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RESUMO

Trajetórias densas têm se mostrado um método extremamente promissor na área de

reconhecimento de ações humanas. Baseado nisso, propomos um novo tipo de descritor

de v́ıdeos, calculado a partir da relação do fluxo ótico que compõe a trajetória com o

gradiente de sua vizinhança e sua localidade espaço-temporal. Tensores de orientação são

usados para acumular informação relevante ao longo do v́ıdeo, representando tendências

de direção do descritor para aquele tipo de movimento. Além disso, um método para

aglomerar trajetórias usando o seu formato como métrica é proposto. Isso permite acu-

mular caracteŕısticas de movimentos distintos em tensores separados e diferenciar com

maior facilidade trajetórias que são criadas por movimentos reais das que são geradas a

partir do movimento de câmera. O método proposto foi capaz de atingir os melhores ńıveis

de reconhecimento conhecidos para métodos com a restrição de métodos autodescritores

em bases populares — Hollywood2 (Acima de 46%) e KTH (Acima de 94%).

Palavras-chave: Trajetórias Densas. Reconhecimento de ações humanas em

v́ıdeos. Autodescritor. Tensor de orientação.



ABSTRACT

Dense trajectories has been shown as a very promising method in the human action

recognition area. Based on that, we propose a new kind of video descriptor, calculated

from the relationship between the trajectory’s optical flow with the gradient field in its

neighborhood and its spatio-temporal location. Orientation tensors are used to accumu-

late relevant information over the video, representing the tendency of direction for that

kind of movement. Furthermore, a method to cluster trajectories using their shape is

proposed. This allow us to accumulate different motion patterns in different tensors and

easier distinguish trajectories that are created by real movements from the trajectories

generated by the camera’s movement. The proposed method is capable to achieve the best

known recognition rates for methods based on the self-descriptor constraint in popular

datasets — Hollywood2 (up to 46%) and KTH (up to 94%).

Keywords: Dense trajectories. Human action recognition in videos. Self-

descriptor. Orientation tensor. Clustering.
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1 INTRODUCTION

The human action recognition is a challenging problem in the computer vision that aims

to automatically label which action is being performed by a human in a given video. Due

to the wideness of its potential applications, this task has been drawing lots of attention

and is interest of study in the last two decades.

Most of the main methods to address this problem is focused in extracting lots of

small “visual words” (also called features) from the video and merging all the information

together using a machine learning step. This approach is inherited from the image classi-

fication problem and even some of the most common features extractor methods can be

seen as an extension of the image case, like Scovanner et al. (2007), Klaser et al. (2008),

Willems et al. (2008) and Laptev (2005). This kind of descriptor generalizes the problem

of finding interesting features in the space to the space-time coordinates.

Among other space-time strategies, dense trajectories (WANG et al., 2011) and its

related works (JIANG et al., 2012) (JAIN et al., 2013) (WANG; SCHMID, 2013) has

shown the greatest recognition rates in the area, therefore being one of the most promising

methods to address this problem. The dense trajectories method works by extracting

stable points of each frame and tracking them in the subsequent frames, using an optical

flow algorithm. Each one of these displacement vectors provided by the optical flow

becomes a trajectory when concatenated. Many features like the histogram of oriented

gradients (HOG)(DALAL; TRIGGS, 2005), histogram of optical flow (HOF)(LAPTEV

et al., 2008) and motion boundaries histogram (MBH)(DALAL et al., 2006) are extracted

along the trajectory.

While the process of gathering lots of small visual words together using a machine

learning step seems to achieve a very good recognition rate in most works, we rather

not use it. The computed final descriptor for each video is based on information that

is assembled using all features from all videos in the training database. We believe that

is possible to achieve good recognition rates using only the information provided by the

video itself — namely self-descriptor.

There are already good methods to achieve a good recognition rate for some simple

databases like KTH (SCHULDT et al., 2004) and Weizmann (BLANK et al., 2005), for
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example. But most of its videos are made in a synthetic scenario with controlled environ-

ments. When taking into account more complex databases like Hollywood2 (MARSZA-

LEK et al., 2009) and HMDB51 (KUEHNE et al., 2011) which are based, respectively, in

scenes extracted from Hollywood movies and personal public video recordings, we have a

different scenario, because even modern methods have some difficulties dealing with intrin-

sic computer vision problems like bright variation, camera movement and other problems

discussed in the Section 1.4 and presented in both databases.

1.1 MOTIVATION

Human action recognition in videos has countless potential applications. There could be

mentioned, among others:

� Automatic Surveillance Systems: nowadays, most of the surveillance systems still

lie on the human capability to look for a set of cameras and find suspect activities.

