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RESUMO

O calorímetro de Telhas (TileCal) é o calorímetro hadrônico central de um dos experimentos
do Grande Colisor de Hádrons (LHC), o ATLAS. O TileCal fornece medidas de energia
finamente segmentadas (10.000 canais de leitura) para as partículas incidentes no detector.
Análises realizadas nos dados resultantes de colisões de partículas constataram que utilizar
as informações da camada radial externa do TileCal, em coincidência com as câmaras
de múons (MS) do ATLAS, pode proporcionar uma redução de falsos sinais de trigger
(filtragem online) de múons gerados pelas iteração de prótons de baixo momento, na
blindagem do feixe do LHC, com o MS. O projeto TileMuon foi desenvolvido para este
propósito e sua principal atividade, no programa de atualização ATLAS, é habilitar
o TileCal para fornecer as informações de trigger para a primeira etapa de filtragem
online para a identificação de múons no ATLAS. Esta dissertação apresenta o estudo,
o desenvolvimento e a implementação de uma técnica para a identificação de múons no
contexto TileMuon. Técnicas de estimação encontradas na literatura foram aplicadas no
contexto do projeto e comparadas. Os resultados para dados experimentais mostraram
que o método para a identificação de múons, baseado no filtro casado para ruído gaussiano,
obteve o melhor desempenho, em termos de erro de detecção, bem como viabilidade de
implementação online, e foi a técnica escolhida para a aplicação.

Palavras-chave: Identificação de Múons. Filtro casado. Processamento digital de sinal.
Física de partículas.



ABSTRACT

The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS exper-
iment at the Large Hadron Collider (LHC). TileCal provides highly-segmented energy
measurements for incident particles. Information from TileCal’s outermost radial layer in
coincidence with the ATLAS muon chambers can provide a reduction of the fake muon
triggers due to slow charged particles (typically protons). The TileMuon project was
development aims this purpose and its main activity of the Tile-Muon Trigger in the
ATLAS upgrade program is to install and to activate the TileCal signal processor module
for providing trigger inputs to the Level-1 Muon Trigger. This dissertation presents the
study, the development and the implementation of the Muon identification technique in the
TileMuon context. Amplitude estimation techniques found in the literature were applied
to the problem and confronted against each other. The results for experimental data
shown that the Muon identification based on the maximum likelihood for Gaussian noise
achieved the best performance in terms of detection error as well as online implementation
feasibility, and it has been the chosen technique for the application.

Key-words: Muon identification, Matched Filter, Digital Signal Processing, High Energy
Physics.
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1 Introduction

Over the past three decades, electronic instrumentation and signal processing
techniques have been widespread in the technological field. They are used in home
automation applications, on-board electronics, smart networks in power systems, biomedical
instrumentation, not to mention the research advances in chemistry, material science,
biology, and clinical medicine.

Modern instruments and instrumentation systems are primarily based on digital
techniques. Digital instruments are designed using microcontrollers, microprocessors and
dedicated integrated circuits (ICs), which provide them networking, data communications
and flexibility in information handling.

Although advanced instrumentation systems became the main cutting edge tech-
nology, they also provide many challenges for data processing, such as the amount of data
to be processed in a small time.

Advanced instruments and instrumentation methods are widely applied in experi-
mental particle physics. One of the main instruments used in these experiments is the
calorimetry system. It is designed to absorb and measure the energy of incident particles.
The information provided by the calorimetry systems is used in offline analysis to extract
and understand signal and background, and ultimately to improve the understanding of
physics models.

In these experiments, the online data processing and trigger/data acquisition
(DAQ) have to be optimized for a number of physics channels, large compression factors and
to operate with high efficiency, which introduces additional difficulties in its online/offline
instrumentation.

A calorimeter consists of a block of matter sufficiently thick to absorb all the
energy of incoming particles. Although a portion of the initial energy is dissipated as heat,
some fraction of the deposited energy is detectable in the form of signal (e.g. scintillation
light, Cherenkov light, or ionization charge), which is proportional to the initial energy.
The calorimeter is segmented into a number of cells to acquire information of the energy
deposition profiles. Currently used calorimeters can have thousands of cells. Each type of
particle has a specific deposition profile in the calorimeter and this is taken into account
in the detector design.

The incident particle properties can be measured through the energy deposited by
the charged particles’ shower in all active cells of the calorimeter. The energy deposited in
each cell is measured through its dedicated readout electronics, usually composed by a
transducer which converts light into electrical signal, an amplifier, a signal shaping circuit
and an analog to digital converter.
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Typically, the calorimeter signal pulse is the output of an analog signal shaping
circuit. It provides a stable pulse shape whose amplitudes proportional to the energy
deposited by the particles. The signal and its energy can be measured through a pulse
amplitude estimation technique.

1.1 Motivation and Goals

This work was developed within the ATLAS experiment at the LHC, a general-
purpose experiment with a forward-backward symmetric cylindrical geometry and near
4π coverage in solid angle1. It consists of an inner tracking detector surrounded by a
thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and
hadronic calorimeters, and a muon spectrometer. The inner tracking detector (ID) covers
the pseudorapidity range |η| < 2.5. It consists of silicon pixel, silicon microstrip, and
transition-radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters
provide electromagnetic (EM) energy measurements with high granularity. A hadronic
(steel/scintillator-tile) calorimeter (TileCal) covers the central pseudorapidity range (|η| <
1.7). The endcap and forward regions are instrumented with LAr calorimeters for EM and
hadronic energy measurements up to |η| = 4.9. The total thickness of the EM calorimeter
is more than twenty radiation lengths. The muon spectrometer (MS) surrounds the
calorimeters and is based on three large superconducting air-core toroids with eight
coils each. The field integral of the toroids ranges between 2.0 and 6.0 T.m for most
of the detector. It includes a system of precision tracking chambers and fast detectors
for triggering. A dedicated online filter (trigger) system is used to select events and
it is implemented in two sequential levels of signal provisions. The first-level trigger is
implemented in hardware and uses the calorimeter (coarse granularity) and muon detectors
to reduce the accepted event rate from 40 MHz to below 100 kHz. This is followed by a
software-based trigger that reduces the accepted event rate to 1 kHz, on average.

During the LHC Run 1 operation (2009 - 2012) were observed a level-1 muon
trigger background in the endcap region. The main source of this fake muons are low-
momentum protons emerging from the endcap toroid magnets and the beam shielding [1].
The effective bandwidth limitation can be reduced through the coincidence of the TileCal
outermost layer signal in the extended barrel region with the end-cap muon chambers.
Therefore, a dedicated embedded system, the TileMuon, was developed to assist the muon
trigger adding TileCal outermost layer signal information. The system for the extended
1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point

(IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from
the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates
(r, θ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan θ/2. Angular distance
is measured in units of ∆R =

√
∆η2 + ∆φ2
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barrel is foreseen to operate during LHC Run 2 (2015 - 2018) and Run 3 (2019 - 2021)
operation.

