
Cesar Augusto Conopoima Pérez
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obtenção do grau de Mestre em Modelagem
Computacional.

Orientador: Prof. D.Sc. Bernardo Martins Rocha

Coorientador: Prof. D.Sc. Rodrigo Weber Dos Santos

Coorientador: Prof. D.Sc. Iury Higor Aguiar Da Igreja

Juiz de Fora

2017



Ficha catalográfica elaborada através do programa de geração 
automática da Biblioteca Universitária da UFJF, 

com os dados fornecidos pelo(a) autor(a)

Conopoima Pérez, Cesar Augusto.
     Mortar Finite Element Method for cell response to applied electric
field / Cesar Augusto Conopoima Pérez. -- 2017.
     69 p. : il.

     Orientador: Bernardo Martins Rocha
     Coorientadores: Rodrigo Weber dos Santos, Iury Higor Aguiar da
Igreja
     Dissertação (mestrado acadêmico) - Universidade Federal de
Juiz de Fora, ICE/Engenharia. Programa de Pós-Graduação em
Modelagem Computacional, 2017.

     1. Mortar Finite Element Method. 2. Lagrange multiplier. 3.
Passive and active response of the cell. 4. Applied electric field. I.
Martins Rocha, Bernardo, orient. II. Weber dos Santos, Rodrigo,
coorient. III. Aguiar da Igreja, Iury Higor, coorient. IV. Título.





To the nature.



ACKNOWLEDGEMENTS

First of all I would like to thank to the Pos-graduate Program in Computational

Modelling of the Federal University of Juiz de Fora, for choosing me as international

student in the program, I also thank to all the professors which I meet and have

fruitful discussions during the master courses, specially I would like to thank professor

Bernardo Martins Rocha by allowing me to work over his nicely constructed FEM library

(cardiax). I also thank him for his guidance and patience, every meeting was a profitable

time that allow this work to be finished; to professor Iury da Igreja by the hours of

informal discussion about The Finite Elements Method, they were certainly very useful

to conclude this work; to professor Rodrigo Weber dos Santos also by his guidance and

for the informal talks about everything, in particular about electrophysiology, his insights

and knowledge truly enriched this work.

I am also very thankful to all the friends in the laboratory, some for making the coffee

break an enjoyable time, and others for the interesting chatting about they research

works. I am grateful to all the Brazilians, specially to the Mineiros, that I encounter

and lived during this time in Brazil, they make me feel authentically welcome in their

country, all the personal and professional growth I experience in the past year was only

possible thanks to them. Finally I am very grateful to Marissa Scárdua by her patient

and help in difficult times, her unmeasurable kindness and love inspire me every day.

To CAPES for the financial support during the development of this work and during

the complete master course.



ABSTRACT

The response of passive and active biological cell to applied electric field is investigated

with a Mortar Finite Element Method MFEM. Cells response is a process with two

different time scales, one in microseconds for the cell polarization and the other in

milliseconds for the active response of the cell due to the complex dynamics of the ion-

channel current on the cell membrane. The mathematical model to describe the dynamics

of the cell response is based on the conservation law of electric current in a conductive

medium. By introducing an additional variable known as Lagrange multiplier defined on

the cell interface, the boundary value problem associated to the conservation of electric

current is decoupled from the initial value problem associated to the passive and active

response of the cell. The proposed method allows to solve electric potential distribution in

arbitrary cell geometry and arrangements. In order to validate the presented methodology,

the h-convergence order of the MFEM is numerically investigated. The numerical and

exact solutions describing cell polarization are also compared. Finally, to demonstrate

the effectiveness of the method, the active response to an applied electric field in cells

clusters and cells with arbitrary geometry are investigated.

Key-words: Mortar Finite Element Method. Lagrange Multiplier. Passive and active

response of the cell. Applied electric field.



RESUMO

A resposta passiva e ativa de uma célula biológica a um campo elétrico é estudada

aplicando um Método de Elementos Finitos Mortar MEFM. A resposta de uma célula

é um processo com duas escalas temporais, o primeiro na escala de microsegundos para a

polarização da célula e o segundo na escala de milisegundos para a resposta ativa devido

a dinâmica complexa das correntes nos canais iônicos da membrana celular. O modelo

matemático para descrever a dinâmica da resposta celular é baseado na lei de conservaçaão

de corrente elétrica em um meio condutor. Introduzindo uma variável adicional conhecida

como multiplicador de Lagrange definido na interface da célula, o problema de valor de

fronteira associado a conservação de corrente elétrica é desacoplado do problema de valor

inicial associado a responta passiva e ativa da célula. O método proposto permite resolver

o problema da distribuição de potencial elétrico em um arranjo geométrico arbitrário de

células. Com o objetivo de validar a metodologia apresentada, a convergência espacial

do método é numericamente investigada e a solução aproxima e exata que descreve a

polarização de uma célula, são comparadas. Finalmente, para demonstrar a efetividade

do método, a resposta ativa a um campo elétrico aplicado num arranjo de células de

geometria arbitraria é investigada.

Palavras-Chaves: Método de Elementos Finitos Mortar. Multiplicador de Lagrange.

Resposta ativa e passiva da célula. Campo elétrico aplicado.
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1 Introduction

The response of a single cell and cluster of cells to external applied electrical field

is important for the understanding of techniques such as cell electroporation [1, 2],

which is the transient permeabilization of the plasma membrane by means of short

and intense electric pulse. This technique has broad application in the biological and

medical community for instance for the local treatment of cancer. Since the cells cytosol

becomes accessible to the external medium, DNA and molecules transference into the

cell is possible, direct drug supply is also possible without compromising cell function

[1, 2]. Moreover, it is not clear if cell electroporation does play an important role in

cardiac defibrillation, therefore this is also a relevant topic in the research field of cardiac

electrophysiology [3, 4, 5]. Properly studying extracellular potential distribution in cluster

of cells of arbitrary geometry is important to understand the influence of applied electrical

field in neurons activity [6].

Particular solutions to describe the passive response of cells to applied field are

available for isolated cells of simple circular and ellipsoidal geometry [7, 8]. Although

exact solutions for spherical cells in non uniform electric field exists [9, 10], a general tool

to numerically investigate cells electroporation and extracellular potential distribution

is of interest. In this sense, the numerical study of the passive and active response of

isolated cells to external field has been made in [11, 12]. Furthermore the influence

of cells arrangement, orientation and cells packing in the presence of external electrical

applied field has also been investigated in [13, 14, 11, 6].

The response of biological cells to applied electrical field is a two stage process [7, 11]:

the first stage takes place at the time scale of microseconds, where the capacitive current

is dominant and the cell behaves like a dipole; in the second stage actual physiological

changes due to the complex dynamics of ion currents on the cell membrane, which is

triggered if the transmembrane current on the first stage is sufficiently high to unchain

an action potential on the cell [15]. Moreover the active response of the cell will also be

influenced by the distribution and packing of the cells [14, 6]. Because of the complex

interactions in cells arrangements, possible irregular cells geometries and the lack of exact

solutions in those cases, the study of the distribution of electric potential and of the
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action potential in non-idealized systems of multiple cells can only be studied by numerical

methods.

In the context of numerical methods, in particular the Finite Element Methods (FEM),

simulations of cells electroporation in tumours [16], non regular cell geometry [12] and

spherical cell arrangements [13] have been investigated. In [14, 6] a Hybrid Finite Element

Method (HFEM) is used to investigate the passive and active cell response to external

applied electrical fields. With this method the boundary value problem of electric flux

conservation and the initial value problem of active cell response are decoupled and

solved in alternate form in each time step. The HFEM is based on the hypothesis

that cell membrane is a zero thickness domain i.e, an interface that separates two non

overlapping domains [11], the intra and the extracellular domains. The membrane imposes

an interface condition inside the domain which must be properly treated. In the context of

finite element methods, one possible approach is to formulate separated problems in each

domain and impose compatibility of the solution on the interface via Lagrange multipliers.

1.1 Interface problems by FEM

Proper treatment of interface conditions in finite element methods [17, 18], requires the

imposition of continuity of the solution on the interface through Lagrange multipliers, as

proposed by Raviart-Thomas in the known primal hybrid formulation [19]. This approach

allows to have non-conforming domain discretizations with optimal convergence order for

both the primal and Lagrange multiplier variables [20, 21].

In order to satisfy the compatibility condition between spaces (LBB inf-sup condition)

in the primal hybrid formulation, the Lagrange multiplier must be properly defined. The

formal treatment and analysis of this method are defined in the literature as Mortar Finite

Element Method [20, 21, 22, 23]; and has the main advantage of allowing to solve interface

problems with non-matching domain triangulations. The linear system associated with

the discrete version of this formulation has a saddle point problem structure and in general

is difficult to solve numerically [24]. This difficulty can be circumvent by including Galekin

Least Square (GLS) stabilizations terms [25, 26, 27], or by approximating the Lagrange

multiplier using a dual multiplier space. In the second case static condensation is possible

for the Lagrange multiplier and effective multigrid solvers can be used [28, 22, 23].
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Another form to satisfy the interface condition is to impose continuity of the primal

variable and of the flux on the interface in a weak form. This gives rise to a three field

domain decomposition method as proposed in [29]. Optimal order approximations for

all the fields [26, 29, 30] is proved with proper stabilizations terms [25]. This method

includes two Lagrange multiplier spaces, one associated with the flux on the interface and

other associated to the trace of the function at the interface. The indefinite linear system

obtained from the finite element discretization, is sparser and bigger than the obtained by

the primal hybrid formulation due to the inclusion of two additional field to the original

problem, however its advantage is the possibility of using different approximations spaces

for the flux and the trace of the primal variable on the interface.

