.0
Test o f η1 = η2 vs η1 6= η2 i s s i g n i f i c a n t at 0 .0878
The t e s t i s s i g n i f i c a n t at 0 .0877 (adjusted f o r t i e s)

To prevent repetitive text for each sub-experiment, analyses of normality, homoscedas-

ticity and hypothesis test used for each sub-experiment is listed in Table 6.9. Hypothesis

test results are displayed in Table 6.10.

13% of the comparisons result in a TCP technique achieving statistically better ef-

113

Table 6.9: Normality and homoscedasticity analyses for RQ1 of Jackson-databind.

Comparison Normality Homoscedasticity Hypothesis test

1 T0-C x T1-C X Not homoscedastic (p-value = 0.02) Mann-Whitney
2 T0-C x T3-C X X Test-T
3 T0-C x T4-C X X Test-T
4 T0-C x T5-C X X Test-T
5 T0-C x T6-C X Not homoscedastic (p-value = 0.01) Mann-Whitney
6 T0-C x T7-C X Not homoscedastic (p-value = 0) Mann-Whitney
7 T0-C x T8-C X Not homoscedastic (p-value = 0.014) Mann-Whitney
8 T0-C x T9-C X X Test-T
9 T0-C x T10-C X X Test-T
10 T0-C x T11-C X X Test-T
11 T0-C x T12-C X Not homoscedastic (p-value = 0.006) Mann-Whitney
12 T0-C x T13-C X X Test-T
13 T0-C x T14-C X X Test-T
14 T0-C x T15-C X X Test-T
15 T0-C x T16-C X Not homoscedastic (p-value = 0.008) Mann-Whitney
16 T0-C x T17-C X Not homoscedastic (p-value = 0.008) Mann-Whitney

Table 6.10: Hypothesis tests results for RQ1 of Jackson-databind.

Comparison Hypothesis test result APFD comparison result

1 T0-C x T1-C T0-C = T1-C p-value (0.0877) T0-C (0.5074) = T1-C (0.5003)
2 T0-C x T3-C T0-C = T3-C p-value (0.249) T0-C (0.5192) = T3-C (0.4917)
3 T0-C x T4-C T0-C = T4-C p-value (0.249) T0-C (0.5192) = T4-C (0.4917)
4 T0-C x T5-C T0-C = T5-C p-value (0.249) T0-C (0.5192) = T5-C (0.4917)
5 T0-C x T6-C T0-C = T6-C p-value (1.000) T0-C (0.5074) = T6-C (0.5285)
6 T0-C x T7-C T0-C = T7-C p-value (0.7427) T0-C (0.5074) = T7-C (0.5567)
7 T0-C x T8-C T0-C = T8-C p-value (0.7426) T0-C (0.5074) = T8-C (0.4974)
8 T0-C x T9-C T0-C = T9-C p-value (0.249) T0-C (0.5192) = T9-C (0.4917)
9 T0-C x T10-C T0-C = T10-C p-value (0.877) T0-C (0.5192) = T10-C (0.527)
10 T0-C x T11-C T0-C = T11-C p-value (0.249) T0-C (0.5192) = T11-C (0.4917)
11 T0-C x T12-C T0-C 6= T12-C p-value (0.0215) T0-C (0.5074) > T12-C (0.3347)
12 T0-C x T13-C T0-C = T13-C p-value (0.752) T0-C (0.5192) = T13-C (0.5114)
13 T0-C x T14-C T0-C = T14-C p-value (0.725) T0-C (0.5192) = T14-C (0.5107)
14 T0-C x T15-C T0-C = T15-C p-value (0.754) T0-C (0.5192) = T15-C (0.5116)
15 T0-C x T16-C T0-C 6= T16-C p-value (0.0002) T0-C (0.5074) < T16-C (0.8148)
16 T0-C x T17-C T0-C 6= T17-C p-value (0.0002) T0-C (0.5074) < T17-C (0.8148)

114

Table 6.11: Comparisons for RQ2 of Jackson-databind experiment.