Such systems, not only are too expensive (as you need to pay a dedicated employee

just to fulfill that task) but, are also a point of failure because it is based in the

human visual perception. Humans can perform a limited number of tasks and pay

attention to a limited number of things at the same time, whereas a computer with

enough processing capabilities can process all the data uninterruptedly;

� Automatic content-based video retrieval: the recent growth of the internet along

with cheaper digital portable cameras and social media popularity, are leading to a

massive increase in the number of videos published by the users on the web. Along

with that, comes the problem of indexing and retrieving such content. Nowadays,

most of the videos are retrieved using annotation labels, or keywords, usually made

by the video owner itself. However, a better approach to address such problem could

by performed by a system that automatically find out actions performed in the video,

without any user interference. Thus, solving problems like missing keywords and

different keywords to describe the same action;

� Human-computer interface: over the years and with the technology progress, the

human-computer interaction systems have been improved as well. Nowadays, there

are systems capable of recognizing gestures and facial expression satisfactorily. How-

ever, this is still an area under development and modern researches in the human
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action recognition area might be used as a base to improve those interaction systems,

and make them faster and easier for humans;

� Children and elderly monitoring: a system able to recognize human actions could

be used to support and monitoring children or elderly persons in a smart house.

Such system could be a helping hand to avoid domestic accidents and simplify daily

tasks.

1.2 PROBLEM DEFINITION

Given a set of videos from a database and a set of human actions, the problem is to find

a vector of m coefficients (or descriptor) ~v ∈ V ⊂ Rm. The vector ~v must summarize

relevant information and best describe the action performed for each video.

It is desirable to have the smallest value for m that is still able to carry information

about the action performed in the video. The smallest the dimension of the descriptor is,

the more is its power to sum up information. Ideally, if two different videos represent the

same action, then the distance between each other in the space V should be small and if

two videos represent different actions, their distance should be proportional to the actions

similarity. In real scenarios this may not always happen as descriptors from different

actions are not always linearly separable.

One of the restrictions of this work is that the method must be capable of creating a

descriptor for the video using only the information given by the video itself. In other words,

the method cannot look up for any other video information in the same database, as it is

done in the bag-of-features (BoF) (SIVIC; ZISSERMAN, 2003) and similar approaches.

Methods subjected to this restriction are classified as self-descriptor.

1.3 OBJECTIVES

The main objective of this work is to create a method to approach the human action

recognition problem, generating a new descriptor combining dense trajectories proposed

by Wang et al. (2011) with the tensor-based approach used by Perez et al. (2012). Our

hypothesis is that this new descriptor is capable of merging both movement information,

given by the dense trajectories Wang et al. (2011) and shape information from the HOG

(DALAL; TRIGGS, 2005) in a very simple but effective way.



17

The secondary objective is to propose a method to cluster trajectories based on their

shape, similar to what is proposed by Jiang et al. (2012). This method is, additionally,

capable of clustering together trajectories that have the same shape, but different direc-

tions. Doing so, we can estimate which trajectories are generate by camera movement

and separate them in a different cluster.

1.4 CHALLENGES

Just like any other field in the computer vision research area, the human action recognition

has some intrinsic challenges that should be addressed in order to maximize the useful

information extracted. For example:

� Multiple actions in one single video: one video may have more than two actions

performed in the same take. This make the task to recognizing actions even more

challenging. The descriptor for that video must summarize the information of both

actions simultaneously. An example is shown in the Figure 1.1, where a person is

driving a car and answering the phone at the same time;

� Point of view variation: the method should be able to recognize an action in despite

of variation in the camera’s point of view due to movement or zoom. For example,

Figure 1.2 shows the impact of changing the camera’s zoom between two near frames

of the same video;

� Ambiguous actions: some actions might seem very similar but, they are different.

For instance, in the KTH Database, both running and jogging videos are very

similar and sometimes, even a human could not be able to distinguish them, as

shown in the Figure 1.3. This is also called as inter-class similarity;

� Different representations of the same action: one action may be executed in lots of

different ways. For example, the “eat” action in the Hollywood 2 can be performed

in many different situations, with different features. This is also called as intra-class

variation. Another example is given by the Figure 1.4, where the same action is

performed in two different conditions, thus, is harder to match features between

those videos;
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Figure 1.1: Scene in the Hollywood 2 database where a man drives a car while answering
the phone.

(a) Zoom out (b) Zoom in

Figure 1.2: In (a) and (b) the same action performed with zoom variation, leading to a
change in the scale on both frames.

� Illumination: the variation in the illumination of the scene causes a high change

in the pixel values. For example, in the Figure 1.5, the values of intensity in most

of the pixels are very different because of the scene’s luminosity. A good method

should be able to handle those conditions;

� Partial occlusion: sometimes, an action may happen when it is not fully on the

camera’s frame or may be partially occluded by some object. For example, if one

wants to detect the action of sitting up, it is possible that the movement is not fully

captured by the camera or there’s a table in the way. But yet, it is still notable and

should be detected. Another example is shown in the Figure 1.6.