In the context of mixed finite elements [31, 32], Raviart-Thomas spaces are required

[31] and continuity of the solution on the interface may be imposed by a constrained

function space [32] or, in a weak form, through Lagrange multipliers. In the latter case

super optimal order approximations of the primal variable may be achieved by a post-

processing technique [33].

Imposing continuity of the solution on the interface through auxiliary Lagrange

multipliers spaces requires the solution of an indefinite linear system. For the primal

hybrid formulation this system is poorly conditioned demanding particular solution

techniques [24, 28]. Another possibility to impose continuity of the solution through

the interface is by penalization methods [34] or Nitsche type methods [35], where the

continuity of the solution is imposed by coupled weighted terms of the primal variable

defined in the interface. This family of methods generates a global system less sparse than

those arising in standard conforming FEM [36]. These techniques were demonstrated to be

particularly interesting to solve highly convective problems due to the inner stabilization

mechanism [37].

To relax the coupling introduced by the interface terms a hybridization technique can

be applied as proposed in [38] and analyzed in [39][40], which is particularly interesting

when discontinuous finite elements are used in all the computational domain. In these

cases a positive definite global system is assembled from local contributions by static

condensation and direct linear solvers can be effectively used.
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1.2 Objectives

In this work the active and passive response of isolated cells to applied field is investigated

with a Mortar Finite Element Method MFEM. The main objective of this work is to apply

the MFEM to handle the solution discontinuity due to the response of the cell interface by

using non conforming domains discretizations and conforming Galerkin C0 discretizations

on the rest of the domain. It is also the objective of this work to present the conditions

for the existence and uniqueness to the solution of the variational formulation, the space

compatibility condition and error estimate in natural norm confirmed through numerical

examples. Finally, the effectiveness of the method will be demonstrated by solving the

interface problem in an isolated cell and cluster of cells with non-matching discretizations.

1.3 Structure of the work

This work is structured as follows: in Chapter 2 the conservation law of electric flux

in biological conductive mediums is presented, the interface conditions between domains

of different conductivities is also introduced and an exact solution to the conservation

problem for an isolated circular cell in a conductive medium is presented. In Chapter

3 a preliminary section is dedicated to the basic theory of function spaces, then the

model problem is introduced and the primal hybrid variational formulation is deduced;

the existence and uniqueness of the formulation is proved and the mortar finite element

discretization is presented. In Chapter 4 the computational aspects of the saddle point

problem are outlined. In Chapter 5 the h-convergence of the proposed method are

determined and numerical results of the passive and active response of the cell are

presented. Finally, in Chapter 6 the final remarks are made and the proposal for futures

works are discussed.
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2 Biological response of cell to

applied electrical field

Understanding cell polarization under the action of external electrical field has wide

applications in techniques as electrochemotherapy, permeabilization of cell membrane by

electroporation, neuronal stimulation, cardiac pacing and cardiac defibrillation [1, 2, 6, 5].

By means of numerical simulations it is possible to understand the phenomenology of

electric potential distribution in complex cell geometries and arrangements. From the

conservation law of electric current in a conductive medium in the presence of a cell or a

group of cells, it is possible to deduce a mathematical model based on partial differential

equations (PDE) that describes the distribution of electric potential in the medium and

in the biological cell.

2.1 Mathematical models

The electric field in a biological tissue resulting from the application of a direct current

can be considered quasi-stationary [41], this means that its distribution is described by

equations of the steady electric current in a volume conductor. The relation of electric

current to voltage and resistance is described by Ohm’s law. The electric current density

J[A · cm−3] is defined by the point form of the Ohm’s law J = κ · E, where E[V · cm−1]

is the electric vector field,

E = −∇u, (2.1)

where u[V] is the scalar electric potential. In Ohm’s law, κ[S · cm−1] is the electric

conductivity of the biological tissue and in the most generalized case it is a second order

tensor. When conductivity is expressed in terms of a orthogonal coordinated system

(x, y, z) and both the electric field and current density are related to the same coordinate

system, κ is diagonal with entries of the conductivity values defined on the principal

directions.

By continuity of current density, the Kirchoff’s law can be written in differential form

as div(J) = ρs, where ρs[A ·cm−3] is an applied source current. Now by Ohm’s law applied
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to a electric field, we can write Kirchoff’s law in terms of the electric potential u as,

−div(κ∇u) = ρs, (2.2)

which is known as the Poisson’s equation that describe the electric potential distribution

in a resistive biological tissue with an applied source current. The boundary value

problem (2.2) requires additional conditions in order to be well posed. Dirichlet boundary

conditions can be defined on the domain’s boundary to denote an applied voltage, or

Neumann boundary conditions when a current source is applied on some portion of the

boundary.

Now it is possible to formally present the boundary value problem defined on a domain

Ω ⊂ IRd, where d ∈ {1, 2, 3} with a Lipschitz boundary ∂Ω = ΓD ∪ ΓN ,ΓD ∩ ΓN = ∅,

that describe the electric potential distribution in a conductive biological tissue or cell in

the presence of an applied current ρs:

−div(κ∇u) = ρs(x), in Ω (2.3)

u = û, on ΓD

∇u · n = ρn, on ΓN

Where û is the known scalar electric potential defined on the Dirichlet boundary

portion ΓD, and ρn is the applied current on the Neumann boundary portion of the

domain ΓN .
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2.1.1 Model for electric response of a cell

Based on the law of charge conservation, we describe the problem of electric potential

distribution on a system with a conductive circular cell in a conductive medium subject

to an applied electric filed E as depicted in Figure 2.1,

Figure 2.1: A circular cell in a conductive medium

The cell diameter is denoted as dc and the electric conductivity of the cell is κi. The

bounded domain Ωe with electrical conductivity κe is subject to an applied electric field

E as depicted in Figure 2.1. The Poisson’s equation of charge conservation (2.4) for the

proposed system is written as a function of the electric potential inside (ui) and outside

(ue) the cell:

−div(κe∇ue) = 0, in Ωe, (2.4)

−div(κi∇ui) = 0, in Ωi,

−κi∇ui · n = −κe∇ue · n = Im, on Γ,

ue = û, on ΓD,

∇ue · ne = 0, on ΓN .

In this work we limit to two dimensional problems, under the hypothesis that the

cell membrane is a zero thickness domain with a characteristic membrane resistance Rm

measured in [k · Ωcm2] and characteristic capacitance Cm per unit area measured in

[µF · cm−2].

The supplementary interface condition defined on Γ in problem (2.4) implies continuity
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of the transmembrane current,

−κi∇ui · n = −κe∇ue · n = Im, on Γ,

where Γ is the membrane of the circular cell, n is the unitary normal vector pointing

outside of Γ and Im[A · cm−2] is the transmembrane current which has two components: a

capacitive and a resistive current, both depending on the transmembrane potential defined

by,

Vm = ui − ue, on Γ. (2.5)

The transmembrane current can be written as the contribution of two currents: the

capacitive and the resistive or ionic current given by,

Im = Cm
∂Vm
∂t

+ Iion(Vm,q), on Γ. (2.6)

The capacitive current is a consequence of the electric isolation property of the cell

membrane. The cell polarization due to capacitive currents occurs at the time scale of

microseconds, whereas for the active response of the cell membrane, the resistive or ionic

current acts at time scale of milliseconds and is determined by the complex dynamics of

the Sodium, Potassium and leakage ionic currents, described by the non-linear equations

of the Hodgkin-Huxley model [42, 15] represented by the state variable q in equation

(2.6).

Under certain conditions the system of equations (2.4) describing cell polarization

of an isolated circular cell may be solved using dimensional analysis and leading order

arguments as in [7] or using Legendre functions and symbolic computational tools for

a spherical cell as in [10]. Exact solutions have shown to have a good correlation with

experimental results as reported in [9, 10, 12]. Here is presented an expression for the exact

solution for the intra and extracellular electric potential problem (2.4) in a polar system

(r, θ) as shown in Figure 2.2, this solution assume the additional hypothesis that the

passive ionic current is purely resistive Iion(Vm, q) = Vm
Rm

and that the cell transmembrane

potential at rest is Vm = 0, see [11, 7].

The exact solution is given by:
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Figure 2.2: Polar reference system used in the exact solution.

ui(r, θ, t) = −a(t) · Ercos(θ), r <
dc
2

(2.7)

ue(r, θ, t) = −Ercos(θ)− b(t) · E d
2
c

4r
cos(θ), r >

dc
2

Vm(θ, t) = Edccos(θ)(1− e−t/τip)(1− ε).