Control x intervention

1 T1-C x T1-M
2 T3-C x T3-M
3 T4-C x T4-M
4 T5-C x T5-M
5 T6-C x T6-M
6 T7-C x T7-M
7 T8-C x T8-M
8 T9-C x T9-M
9 T10-C x T10-M
10 T11-C x T11-M
11 T12-C x T12-M
12 T13-C x T13-M
13 T14-C x T14-M
14 T15-C x T15-M
15 T16-C x T16-M
16 T17-C x T17-M

fectiveness than the non-use of a TCP technique, as shown by highlighted rows in Table

6.10, for RQ1 analysis of Jackson-databind project. 81% resulted in statistically equiva-

lent effectiveness and the remaining 6% resulted in better effectiveness for the non-use of

a TCP technique compared to the use of a TCP technique.

Research question 2 is concerned with comparing TCP techniques effectiveness when

executed at the method and class test level. Thus, the design of this analysis is a series

of sixteen sub-experiments with one factor, which is the granularity of the tests, and two

treatments, whose values are method and class level.

In this analysis, the same project builds are subjected to the same intervention (TCP

technique) for each of the treatments. For this reason, we say that the analysis is paired.

For this analysis it is used 11 builds of the Jackson-databind software with 15 different

test case orderings from TCP techniques T3 through T17 and 100 orderings from T1

for each build. Furthermore, for each ordering we have two different test granularities

being used. This results in a total of 2530 different APFD values (trials) collected for this

research question. Sub-experiments are listed in Table 6.11.

As in RQ1 analysis, the first sub-experiment data analysis is described in details and

the remaining are summarized.

Sub-experiment #1 compares T1 executed at the class level test granularity (T1-C)

115

Figure 6.12: Normality test for T1-C from Jackson-databind.

and at the method level granularity (T1-M). Using Shapiro-Wilk to test normality for each

sample, results in a p-value > 0.100 for T1-C, as depicted in Figure 6.12 and for T1-M,

as depicted in Figure 6.13. As both p-values are greater than the established significance

level of 0.05, it suggests that the samples are normally distributed.

Homoscedasticity of the samples are also checked, using Levene’s test, depicted in

Figure 6.14. A p-value of 0.633 is obtained, which is greater than the significance level of

0.05, indicating that the samples are homoscedastic.

As the samples are normal and homoscedastic, a parametric hypothesis test can be

used. Since we have a paired design of 1 factor and 2 treatments, Paired T-test is used.

Hypotheses for this analysis are defined as:

• H0: APFD mean obtained using T1-C is equal to the mean obtained using T1-M.

• H1: APFD mean obtained using T1-C is significantly different from the mean ob-

tained using T1-M.

The hypothesis test output from Minitab is displayed in Listing 6.4. The p-value obtained

is 0.847, which is bigger than the significance level of 0.05. This result indicates that the

116

Figure 6.13: Normality test for T1-M from Jackson-databind.

Figure 6.14: Homoscedasticity test for T1-C and T1-M from Jackson-databind.

117

Table 6.12: Hypothesis tests results for RQ2 of Jackson-databind.

Comparison Hypothesis test result APFD comparison result

1 T1-C x T1-M T1-C = T1-M p-value (0.847) (0.4985) T1-C = 1-M (0.5005)
2 T3-C x T3-M T3-C = T3-M p-value (0.817) (0.4917) T3-C = 3-M (0.4917)
3 T4-C x T4-M T4-C = T4-M p-value (0.064) (0.4917) T4-C = 4-M (0.4920)
4 T5-C x T5-M T5-C = T5-M p-value (0.817) (0.4917) T5-C = 5-M (0.4917)
5 T6-C x T6-M T6-C = T6-M p-value (0.414) (0.5160) T6-C = 6-M (0.4712)
6 T7-C x T7-M T7-C = T7-M p-value (0.117) (0.5744) T7-C = 7-M (0.4684)
7 T8-C x T8-M T8-C = T8-M p-value (0.674) (0.4542) T8-C = 8-M (0.4284)
8 T9-C x T9-M T9-C = T9-M p-value (0.817) (0.4917) T9-C = 9-M (0.4917)
9 T10-C x T10-M T10-C = T10-M p-value (0.145) (0.5269) T10-C > 10-M (0.4376)
10 T11-C x T11-M T11-C = T11-M p-value (0.817) (0.4917) T11-C = 11-M (0.4917)
11 T12-C x T12-M T12-C = T12-M p-value (0.322) (0.3773) T12-C = 12-M (0.4689)
12 T13-C x T13-M T13-C = T13-M p-value (0.058) (0.5114) T13-C = 13-M (0.5066)
13 T14-C x T14-M T14-C 6= T14-M p-value (0.004) (0.5107) T14-C > 14-M (0.5064)
14 T15-C x T15-M T15-C 6= T15-M p-value (0.000) (0.5116) T15-C > 15-M (0.5066)
15 T16-C x T16-M T16-C = T16-M p-value (0.364) (0.8281) T16-C = 16-M (0.8111)
16 T17-C x T17-M T17-C = T17-M p-value (0.364) (0.8279) T17-C = 17-M (0.8111)