1.5 OUTLINE

The remainder of this work is organized as follows: the Chapter 2 presents works that are

related to our proposed method and classical approaches to address the same problem.
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(a) Running (b) Jogging

Figure 1.3: Different actions that look alike in the KTH database.

(a) Driving action from outside the car’s
perspective

(b) Driving action from inside the car’s
perspective

Figure 1.4: In (a) and (b), the same action is represented in very distinct ways.

(a) Darker scene (b) Lighter scene

Figure 1.5: Same action performed by the same person but with different lighting condi-
tions in the KTH database.
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Figure 1.6: Scene in the Hollywood 2 database where a kid is running in a field. The
plants are partially hiding the action.

In the Chapter 3 we present the fundamentals that contribute to the foundations of this

work. In the Chapter 4 we present a detailed description of our contributions and how

they are merged together in our method. In the Chapter 5 we present our experimental

results and the comparison with known methods in the area. In the Chapter 6 we present

our conclusion remarks and discuss the possible future works.
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2 RELATED WORKS

In this chapter, we present similar and relevant works in the area of human action recog-

nition that contributed in our work.

2.1 TENSOR BASED APPROACHES

Tensors are a powerful and robust tool that has been used in the last decade in many

different works in the pattern recognition area. In computer vision area, tensors are

largely used to compute optical flow. Recent works were proposed to use tensors as a way

to gather large amounts of data, keeping most of the relevant information and, mainly,

the relationship between them.

Yuan et al. (2010) created a new descriptor based on the covariance matrix of three

concatenated low-level features: the position of the pixel in space and time, the gradient

vector and the optical flow vector. These features are extracted on a spatio-temporal

cuboid selected using the method proposed by Dollar et al. (2005). The authors argue

that covariance matrices do not lie on Euclidean space, thus they apply a Log-Euclidean

Riemann metric to measure the distance between those visual words and later they are

quantized to form an appearance dictionary, like it is done in the BoF approach. A

similarity between this work and ours is that we also use a covariance matrix to encode

our descriptor. However, we not only use it just to represent the correlation between the

coefficients of the original vector, but as a tensor that accumulates information along the

whole video. Another similarity is that the covariance matrix in their proposed method is

generated from a concatenation between vectors that holds different source of information.

We also use this idea as we concatenate a histogram with a position point (x, y, t) before

generating the tensor.

Perez et al. (2012) proposed a method to address the human action recognition problem

combining HOG3D (KLASER et al., 2008) and orientation tensors. Each frame of the

video is divided into equally sized windows and a tensor is computed for each one of the

windows. After that, the tensor of the frame is computed by the sum of the normalized

tensors of each window. The final descriptor is the sum of all frame’s tensor. The method

shows a fairly competitive recognition rate, in despite of using a global approach (no
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Interest Points involved — all pixels are used to generate the final descriptor). Just

like our method, the final descriptor in his approach is also calculated using only data

provided by the video itself. Another similarity between his work and ours is that we

both use orientation tensors to encode the final descriptor.

Mota et al. (2012) used the projection of the optical flow on Legendre polynomials to

find its coefficients. An orientation tensor based on the computed coefficients is calculated

for each frame and accumulated through the entire video. This method uses a global

approach and enhances the power to combine information of the orientation tensor. The

authors extols the fact that the use of tensors lead to an descriptor that is independent of

the frame size and the length of the video, which is good for databases that include more

realistic videos.

Mota et al. (2013) also used orientation tensors to encode a descriptor based on

HOG3D. But, the author argues that aggregating several tensors over the time, as done

in (PEREZ et al., 2012), could lead to an isotropic tensor, which is a tensor that does

not represent a direction of the information — or all the directions equally. Thus, they

propose a method to improve the descriptor by changing the way the aggregation of the

tensors is done. In their approach, the video is split in equally sized blocks and the orien-

tation tensor computed over the HOG3D is calculated for each block. The final descriptor

is the result of the concatenation of those blocks.

Sad et al. (2013) extended the work proposed by Perez et al. (2012) by combining

multiple first order derivative estimators of the gradient in a single descriptor. The author

argue that by using multiple filters it is possible to capture different motion nuances that

characterize the movement and thus a better representation of the action performed. The

final descriptor is calculated just as it is in (PEREZ et al., 2012), but it is done multiple

times, using each derivative estimator at a time and concatenating all tensors in the end.

Mota et al. (2014) proposed a method to address the human recognition problem

combining what is proposed by Mota et al. (2012) and Perez et al. (2012). The final

descriptor is the concatenation of the tensors generated by both methods. The author

shows that aggregating different source of information provided by the HOG and the

optical flow descriptors may enhance the recognition rates in most of popular databases.