Where

a(t) =
2κe

κi + κe

{
e−t/τip + ε(1− e−t/τip)

}
b(t) = 1− 2κi

κi + κe

{
e−t/τip + ε(1− e−t/τip)

}
τip =

{ 1

CmRm

+
2κiκe

Cmdc(κi + κe)

}
ε =

τip
CmRm

The passive response of the cell take place at the characteristic time scale τip of

microseconds. In Chapter 5 the phenomenology of cell polarization described by this

solution is presented. Even though exact solutions as (2.7) exists to describe the passive

response of the cell in simple geometries, it is a limited tool to solve more general cases.

In the next chapter, the variational formulation of the conservation problem (2.4) is

presented, this approach will be the ground base to find approximated solutions of general

cases problems.

2.1.2 The Hodgkin-Huxley model

In 1952 Alan Lloyd Hodgkin and Andrew Fielding Huxley determined in a quantitative

form [42] the relation between the main ionic currents going through the cell membrane



23

and the transmembrane potential describing the propagation of action potential on the

giant squid axon. The main ionic currents described by the Hodgkin-Huxley HH model

are the sodium, potassium and leakage current INa, IK , Il respectively. The HH model

idealize the flux of electric current trough the cell membrane as a closed circuit between

the intra and extracellular domain, the transmembrane potential in the absence of an

applied current is given by the balance between the capacitive and ionic currents:

−Cm
dVm
dt

= INa + IK + Il, (2.8)

where Cm is the electric capacitance of the lipid bilayer of the cell membrane measured

in [µF · cm2]. Each ionic currents can be expressed as function of the ionic conductivity

of the sodium, potassium and others (gNa, gK , gl) as:

INa = gNa(Vm − ENa), (2.9)

IK = gK(Vm − EK), (2.10)

Il = gl(Vm − El), (2.11)

where ENa, EK and El are the potential of equilibrium for each species. The great

contribution of the HH model was the description of the ionic conductivities (gNa, gK , gl)

during the action potential in function of the transmembrane potential Vm. The ionic

conductivity of sodium and potassium are given by:

gNa = ḡNam
3h, (2.12)

dm

dt
= αm(1−m)− βmm, (2.13)

dh

dt
= αh(1− h)− βhh, (2.14)

gK = ḡKn
4, (2.15)

dn

dt
= αn(1− n)− βnn, (2.16)

where ḡNa and ḡK are the maximal conductance value measured in [S·cm−2] of the sodium

and potassium, m, h and n are dimensionless variables ∈ [0, 1] related to the activation

of the sodium and potassium ion channels; αm, αh, βm, βh, αn and βn are functions of Vm
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and represent the activation and deactivation rate of the associated ion channels:

αm =
0.1(Vm + 25)

e
Vm+25

10 − 1
, (2.17)

βm = 4e
Vm
18 , (2.18)

αh = 0.07e
Vm
20 , (2.19)

βh =
1

e
Vm+30

10 + 1
, (2.20)

αn =
0.01(Vm + 10)

e
Vm+10

10 − 1
, (2.21)

βn = 0.125e
Vm
80 . (2.22)

The electric conductivity associated to the leakage ionic current gl is simply determined

as gl = ḡl the maximal conductance value. The final expression of the HH model is then:

−Cm
dVm
dt

= ḡNam
3h(Vm − ENa) + ḡKn

4(Vm − EK) + ḡl(Vm − El)− Im, (2.23)

where Im is the transmembrane current, in this work the transmembrane current on the

active response of the cell, will be considered to be the applied current due to an electric

field that will trigger or not the action potential on the cell membrane. For a detailed

description over the experimental setting and the physiological considerations see [15, 42].

In Figure 2.3 the transmembrane potential Vm describing the action potential typical

of the giant squid axon described by the HH model is plotted, the activations variables of

the model m,n and h are also shown. The parameters to reproduce the action potential

are: ḡNa = 120[mS · cm−2], ḡK = 36[mS · cm−2], ḡl = 0.3[mS · cm−2], ENa = 115[mV],

EK = −12[mV], El = 10.6[mV], Cm = 1[µF · cm−2], Im = 5[µA · cm−2] and (m,n, h) =

(0.1, 0.33, 0.6) at t = 0. The transmembrane potential Vm is considered to be a deviation

from the equilibrium state of the cell Vm = V − Veq where the typical value of Veq for the

experimental setting of the HH model is Veq = −65[mV], see [15, 42].
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Figure 2.3: Transmembrane potential following the action potential described the
Hodgkin-Huxley model for an applied current Im = 5[µA · cm−2] and activation variables
of the ions channels.



26

3 The Mortar Finite Element

Method

In this chapter the notation used in this work is introduced and some aspects of the

functional space where the mortar finite element method is based are also presented.

The variational formulation of the second order interface problem of the cell response to

applied electric field is introduced and, the conditions for the existence and uniqueness of

the solution as proposed by Raviart-Thomas [19] are presented, finally the a priori error

estimative of the discrete problem is briefly presented.

3.1 Preliminaries

The adopted notation in this work is the following, u, v and φ denote scalar fields; u,

v, φ denote vectorial fields. We consider a bounded domain Ω ⊂ IR2, with a Lipschitz

boundary ∂Ω and bounded real valued functions f ∈ L2(Ω), where L2(Ω) denotes the

space of functions square integrable in Ω.

For a given m ≥ 0 ∈ N, we denote the Hilbert space Hm(Ω) of order m on Ω containing

functions v ∈ L2(Ω) such that the m−th derivative in the sense of distributions are defined

in L2(Ω), that is:

Hm =
{
v ∈ L2(Ω);Dαv ∈ L2(Ω), |α| ≤ m

}
, where, (3.1)

Dα(·) =
∂α(·)
∂α1
x1 ∂

α2
x2

, |α| = α1 + α2, (3.2)

and α is a vector of non-negative integer entries. The inner product defined in Hm(Ω)

and its associated norm are given by:

(v, w)m :=
∑
|α|<m

∫
Ω

DαvDαwdx, ‖v‖2
m = (v, v)m. (3.3)

The space L2(Ω) is then H0(Ω) and in this work the associated norm ‖v‖L2(Ω) will

simply be denoted by ‖v‖0.
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The particular Hilbert spaces of interest in the present work are: L2(Ω), H1(Ω), H1
0 (Ω)

and H
1
2 (Ω). If the boundary of the bounded domain Ω, denoted by ∂Ω is a Lipschitz

continuous domain, there exists a linear and continuous operator γ0 : H1(Ω) → L2(∂Ω)

called the trace operator; γ0 applied to v ∈ H1(Ω) is simply the restriction of v to ∂Ω,

denoted as v|∂Ω. The application of the trace operator γ0 to H1(Ω), γ0(H1(Ω)) belongs

to a family of normed Hilbert spaces Hs(∂Ω) with s ∈ IR, in particular:

γ0(H1(Ω)) := H
1
2 (∂Ω),

with the associated norm,

‖γ0v‖H 1
2 (∂Ω)

:= inf
v∈H1(Ω)

‖v‖H1(Ω).

The dual space of H
1
2 (∂Ω) is denoted by H−

1
2 (∂Ω), and the duality relation between

these two spaces is given by,

< ·, · >∂Ω:=

∫
∂Ω

µvds.

3.1.1 Linear variational formulation problems of one field

The linear variational problem of a single field can be represented in an abstract form as,

given f ∈ U ′ find u ∈ U such that:

a(u, v) = f(v), ∀v ∈ U , (3.4)

where U is a Hilbert space, U ′ the associated dual space and a(·, ·) : U × U → IR is a

bilinear form. For cases where the bilinear form is symmetric and positive definite, this

problem is equivalent to the following minimization problem: find u ∈ U such that

J(u) ≤ J(v), ∀v ∈ U ,

with

J(v) =
1

2
a(v, v)− f(v), ∀v ∈ U .

The analysis of the existence and uniqueness to the solution of problem (3.4) is ensured

by the Lax-Milgram theorem.
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Theorem 3.1. (The Lax-Milgram theorem). If U is a Hilbert space, f : U → IR a

continuous linear functional and a(·, ·) : U × U → IR is a bilinear form such that:

1. It is continuous: there exists a constant 0 < M <∞ such that

|a(u, v)| ≤M‖u‖U‖v‖U ∀u, v ∈ U (3.5)

2. It is U-Elliptic: there exists a constant α > 0 such that

|a(u, v)| ≥ α‖u‖‖v‖ ∀u, v ∈ U (3.6)

then the variational problem (3.4) has a unique solution.