A TileCal signal processor module receives, processes and send trigger inputs
to the Level-1 Muon Trigger, the TileMuon Digitizer Board (TMDB), and is currently
installed in ATLAS since July 2015. The activation of the TileCal outermost layer covering
1.0 < |η| < 1.3 to assist the Level-1 Muon Trigger is an important part of ATLAS Phase-0
upgrade program.

This dissertation proposes the muon identification method on the TMDB and
evaluates its performance using a dataset from LHC collisions. Additionally, the TMDB
operation status in the ATLAS experiment is characterized and the TileMuon system
performance is evaluated.

1.2 Main Contributions

1. Studies concerning the signal shape and noise provided for all TMDB channels from
LHC collisions dataset.

2. The proposed estimation method, designed for each channel through a pulse shape
and noise distribution, provided by a dataset from LHC collisions.

3. The TMDB operation performance evaluation, using a dataset from TileMuon
commissioning stage. The TMDB channels were classified concerning their noise
amplitude, the online estimation operation was verified, as well as the pulse stability
for different data acquisitions.

4. The evaluation of the estimation method applied on TDMB performance.

1.3 Organization of the manuscript

The manuscript is organized as follows. Chapter 2 describes the technical design of
the LHC and ATLAS experiments, with particular focus on its calorimeters. The chapter
concludes with a concise TileMuon project description to introduce the reader to the scope
of this work.

Chapter 3 presents the general concepts of energy reconstruction in calorimetry for
high energy physics. The classical parameter estimation method is reviewed as well as the
current method to detect and estimate the particle’s energy used on TileCal. The energy
reconstruction methods used in other calorimeters are also discussed on this chapter.

Chapter 4 focuses on the energy estimation method based on the matched filter
theory, the method proposed on this dissertation. The detection of a signal transmitted
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through a channel that introduces an additive noise problem is presented as well as the
procedure to provide the energy estimate from the signal detectors output.

Chapter 5 summarizes the results of the TileMuon commissioning stage. Studies
with TileMuon Digitizer Board datasets are presented to provide the system operation
performance as well as the application environment of the estimation method.

Chapter 6 presents the results of the system performance. The muon detection
efficiency and fake rate reduction acquired in the commissioning stage are evaluated and
compared with the system performance specified during system design.

The final chapter concludes the manuscript with a discussion of the results,
perspectives and future work.
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2 LHC and the TileMuon Project

The aim of this chapter is to introduce CERN, the LHC accelerator, and the
ATLAS experiment. A brief description of the ATLAS subsystems is presented, focusing
on the calorimeter system. In addition, the ATLAS trigger system is described, as well as
the TileMuon project.

2.1 CERN

Founded in 1954, the European Organization for Nuclear Research (CERN) [2] is
the world’s biggest physics laboratory with researches devoted to probe the fundamental
structure of the universe. CERN sits astride the French-Swiss border near Geneva and
currently has 23 member states and about 2500 people working as directly employees, not
to mention more than 600 universities and institutes wordwide which contributes with
their researches. At CERN, the basic constituents of matter - the fundamental particles -
and their interactions are studied using data coming from a particle acelerator complex.

The CERN acelerator complex brings particles (such as protons or ions) close to
the speed of light. In 1957, the first particle accelerator was built at CERN to provide
beam to the first CERN experiment in particle and nuclear physics. Nowadays, CERN has
the most porwerful and the world’s lagest particle accelerator, the Large Hadron Collider
(LHC) [3].

2.2 The Large Hadron Collider

The LHC has been operating since 2010. A complex of accelerators, shown in
Figure 1, work together to push particles to nearly the speed of light. Each machine
in the chain increases the energy of particle beams before delivering them to the next,
more powerful, accelerator. The collision energy ranges from 0.9 to 13 TeV, with a bunch
spacing of 50 and 25 ns.
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Figure 1: CERN’s Accelerator complex (Extracted from [4]).

The LHC is placed in an underground tunnel 27 kilometer in circumference, which
is situated between 45m and 170m beneath the soil. The LHC is designed to operate at
center-of-mass energy of up to

√
s = 14 TeV for proton-proton collisions.

The collider has four collision points, around which detectors are positioned to
observe and record the processes results. Figure 2 illustrates the LHC and four of its main
detectors.
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Figure 2: Overall view of the LHC experiments (Extracted from [5]).

The detectors aim is to find information about particles such as their charge,
energy and mass, in order to provide clues about the particle’s identity. The LHC has
four main detectors, each one designed for a specific purpose:

1. ATLAS (A toroidal LHC Apparatus) [6]

ATLAS is a general-purpose detector optimized to study the greatest possible number
of particles that could arise from the LHC collisions.

2. CMS (Compact Muon Solenoid)[7]

As ATLAS, CMS is a general-purpose detector, built to study the Higgs boson,
supersymmetric particles and heavy ion physics.

3. ALICE (A Large Ion Collider Experiment) [8]

ALICE is the only detector entirely devoted to heavy ions collisions. Its main goal is
to unveil the properties of quark-gluon plasma, a state of matter believed to have
been formed a few milliseconds after the Big Bang.

4. LHCb (Large Hadron Collider beauty) [9]

LHCb is devoted to research on the existent asymmetry between the matter and
antimatter in the universe.
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2.3 The ATLAS Experiment

The ATLAS detector, shown in Figure 3, is a general apparatus designed for
precision Standard Model measurements and to search for physics beyond the Standard
Model [10]. It comprises six different subsystems: the Inner Detector [11], the Solenoidal
Magnets, the Electromagnetic and Hadronic [12] Calorimeters, the Toroid Magnets and
the Muon Spectrometer [13].

ATLAS has a forward - backward symmetric cylindrical geometry with dimensions
about 45 meters long, 25 meters in diameter and weights 7,000 tonnes, which is similar
to the weight of the Eiffel Tower and half as big as the Notre Dame Cathedral in Paris.
Its cylindrical geometry covers almost the entire solid angle around the interaction point.
Therefore, a cylindrical coordinate system is used to describe the ATLAS experiment,
depicted in Figure 4. The azimuthal angle φ ∈ [−π, π] is measured around the axis z and
the pseudorapidity η = −ln tan(θ/2) invariant under longitudinal boots in z- direction.

Figure 3: Basic Structure of the ATLAS experiment (Extracted from [14]).

Figure 5 illustrates the particles’ signatures in the ATLAS detector. Each particle
leaves a specific signature in one or more of the detector sub-systems. The combination of
all sub-detector information provides the particle four-momentum.
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Figure 4: ATLAS coordinate system.

Figure 5: Transverse view of the ATLAS, showing the detection strategy (Extracted from
[15]).
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ATLAS also uses a specialised multi-level online filtering system, in order to select
events interesting for physics analyses - the Trigger System - (described in Section 2.6).

2.4 The ATLAS Calorimetry

In particle physics, calorimetry is an ubiquitous method designed to absorb and
measure the energy of particles [16]. Conceptually, a calorimeter is a block of matter
which an incident particle interacts and deposits all its energy in a shower of particles with
decreases energy [17]. Most of the energy deposited by a charged particles is dissipated
and appears in form of heat in the active part of the calorimeter. The energy can then be
detected in the form of a sampling/homogeneous signal (e.g. charge or light), which is
proportional to the initial energy.