Picard and Gosselin (2011) improved the approach presented in (JEGOU et al., 2010)

by representing the descriptors as orientation tensors and aggregating them together
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around the same center. Although their work is focused in the content based image

retrieval problem, this is still a good example of how using tensors to accumulate infor-

mation can outperform other approaches based on vectors.

2.2 TRAJECTORY BASED APPROACHES

The dense trajectories proposed by (WANG et al., 2011) showed to be a good method to

discriminate local motion information in videos and led to a wide collection of inspired

works.

Jiang et al. (2012) used k-means to cluster trajectories using the displacement between

the first and last point of the trajectory. This is performed at each five frames and the

trajectories are grouped into five clusters. The author assumed that the top three largest

clusters are candidates to the dominant motion and use the mean motion of these to com-

pensate other trajectories. After that, the author uses a pairwise motion representation

to generate a visual codebook to the standard BoF approach. The similarity between this

approach and ours is that we also try to cluster trajectories to find the dominant mo-

tion. However, we do not use the displacement of the trajectory and neither the classical

trajectory shape definition to cluster trajectories, but a vector with the angle between

each two subsequent displacement vectors. We believe that we can group more similar

trajectories by doing so and our approach can keep invariability to both scale, translation

and rotation changes at the same time. More details will be given in the Chapter 4

Jain et al. (2013) improved the dense trajectory approach detailed in Section 3.7 by

decomposing visual motion into the residual and dominant motion using an affine model.

The dominant motion is assumed to be due to the camera’s motion, while the residual

motion is assumed to be due to the independent scene motions. By that, the author tried

to compensate the camera movement in the calculation of the optical flow and reinforce the

focus in the action performed. However, the author also showed that the camera motion

could not be thrown away, as it is useful as complementary information to recognize some

action categories. We use a similar idea in our approach, as we also try to separate the

trajectories made by the camera movement and also keep it as additional information. In

his work he proposed a new descriptor called Divergence-Curl-Shear that computes local

kinematic features of the optical flow along the trajectory. Unlike our approach, the final

descriptor is computed using VLAD, an extension of the BoF.
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Wang and Schmid (2013) is the current state-of-art in the field. The authors improved

the dense trajectories by estimating the camera’s motion and correcting it. They used

SURF (BAY et al., 2008) to find features points and match them in two consecutive

frames. With that information, along the dense trajectories itself, they are capable of

using RANSAC (FISCHLER; BOLLES, 1981) to estimate the homography between those

frames and assume that the transformation in made by the camera motion. To ensure

that the movement done by the human(s) in the action will not interfere in the above

steps, they use a human detector (PREST et al., 2012) and ignored the information

extracted around those areas. After calculating the camera movement, the optical flow

and, consequently, the trajectories are compensated to minimize the camera’s movement

influence in the extracted features. To extract the features, those areas around humans

previously ignored are now taking into account and the same “visual words” extracted in

(WANG et al., 2011) are now extracted around those trajectories. The final descriptor is

computed using Fish Vectors (PERRONNIN et al., 2010) and the standard BoF approach.

As we can see, most of the works are focused in eliminate or compensate the camera’s

motion. We apply the same idea here, but in a very simpler approach; no complex methods

to detect the camera’s motion is applied. Most of these recent works are also interested

in using a BoF approach to form the video’s descriptor. We are not interested in applying

it here; since we want the descriptor to be computed using only the information provided

by that video.

The presented works with the self-descriptor constraint tends to be simpler and to our

best known, they are all global approaches. Our work is the combination of both worlds.

Although the trajectories are densely extracted, we don not use a global approach because

some of the points are not considered and we still keep the self-descriptor restriction.

The result of this combination is that out method can achieve much better results in

comparison with other self-descriptor approaches and a fairly competitive rate against

BoF methods.
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3 FUNDAMENTALS

In this chapter we present the main fundamentals of this work.

3.1 HISTOGRAM OF ORIENTED GRADIENTS

HOG is a method proposed by Dalal and Triggs (2005) originally designed to address

the human recognition problem. The HOG has the power to summarize information

from a region, keeping information about its shape and appearance while achieving some

illumination invariance. HOG is basically a description about the distribution of the edge

directions in an image or region of an image.

The gradient is a vector that points to direction of maximum change in the intensity

of bright of a pixel p and is denoted by

∇~f(p) =

(
∂f(p)

∂x
,
∂f(p)

∂y

)
= (Ix, Iy) .