null hypothesis H0 cannot be rejected and thus suggests that the means obtained using

T1-C and T1-M are statistically equivalent.

Listing 6.4: Hypothesis test result for sub-experiment #1 of RQ2 from Jackson-databind.

Paired T f o r T1−C − T1−M

N Mean StDev SE Mean
T1−C 11 0.49853 0.01726 0.00520
T1−M 11 0.50050 0.02166 0.00653
D i f f e r e n c e 11 −0.00197 0.03298 0.00994

95% CI f o r mean d i f f e r e n c e : (−0.02413 , 0 .02019)
T−Test o f mean d i f f e r e n c e = 0 (vs 6= 0) : T−Value = −0.20 P−Value

= 0.847

To prevent repetitive text for each sub-experiment, remaining sub-experiment analyses

are summarized in Table 6.12. In this analysis, all samples are normal and homoscedastic

and thus, Paired T-Test was used for all sub-experiments.

According to Table 6.12, no comparison resulted in better effectiveness for a TCP

technique executed at the method granularity when compared to it executed at the class

granularity. 81% of the comparisons resulted in statistically equivalent effectiveness for

both granularities and the remaining 19% performed better at the class than at the method

granularity.

118

6.2.5 THREATS TO VALIDITY

Some factors can affect the validity of the results obtained in this experiment. They are

reported according to the guidelines provided by Wohlin et al. (2012).

External validity is concerned with the generalization of the results from this study. It

is worth of note that the chosen open source projects might not represent all open source

projects. To mitigate this problem, we choose two projects among the list of most famous

projects on Github that met our experiment requirements. However, more investigation

is needed in order to generalize the results.

Internal validity is concerned with factors that can affect the independent variables and

are not known when the experiment is performed. In this case, the proposed framework

used during the experimentation process might contain bugs that were not yet discovered

and that could affect the outcomes of the experiment. To mitigate this, we extensively

tested the framework on smaller projects, so we could debug and check if the results were

valid.

6.3 DISCUSSION AND LESSONS LEARNED

Regarding research question 1, for CoreNLP, 13 out of 16 experimented techniques per-

formed better than the non-use of a TCP technique. Three techniques (T6-C, T7-C and

T13-C) did not perform better than non-use of a TCP technique. Despite the fact that

they achieve a higher APFD median than the control T0-C, the hypothesis tests suggest

that the difference between them is not statistically significant.

For Jackson-databind project, only two TCP techniques performed better than the

non-use of a TCP technique. They are the most failures first (T16-C) and recent failures

first (T17-C). Both are history-based. Additional diff class coverage (T12-C) performed

worse than the non-use of a TCP technique. All other techniques performed statistically

similar to the default approach.

These results suggest that if the developers of these open source projects had used

a history-based TCP technique at the class test granularity, they would discover faults

in their project earlier than they actually did, when not using test case prioritization.

Furthermore, it also suggests that some of the TCP techniques may not be worth of use

for these projects, since they perform similar to not using them.

119

Regarding research question 2, for both projects, the results obtained indicate that

executing those TCP techniques at the test method granularity do not improve the rate

of fault detection, opposed to what was found in our systematic literature review. This

result strengthens findings from Do et al. (2006). In their experimental study, they found

that executing test cases at the test method level for a Java project did not improve the

rate of fault detection, comparing to test cases at the test class level.