Calorimeters can be broadly classified concerning their technical structure into
sampling calorimeters and homogeneous calorimeters. Sampling calorimeters are devices
in which the energy degradation of the incident particle and the energy measurement are
separated in intercalating layers of different materials. On the other hand, homogeneous
calorimeters are composed of only one type of material, which causes the energy degradation
and signal generation. Calorimeters are interesting in particle physics for several reasons:

1. The calorimeter energy resolution improves with the energy of the incident particle.

2. Calorimeters can be sensitive to neutral and charged particles. Weakly interacting
particles, such as neutrinos, can then be infered through the missing energy in the
event.

3. Calorimeters are versatile detectors. Although designed to measure energy, they
can be used to identify different particles, to measure the particle’s arrival time and
detect the shower direction and position.

4. Their fast time response allows application in high-speed signals and a smooth online
event selection process.

5. The length of the detector increases logarithmically with particle energy.

The ATLAS calorimetry system has been developed to absorb most of hadrons,
leptons and photons interacting with matter. Motivated by this purpose, high granularity
liquid-argon (LAr) electromagnetic (EM) and hadronic sampling calorimeters are installed,
as shown in Figure 6.

The hadronic calorimeter provides the energy measure of hadrons that lose
their energy through particle showers, whereas the electromagnetic calorimeter provides
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electromagnetic energy measurements of electrons and photons. Calorimeters can absorb
most known particles, except muons and neutrinos [18].

Figure 6: A computer generated image of the full calorimeter (Extracted from [15]).

2.4.1 The Electromagnetic Calorimeter

The Liquid Argon calorimeter (LAr) [19] is the electromagnetic (EM) calorimeter
of ATLAS. It has an accordion geometry, i.e. lead absolver plates over its full coverage
and accordion-shaped kapton electrodes immersed in liquid Argon. The design provides
full φ symmetry without azimuthal cracks.

LAr comprises a barrel and two end-cap components. The calorimeter shape
consists of two identical half-barrels, separated by a 6 mm gap at z = 0 and centered
around the collision point |η| < 1.475. Each end-cap is physically splitted into two coaxial
wheels covering the region 1.375 < |η| < 3.2.

Each barrel module of the EM calorimeter, depicted in Figure 7, is segmented in
three samplings in depth. The first sampling has a fine granularity, which provides precise
measurements of the incident energy of EM showers started by photons and electrons.
The middle sampling is responsible to absorb most of energy of the EM shower. The third
sampling, less segmented in η, identify EM and hadronic showers.
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Figure 7: Segmentation of the EM calorimeter of ATLAS.((Extracted from [19])

2.4.2 The ATLAS Tile Calorimeter

The Tile Calorimeter (TileCal) [20] is located directly outside of the LAr and
consists of the central hadronic section of the ATLAS calorimeter. It is a sampling device
that uses steel as absorber material and scintillating tiles as active material [20] to provide
precise measurements of hadrons, taus, jets and missing transverse energy.

Figure 8 illustrates the system structure of one of the 256 φ wedges of TileCal.
The hadron particle produced in the collision point travels through the calorimeter and
produces light proportional to the energy deposited by the particle in the scintillating tiles.
The light is transmitted by wavelength shifting fibers and read out by photomultiplier
tubes (PMTs), which generate the electrical signal to be processed.
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Figure 8: The Tile calorimeter design principle (Extracted from [14]).

TileCal comprises a central barrel and two extended barrels azimuthally divided
into 64 modules of granularity ∆φ = 0.1. Each module from both central and extended
barrels is respectively divided into 23 and 16 cells, which consists of approximately 5000
cells, each one readout by two channels.

Similar to the LAr, the TileCal is segmented in depth in three layers, illustrated
in Figure 9. The TileCal trigger towers are built by adding signals from the three sampling
layers and the resulting added signals are sent to the first trigger level (LVL1) of ATLAS.
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Figure 9: The calorimeter segmentation for one module of the barrel (η > 0) and one
module of the extended barrel (Extracted from [21]).

The current TileCal readout signal chain is illustrated in Figure 10. The light
produced in the scintillating tiles is sent by optical fibers to the light mixers and distributed
over the fibers leading to the photomultiplier tube (PMT) where it is converted to
an electrical signal. The 3-in-1 card (Front-End Board) is responsible for the signal
conditioning and amplification providing three analog signals as output. Two signals
outputs (high and low gain) are digitized in the Digitizer Boards and sent via high speed
optical links (Interface Board) to the TileCal back-end electronics. The Read-Out Driver
(ROD) is the main back-end electronics component, as it performs preprocessing and send
the signal to the second level trigger [22].

The TileCal calibration system comprises:

1. Charge Injection System (CIS) [23]: The CIS generates pulses from discharged
capacitors in the read-out circuit to simulate physics signals in TileCal and measures
the electronic response. Therefore, a quantitative relationship between the electronic
response of TileCal readout channels and the analog signals from the Tile Calorimeter
can be provided.

2. Laser System [24]: The laser calibration system sends a controlled optical amount
of light from a laser to monitor each TileCal PMT and the photodiodes simultane-
ously. It provides the PMT with the gain measurement used for timing calibration,
monitoring of TileCal and PMTs gain adjustments.

3. Cesium system (Cs) [25]: The Cesium system introduces a γ137C through all the
tiles to equalize the individual channel response and monitor stability of optics
elements.
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Figure 10: TileCal Readout Signal Chain (Extracted from [22]).

2.5 The Muon Spectrometer

The Muon Spectrometer (MS) [18] is the outermost detector of ATLAS. It is
designed to detect muons, a particle which cannot be stopped by the previous components
of ATLAS, with a high precision.

The MS comprises a long barrel and two inserted end-cap magnets equipped with
two types of fast triggering chambers, the Resistive Plate Chambers (RPC) and the Thin
Gap Chambers (TGC). It also uses three layers of hight precision tracking chambers, i.e.
Monitored Drift Tube (MDT) and Cathode Strip Chambers (CSC) to provide precise
tracking and momentum measurement of muon candidates.

2.6 The Trigger System

The high LHC collision rate, of approximately 40 MHz at 25ns bunch spacing,
makes impractical to record every event. An online event selection is employed to reduce
the rate of events recorded while maintaining the highest efficiency for all analysis of
interest.

Figure 11 gives an overview of the Trigger system of ATLAS. Is is structured in a
2-level architecture, Level-1 and the Level-2 and the high-level trigger (HLT). Each trigger
level employs an additional selection criteria refining the decisions made at the previous
one. Finally, a thousand events per second is recorded to permanent storage.
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Figure 11: Schematic overview of the Trigger and DAQ system (Extracted from [26]).

The Level-1 calorimeter trigger (L1Calo) is hardware-implemented and processes
signals from the hadronic and eletromagnetic calorimeters in real-time to reduce the
incoming bunch crossing rate to 100 kHz. The high-level trigger is software implemented,
and operates on a large farm of commercial computer processors. It executes chains of
reconstruction and signature algorithms that analyze the properties of the events.