As we are dealing with a discrete space, the partial derivatives are approximated using

a central derivative filter. In order to extract the histogram of the gradients, they are

transformed to the polar coordinates system using

r =
√

(Ix)2 + (Iy)2

and

Θ = arcsin

(
Iy
Ix

)
,

where Θ determine the orientation of the gradient, r its magnitude and Ia is the partial

derivative in respect to a.

After all gradients of the region are computed, they are quantized in a histogram. The

vote of the gradient to a bin is its magnitude. Gradients close to the edges of the block are

downweighted with a Gaussian function. The above steps are summarized in the Figure

3.1. We can clearly see that the final histogram does not keep all the information about

the gradients but, it has the power to put together information about all gradients in a

single and smaller representation.
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Figure 3.1: Steps to compute the HOG. (a) The original image is sampled. (b) The
brightness of each pixel in the window. (c) The gradient of each pixel, pointing to the
direction of greatest change of brightness. (d) Each gradient of the window quantized in
a histogram using the polar coordinate system. (e) The final histogram.

Klaser et al. (2008) proposed an extension to the classical HOG method, the HOG3D.

This new method also takes into account the derivatives in the time dimension. That

said, the gradient now is defined as

∇f(p) =

(
∂f(p)

∂x
,
∂f(p)

∂y
,
∂f(p)

∂t

)
= (Ix, Iy, It) ,

or transforming to spherical coordinates:

r =
√

(Ix)2 + (Iy)2 + (It)2,

with

θ = arccos

(
It
r

)
and

φ = arctan

(
Iy
Ix

)
,

where θ ∈ [0, π] and φ ∈ [0, 2π]. To quantize the final histogram, Klaser et al. (2008)

proposed to approximate the bins of the histogram to a polyhedron with congruent faces,

or platonic solid as described in the Figure 3.3. A straighter way to quantize the gradients

is to divide θ and φ into equally spaced bins. This approach leads us to a mapping similar



27

Figure 3.2: An illustration of how bins are quantized using spherical coordinates. In the
left, a representation of how a vector can be positioned. In the right a representation of
how equally spaced bins looks.

Figure 3.3: Steps to compute the HO3D (KLASER et al., 2008).

to longitudes and latitudes on a globe. This is a much simpler approach but, there is a

problem related with the singularity on the poles of the globe. Using this approach, the

resulting histogram size is

hsize = bins.

(
bins

2

)
,

where bins represents the number of subdivisions in the histogram. This happens because

in the spherical coordinate system, the variables to encode the position of a bin θ and φ are

in [0, π] and [0, 2π] intervals, respectively. Thus, to keep them equally spaced, θ requires

the half of the φ subdivisions. The Figure 3.2 shows a representation of the process.

3.2 HARRIS DETECTOR

The Harris detector is a method to extract interest points proposed by Harris and Stephens

(1988) based on the principle that corners are good interest points. This is reliable due to
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(a) House

(b) Flat region (c) Edge region (d) Corner region

Figure 3.4: An illustration of different region types in an image.

the fact that the corners have a greater resistance to incorrect matching. This property

can be illustrated in the Figure 3.4. For both points A (flat region) and B (edge region),

there are many other points that would match in the same image, which does not happen

with the Region C (corner region).

To visualize this effect one may shift an observation window in every direction around

the point and compare the results. In Figure 3.4b, we can see that moving the observation

window in any direction in a flat region would lead to an unchanged sampled image. Thus,

this is not a stable region to use for matching. In Figure 3.4c, we can see that moving

the window in a perpendicular direction of the edge might lead to a change but, when

moving along the edge, there is no change in the image. In Figure 3.4d, we can see that

any direction taken by the window would still produce changes in the sampled image and

that is why corners are commonly chosen as interest points. This property is extremely

correlated with the aperture problem addressed in the Section 3.3.

In order to mathematically distinguish corners from other points in images, Harris and

Stephens (1988) proposed the use of the auto-correlation, which is in the form:

f⊗ f =
∑
I

∑
J

f(x, y)f(x+ i, y + j),

where f is the function of the image, (x, y) is the index of each pixel in window around
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the analyzed point and (i, j) is the displacement of the window.

The auto-correlation returns a high value if the displaced image is similar to the original

image in the (i, j) direction and a low value otherwise. So, if the point is in a flat region,

the auto-correlation is high in any direction (i, j) around the point. If the point is in an

edge region, there is just one direction in which the correlation is always high. If the point

is in a corner, the auto-correlation should not be high in any direction. Given that and

using the fact that minimizing the auto-correlation has the same effect of maximizing the

sum of square differences (SSD), Harris and Stephens (1988) defined the function

e(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2,

where w is a weight function, I is the intensity of the pixel, (x, y) are all possible pixels

around the point and (u, v) is the displacement of the window. Applying Taylor series in

the I(x+ u, y + v) term, we got

e(u, v) =
∑
x,y

w(x, y) [uIx + vIy]
2 ,

where Ix and Iy are derivatives in respect to x and y.