3.1.2 Linear mixed variational formulation problems

Linear variational problems on the presence of internal constrains handled via Lagrange

multipliers [19], leads to variational problems of two fields commonly denoted as mixed

problems [32]; postulated here in abstract form as, given f ∈ U ′ and g ∈ M′, find

(u, λ) ∈ U ×M such that:

a(u, v) + b(v, λ) = f(v), ∀v ∈ U , (3.7)

b(u, µ) = g(µ), ∀µ ∈M,

where U and M are Hilbert spaces, a : U × U → IR, b : U ×M → IR are continuous

bilinear forms and f : U → IR and g : M → IR are continuous linear functionals. The

bilinear forms a(·, ·) and b(·, ·) defines the following norms:

‖a‖ = sup
u,v∈U

a(u, v)

‖u‖U‖v‖U
,

‖b‖ = sup
v∈U ,µ∈M

b(v, µ)

‖v‖U‖µ‖M
,

and also defines the following linear continuous operators A : U → U ′, B : U → M′ and

Bt :M→ U ′ given by:

< Au, v >U ′×U= a(u, v), ∀u, v ∈ U ,
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< Bv, µ >M′×M=< v,BTµ >U×U ′ , ∀u ∈ U , µ ∈M.

When the bilinear form a(·, ·) is symmetric and elliptic in the space:

K(0) =
{
v ∈ U ; b(v, µ) = 0, ∀µ ∈M

}
, (3.8)

it is possible to associated problem (3.7) with the following minimization problem, find

u ∈ K(g) such that:

J(v) =
1

2
a(v, v)− f(v), in K(g),

with

K(g) =
{
v ∈ U ; b(v, µ) = g(µ), ∀µ ∈M

}
.

Using the technique of Lagrange multiplier, the problem (3.7) can be transformed in the

following saddle point problem, find (u, λ) ∈ U ×M such that:

L(u, µ) ≤ L(u, λ) ≤ L(v, λ), ∀v ∈ U , ∀µ ∈M (3.9)

where L(v, µ) is the Langrangian functional,

L(v, λ) = J(v) + (Bv − g, λ) (3.10)

with λ the Lagrange multiplier.

The conditions for the existence and uniqueness of the problem (3.7) is presented here

through the auxiliary problem: find u ∈ K(g) such that

a(u, v) = f(v), ∀v ∈ ker(B) = K(0). (3.11)

Note that if (u, λ) ∈ U ×M solves problem (3.7), then u ∈ K(g) also solves problem

(3.11). Now, the conditions to satisfy the inverse relation, this is, given u ∈ K(g) solving

problem (3.11) there exist a pair (u, λ) ∈ U ×M solving problem (3.7) are given in the

following theorem.

Theorem 3.2. (Brezzi theorem). If U and M are Hilbert spaces, f : U → IR and

g : M → IR are continuous linear functionals and a(·, ·) : U × U → IR and b(·, ·) :

U ×M→ IR are bilinear forms which satisfied:
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1. Continuity: there exists two constants 0 < M1, M2 <∞ such that

|a(u, v)| ≤M1‖u‖U‖v‖U ∀u, v ∈ U

|b(u, λ)| ≤M2‖u‖U‖λ‖M ∀u ∈ U ∀λ ∈M

2. K-Coercivity of a: exists two constants α1 > 0 and α2 > 0 such that

sup
v∈K

|a(u, v)|
‖v‖U

≥ α1‖u‖U ∀u ∈ K

sup
u∈K

|a(u, v)|
‖u‖U

≥ α2‖v‖U ∀v ∈ K

where,

K(0) =
{
u ∈ U ; b(u, µ) = 0 ∀µ ∈M

}
3. LBB-condition: exists a constant β > 0 such that

sup
v∈U

|b(v, λ)|
‖v‖U

≥ β‖µ‖M ∀µ ∈M

Then the problem (3.7) has a unique solution.

After this short presentation of the basic theory of variational problems, the variational

formulation and finite element discretization for the model problem of the response of a

cell to an applied electric field, is introduced and briefly analysed.
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3.2 The model problem

Recalling that the conservation problem of electric current of the unicellular system in

Figure 3.1, is given by equation (3.12).

Figure 3.1: A circular cell in a conductive medium

−div(κe∇ue) = 0, in Ωe, (3.12)

−div(κi∇ui) = 0, in Ωi,

−κi∇ui · n = −κe∇ue · n = Im, on Γ,

ui − ue = Vm, on Γ,

ue = û, on ΓD,

∇ue · ne = 0, on ΓN .

Now let κi = κe to be equal electric conductivity inside and outside the cell. It is possible

to rewrite the system (3.12) including û the electric potential applied on ΓD as,

−∆ue = 0, in Ωe, (3.13)

−∆ui = 0, in Ωi,

−∇ui · n = −∇ue · n = Im, on Γ,

ui − ue = Vm, on Γ,

ue = û, on ΓD,

∇ue · ne = 0, on ΓN .

The variational formulation of problem (3.13), is written to reduce the required
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regularity of the candidate solution as: find u ∈ U such that,

∫
Ω

−∆uvdx = 0, ∀v ∈ V (3.14)

where Ω = Ωi ∪ Ωe, Γ = Ωi ∩ Ωe, u = (ui, ue), v = (vi, ve). Using Green’s identity we can

rewrite (3.14) as,

∫
Ω

∇u · ∇vdx−
∫
∂Ω\Γ
∇u · nevds = 0, ∀v ∈ V (3.15)

where the space of candidate solutions U and the associated space of variations V are:

U =
{
u ∈ L2(Ω), (ui, ue) ∈ (H1 ×H1) : ui|Γ − ue|Γ = Vm, ue|ΓD

= û
}

; (3.16)

V =
{
v ∈ L2(Ω), (vi, ve) ∈ (H1 ×H1) : vi|Γ − ve|Γ = 0, ve|ΓD

= 0
}

(3.17)

and the associated unconstrained product spaces are given by:

Ũ =
{
u ∈ L2(Ω), (ui, ue) ∈ (H1 ×H1), ue|ΓD

= û
}

; (3.18)

Ṽ =
{
v ∈ L2(Ω), (vi, ve) ∈ (H1 ×H1), ve|ΓD

= 0
}
. (3.19)

A short type expression for the constrained interface condition vi|Γ − ve|Γ = 0 and ui|Γ −

ue|Γ = Vm, is the scalar Jump [·] of (v, u) on Γ, defined as vi|Γ − ve|Γ = [v] = 0 and

[u] = Vm. Now, as proposed by Raviart-Thomas [19], an additional Hilbert space defined

on Γ is included to impose the interface condition of the primal variable, i.e [u] = Vm or

equivalently [u] − Vm = 0 on Γ in a weak form employing a Lagrange multiplier. With

this technique the constraint over v ([v] = 0 on Γ) on the space V is also relaxed and thus

the primal hybrid variational formulation is: find (u, λ) ∈ (Ũ ×M) such that,

∫
Ω

∇u · ∇vdx−
∫
∂Ω\Γ
∇u · nevds+

∫
Γ

µ([u]− Vm)ds (3.20)

+

∫
Γ

λ[v]ds = 0, ∀(v, µ) ∈ Ṽ ×M,

where λ is the Lagrange multiplier and µ is the admissible variation related toM, which

is the Hilbert space of the Lagrange multiplier. By duality argument, we note thatM =
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H−
1
2 (Γ), which is the dual space of H

1
2 (Γ) and therefore µ ∈ H− 1

2 (Γ). The variational

formulation (3.20) can be derived from a minimization problem under a relaxed manifold

and is known as a saddle point problem, see [19, 32]. By the natural Neumann boundary

condition in (3.13)(f) ∇u ·ne = 0 on ΓN , the second term of the formulation is neglected,

and then the saddle point problem is: find (u, λ) ∈ (Ũ ,M) such that

a(u, v) + b(v, λ) = 0, ∀v ∈ Ṽ (3.21)

b(u, µ) = g(µ), ∀µ ∈M

with a(u, v) =
∫

Ω
∇u · ∇vdx, b(v, µ) =

∫
Γ
µ[v]ds and g(µ) =

∫
Γ
µVmds. A different way to

write a variational formulation of the original interface problem (3.13) is now presented.

The objective is to find the relation between the interface condition of flux conservation

on (3.13)(c) and how this is satisfied by the formulation (3.21). Assuming that we chose

two functions (vi, ve) ∈ Ṽ with compact support on (Ωi,Ωe) respectively, multiplying by

the two first equations in (3.13) and using the Green’s integration identity, the following

variational problem is obtained: find (ui, ue) ∈ Ũ such that

∫
Ωe

∇ue · ∇vedx−
∫
∂Ω\Γ
∇ue · neveds+

∫
Γ

∇ue · nveds = 0, ∀v ∈ Ṽ , (3.22)∫
Ωi

∇ui · ∇vidx−
∫

Γ

∇ui · nvids = 0, ∀v ∈ Ṽ ,

where (ui, ue) must satisfy the interface conditions [u] = Vm on Γ and −∇ui · n =

−∇ue · n = Im, on Γ with n = ni = −ne the normal unitary vector pointing outward

Γ. Considering that the flux interface condition is explicitly written in (3.22) and that

the Neumann boundary condition of 3.13(f) on ΓN is included on the formulation, it is

possible to rewrite (3.22) as:

∫
Ωe

∇ue · ∇vedx−
∫

Γ

Imveds = 0, ∀v ∈ Ṽ , (3.23)∫
Ωi

∇ui · ∇vidx+

∫
Γ

Imvids = 0, ∀v ∈ Ṽ ,

As postulated (vi, ve) have compact support on (Ωi,Ωe), therefore it is possible to

define a unique function u = (ui, ue) and v = (vi, ve) such that by adding the two first
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equations on (3.23) we have the equivalent variational formulation: find u ∈ Ũ such that

∫
Ω

∇u · ∇vdx+

∫
Γ

Im[v]ds = 0, ∀v ∈ Ṽ , (3.24)

Choosing Im := λ i.e the transmembrane current to be the Lagrange multiplier defined on

Γ and by including the interface condition [u] = Vm on Γ in a weak form with the function

of admissible variations of λ ∈ M, this is µ ∈ M, equation (3.24) recovers the primal

hybrid variational formulation (3.21): find (u, λ) ∈ (Ũ ,M) such that

∫
Ω

∇u · ∇vdx+

∫
Γ

λ[v]ds = 0, ∀v ∈ Ṽ , (3.25)∫
Γ

µ[u]ds =

∫
Γ

µVmds, ∀µ ∈M,

In this process the following relation can be identified, Im ≡ λ ≡ −∇ui ·n ≡ −∇ue ·n.