2.7 TileMuon Project

The TileMuon project aims at using the TileCal outermostlayer (D cells) signal in
the extended barrel region to reduce the fake muon trigger rate due to slow charged particles
[27], i.e. protons emerging from the end-cap toroid and beam shielding interactions with
the muon detector.

Figure 12 illustrates a transversal cut in the ATLAS detector. The emergent
muons from collisions cross the TileCal extended barrel region, covered by 1.0 < |η| < 1.3,
before reaching the TGC.



31

Figure 12: Illustration of the coincidence between TileCal extended barrel and the end-cap
muon chamber (Extracted from [21]).

The distribution of Level-1 muons as a function of η above an online momentum
(pT ) threshold of 20 GeV is shown in Figure 13. The combined information between the
TileCal extended barrel and TGC improves the trigger muon efficiency. The TileCal
signal is received, processed and sent to the muon trigger logic by a new electronic system
currently installed in ATLAS.
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Figure 13: Distribution of Level-1 muons as a function of η and for a pT threshold of 20
GeV. The combined yellow (shaded) and white (un-shaded) distribution is with the NSW
included in the Level-1 muon endcap decision. The yellow (shaded) distribution alone
shows the effect of including the outer layer of the TileCal extended barrel in the Level-1
muon endcap decision. (The underlying cyan (dark-shaded) distribution represents offline
reconstructed muons after an offline 25 GeV pT cut). Extracted from [28]).

The reconstruction efficiency for combined muons with an offline pT greater than
25 GeV (open red circles) is compared with events triggered by Level-1 muons (open blue
squares), depicted in Figure 14, as a function of the TileCal cell energy threshold. The
muon detection efficiency is kept around 97% with a rate reduction around 80% when a
500 MeV energy cut is applied. Therefore, the muon detection efficiency and rate reduction
are acceptable even with a higher TileCal muon signal to noise rate.
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Figure 14: Muon detection efficiency and Level-1 muons rate reduction as a function of
TileCal cell energy sum threshold. False alarm values are also shown, giving the probability
that in each bunch crossing the sum of the energies deposited in D5 and D6 will be over
threshold. Results were obtained using standard offline readout data. A smearing of 200
MeV was introduced in the response of each cell to simulate the electronics noise of the
Level-1 readout. Extracted from [28].

Figure 15 shows the muon detection efficiency (black dots) and muon fake reduction
(red triangles) as a function of the energy threshold applied to the D5+D6 TileCal cells
energy, obtained with a prototype receiver module used in 2010-2011 data taking, and
connected to the level 1 calorimeter trigger electronics. Using a threshold cut of 500 MeV,
muon detection efficiency of 93% and 17% of fake muons are achieved. The measured
efficiency is lower than that presented in Figure 14 and this is probably due to the selection
being made on the sum of the raw D5 and D6 analogue signals rather than on the sum of
individually calibrated cell.
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Figure 15: Muon detection efficiency and rate reduction as a function of TileCal cell energy
sum threshold. Extracted from [22].

2.7.1 TileMuon System Architecture

The TileMuon System consists of 64 modules from the TileCal extended barrel
and the Level 1 muon trigger in the endcap region, divided into 48 trigger sectors. A
hight-pT muon should cross one of the two TileCal modules in front of the endcap trigger
sector in which a signal has been produced.

The TileMuon Digitizer Board (TMDB) module was developed to process the D5
and D6 signals from 8 TileCal modules and interface with 3 Level-1 muon endcap sector
logic blocks. Therefore, the TileMuon system, illustrated in Figure 16, is composed of 16
TMDB modules hosted in one VME 9U crate in ATLAS USA15 cavern, each one receiving
32 analog muon signals from the TileCal and interfacing with 3 TGC sector logic blocks.
The TGC sector logic receives the TMDB information through three Gigabit links (Glink)
from TGC inner chambers.
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Figure 16: TileMuon System basic architecture.

2.7.2 TileMuon Digitizer Board

Figure 17 illustrates the TMDB design approach. The 32 analogic signals reception
and digitization are performed by the signal reception block. The system also comprises a
core Field Programmable Gate Array (FPGA), responsible for processing, communication
and monitoring, which simplifies the hardware design.

Figure 17: TMDB Design.



36

A dedicated FPGA is used to provide the communication with the VMEbus
and control, monitoring and firmware updates of both FPGAs. The calibration and
monitoring functionalities can also be done through the Link interface. The Glink block is
responsible for the communication with the 3 TGC sector logic blocks. The TTCdec is
a dedicated mezzanine board designed for the ATLAS trigger timing and control (TTC)
signal reception and decoding, providing the synchronization with the experiment.

The TMDB output provides the energy value estimated by performing an inner
product between the Matched Filter (MF) coefficients and the incoming time samples
in ADC counts. Four TMDB decision triggers are obtained from the comparison the
energy output and a threshold, two from the D6 cell and two from D5+D6 cells. A peak
detector algorithm is used for triggering events in which the readout pulse is within the
readout window. The Matched Filter coefficients and thresholds are loaded on TMDB
and the trigger muon decision is obtained from the coincidence between Peak-detector
and Threshold algorithms.



37

3 Energy Estimation in High Energy Physics Calorimetry

Over the past decades the energy reconstruction in calorimetry has been formulated
as a parameter estimation problem. Therefore, this chapter provides an overview of
parameter estimation theory from literature and the energy estimation strategy used on
modern calorimetry.

3.1 Estimation in Signal Processing

Most physical processes observed in nature can be represented mathematically.
There are several types of mathematical models used for that purpose, such as the
deterministic and the stochastic models. A deterministic model has every set of variables
uniquely determined by parameters in the model and sets of previous values of these
variables. In a stochastic model, randomness is present, and variables are not described by
unique values, but rather by probability distributions.

Estimation theory is commonly used to extract information from electronic sys-
tems. These systems include: radar, sonar, speech and image analysis, biomedicine,
communications, and control. All systems mentioned need to estimate a parameter or a
group of parameters of a random process often corrupted by additive noise. Although
there are examples that a human interpreter can easily discern, in most cases a human
interpreter would be unable to determine the target position from the received waveforms,
making estimation systems an indispensable tool [29].

The signal estimation problem can be modeled as the extraction of parameters
based on time continuous waveforms. However, the digital signal processing has been
extremely widespread over the last years, making the signal estimation a discrete time
problem. Consider a N-point dataset x = x[0], x[1], ..., x[N − 1], which depends on an
unknown parameter θ. The goal is to determine θ based on the data, or to define an
estimator

θ̂ = g(x[0], x[1], ..., x[N − 1]), (3.1)

where g is a function. The first step to design a good estimator is to mathematically model
the data. Inherently random data can be described by a probability density function
(PDF). The PDF is parameterized on θ. Therefore, a different class of PDF is obtained
for a different value of θ.