Then, the authors manipulated the equation and got the following result:

e(u, v) =
(
u v

)
M

u
v

 ,

where

M =
∑
x,y

w(x, y)

IxIx IxIy

IxIy IyIy

 .
The function e(u, v) can be seen as the equation of an ellipse with covariance matrix

M. The authors showed that by decomposing the matrix M into its eigenvalues and

eigenvectors, one could analyze the direction of maximum change of the function e, where

each eigenvector gives you the direction of the change and the corresponding eigenvalue,

the intensity of change.

Using the property mentioned above, Harris and Stephens (1988) proposed to analyze

the eigenvalues of M to define a corner. As depicted in the Figure 3.5, high values to λ1
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and λ2 indicates a high variation in both directions, and therefore that point is probably

in a corner. A high value in just one eigenvalue indicates an edge. And lower values in

both λ1 and λ2 indicates a flat region.

Figure 3.5: Eigenvalues of the matrix M. Green means it is flat. Red means it is an
edge. And blue means it is a corner.

The authors also proposed the following equation to measure the cornerness using

both eigenvalues:

r = λ1λ2 − k(λ1 + λ2)
2,

where k is a constant. If r is a negative value, the region is an edge. If r is positive and

small, it is a flat region. If r is high, it is classified as a corner.

3.3 OPTICAL FLOW

The optical flow is an estimation of the bi-dimensional apparent velocities in a sequence of

two consecutive frames. In other words, it represents the estimated apparent movement

of the scene projected in the camera. Since the basic unit of information is the brightness

of each pixel, methods to extract the optical flow have to deal with many problems. For

instance, object occlusion, homogeneous regions and large displacements.

There are already lots of proposed methods to compute the optical flow, but this is

still an open problem in active research in the computer vision, and no method has yet

acquired perfection in the task. Recent algorithms to calculate the optical flow can be

found in Baker et al. (2011).

Since one of the basic source of information in a video is the movement, the optical

flow is largely used in the human action recognition. One of the most known descriptors,

proposed by Laptev et al. (2008) uses the HOF which is computed just like the HOG
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Figure 3.6: Example of the optical flow (MOTA, 2011).

Figure 3.7: An illustration of the aperture problem (SZELISKI, 2010).

presented in the Section 3.1. Another example optical flow used in the human action

recognition is the dense trajectory method discussed in the Section 3.7, which uses an

optical flow to track points in the video to form trajectories.

One of the greatest challenges in the area is known as the aperture problem, illustrated

in the Figure 3.7. For some regions of the image, there is an ambiguity when trying to

locally estimate the displacement of a point. We try to overcome this problem using a

strategy similar to the Harris detector presented in the Section 3.2.

3.4 K-MEANS

K-means is an unsupervised classification method based on clustering. It works interac-

tively trying to group n samples in k clusters. Initially, each one of the clusters is assigned

to a random sample. The other samples are labeled based on the nearest cluster using the

Euclidean distance. In every new step, the centroid of the cluster is recalculated and the

nearest samples are labeled again, like shown in the Figure 3.8. There are many proposed

stopping criteria. The most common is to stop when no sample is labeled with a different
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(a) (b) (c) (d)

Figure 3.8: Illustration of the K-means algorithm. (a) the centroids are randomly sampled.
(b) and (c) the new centroid of each cluster is recomputed and the samples are labeled
using the nearest distance.(d) the final result of the clustering and its representation as a
Voronoi diagram.

cluster than it had in the previous step.

The k-means method is largely used in computer vision, and it is the base to compute

the dictionary of visual words in the BoF approach. The final result of the k-means can

be seen as a Voronoi diagram, where any new point is classified according to its nearest

centroid.

3.5 BAG-OF-FEATURES

BoF is a strategy inspired in the Bag-of-Words (BoW), initially applied in the content

based image retrieval and extended to the human action recognition. The BoW is a

method proposed by Baeza-Yates and Ribeiro-Neto (1999) which consists in classifying

a document based on a histogram of incidence of its words in a known dictionary, disre-

garding any semantic or structural characteristic.

A similar idea is applied in the BoF. To compute the dictionary, lots of small “visual

words” extracted from the training images or videos are quantized to form a feature space

using k-means clustering, a step known as “coding”. Each one of the clusters centroids

can be seen as a word in the standard BoW method. The final step is the “pooling”,

where an unknown image or video is represented as its word’s frequency. The Figure 3.9

has an illustration of the process. Note that the final descriptor is calculated after lots of

information from previous images or videos.
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(a) (b)

(c) (d)

Figure 3.9: Illustration of the BoF steps. (a) all visual words from the training set are
gathered together. (b) the visual words are clustered using the k-means algorithm. (c)
a new image from the testing set is analyzed and its visual words are matched in the
previously generated clusters. (d) the final descriptor is computed based on the frequency
of the incidence of each cluster.