Despite the results we found, only two projects were experimented, and they might

not represent all open source projects. In this sense, new studies are needed to investigate

this question. During the execution of this study, some lessons were learned and we think

that would be useful to report as other researchers may face the same challenges.

One lesson is that prioritizing test cases at the method level is only useful for industry

if the project to be tested has unit tests that are truly unit tests. That is, they are inde-

pendent from each other in the sense that, executing them at a specific order should not

change their behavior and make them fail. We observed that this phenomenon happened

during our experiment in the CoreNLP project. Different executions from the same build

of the project presented different amount of faults. This can potentially impact in the

final effectiveness of a TCP technique and report faults that do not really exist in the

source code.

Another lesson is regarding the use of a test framework to support our empirical ex-

periment. Before actually designing and building this framework, performing an empirical

experiment was much harder and laborious. We would need, for example, when we ex-

tracted data to answer our first research question for CoreNLP, where 1276 APFD values

were generated, to manually trigger the build of the project 1276 times, each time with

a different configuration. With our proposed framework, we executed 4 times to generate

all APFD 5060 values for this experiment. Internally the framework automatize almost

every task in this process, like executing a test suite using a TCP technique, identifying

faults, calculating APFD values and generating reports.

6.4 FINAL CONSIDERATIONS

In this chapter we demonstrate the support that the framework provides to the execution

and experimentation process of TCP techniques through an experiment. This answers

the third research question of this work, ”How does the resulting framework support

120

practitioners and researchers?”.

We investigate through an empirical study whether or not implemented TCP tech-

niques improve the rate of fault detection on two open source projects and furthermore,

if test execution granularity impacts on obtained APFD from those techniques.

As results we found that some of the techniques could improve the rate of fault de-

tection on the projects, and overall, the two implemented history-based TCP techniques

yielded the better improvements. We also found that executing those TCP techniques at

the test method granularity level may not be worth for those projects, since they do not

perform better than when executed at the class test level.

121

7 CONCLUSION

In this work we highlighted the benefits of using TCP techniques in the continuous software

engineering environment, where processes are constantly optimized.

To answer our research question regarding how TCP is being used in industry and

literature, we performed a systematic literature review and mapping and a structured

search of the literature for TCP industrial usage evidence. We found that there is a lack

of automated tools to support both research and industrial use of such techniques. These

evidence suggest that TCP is still not mature enough in literature to allow practitioners

to choose TCP techniques based on experimental evidence.

Aiming to support TCP research and usage, our second research question that guided

this work is concerned with how to create a framework to support both TCP usage and

experimentation. The literature has been surveyed for related works and how they im-

plement features that ease this process. After that, we designed and implemented a

framework to support the execution, experimentation and implementation of TCP tech-

niques.

The last research question of this work aim to answer how the resulting framework

support practitioners and researchers working with TCP. To answer that, an experiment

was performed using two open source projects from Github. In this study, 16 TCP

techniques were compared in terms of rate of faults detection to the baseline approach

of regression testing, which consists of not using a TCP technique. Results from the

empirical study suggest that using those TCP techniques result in faster feedback about

the existence of failures in the projects build, possibly resulting in shorter development

cycles. They also suggest that executing those TCP techniques at the method test level,

that is, executing one test method per time as opposed to the traditional approach of

executing entire test classes, are not worth for these projects, since they do not improve

the rate of fault detection. Furthermore, the execution of the experiment was heavily

supported by the automation the framework provides to the process, by executing different

TCP techniques with different configurations and measuring their effectiveness.

All research questions and objectives stated in Chapter 1 were visited throughout the

conduction of this work. We hope that the contributions will help both researchers and

122

practitioners on further understanding the benefits of using TCP in continuous software

engineering environment.

7.1 RESEARCH LIMITATIONS

The following limitations were identified in this work:

• Optimus Framework was designed to work with projects that use the Maven build

tool. For this reason, it may not be useful for users that have projects with different

build tools.

• If researchers develop TCP techniques that rely on project information different

from those offered by Optimus Framework analyzers, they will need to develop such

mechanism to capture them. However, this might not be hard, since the project is

divided into modules.