The estimation based on PDFs is termed classical estimation and its performance
depends on the PDF assumptions. This approach assumes the parameters of interest are
deterministic but unknown [29].
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In cases where some features about the parameter are known a priori, this
knowledge can be incorporated to the problem’s solution. We can assume, for example,
that θ is a random variable and assign it a PDF with an uniform range. Any estimator
will yield values in this range and the desired parameter is then viewed as a realization of
the random variable θ [29][30].

Estimators based on PDFs usually have no analytical solution, which makes their
implementation difficult, requiring a multidimensional optimization or integration. In
these situations, is interesting to use alternative estimators, which provide a suboptimal
result, but can be implemented on a digital computer. Linear estimators are easy to
implement and require low computational complexity. For that reason, linear estimators
have been widely used to energy estimation in calorimetry [31][32][33].

3.2 ML Estimator

The Maximum Likelihood estimation is a method designed to estimate the parame-
ters of a statistical model (e.g. the signal amplitude immersed in an additive background
noise), which maximizes the probability P (θ|x), i.e., it finds the θ̂ value providing the
highest conditional probability P (θ|x). Although that probability is usually unknown,
according to Bayes’ theorem the probability of an event can be described based on prior
knowledge of conditions that might be related to the event:

P (θ|x) = pX|Θ(x|θ)P (θ), (3.2)

where pX|Θ(x|θ) is the conditional probability density function of the event and P (θ) is a
prior probability distribution of θ.

The probability P (θ|x) is given by the conditional PDF pX|Θ(x|θ) maximization,
the so-called likelihood function. Suppose the probability density function pr|Âmle

(r|Âmle)
of a signal sample with N independent and identically distributed observations represented
by r is known, the signal amplitude Âmle can be estimated using the equation (3.3):

∂pr|Âmle
(r|Âmle)

∂Âmle
= 0. (3.3)

In calorimetry, the digitized pulse samples sk can be often expressed as:

rk = Agk + nk k = 0, 1, 2, ..., N − 1, (3.4)

where A is the true amplitude, gk is the reference pulse shape sample and nk is the
electronic noise. If the noise can be modeled as a zero-mean Gaussian process with
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covariance matrix C, the probability density function can be written as:

pr|Âmle
(r|Âmle) = 1√

2π det(C)
exp (−(r− Ag)TC−1(r− Ag)

2 ). (3.5)

Where r is the received signal vector and g is the signal of interest vector.

The problem can be solved applying the logarithm and computing the derivatives
in Equation (3.5):

∂pr|Âmle
(r|Âmle)
∂A

= −1√
2π det(C)

(r− Ag)TC−1(r− Ag)
2 (3.6)

The probability density function will be maximized when Equation (3.6) is equal
to zero:

Âmle = rTC−1g
gTC−1g

= rTwmle. (3.7)

As a result, the Âmle estimation can be implemented by a finite impulse response
(FIR) filter with wmle coefficients [34].

In the case where the noise cannot be modeled as Gaussian, the signal joint
probability density function should be considered on the estimator project, which provides
no analytical solutions and requires high computational effort.

3.3 Energy Measurement in Calorimetry

The most common energy measurement strategy in calorimetry is to estimate the
pulse amplitude from signal corrupted by electronic noise through optimization procedures.
Calorimeters have thousands of readout channels with a large electronic chain, which
produces a typically Gaussian distribution noise. This noise modeling simplifies the
amplitude estimator design, once the resulting noise covariance matrix can be used to
describes the random process.

The pulse samples are acquired from a readout signal spread along several adjacent
Bunch-Crossings (BCs) [35][36][37][38] whose shape is considered to be fixed for the entire
dynamic range. Figure 18 illustrates a typical unipolar pulse shape of a calorimeter. The
digital samples used in digital processing are highlighted. The goal of energy reconstruction
techniques is to estimate the desired signal amplitude (in black) from the digital samples.

The energy reconstruction is typically obtained by a weighted sum of digitized
pulse samples. This approach provides an estimation algorithm with a fast response, which
is convenient for systems with high event rate. The estimated amplitude is compared to
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Figure 18: A typical unipolar pulse shape of a calorimeter whose digital samples are
extracted from signal.

a threshold and only signals with amplitude values above the threshold are used in the
event reconstruction offline analysis.

The following sections describe the energy estimation methods used in ATLAS
and CMS calorimeters.

3.3.1 Energy Estimation on TileCal

The Optimal Filtering (OF) [39] algorithm is the method used in both hadronic
and electromagnetic calorimeters in ATLAS for energy reconstruction. This technique
uses the autocorrelation function of the samples to maximize the signal-to-noise ratio and
determine the time origin and the amplitude of the signal. Because the electronic noise
may be modeled as a Gaussian process in ATLAS calorimeters, the OF method has been
broadly used [40].

The OF algorithm version presented in this work, so called Optimal Filtering 2
[41], has been used on TileCal until 2014 for amplitude estimation. The method was also
implemented in liquid ionization calorimeters [31].

In TileCal, g can be defined as a set of values of the normalized reference pulse
shape signal at a time t, g(t). The digitized ADC samples yi can thus be expressed as [41]:

yi = ped+ Ag(ti + τ) + ni, (3.8)
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where A is the true amplitude, τ represents a phase shift, ni is the background noise and
ped is the signal pedestal.

The algorithm used in Level-1 trigger needs to be simple and fast to meet its
timing constraints [42]. Therefore, the approach in ATLAS calorimeter is to minimize the
variance of the signal amplitude estimation based on a weighted sum of digitized samples.
The estimate of the amplitude can be calculated by:

Â =
N∑
i=1

yiwi, (3.9)

where N is the number of samples and wi is the OF weights vector computed offline.

The variance to be minimized can be calculated as[43]:

var(Â) = wTCw, (3.10)

where C is the background covariance matrix and w = w1, ..., wN .

The minimization must be performed under some constraints:

N∑
i=1

giwi = 1 (3.11)

N∑
i=1

g′iwi = 0 (3.12)

N∑
i=1

wi = 0 (3.13)

where gi is the TileCal reference pulse shape vector and g′i is its derivative. The first
constraint was added to provide unbiased estimations, while both second and third
constraints assure the algorithm immunity against phase and baseline fluctuations [43].

With these conditions and using the Lagrange multipliers method the weights wi
can be calculated by solving the following system:



C1,1 . . . C1,7 g1 g′1 1
... . . . ... ... ... ...

C7,1 . . . C7,7 −g7 −g′7 1

g1 . . . g7 0 0 0

g′1 . . . g′7 0 0 0

1 . . . 1 0 0 0





w1
...

wτ

λ

ξ

υ


=



0
...

0

1

0

0


, (3.14)

where λ, ξ, υ are the Lagrange multipliers.
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The covariance matrix C can be written as an identity matrix if the noise is white.
The weights are calculated offline and implemented on Digital Signal Processors (DSPs),
which provide the online amplitude estimation for the selected events.