3.6 SELF-DESCRIPTOR

Self-descriptor is a constraint about how the final descriptor is generated for the video.

As opposed to dictionary-based algorithms for human action recognition, to attend the

self-descriptor constraint a method should be able to calculate the final descriptor for the

video using only the information provided by the video itself. No outside information can

be used in the process of calculating the video’s descriptor.

This kind of approach might be good in many different situations. For example, when

there are not enough videos to represent a particular action in the training database or the

videos available for those actions does not generalize enough the action performed, those

methods that are not based in the self-descriptor approach might overfit the training data.

Additionally, methods using BoF and similar approaches do not admit well the insertion

of new videos. In such case, all descriptors from all videos must be recalculated to admit

the new video, while in the self-descriptor approach, only the new video descriptor must

be calculated.

Another advantage of using the self-descriptor approach is that it requires much less
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Figure 3.10: Dense trajectories example in a scene from Hollywood2 (WANG et al., 2011).

space in both primary and secondary memory. The secondary memory problem in the

BoF often happens because we need all visual words from all the videos to be stored before

we can cluster them. A giant amount of space might be necessary. Our experiments in

the Hollywood dataset using the default dense trajectories approach required over 700 GB

of free space. There is no such problem for the self-descriptor approach as the only space

required is the one used by the final descriptor. The primary memory space in non-self-

descriptor works becomes a problem when we need to gather all that stored visual words

and cluster them together. As we can not just put all of them in the main memory to

cluster, we need to use as much space as we can in the main memory and be constantly

accessing the secondary memory to use required data.

3.7 DENSE TRAJECTORY

The dense trajectory is a method proposed by Wang et al. (2011) that aims to acquire

motion information in videos using displacement vectors provided by the optical flow.

The final effect can be seen in the Figure 3.10. Note that there are many other works

focused in extracting different trajectories in videos (LUCAS; KANADE, 1981; SUN et

al., 2009, 2010) but only the dense trajectory method were detailed in this work, as it is

our current choice.

The first step to compute the trajectories is to sample points in the frame using a grid

spaced by w pixels. The authors argue that densely sampling points instead of extracting

them using any interest point detector results in a better coverage of foreground motion

and the surrounding context. The authors also argue that densely sampling shows a better
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result in presence of fast irregular motions. The sampling is done in different scale spaces.

The authors proposed the use of w = 5 and a scale factor of 1/√2, which means that each

space scale has the half area of the previous scale.

To avoid points in homogeneous areas and reduce the impact of errors in the optical

flow computation, the sampled points are analyzed using a criterion similar to the Harris

detector presented in the Section 3.2. The authors proposed a threshold r to eliminate

those points, calculated by the formula

r = q.max
p∈F

min(λ1p, λ
2
p),

where q is a constant, λ1p and λ2p are the eigenvalues of the structure tensor of each pixel p

in the frame F where the points are being sampled. Authors claim that q = 0.001 showed

the best results in the experiments, successfully removing homogeneous areas without

compromising the density of the sampled points.

The main idea in this criterion is to eliminate points which the smallest eigenvalue

times 1/q is not at least r, where r is computed over the maximum of the minimum

eigenvalues. As we are interested in point with both high λ1p and λ2p, analyzing only the

minimum of each for the pixel is enough. Note that although there is a criterion similar

to what is proposed on the Harris detector, this one is based on the max eigenvalue of

each frame, and not a fixed value. This approach guarantees that at least one point will

be sampled and there is flexibility when defining a threshold, which again, reduces the

chances of not sampling points densely enough. The Figure 3.11 shows an example of the

points sampled and filtered using this criterion.

To characterize the points extracted for the trajectories, we are going to refer ptj,i as

the j-th point of the i-th trajectory among the trajectories that start at the frame t. Each

point has its (x, y) coordinates. We are going to refer P t
j as the set of all points from

trajectories that started at the frame t and are currently at the frame j.

After the set P t
0 = {pt0,0,pt0,1, . . . ,pt0,i, . . . ,pt0,n−1} of n initial points of the t-th frame

are chosen, the optical flow is extracted using the algorithm proposed by Farnebäck (2003).

The optical flow is computed for all pixels in the frame but, its information will only be

used to compose the trajectories of the selected points. As the points were filtered using

an approach similar to the Harris detector, the selected points have a high probability to

be corners and the optical flow on the selected points are less likely to be affected by the
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(a) Original frame

(b) Points densely sampled and filtered

Figure 3.11: An example of the dense trajectories method to extract the initial points.

aperture problem and therefore, they are more reliable.