3.2.1 Existence and uniqueness of the saddle point problem

The essential points to proof the existence and uniqueness of the solution to the saddle

point problem (3.25) are: continuity, coercivity and suitable inf-sup condition. The proof

for the general interface problem (3.25) is fully detailed in [23], however here for the sake

of presentation the proof will be presented as in [19, 21], where the interface condition

over Γ of the primal variable is simply: [u] = Vm = 0 and the general Dirichlet condition

ue|ΓD
= û is replaced by the homogeneous condition in all the boundary, that is ue|∂Ω = 0

with ∂Ω = ΓD ∪ ΓN .

The Hilbert space H1
0 (Ω) can be defined as a subspace of Ṽ containing the functions

satisfying the matching condition over the interface in a weak form, that is,

(v, µ)→ b(v, µ) =

∫
Γ

[v]µds = 0, ∀µ ∈M. (3.26)

Using the Hahn-Banach theorem as presented by Raviart and Thomas in [19], it can

be proved that a Hilbert space H with the same characteristics of H1
0 (Ω) can be defined

as:

H :=
{
v ∈ Ṽ , b(v, µ) = 0, ∀µ ∈M(Γ)

}
.
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Now let (u, λ) ∈ (Ṽ ×M) be the solution of the following saddle point problem

a(u, v) + b(v, λ) = 0, ∀v ∈ Ṽ (3.27)

b(u, µ) = 0, ∀µ ∈M.

Because of the characterization of the space H, it is possible to say that u ∈ H solves

problem (3.27). Now by letting v ∈ H the variational formulation (3.27) can be rewritten

as: find u ∈ H such that,

a(u, v) = 0, ∀v ∈ H. (3.28)

Note that problem (3.28) is the classic 2nd order elliptic problem with homogeneous

Dirichlet boundary condition, and as a consequence u ∈ H is the unique solution of both

problems (3.28) and (3.27), see [19].

Now remain the issue of the uniqueness of the Lagrange multiplier, to prove it consider

u ∈ H solving problem (3.28) and that the following continuous linear functional on Ṽ is

satisfied in H:

L→ −a(u, v), (3.29)

then from equation (3.27)(a) it is possible to write,

b(v, λ) = −a(u, v), ∀v ∈ Ṽ . (3.30)

As postulated −a(u, v) is satisfied in H, therefore −a(u, v) = 0. By the Lemma 1 in

Raviart and Thomas [19] page 393 there exist a unique λ ∈M satisfying equation (3.30).

With this result, the existence and uniqueness of the solution (u, λ) ∈ (Ṽ × M) of the

saddle point problem (3.27) is proved.

3.3 Finite element discretization

The discrete method to approximate the saddle point problem of the cell interface problem

is based on problem (3.27) for proper conforming spaces Ṽh ⊂ Ṽ and Mh ⊂ M. Then,
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the discrete problem is: find a pair (uh, λh) ∈ (Ṽh ×Mh) such that:

a(uh, vh) + b(vh, λh) = 0, ∀v ∈ Ṽh (3.31)

b(uh, µh) = 0, ∀µ ∈Mh.

An important difference between the discrete and continuous form of the saddle point

problem is worth to mention here. For this, we introduce the discrete space Hh,

Hh =
{
vh ∈ Ṽh; b(vh, µh) = 0, ∀µh ∈Mh

}
. (3.32)

The space Hh may be considered an approximation of H, however Hh is not in general a

conforming space of H. The discrete version of the elliptic problem (3.28) is: find uh ∈ Hh

such that

a(uh, vh) = 0, ∀vh ∈ Hh, (3.33)

Since in general Hh 6⊂ H, the problem (3.33) is a non-conforming method to

approximate problem (3.28). If (uh, λh) ∈ Ṽh × Mh is a solution of problem (3.31),

uh ∈ Hh is a solution of problem (3.33) (see [19]). Moreover the following result is

obtained:

Theorem 3.3. If ‖vh‖2
h = a(vh, vh) is a norm over Hh, then:

1. Problem (3.33) has a unique solution uh ∈ Hh;

2. Problem (3.31) has a unique solution (uh, λh) ∈ Ṽh×Mh if and only if the following

compatibility condition holds

{
µh ∈Mh; ∀vh ∈ Ṽh, b(vh, µh) = 0

}
=
{

0
}

(3.34)

The proof for the existence and uniqueness of the discrete problem can be found in

[19].
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3.3.1 The mortar finite element discretization

Here the notation used in the discrete HFEM or mortar finite element method with

Lagrange multiplier is introduced. Consider a general non-overlapping domain partition of

Ω ∈ IR2 into polyhedral subdomains Ωk, 1 ≤ k ≤ K, Ω =
K⋃
k=1

Ωk with Ωl∩Ωk = ∅, k 6= l,

as shown in Figures 3.2 and 3.3

Figure 3.2: A general non overlapping domain decomposition

Figure 3.3: A domain decomposition that does not generate vertex

The set of vertices and edges of the subdomain Ωk are denoted by Phk and Ehk
respectively. Each subdomain Ωk will be associated with a family of shape regular

simplicial triangulations Thk . The interface between two subdomains is denoted by

Γlk = Γkl := ∂Ωl ∩ ∂Ωk and nlk will stand for the unit normal from Ωl toward Ωk. The

union of all interfaces is called the skeleton of the domain S :=
K⋃

k,l=1

Γlk. In each subdomain

Ωk a conforming Pn finite element associated with the regular simplicial triangulation Thk
is defined. In general the domain discretization will not require that the triangulations

Thi and Thj coincide on the interface Γij. In the following, Sn(Ωk; Thk) will denote the
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standard conforming Pn Lagrange polynomial space of degree n ∈ N associated to the

triangulation Thk defined in Ωk,

Sn(Ωk; Thk) :=
{
u ∈ C(Ωk) : u|Γ ∈ Pn(T ), T ∈ Thk , u|ΓD

= û
}
,

then the discrete global product space is defined as,

Ṽn;h(Ω) :=
K∏
k=1

Sn(Ωk; Thk).

In general, the mortar finite element solution does not satisfy a pointwise continuity across

the interface, instead some continuity condition has to be imposed either in terms of the

Lagrange multiplier defined on the skeleton S or in terms of constraints on the space. In

this work, the unconstrained mortar method with Lagrange multiplier was used which

gives rise to a discrete saddle point problem. In the case of 2D problems, each interface

Γij = Γji, inherits two 1D triangulations, one from Thi and one from Thj , without any

restriction of generality, only one of the triangulations is used for the definition of the

space of Lagrange multipliers, see Figure 3.4. The side where the Lagrange multiplier is

defined is called the non-mortar side whereas the opposite side is called the mortar side.

With this choice, the skeleton S of the domain can be uniquely decomposed into the union

of the edges of the non-mortar sides of the decomposed domain.

The product spaceMn;h(S) of the Lagrange multiplier defined of the domain’s skeleton

S is now defined as:

Mn;h :=
K∏
i=1

∏
j∈M(i)

Mn(Γij; Thi),

where

Mn(Γij; Thi) :=
{
v ∈ C(Γij) : v|e ∈ Pn(e), e ∈ Ehi ∩ Γij,

v|e ∈ Pn−1(e) if e contain an endpoint of Γij
}
.

From the definition of the Lagrange multiplier space note that the functions used

to interpolate the discrete Lagrange multiplier λh are the same functions of v|e. For

the Lagrangian polynomial space Pn on triangular and quadrilateral elements, the

interpolation function for the Lagrange multiplier match the classical hat functions with
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compact support, see Figure 3.5. Since on the conservation problem treated in this work

the domain partition into non-overlapping sets does not generate vertices, no modification

of the interpolation space associated to the Lagrange multiplier is needed.

Figure 3.4: Triangulation in two non-overlapping domains and Lagrange multiplier
triangulation defined on the non mortar side interface

Figure 3.5: Triangulation of the Lagrange multiplier on the interface, and hat functions
for interpolation of the approximated Lagrange multiplier.