3.3.2 Energy Estimation on LAr

The Liquid Argon calorimeter also uses the OF method to determine the amplitude
energy estimation. However, in this case, the third constraint (Equation (3.7)) is removed
from the optimization procedure. This method is called OF1. The OF1 algorithm used on
LAr computes the baseline value through special runs stored in a database and it subtracts
it from each ADC sample. The amplitude estimation is given by:

Â =
N∑
i=1

(yi − ped)wi. (3.15)

Figure 19 illustrates the LAr ionization Pulse Shape. Although 32 samples are
used to provide the pulse representation, only 5 samples, located around the pulse peak,
are used to estimate the energy.

Figure 19: The LAr ionization Pulse Shape (Extracted from [44]).
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3.3.3 Energy Estimation on CMS Electromagnetic Calorimeter

As LAr, the CMS electromagnetic calorimeter also uses the OF1 algorithm as
the energy estimation method. The difference is that the OF1 implemented on CMS EM
calorimeter computes the baseline value event-by-event, while LAr’s algorithm computes
it through special runs stored in the database. Figure 20 shows the CMS reference pulse
and its samples used on digital processing. Notice that the algorithm uses the samples
located before the interest peak to estimate the baseline of the signal.

Figure 20: Typical pulse shape measured in CMS (Extracted from [45]).
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4 Energy Estimation for TMDB

Reconstruction energy methods in modern calorimeters usually provide the signal
detection by performing the amplitude estimation of the signal of interest. The goal of this
chapter is to present the energy estimation method proposed for the TMDB: the matched
filter (MF), proposed in [46] for TileCal. The method is derived from the matched filter
for signal detection [29].

4.1 Signal Detection

The purpose of a detection system is to detect, with maximum efficiency, the
presence of a signal transmitted trough a channel that introduces an additive noise.
Therefore, the system performance should optimize the decision among 4 hypothesis,
labeled at Table 1.

Table 1: Four possible states for a detector.

Response "Absent" Response "Present"
Signal Present Miss Hit
Signal Absent Correct Rejection False Alarm

Consider a given discrete signal g[k] and an additive noise n[k], where k represents
the samples. The detection problem can be described as a function of the received signal
as follows:

H0 : r[k] = n[k] k = 1, 2, ..., N (4.1)

if the signal is absent (H0) and

H1 : r[k] = g[k] + n[k] k = 1, 2, ..., N (4.2)

if the signal is present (H1) [47]. The relationship that maximizes detection efficiency is
given by the maximum likelihood ratio [48], as follows:

L(r) = fR|H1(y|H1)
fR|H0(y|H0)

H1
≷
H0

γ, (4.3)

where the array r represents the sequence r[k] and R is a given outcome at the receiver.
The terms fR|H1 and fR|H0 are the probability density functions of the received signal
R, given that H0 and H1 occurred and γ denotes the detection threshold. Usually, the
probability density functions are unknown for the majority of the real detection problems,
thus the detection algorithm is designed to estimate fR|H1 and fR|H0 from a development
dataset where each event is known in advance.
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The detection system performs in favor of the hypothesis with greater probability
to minimize the detection error. In other words, if the probability of the received signal
given only noise was transmitted is greater than the probability of the received signal
given the signal was actually transmitted, the hypothesis H0 will be chosen and, if the
opposite occurs, the system will decide in favor of H1.

Notice that the signal amplitude can be introduced in the received signal. In this
case, the detection problem can be described as follows:

H0 : r[k] = n[k] k = 1, 2, ..., N (4.4)

H1 : r[k] = Ag[k] + n[k] k = 1, 2, ..., N (4.5)

Therefore, the parameter A is the value to be estimated. When the parameter
is described by a random variable with known probability density function, it can be
estimated by the Maximum A Posteriori (MAP) estimator [48]. If the same parameter is
not a random variable the Maximum Likelihood (ML) [48] estimator should be used.

4.2 The Matched Filter method

In cases where the probability density functions of the noise samples is Gaussian
with covariance matrix C, the maximum likelihood ratio can be described as:

L(r) =
exp(− (r−g)T C−1(r−g)

2 )
exp(− rT C−1r

2 )
H1
≷
H0

γ. (4.6)

By performing some algebraic operations on Equation (4.6), the optimum detector
is given by [49]:

rTC−1g
H1
≷
H0

γ. (4.7)

Therefore, the detection procedure optimizes the decision through the inner
product between the received signal and a replica of the deterministic signal of interest g[k]
after pre-whitening. In cases where the noise samples are white Gaussian, the covariance
matrix C becomes diagonal and the optimum detector results in:

rTg
H1
≷
H0

γ. (4.8)

In most modern calorimeters, the electronic readout provides a pulse shape of
an incoming signal rather similar to the reference pulse shape and the electronic noise
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acquired during nominal operation has been shown to be Gaussian. Therefore, the MF
approach may achieve good results for this scenario. Optimal TMDB signal detection is
performed by using the reference signal pulse shape.

Since the signal pulse shape is represented by seven samples, MF implements a fast
finite impulse response (FIR) filter [34] according to Equation (4.7), which is appropriate
for online applications.

4.2.1 Amplitude estimation through the matched filter

The acquired TMDB signal can be described as follows:

r[k] = ped+ n[k] + Ag[k], (4.9)

where r[k] is the received signal, n[k] corresponds to the electronic noise, ped is
the baseline offset, g[k] is the TMDB reference pulse and A is the amplitude.

The amplitude of the incoming signal can be estimated through the inner product
between the received signal and the TMDB reference pulse after pre-whitening. The inner
product operation is shown in Equation (4.10):

y = (r− ped)TC−1g. (4.10)

Hence, the expression for the estimated amplitude results in:

Â = (r− ped)TC−1g
gTC−1g

. (4.11)

Figure 21 illustrates the signal reconstruction procedure using the Matched Filter.

Figure 21: Signal reconstruction procedure using the Matched Filter(Extracted from [46]).

4.2.2 Matched Filter implementation on FPGA

Figure 22 shows the Matched Filter implementation as well as the classical
estimation methods discussed in Section 3.3. Notice that the implementation corresponds to
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a fast finite impulse response (FIR) filter with N coefficients. Hence, only N multiplications
are required to estimate the signal amplitude.

Figure 22: The Matched Filter implementation for N=7.
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5 TMDB Commissioning Analysis

Sixteen TMDBs were installed and integrated into the Tile Calorimeter data
acquisition system, depicted in Figure 23, during the LHC technical stop in 2015. The
TileMuon system is now in the commissioning phase, preparing to start operation by the
middle of 2017.

The TMDB energy estimation is performed by a 7-coefficient FIR filter that is
based on a Matched Filter (MF) approach. The MF coefficients are computed per readout
channel using the respective reference pulse-shape and noise covariance matrix. The
TMDB output is converted to MeV using calibration parameters computed through a
linear fit based on the offline TileCal channel energy in MeV. Therefore, for each channel,
the Matched Filter and calibration parameters were designed based on a database acquired
by the TMDBs during the 2016 commissioning. Analysis of noise amplitude was also done
to evaluated the TMDB performance.

(a) (b)

Figure 23: The TMDB hardware system: (a) the TileMuon digitalizer board. (b) the
TMDB crate.