• Some techniques, such as Farthest-first Ordered Sequence and Greed-aided-clustering

Ordered Sequence implemented in the framework were not included in the empirical

study for viability reasons. However, they were tested on smaller projects outside

the empirical study.

7.2 FUTURE WORKS

Future works include experimenting different projects to check if the results are also valid

for them. In addition, it may be useful to replicate existent studies from literature using

the Optimus Framework to validate if results are similar. In order to do that, it is necessary

to adapt the projects used in other studies to be supported by Optimus Framework, since

they do no use Maven.

Another important point regarding the support for experimentation is the implemen-

tation of support for multi-module Maven projects, since big open source projects use this

feature. This might be a big step to allow bigger experimental studies and a step towards

more understanding of impacts of using TCP techniques on different kinds of projects.

Lastly, another future work is to evaluate the framework in terms of performance, mea-

suring the cost-benefit of using different TCP techniques using our approach.

REFERENCES

ALVES, E. L. G.; MACHADO, P. D. de L.; MASSONI, T.; KIM, M. Prioritizing test

cases for early detection of refactoring faults. Softw. Test., Verif. Reliab., v. 26, p.

402–426, 2016.

AMMANN, P.; OFFUTT, J. Introduction to software testing, 2016.

ANDREWS, J. H.; BRIAND, L. C.; LABICHE, Y. Is mutation an appropriate tool for

testing experiments? In: ACM. Proceedings of the 27th international conference

on Software engineering, 2005. p. 402–411.

BUSJAEGER, B.; XIE, T. Learning for test prioritization: an industrial case study. In:

ACM. Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, 2016. p. 975–980.

CALDIERA, V. R. B.-G.; ROMBACH, H. D. Goal question metric paradigm. Encyclo-

pedia of software engineering, v. 1, p. 528–532, 1994.

CARLSON, R.; DO, H.; DENTON, A. M. A clustering approach to improving test case

prioritization: An industrial case study. 2011 27th IEEE International Conference

on Software Maintenance (ICSM), p. 382–391, 2011.

CATAL, C.; MISHRA, D. Test case prioritization: a systematic mapping study. Software

Quality Journal, v. 21, p. 445–478, 2012.

CHEN, L. Continuous delivery: Huge benefits, but challenges too. IEEE Software, v. 32,

p. 50–54, 2015.

CZERWONKA, J.; DAS, R.; NAGAPPAN, N.; TARVO, A.; TETEREV, A. Crane: Fail-

ure prediction, change analysis and test prioritization in practice – experiences from

windows. 2011 Fourth IEEE International Conference on Software Testing,

Verification and Validation, p. 357–366, 2011.

DO, H. Recent advances in regression testing techniques. In: Advances in Computers,

2016. v. 103, p. 53–77.

DO, H.; MIRARAB, S.; TAHVILDARI, L.; ROTHERMEL, G. The effects of time con-

straints on test case prioritization: A series of controlled experiments. IEEE Transac-

tions on Software Engineering, IEEE, n. 5, p. 593–617, 2010.

DO, H.; ROTHERMEL, G. On the use of mutation faults in empirical assessments of test

case prioritization techniques. IEEE Transactions on Software Engineering, v. 32,

p. 733–752, 2006.

DO, H.; ROTHERMEL, G.; KINNEER, A. Prioritizing junit test cases: An empirical

assessment and cost-benefits analysis. Empirical Software Engineering, v. 11, p.

33–70, 2006.

EGHBALI, S.; TAHVILDARI, L. Test case prioritization using lexicographical ordering.

IEEE Transactions on Software Engineering, v. 42, p. 1178–1195, 2016.

ELBAUM, S. G.; ROTHERMEL, G.; PENIX, J. Techniques for improving regression

testing in continuous integration development environments. In: SIGSOFT FSE, 2014.

ENGSTRÖM, E.; RUNESON, P.; LJUNG, A. Improving regression testing transparency

and efficiency with history-based prioritization – an industrial case study. 2011 Fourth

IEEE International Conference on Software Testing, Verification and Valida-

tion, p. 367–376, 2011.

FANG, C.; CHEN, Z.; WU, K.; ZHAO, Z. Similarity-based test case prioritization using

ordered sequences of program entities. Software Quality Journal, v. 22, p. 335–361,

2013.