The discrete mortar finite element problem is: find (uh, λh) ∈ Ṽn;h ×Mn;h such that

(uh, λh) is the solution to the saddle point problem (3.31).

3.3.2 Error estimate

Here the error estimate in pertinent norm for the discrete problem is briefly presented.

All the results presented here have been developed in [19, 21] and are based on the general

Brezzi’s theorem [43] for the existence and uniqueness of saddle point problems.

The error estimative for the non-conforming discrete variational problem, find uh ∈ Hh
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such that:

a(uh, vh) =

∫
Ω

fvh, ∀vh ∈ Hh, (3.35)

is presented in [21]. Assuming that the exact solution u ∈ H1
0 (Ω) such that for any

sub-domain k (1 ≤ k ≤ K), uk = u|Ωk
∈ Hnk+1(Ωk) the error estimative for the global

problem in the L2(Ω) norm is:

‖u− uh‖L2(Ω) ≤ C

K∑
k=1

hnk+1
k ‖uk‖Hpk+1(Ωk) (3.36)

where nk is the order of approximation of the partitioned sub-domain k and hk = max
κ∈Thk

hκ

with hκ the measure of the edge of a triangle element. The numerical validation of the

estimate (3.36) is present in section 5.1.

3.4 Time discretization for the transmembrane

current

The general interface problem of the cell (3.21) is time dependent because of the response

of the cell to an applied field. As mentioned in Section 2.1.1, the transmembrane current

can be decomposed in two contributions, a capacitive and a ionic current:

Im = Cm
∂Vm
∂t

+ Iion(Vm,q), defined on Γ. (3.37)

The capacitive current is a consequence of the electric isolating property of the cell

membrane, and for active cells as cardiac myocytes and neurons [15], the ionic current, is

driven by the complex interactions between the main ionic currents of sodium, potassium

and leakage currents described by the Hodking-Huxley model [42]. In order to include

the transmembrane current dynamics described by (3.37) into the problem of current

flux conservation (3.21), the transmembrane potential Vm is written as an initial value

problem,

Cm
∂Vm
∂t

= Im − Iion(Vm,q), defined on Γ, (3.38)
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where q is a set of state variables describing the dynamics of the ionic currents. Note

that Vm = ui − ue = [u] on Γ. An explicit time discretization is used to solve the initial

value problem (3.38) and the following method to solve the boundary value problem (3.21)

coupled with the initial value problem (3.38) is used, see [11].

The first step of the method is as follows: at t = 0 solve the boundary value problem

(3.39) with an initial value of V t
m (the superscript t denotes the time dependency) to

obtain (uh, λh), ∫
Ω

∇uh · ∇vhdx+

∫
Γ

λh[vh]ds = 0, ∀v ∈ Ṽh (3.39)∫
Γ

µh[uh]ds =

∫
Γ

µhV
t
mds, ∀µ ∈Mh

with λh = Im, solve the initial value problem (3.38) with an explicit second order Runge-

Kutta method to obtain a new value of the transmembrane potential V t
m at an incremented

time t+δt, the iterative process continue repeating the first step with the new value of the

transmembrane potential V t+δt
m , finishing once the computation time reached the aimed

simulation time.
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4 Computational aspects of the

Saddle Point Problem

The variational formulation of the homogeneous interface problem was presented in the

previous chapter, and the finite element space for the domain discretization was also

introduced. In this chapter the computational details of the proposed discrete finite

element method and the issues related to the solution of the associated saddle point

problem of the electric response of the cell are discussed. More details can be found in

[24, 22, 23].

4.1 Structure of the indefinte linear system

As mentioned in Section 3.3, the interface problem has a saddle point structure.

Remember that the variational problem is: find a pair (uh, λh) ∈ Ṽh ×Mh such that:

∫
Ω

∇uh · ∇vhdx+

∫
Γ

λh[vh]ds = 0, ∀v ∈ Ṽh (4.1)∫
Γ

µh[uh]ds =

∫
Γ

µhV
t
mds, ∀µ ∈Mh

Since Lagrange polynomial spaces Pn are used to interpolate the solution uh defined

on the triangulation Thk of each subdomain Ωk, the discrete problem (4.1) reduces to solve

the following indefinite linear system

 A B

BT 0

 u

λ

 =

 f

g

 , (4.2)

where the block matrix A is assembled from the contribution of
∫

Ω
∇uh · ∇vhdx, B from

the contribution of
∫

Γ
λh[vh]ds, B

T is simply the transpose matrix of B, f = 0 and g is

the load vector associated to the equation of the Lagrange multiplier assembled from the

contribution of the term
∫

Γ
µhV

t
mds. In this work, the Lagrange multiplier defined on the

interface triangulation is interpolated by classical hat functions. In this case the block
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matrix B of equation 4.2 is sparse and is assembled by local contributions of mass matrices

for one dimensional linear elements. For linear approximations these mass matrices have

the typical structure:

M = det(J)

 1/3 1/6

1/6 1/3

 , (4.3)

where J is the Jacobian matrix of the isoparametric mapping. This method may

be extended to higher order approximations, in those cases the interface triangulation

continue to inherit the interpolation of Pn(e), and the local matrices contributions are

square with dimension n+ 1 where n is the degree of the polynomial approximation. The

indefinite linear system for the interface problem with two subdomains has the following

structure:


A1,h 0 B1,h

0 A2,h B2,h

BT
1,h BT

2,h 0



ui

ue

λ

 =


0

0

V t
m

 , (4.4)

whereA1,h andA2,h are the stiffness matrices associated to the first and second subdomains

respectively; B1,h is the contribution to the Lagrange multiplier uniquely defined on the

interface from the first domain and B2,h the equivalent contribution from the second

domain. Note that BT
1,h and BT

2,h has non null entries only where the domain triangulation

coincide with the interface, therefore the matrices BT
1,h, B

T
2,h are highly sparse.

Figure 4.1: Sparsity pattern of the linear system associated to a discretization with
triangular linear elements (161 nodes). Square matrix (177 × 177) with 929 non-zero
entries and a maximum number of entries per row of 7.
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In Figure 4.1 the sparsity pattern of the linear system associated to the finite element

discretization, of two non-overlapping subdomains with triangular linear elements is

shown.

4.2 Numerical methods to solve saddle point

problems

A good deal of work has been devoted to study the properties of the linear system with

the structure of equation (4.2) and the techniques to solve them [24]. Here, somme of the

basic methods are briefly described.

4.2.1 Schur Complement

One technique used to solve the linear system (4.2), is derived from the realization that

the matrix K,

K =

 A B

BT 0

 ,
admits the following block triangular factorization

K =

 I 0

BTA−1 I

 A 0

0 S

 I A−1B

0 I

 (4.5)

where S = −BTA−1B is the Schur complement of A in K. Matrix K is not singular if and

only if both matrices A and S are not singular, on the other hand the Schur complement

matrix S is invertible if and only if the matrix B has full column rank, in that case S

is symmetric negative definite. Under these conditions the problem (4.2) has a unique

solution.

In practical terms, an immediate technique that can be used to compute u and λ from

(4.2) given the block decomposition (4.5), is by the realization that given λ, u can be

written as

u = A−1(f −Bλ), (4.6)
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then upon the substitution of equation (4.6) in

BTu = g, (4.7)

the following linear system is obtained

BTA−1Bλ = BTA−1f − g, (4.8)

formed by the Schur complement matrix −S of A. Note that with this method we

compute the solution λ and recover u by post-processing in (4.6). The main disadvantage

of this method is the need of explicitly computing A−1 and the fact that even though S

is symmetric definite, if the Dirichlet boundary conditions is imposed by penalization on

A the associated Schur complement S is very ill conditioned. This situation gets even

worse when the matrix B carries redundant information as may be the case when λ is

interpolated by broken discontinuous functions on the interface. One possible form [24]

to improve the global condition number of S is by realizing that the system (4.2) has a

equivalent representation, A+BWBT B

BT 0

 u

λ

 =

 f +BWg

g

 , (4.9)

where g is the contribution of the jump in the general interface problem. The matrix

W is a symmetric positive definite to be suitably defined. The simplest choice is to take

W = ωI, ω > 0. The objective is to obtain a better behaved Schur complement matrix

S associated to the block A + BWBT . In [24] it is recommended to chose ω = ‖A‖
‖B‖2 ,

however in this work this option was tested for the cell interface problem but this value is

way to high to properly conditioning the Schur complement matrix S. A rather problem

size dependent constant ω that is four orders of magnitude lower than the proposed one

was shown to be more effective to get a better conditioned system. This technique was

needed to properly solve the interface cell problem with discontinuous interpolation of the

Lagrange multiplier on the interface.
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4.2.2 Penalty method

A solution method based on the Schur decomposition requires the inversion of the matrix

A and, the solution of a possible ill conditioned symmetric system. A direct solver for

the global system (4.5) such as Gauss elimination, requires pivoting techniques that

destroys the symmetry of the system. An alternative problem can be derived to find

an approximate solution of the original system. This is used in the following method, the

general linear system associated to the cell interface problem is equivalent to finding the

solution to the constrained minimization problem,

minJ (u) =
1

2
uTAu− fTu, (4.10)

Subject to Bu = g.