5.1 Database

The database used for matched filter design comprises two classes: the noise
dataset, which refers to noise acquisition from dedicated standalone runs (often called
pedestal runs) and, the signal dataset, which was acquired from proton–proton collisions
corresponding to an integrated luminosity of 471.3 pb−1 with 40 MHz event rate collected
by the ATLAS detector at the LHC at a center-of-mass energy of

√
s = 13 TeV in 2016.
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5.2 Noise Characteristics

In order to calculate the matched filter weights, both noise characteristics and the
pulse shape must be understood. The noise dataset, used to calculate the noise distribution
and the noise autocorrelation matrix, comprises of 3.461 events acquired from each TMDB
channel during nominal TileCal operation.

Figure 24 illustrates the noise distribution for four channels from one TileCal
module1. The noise distributions were fitted with Gaussian and compared with it through
the likelihood radio test [57]. Although the hypothesis test shows the experimental samples
do not include only a Gaussian process, the MF method will likely operate under optimal
conditions, concerning the noise requirement.
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(d) Channel D6R

Figure 24: The noise distribution of channels from TileCal module EBA02.

When the noise has correlated Gaussian samples, the performance of the matched
filter is affected by the signal shape and the noise covariance matrix has to be considered
during the MF design. Figure 25 shows the noise covariance matrix of four channels
from one TileCal module, from which one may observe that noise samples are strongly
correlated.
1 Channels D5L, D5R, D6L and D6R of module EBA02
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(d) Channel D6R

Figure 25: The noise covariance matrix of channels from TileCal module EBA01.

The noise distribution and the noise autocorrelation matrix show similar behaviors
as the presented in the Figure 25 for all 512 TMDB channels.

Figures 26 (a) and (c) illustrate the noisy cross correlation between the 256 TMDB
channels of a given TileCal side. The same figure were acquired for the 36 channels of
one TMDB 2, depicted in figures 26 (b) and (d). The elements of the main diagonal were
removed in order to emphasize cross-correlations. Notice that the cross correlation between
adjacent channels is noticeable for both TileCal sides, with values between 8% and 20%.
This result can deteriorate the MF performance, since the noise cross-correlation between
the channels are not considered in its design.
2 TMDB number TMDB01
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Figure 26: Noise cross correlation between (a) all the channels of A side (b) Channels of
one TMDB of A side (c) all the channels of C side (d) Channels of one TMDB of C side.

5.3 Pulse Characteristics

Figure 27 illustrates the averaged TMDB pulse using a proton-proton collision
dataset with energy ranging from 1 GeV to 6 GeV (TileCal digital readout). The pulses
were acquired for both A and C Tilecal’s side. The pulse for each side provides a good
representation of the reference pulses acquired per channel used on matched filter design,
with agreement greater than 95% when Pearson’s chi-squared test (X2)[58] is applied.
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Figure 27: Reference pulse acquired to both A and C Tilecal’s side.

5.4 Matched Filter Design

The matched filter weights were calculated for the 512 channels of TMDB and
implemented on the system on July 2016. As described in Section 4.2, the design is
performed using the reference pulse, and the noise covariance matrix for each readout
channel. The reference pulse used in matched filter design is composed by 7 samples of
the average pulse of a proton-proton collision dataset with energy ranging from 1 GeV to
6 GeV (TileCal digital readout) acquired for each TMDB channel.

Since the Matched filter requires the pulse shape to provide the signal to noise
ratio (SNR) maximization in the presence of additive noise, fluctuations on the pulse
shape affects the estimator efficiency. Figure 28 illustrates the pulse shape for 4 different
charges (3pC, 6pC, 9pC and 12pC) injected on TileCal by the charge injection system,
acquired for one channel of TMDB 3 (interpolated). It can be seen that the pulse shape
does not change over the entire dynamic range of the signal.
3 Channel D5L of module EBA01
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Figure 28: The pulse shape for different charges.

Figure 29 shows the average pulse, acquired for two channels of TMDB, from
different proton-proton collisions datasets with energy ranging from 1 GeV to 6 GeV
(TileCal digital readout). The pulse shape remains stable and the MF performance is
preserved with different datasets for all channels of TMDB.

(a) (b)

Figure 29: The pulse shape from different proton-proton collisions datasets for (a) channel
D5L of TileCal module EBA01 (b)channel D5L of TileCal module EBAC01.

The noise covariance matrix C was computed using a noise database measured
from TMDB during a pedestal run, depicted in Figure 25. Figure 30 illustrates the matched
filter weights, calculated as described in Section 4.2, for four TMDB channels4.
4 Channels D5L, D5R, D6L and D6R of module EBA01
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Figure 30: The matched filter weights for channels from TileCal module EBC01.

5.5 Matched Filter Results

The Matched Filter operation provides the TMDB output in ADC counts (in
arbitrary units). The energy is converted to mega electron-volt (MeV) using calibration
parameters computed through a linear fit based on the TileCal channel energy in MeV
reconstructed off-line. Figure 31 illustrates the linear fit computed for one channel of
TMDB 5. The calibration constants were acquired for the 512 channels of TMDB on July
2016.

Figure 32 illustrates the error estimation distribution associated to the MF and
calibration operation. The histogram does not show relevant bias (average close to zero)
and a RMS of 113.7 MeV is achieved, which is below the original specification of 140 MeV.
5 Channels D5L of module EBC03



55

Energy (MeV)
0 2000 4000 6000 8000 10000

M
F

 O
ut

pu
t (

A
D

C
 c

ou
nt

s)

0

20

40

60

80

100

120

140

160

180

200

220
310×

 

=13 TeVsData 2016, 

Internal ATLAS

EBC03 Cell D5L

Figure 31: The TMDB calibration output estimated by Matched Filter (arbitrary units)
for TileCal module EBC03 channel D5L to convert the value to MeV.

Figure 32: The error estimation distribution for TileCal module EBC03 channel D5L.

The TMDB on-line output, estimated by performing an inner product between
the MF coefficients and the incoming time samples in FPGA core, was correlated with the
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output provided by off-line operation (i.e applying the MF coefficients on the samples) to
verify the on-line MF operation on FPGA. The graph on Figure 33 shows the off-line MF
operation along the horizontal-axis and the TMDB on-line output along the vertical-axis
for one channel of TMDB 6. The two variables are linearly correlated, indicating the
strongest association between them.

Figure 33: Correlation between the on-line TMDB output (using the variable eTMDB)
and the off-line operation.

5.6 System Status

Figure 34 illustrates the noise RMS (in MeV) of each channel using 2016 pedestal
data. The global noise measured on the TMDB (105 MeV) is better than the noise
predicted on the system proposal (140 MeV). Ten channels (in white) were classified as
problematic channels and their coincidence between TGC and TileCal cells are not acquired.
They are noisy or dead channels and the problem sources came from the muon signal path
before TMDBs (PMTs, front-end electronics, cables). The problematic channels represent
2% of the TMDB channels and they do not affect significantly the system performance.
6 Channels D5Lof module EBC03
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Figure 34: TMDB electronic noise channel map acquired during the pedestal run in 2016.
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6 System Performance

The aim of this chapter is to evaluate the TileMuon system performance. Therefore,
an analysis of the muon detection efficiency and fake rate reduction has been performed
using the whole system: both sides of the TileCal Extended Barrel and the modules of
the TileCal Extended Barrel information. The system performance is evaluated through
the comparison between the results acquired in this analysis and the system performance
specified during system design.