FITZGERALD, B.; STOL, K.-J. Continuous software engineering: A roadmap and

agenda. Journal of Systems and Software, Elsevier, v. 123, p. 176–189, 2017.

JACCARD, P. Étude comparative de la distribution florale dans une portion des alpes et

des jura. Bull Soc Vaudoise Sci Nat, v. 37, p. 547–579, 1901.

JIANG, B.; ZHANG, Z.; CHAN, W. K.; TSE, T. H. Adaptive random test case prior-

itization. 2009 IEEE/ACM International Conference on Automated Software

Engineering, p. 233–244, 2009.

JUNIOR, H. de S. C.; ARAÚJO, M. A. P.; DAVID, J. M. N.; BRAGA, R. M. M.;

CAMPOS, F.; STRÖELE, V. Test case prioritization: a systematic review and mapping

of the literature. In: SBES, 2017.

KAUFFMAN, J. M.; KAPFHAMMER, G. M. A framework to support research in and

encourage industrial adoption of regression testing techniques. 2012 IEEE Fifth In-

ternational Conference on Software Testing, Verification and Validation, p.

907–908, 2012.

KIM, J.-M.; PORTER, A. A. A history-based test prioritization technique for regression

testing in resource constrained environments. In: ICSE, 2002.

KITCHENHAM, B. Guidelines for performing systematic literature reviews in

software engineering, 2007.

LEVENSHTEIN, V. Binary codes capable of correcting spurious insertions and deletion

of ones. Problems of information Transmission, v. 1, n. 1, p. 8–17, 1965.

MARIJAN, D.; GOTLIEB, A.; SEN, S. Test case prioritization for continuous regression

testing: An industrial case study. 2013 IEEE International Conference on Software

Maintenance, p. 540–543, 2013.

MARIJAN, D.; LIAAEN, M. Effect of time window on the performance of continuous re-

gression testing. 2016 IEEE International Conference on Software Maintenance

and Evolution (ICSME), p. 568–571, 2016.

MEYER, M. Continuous integration and its tools. IEEE Software, v. 31, p. 14–16, 2014.

MIRARAB, S.; TAHVILDARI, L. An empirical study on bayesian network-based ap-

proach for test case prioritization. 2008 1st International Conference on Software

Testing, Verification, and Validation, p. 278–287, 2008.

MYERS, G. J.; SANDLER, C.; BADGETT, T. The art of software testing, 2011.

NARDO, D. D.; ALSHAHWAN, N.; BRIAND, L. C.; LABICHE, Y. Coverage-based

test case prioritisation: An industrial case study. 2013 IEEE Sixth International

Conference on Software Testing, Verification and Validation, p. 302–311, 2013.

ÖHLIN, P. Prioritizing Tests with Spotify’s Test & Build Data using History-

based, Modification-based & Machine Learning Approaches. Tese (Doutorado)

— Linköping University, Sweden, S-581 83 Linköping, Sweden, 2017. Master Thesis.

PAREJO, J. A.; SÁNCHEZ, A. B.; SEGURA, S.; CORTÉS, A. R.; LOPEZ-HERREJON,

R. E.; EGYED, A. Multi-objective test case prioritization in highly configurable systems:

A case study. Journal of Systems and Software, v. 122, p. 287–310, 2016.

PATERSON, D.; KAPFHAMMER, G. M.; FRASER, G.; MCMINN, P. Using controlled

numbers of real faults and mutants to empirically evaluate coverage-based test case prior-

itization. In: IEEE. Proceedings of the International Workshop on Automation

of Software Test (AST 2018), 2018.

PFLEEGER, S. L.; ATLEE, J. M. (Ed.). Software engineering - theory and practice

(4. ed.), 2009.

PLEWNIA, C. A Framework for Regression Test Prioritization and Selection.

Tese (Doutorado) — RWTH Aachen University, Germany, Aachen, Germany, 2015. Mas-

ter Thesis.

ROTHERMEL, G.; UNTCH, R. H.; CHU, C.; HARROLD, M. J. Test case prioritization:

An empirical study. In: ICSM, 1999.