The following method is based on the observation that a solution x∗ to (4.10) satisfies,

u∗ = lim
γ→∞

u(γ)

where u(γ) is the unique solution of the unconstrained minimization problem:

minĴ (u) = J (u) +
γ

2
‖Bu− Vmt‖2. (4.11)

If we define λ(γ) = γ(Bu(γ) − Vmt), the associated linear system of the unconstrained

minimization problem (4.11) can be written as:

 A B

BT −εI

 u(γ)

λ(γ)

 =

 f

Vmt

 , ε = γ−1 (4.12)

It is possible to show that ‖u(γ)−u∗‖ = O(γ−1) and the same for ‖λ(γ)−λ∗‖ = O(γ−1)

with γ → ∞. See [24] and references therein. Now a direct solver based on a LU

decomposition method may be used to solve (4.12).
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4.2.3 Krylov space method

Methods to solve linear systems based on the computation of a sequence of candidate

solutions are widely use. A family of methods based on this idea use constrained vectorial

Krylov subspace to compute sequence of candidate solutions. For symmetric positive

defined matrix the conjugate gradient method CG is the most used method in this context.

A remarkable characteristic of the CG is its convergence rate, which in exact arithmetic

warrant convergence of the solution in a maximum of n iterations where n is the dimension

of the linear system.

In this work the linear system to be solved 4.2 is symmetric and positive indefinite, and

in this case the CG can not be used, instead the Minimal Residual Method (MINRES)

proposed and analysed by Paige [44], was used to approximate the solution to the saddle

point problem 4.2. The MINRES method is based on the computation of candidate

solutions sequences constrained with the orthogonality of the residual. In both methods

the orthogonality is defined using the Euclidean inner product.

The development of this work was made over an existing FEM library (Cardiax)

developed at the FISIOCOMP Laboratory [45]. Cardiax is constructed over PETSc [46]

a specialized library for high performance scientific computation. The MINRES method

available in PETSc together with a Jacobi preconditioner, was used to solve the saddle

point linear system of the cell interface problem.

https://www.mcs.anl.gov/petsc/
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5 Results

In this chapter the numerical results of the interface cell problem are presented. First

to validate the proposed numerical method, the h−convergence of the discrete MFEM is

tested for a problem with known exact solution using a regular discretization of triangular

elements; then the numerical and exact solution of cell polarization are compared for an

isolated circular cell. The active response of the complex ionic current dynamics described

by Hodgkin Huxley model is also solved. Finally the polarization process in a cell cluster

is numerically investigated. Solutions with non matching grids are also presented.

5.1 h-convergence of the method

In Section 3.3.2 the theoretical h−convergence rate of the mortar finite element was

showed to be optimal in the L2(Ω) natural norm. To numerically evaluate this we propose

to solve the following second order elliptic problem on Ω = Ω1

⋃
Ω2, with Ω2 = [−0.5, 0.5]2

and Ω1 = [−1.0, 1.0]2 \ Ω2 as shown in Figure 5.1 left,

−κ1∆u1 = f1, ∈ Ω1 (5.1)

−κ2∆u2 = f2, ∈ Ω2

u1 = 0, on ∂Ω1

∇u1 · n = −∇u2 · n, on Γ

u1 − u2 = sin(πx)sin(πy), on Γ

where f1 = f2 = 4π2sin(πx)sin(πy), κ1 = 1, κ2 = 2 and the exact solution shown in

Figure 5.1 right and given by:

u1 = 2sin(πx)sin(πy), ∈ Ω1 (5.2)

u2 = sin(πx)sin(πy), ∈ Ω2.
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Following the procedure exposed in Section 3.3, the discrete version of the variational

formulation of problem 5.1 can be loosely written,

κ

∫
Ω

∇uh · ∇vhdx+

∫
Γ

λh[vh]ds =

∫
Ω

fvhdx, ∀vh ∈ Xh (5.3)

−
∫

Γ

µh[uh]ds =

∫
Γ

µhsin(πx)sin(πy)ds, ∀µh ∈Mh

u1 = 0, on ΓD

with κ = (κ1, κ2), Ω = Ω1

⋃
Ω2 and f = (f1, f2).

Figure 5.1: Computational domain and numerical solution of the second order interface
problem.

Figure 5.2: Domain discretization by triangular linear finite elements, matching
discretization left and non-matching discretization at right.

The h−convergence of the MFEM, in L2 norm is tested for a domain discretization

with triangular linear finite elements with matching and non-matching discretizations as

shown in figure 5.2 left and right respectively. In Table 5.1 and 5.2, are listed the the

error in L2 norm for the primal variable and the Lagrange multiplier for both cases.
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‖u− uh‖L2(Ω) ‖λ− λh‖L2(Ω)

mesh error order error order
16 1.12e-1 – 6.13e-1 –
32 3.48e-2 1.68 3.99e-1 0.62
64 9.24e-3 1.79 1.70e-1 0.93
128 2.36e-3 1.86 7.80e-2 1.02
256 5.96e-4 1.90 2.59e-2 1.15

Table 5.1: h−convergence order for the approximation of uh and λh obtained by the
MFEM for matching triangular elements.

‖u− uh‖L2(Ω) ‖λ− λh‖L2(Ω)

mesh error order error order
24 6.79e-2 – 4.87e-1 –
48 2.23e-2 1.61 3.66e-1 0.89
96 6.20e-3 1.73 2.12e-1 1.05
192 1.61e-3 1.80 1.11e-1 1.09

Table 5.2: h−convergence order for the approximation of uh and λh obtained by the
MFEM for non-matching triangular elements.

In Figure 5.3 the h−convergence curves of the MFEM for matching (left) and non-

matching (right) discretizations is depicted. As noted from the h−convergence test, the

Figure 5.3: h-convergence study for the primal variable and the Lagrange multiplier for
a triangular discretization with matching elements.

mortar finite element method with Lagrange multiplier to impose the interface condition,

converges with optimal n + 1 rate for the primal variable uh presented in equation (4.1)
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and with optimal rate n for the Lagrange multiplier λh. In the next section the cell

polarization and the active response of the cell membrane is investigated with the MFEM

with Lagrange multiplier.

5.2 Exact and numerical solution of the cell interface

problem

As presented in Section 2.1.1, the response of an isolated circular cell to an applied

electrical field is a two stage process. For a passive cell with idealized ionic current

Iion = Vm
Rm

the representative time scale of the cell polarization process is in microseconds,

and the exact solution to describe electric potential distribution inside and outside the

cell is given by equation (2.7). This solution considerer that the cell membrane acts as an

electric insulator which makes the transmembranic current Im to have two characteristics

currents: a capacitive and the ionic current.

(a) Reference system
used for the exact
solution.

(b) Electric potential inside and outside the cell for different times.

Figure 5.4: At left the circular cell and the reference system used in the exact solution,
at top right the electric potential inside and outside the cell as function of the radius r
for a fixed angle θ = 0; on the bottom right the transmembranic potential Vm = ui − ue
defined on the cell interface as a function of the angular position θ ∈ [0, 360].

When the electric field E is activated at t = 0 the transmembranic potential Vm =
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ui−ue, on Γ is zero, and the transmembranic current Im = λ reaches its highest value. As

mentioned in Section 3.4 the initial value problem for the transmembranic potential (3.38)

is directly proportional to the transmembranic current Im. For a passive cell with idealized

ionic current Iion = Vm
Rm

the polarization process takes place at time scale of microseconds

and finishes once the cell is totally polarized and equivalently the transmembranic current

is zero. Figure 5.4 shows right the exact solution of the electric potential distribution at

different time instants.

The exact solution presented in Figure 5.4 is for a circular cell of diameter dc = 15[µm]

the intra and extracellular conductance are κi = 5[mS · cm−1] and κe = 20[mS · cm−1]; the

membrane capacitance is Cm = 1[µF ·cm−2], the membrane resistance is Rm = 1KΩ ·cm2,

the applied electric field is E = 5V · cm−1 and the transmembranic current is measured in

Im[µA·cm−2] to preserve dimensional consistency. As noted from Figure 5.4 right, at t = 0

the transmembranic potential is zero and the electric potential distribution is uniform due

to the capacitive characteristic of the membrane, the transmembranic potential increase

proportionally to the transmembranic current, this causes the cell to create polar sides

facing the cathode and anode of the electrodes applying the electric field. As the time

passes the transmembranic current is consumed in form of potential difference between

the intra and extracellular medium. The cell polarization finish once the transmembranic

current is zero see Figure 5.5 and the transmembranic potential reach his highest and

lowest value of around 0.008 and −0.008 [V] respectively.

Figure 5.5: Transmembrane current in time.