6.1 Muon detection efficiency and fake rate reduction

The TileMuon system provides coincidence between the information of TileCal
Extended Barrel (128 TileCal modules divided in A side and C side) and the endcap
region composed of 48 trigger sectors for each TileCal Extended Barrel side. For a signal
in a muon trigger sector it can be expected that it comes from a high-pT muon that have
also traversed one of the two TileCal modules in front of the Level-1 muon endcap trigger
sector.

An analysis has been performed in the region 1 < |η| < 1.3, using data from
proton-proton collision at

√
(s) = 13 TeV acquired by TMDB in 2016. The muon events

were selected by the TGC trigger (1 < |η| < 1.3, pT > 20 GeV) and by offline muon
reconstruction (pmuonT > 15 GeV). Each muon trigger sector was associated with at least
one of the TileCal modules. The efficiency is computed as the ratio between the number
of muon events selected with the summed energy deposit in the D5 and D6 cells greater
than a pre-determined energy threshold and the total number of muos events selected by
the muon trigger. Whereas the fake reduction is provided by the ratio between the number
of events rejected by the muon trigger with the summed energy deposit in the D5 and
D6 cells greater than a pre-determined energy threshold and the total number of events
rejected by the muon trigger. The global muon detection efficiency and the fake reduction
of the Level-1 Tile-Muon Trigger, provided by TMDB, as a function of the threshold, are
shown in Figure 35.
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Figure 35: Muon detection efficiency and fake reduction of the Level-1 Tile-Muon Trigger
as a function of TileCal cell energy sum threshold.

The coincidence between TileCal and TGC Trigger is performed by software.
Using information of D5+D6 TileCal outer radius cells of the Extended Barrel covering
1 < |η| < 1.3 and a threshold cut of 500 MeV, a muon detection efficiency of 98.2% is
achieved, while the fake reduction is 3.07%. The result is better than what was achieved
by the prototype receiver module, presented in section 2.7, used in 2010-2011 data taking,
when 93% of muon detection efficiency and 17% of fake reduction were achieved. Figure
36 shows the muon detection efficiency and the fake reduction of the Level-1 Tile-Muon
Trigger as a function of the threshold for each TileCal Extended Barrel side (A side and C
side).
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Figure 36: Muon detection efficiency and fake reduction of the Level-1 Tile-Muon Trigger
as a function of TileCal cell energy sum threshold (a) A side (b) C side.

The muon detection and the fake reduction curves present similar results for both
sides. Using information of D5+D6 TileCal outer radius cells of the Extended Barrel
covering 1 < |η| < 1.3 and a threshold cut of 500 MeV, muon detection efficiencies of
98.28% for A side and 98.25% for C side are achieved, while the fake reductions are 3.10%
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and 3.02% respectively.

The muon detection and the fake reduction per each module were also evaluated.
Figure 37 shows the results for a module with performance better than the average
(module EBC25). Its provides a muon detection efficiency of 98.88% and a fake reduction
of 2.06%. Whereas Figure 38 illustrates the results for a module with worse than average
performance (Module EBA43). In this module a muon detection efficiency of 95.64% and
a fake reduction of 6.72% are achieved.
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Figure 37: Muon detection efficiency and fake reduction of the Level-1 Tile-Muon Trigger
as a function of TileCal cell energy sum threshold for module EBC25.
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Figure 38: Muon detection efficiency and fake reduction of the Level-1 Tile-Muon Trigger
as a function of TileCal cell energy sum threshold for module EBA43.

The measured muon efficiency detection and fake reduction results presented
in this chapter shows that the system provides better results than originally proposed
(presented in section 2.7).
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7 Conclusions

The LHC is currently being upgraded to produce collisions at the centre-of-mass
energy near 14 TeV. Therefore, ATLAS has been modified to meet the challenges of
new Run 3, when the LHC resumes operation in 2020 after the second long shutdown.
The TileCal main activity for the ATLAS upgrade, during Phase 0, was related to the
activation of the TileCal outermost D-layer signal for assisting the Level-1 Muon Trigger
at 1.0 < |η| < 1.3. In order to receive and process the TileCal muon trigger signals in
the extended barrel region, the Tile Muon Digitizer Board was designed, fully tested and
produced. Sixteen TMDBs have been installed in the ATLAS cavern and integrated with
the Tile Calorimeter. The Tile-Muon system is now in final stage of commissioning phase
and ready to be included in ATLAS Level-1 Trigger.

In this dissertation, the TMDB operation performance during the commissioning
phase was evaluated. The analysis uses data from proton-proton collision at a center-of-mas
energy of 13 TeV and noise from pedestal runs during nominal TileCal operation collected
by the TMDB in 2016. The averaged pulses used for the matched filter design provides a
good representation of the pulse shape for each channel and remains stable for different
proton-proton collisions datasets. A hypothesis test showed that the noise distribution
in the TMDB channels do not include only a Gaussian process. A noticeable noise cross
correlation between adjacent channels was observed, which compromises the MF optimal
performance. It was also noted that the online MF implemented on FPGA is operating as
expected.

The proposed method for TMDB signal detection and amplitude estimation was
presented and its performance using a simulated and experimental database were compared
with an ANN for energy estimation and another one for signal detection. A feed-forward
neural network can approximate the Maximum likelihood, whereas the MF performance
can be compromised by the restrictions imposed on its design. On other hand, since the
MF method implements a FIR filter, it could be simply implemented in the TMDB FPGA
whereas the ANN implementation requires more computational effort. Their performance
were evaluated through a ROC constructed for each scenario. As the ANN performance
was similar to the MF one, it indicates that the MF is operating near optimal conditions.

Analysis of the muon detection efficiency and fake rate reduction were performed
using the whole system and compared with the system performance results specified during
system design. The Analysis showed that the TileMuon system performance is beyond
the predicted one.
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Concerning future studies, the TMDB operation performance should be evaluated
in the next stage, when the system is included in ATLAS Level-1 trigger. Also, studies
of estimation techniques which take in account the noise cross-correlation on its design
should be performed.
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APPENDIX A – Scientific Publications

A.1 Work published in congress annals

1. D. Gonçalves, B. S. Peralva, L. M. A. Filho, A. S. Cerqueira, "Estimação da Energia
do Sinal de Múons do Calorímetro Hadrônico do Experimento ATLAS", Simpósio
Brasileiro de Telecomunicações (SBrT2015) (2015).

Abstract: This work presents the study, the development and the implementation
of the energy estimation technique in the context of a project related to experimental
high energy physics. Estimation techniques found in the literature were applied
to the problem and confronted against each other. The results for both simulated
and experimental data shown that the pulse amplitude estimator based on the
maximum likelihood for Gaussian noise achieved the best performance in terms of
estimation error as well as online implementation feasibility, and it has been the
chosen technique for the application.
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