ROTHERMEL, G.; UNTCH, R. H.; CHU, C.; HARROLD, M. J. Prioritizing test cases

for regression testing. IEEE Transactions on software engineering, IEEE, v. 27,

n. 10, p. 929–948, 2001.

SÁNCHEZ, A. B.; SEGURA, S. Smartest: A test case prioritization tool for drupal. In:

SPLC, 2017.

SINGH, Y.; KAUR, A.; SURI, B.; SINGHAL, S. Systematic literature review on regression

test prioritization techniques. Informatica (Slovenia), v. 36, p. 379–408, 2012.

SPIEKER, H.; GOTLIEB, A.; MARIJAN, D.; MOSSIGE, M. Reinforcement learning for

automatic test case prioritization and selection in continuous integration. In: ACM. Pro-

ceedings of the 26th ACM SIGSOFT International Symposium on Software

Testing and Analysis, 2017. p. 12–22.

127

SRIKANTH, H.; COHEN, M. B. Regression testing in software as a service: An industrial

case study. 2011 27th IEEE International Conference on Software Maintenance

(ICSM), p. 372–381, 2011.

STRANDBERG, P. E.; SUNDMARK, D.; AFZAL, W.; OSTRAND, T. J.; WEYUKER,

E. J. Experience report: Automated system level regression test prioritization using mul-

tiple factors. 2016 IEEE 27th International Symposium on Software Reliability

Engineering (ISSRE), p. 12–23, 2016.

WANG, R.; JIANG, S.; CHEN, D. Similarity-based regression test case prioritization. In:

SEKE, 2015.

WANG, S.; ALI, S.; YUE, T.; BAKKELI, O.; LIAAEN, M. Enhancing test case prioriti-

zation in an industrial setting with resource awareness and multi-objective search. 2016

IEEE/ACM 38th International Conference on Software Engineering Com-

panion (ICSE-C), p. 182–191, 2016.

WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLÉN,

A. Experimentation in software engineering, 2012.

WU, K.; FANG, C.; CHEN, Z.; ZHAO, Z. Test case prioritization incorporating ordered

sequence of program elements. 2012 7th International Workshop on Automation

of Software Test (AST), p. 124–130, 2012.

YANG, Y.; HUANG, X.; HAO, X.; LIU, Z.; CHEN, Z. An industrial study of natural lan-

guage processing based test case prioritization. 2017 IEEE International Conference

on Software Testing, Verification and Validation (ICST), p. 548–549, 2017.

YOO, S.; HARMAN, M. Regression testing minimization, selection and prioritization: a

survey. Software Testing, Verification and Reliability, Wiley Online Library, v. 22,

n. 2, p. 67–120, 2012.

	 Introduction
	Research questions
	Goals
	Research methodology
	Outline

	 Background
	Introduction
	Continuous Software Engineering
	Software Testing
	Regression testing
	Regression testing optimization
	Test case prioritization
	Systematic review and mapping of the literature
	Systematic mapping results

	Systematic review results
	Industrial adoption
	Final considerations

	 Related Works
	TCP usage
	TCP in Continuous Software Engineering
	TCP usage and Continuous Software Engineering
	Existing approaches comparison
	Final considerations

	 Optimus Framework design
	Introduction
	Requirements
	Artifacts Repository
	Experiments support
	TCP Effectiveness Analyzer
	Reports generator

	Analyzers
	Coverage analyzer
	Historical data analyzer
	Execution trace analyzer
	Modifications analyzer

	TCP techniques
	Coverage-based
	History-based
	Modification-based
	Similarity-based

	New techniques implementation
	Final considerations

	 Optimus Framework Implementation
	Optimus-common
	Optimus-framework
	Optimus-test
	OSS Faults Finder
	Fault injection plugin
	Optimus Coverage Analyzer
	Optimus Historical Analyzer
	Optimus Modification Analyzer
	Optimus Execution Trace Analyzer
	Optimus Framework Usage
	Final considerations

	 Evaluation
	Introduction
	Experimental study
	Objects of analysis
	Variables
	Experiment setup
	Data and analysis
	Threats to validity

	Discussion and lessons learned
	Final considerations

	 Conclusion
	Research limitations
	Future works

	REFERENCES