Cell polarization process is numerically solved with the mortar finite element method

proposed in section 3.3, the extracellular computational domain Ωe is considered big

enough, such that the extracellular electric potential tends to the applied electric field
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times the distance where the electrode is placed û = −E · x on the Dirichlet boundary

condition ΓD, see Figure 5.6. The distance between electrodes is 0.01[cm] and on the

Neumann boundary side ΓN a zero flux condition is imposed. A discretization was made

with triangular elements generated using Gmsh [47] in two domains as shown in Figure

5.7.

Figure 5.6: A circular cell in a conductive medium

X

Y

Z

(a) Matching discretization

X

Y

Z

(b) Non-matching discretization

Figure 5.7: Cell domain discretization with triangular elements.

In Figure 5.5 the numerical transmembranic current Im = λ is plotted as a function of

the angle position of the cell considered as a circle. Note that conforming Im goes to zero

the transmembranic potential reaches the steady state condition and the cell polarization

finishes. In Figure 5.9 the exact and numerical solution of the time evolution of the intra

and extracellular electric potential and the transmembrane potential is evaluated as a

function of the angle position θ, see the reference system in Figure 5.8. Note that as time

advances the transmembranic potential Vm change as the exact solution does. After 1µs

the cell is fully polarized, the transmmebranic current is zero and the transmembranic

potential reaches its highest and lowest value.
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Figure 5.8: Reference system of the circular cell to plot the numerical and exact solution.

Figure 5.9: Electric potential in function of the angle evaluated at the membrane for the
passive response of the cell with matching grids. Exact solution is plotted as continuous
functions, and the numerical results are plotted as the dotted lines.

The iso-potential contour around and inside the circular cell in steady state of the
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polarization process is presented in Figure 5.10.

Figure 5.10: Left: steady state iso-potential contour around the cell. Right: the domain
discretization by triangular elements used to solve the polarization process in the isolated
cell. The distance between electrodes is 0.01[cm], the applied electric field is E = 5[V ·
cm−1] and cell diameter is dc = 15[µm], the intra and extracellular conductivities are
κi = 5[mS · cm−1] and κe = 20[mS · cm−1] respectively.

Figure 5.11: Left the iso-potential contour in a cluster of cells after 1.0[µs] of simulation.
Right: the matching domain discretization used to solve the polarization process in the
cell cluster. The distance between electrodes is 0.02[cm], the applied electric field is E =
5[V · cm−1] and cells diameter are dc = 15[µm], the intra and extracellular conductivities
are the same as for isolated cell case.

Understanding the distribution of electric potential in a conductive medium in the

presence of biological cells is important to understand the influence of applied electrical

field in neurons activity [6, 14], and on the study of drugs supply into the cell’s cytosol

trough electroporation [2]. With the presented numerical method the distribution of

electric potential of a polarized cluster of cell can be numerically investigated see figure

5.11 and note the consistency with solutions presented in [11, 14].
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5.3 Complex dynamics of the ion current and action

potential

So far it was supposed that the initial conditions of the cell was a deviation of the

rest potential or, equivalently, that the electric isolation property of the cell membrane

was activated just after the electric potential E was applied. In normal conditions, the

transmembranic potential at rest of a biological cell is around −65[mV], consequence

of the different ion concentrations between the intra and extra cellular media, which is

fundamental to warrant integrity of the cells structure; for detailed descriptions of the rest

potential in biological cells see [15]. Due to this fact, in normal conditions the electric

potential inside and outside the cell at rest (t = 0) has a distribution similar to the one

depicted in Figure 5.12.

Figure 5.12: Circular biological cell with a transmembranic potential Vm = −65[mV] at
rest (t = 0).

After t > 0 an external electric field E = 10[V·cm−1] is applied and the active response,

proper of neurons or cardiac myocytes take place in the time scale of milliseconds. Figure

5.13 shows the time evolution of the iso-potential contour of the active response of the

cell in different time instants.
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(a) 0.1 [ms] (b) 1.5 [ms] (c) 1.8 [ms]

(d) 2.0 [ms] (e) 2.1 [ms] (f) 2.2 [ms]

(g) 2.3 [ms] (h) 2.35 [ms] (i) 2.4 [ms]

(j) 2.45 [ms] (k) 2.5 [ms] (l) 2.6 [ms]

(m) 2.7 [ms] (n) 2.8 [ms] (o) 3.0 [ms]

(p) 3.1 [ms] (q) 3.4 [ms] (r) 3.6 [ms]

Figure 5.13: Distribution of the electric potential of the active response of a circular cell.
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In Figure 5.14 the transmembranic potential Vm, the intra ui and extracellular ue

potentials defined on the cell membrane (fixed r = dc
2

for different angular positions θ) is

plotted in function of time.

Figure 5.14: Active response of the cell to an applied electrical field of E = 10[V · cm−1].
Each curve correspond with the time curse of electric potential in a fixed angular position
(θ) at fixed radius r = dc

2
.
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As noted in Figure 5.14 the active response of an isolated cell follows the typical curve

of action potential [42, 15]. The parameters for the solution of the complex dynamics of

ion currents were taken from [15] and correspond to the Hodgkin-Huxley model for the

description of ionic current in squid giant axon. The numerical tool implemented in this

work also described the behaviour of the active response when the stimulus is not high

enough, for instance when an electric field E = 6[V · cm−1] is applied at t > 0 no action

potential is triggered, which means that the transmembranic current due to the applied

electrical field is not high enough to unchain the generation of an action potential on the

cell, Figure 5.15 illustrate this situation.

Figure 5.15: Response of the cell to an applied electrical field of E = 6[V · cm−1]. Each
curve correspond with the time curse of electric potential in a fixed angular position on
the cell interface.
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We can also study the action potential unchained in a cluster of cells, see [14] for

instance. In Figure 5.16 the time evolution of the iso-potential contour of the active

response of a cluster of cells is presented for different time instants.

(a) 0.1 [ms] (b) 1.5 [ms] (c) 1.8 [ms]

(d) 2.0 [ms] (e) 2.1 [ms] (f) 2.2 [ms]

(g) 2.3 [ms] (h) 2.35 [ms] (i) 2.4 [ms]

(j) 2.45 [ms] (k) 2.5 [ms] (l) 2.6 [ms]

(m) 2.7 [ms] (n) 2.8 [ms] (o) 3.0 [ms]

(p) 3.1 [ms] (q) 3.4 [ms] (r) 3.6 [ms]

Figure 5.16: Distribution of the electric potential of the active response of cell cluster. At
top left the used non-conforming domains discretization is showed. The distance between
the cells at right and left is 24 [µm].
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In Figure 5.17 the transmembranic potential Vm, the intra ui and extracellular ue

potentials defined on the cell membrane of each cell, is plotted as a function of time.

Figure 5.17: Active response of a cell cluster to an applied electrical field of E = 20[V ·
cm−1]. Each curve correspond with the time course of electric potential in a fixed angular
position on every cell interface.
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6 Conclusions

In this work a Mortar Finite Element Method MFEM was effectively developed and used

to numerically investigate the active and passive response of an isolated cell and cluster

of cells to an applied electric field. The approximation properties of the MFEM were

conforming with the results of the specialized literature, that is, optimal h-convergence

order for the primal variable and the Lagrange multiplier for both the matching and

non-matching domain discretization.

A hybrid variational formulation was effectively used to decoupled the boundary

value problem describing the electric current conservation from the initial value problem

describing the passive and the complex active response of the biological cell to applied

field. The hybrid variational formulation effectively solved the cell interface problem,

allowing to have discontinuous solutions in the computational domain without the need

of having refined domain discretization to interpolate the solution. Therefore we conclude

that the MFEM based on hybrid variational formulation is an elegant method to solve

interface problems with complex dynamics.

The complex active response described by the Hodgkin-Huxley HH model of a cell

and a cluster of cells to an applied electrical field was effectively solved via MFEM. It was

found that the numerical tool reproduces the experimental behaviour in both cases, when

the transmembranic current is high enough to generate action potential and also when it

is not; due to the spatial resolution of the numerical tool a more detailed description of

the action potential described by the HH model was obtained.

The most important product of this work is the extension of the Cardiax FEM library

to solve second order heterogeneous interface problems with discontinuous solutions on

the domain with conforming and non-conforming discretized domains via triangular finite

elements.

During the development of this work, it was encountered that the Krylov subspace

method MINRES together with a Jacobi preconditioner was the most robust method to

solve the indefinite linear system associated to the discrete version of the saddle point

problem encountered in the MFEM.
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6.1 Future works

During the development of this work, alternative variational formulations were sketched

on the paper but not implemented. In this sense, one possibility is to include GLS

stabilization terms to the hybrid variational formulation, which generate a symmetric

positive defined linear system suitable to solve with the conjugate gradient method

or matrix decomposition methods as LU. Another interesting variational formulation

appropriate for the cell interface problem, is a hybrid version of a mixed formulation.

In theory this approach will allow to have optimal n + 1 h-convergence for both the

primal variable and the Lagrange multiplier, highly beneficial for the cell interface problem

because of the improvement in the approximation order for the Lagrange multiplier used

in the solution of the initial value problem. It is also proposed as future work the

implementation of higher order mortar finite elements.
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[35] NITSCHE, J., “Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei
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