With the computed optical flow Ωt = (ut, vt) of the frame t, the next set of points

P t
j+1 is calculated using P t

j :

P t
j+1 =

{
ptj+1,i | (xtj+1,i, y

t
j+1,i) = (xtj,i, y

t
j,i) + (M ∗ Ωt)|xtj,i,ytj,i

}
, (3.1)

where M is a median kernel and i is an index for each initial point. Which means that

the next point of the trajectory will be calculated using the displacement of the optical

flow in the current point. Filtering the optical flow with a 3× 3 median kernel is a good

alternative to minimize the impact of any noise. The authors argue this is better than

interpolation, because it completely remove noises that otherwise would be just smoothed

out.

The next points are calculated using the same Equation 3.1 and after l frames, where

l is the size of the trajectory, we have a set of points {P t
0, P

t
1, P

t
2, . . . , P

t
l } that contains all

points from all trajectories that started together at the frame t. The authors proposed a

fixed size l to overcome trajectories that drift way from what it was supposed to be. They
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empirically proposed 15 as a good value to l. With the set of all points, we can define

each trajectory as

Sti =
{
pt0,i,p

t
1,i, . . . ,p

t
l,i

}
,

that is the i-th trajectory among the trajectories that started at the frame t. Semantically,

the trajectory represents the sequence of the tracked positions of the first initial point.

Trajectories with low displacement are removed in a post-processing stage, because

they do not represent any motion information. Similarly, trajectories with sudden high

displacement are also removed, because they tend to be erroneous. All these steps to find

out trajectories are repeated for each space scale of the video. New points to compose

trajectories are extracted at each new frame but, if the point matches with an already

existent trajectory, it will not be taken into account to avoid overlapping.

The traditional dense trajectory proposed by Wang et al. (2011) also include a step

where visual words are extracted along the trajectories. One of the descriptors is the

trajectory itself and is calculated using the set of vectors that connect two points in

subsequent frames. This is given by the formula

V i
t = {∆pt0,i,∆pt1,i, . . . ,∆ptl−1,i},

where ∆ptj,i = (ptj+1,i − ptj,i) = (xtj+1,i − xtj+1,i, y
t
j,i − ytj+1,i). The trajectory descriptor is

then normalized with the sum of all vector’s length so trajectories representing the same

movement in different scales can be matched using

∥∥V i
t

∥∥ =
(∆pt0,i,∆pt1,i, . . . ,∆ptl−1,i)∑l−1

j=0

∥∥∆ptj,i
∥∥ .

Also, HOG, HOF and MBH (DALAL et al., 2006) descriptors are extracted along the

trajectories. The final visual word is composed by the concatenation of those descriptors

for each frame of the trajectory, extracted in a spatio-temporal cuboid. An overview can

be seen in Figure 3.12. The final step is to compute a codebook using BoF with those

visual words and compute the final descriptor based on the histogram of the visual words.

We will not get any deeper in this subject because in this work we only apply the method

to extract trajectories and we do not use any of these descriptors, but a new descriptor

by our own, proposed in the Section 4.1.
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Figure 3.12: Overview of the dense trajectory method. On the left, points are extracted
on a grid in each scale. In the right, trajectories are composed by tracking the initial
points for l frames using the optical flow (WANG et al., 2011).

3.8 ORIENTATION TENSORS

Tensors are extensions of the vector and matrix concept to higher orders. They have

the power to describe relations between vectors, scalars, and other tensors and they are

independent of a coordinate system. A special case of tensor is the orientation tensor.

It is a square symmetric positive-definite matrix. A vector ~v can be represented as an

orientation tensor using T = ~v~vᵀ. The resulting tensor is a ~vsize × ~vsize matrix, but we

only need to keep the information about its upper triangular coefficients and because of

that, the size required to store this tensor is equals to

Tsize = ~fsize ×

(
~fsize + 1

2

)
.

While vectors keep the information of one direction, orientation tensors can keep the

tendency of many directions. In the Figure 3.13 we can see the different shapes that a

3-dimensional second-order tensor can have. The same idea is extended to higher dimen-

sions.

The orientation tensor has two interesting properties explored in this work. The

first one is the power to keep information about the relationship of the original vector’s

coefficients. This might come in handy when we want to combine different sources of

information. For example, our descriptor is the result of the concatenation between the

histogram of cross products with the coordinates in space and time of that trajectory. So,

our tensor is capable of, not only encode information from the original sources but also
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Figure 3.13: An illustration of different tensors (KINDLMANN, 2004).

their relationship. In other words, if there is a correlation between that information, the

tensor will highlight it. The second property about orientation tensors explored in this

work is that they are capable of accumulating information when summed up. So, when

we sum two different tensors, the resulting tensor accumulates information about both,

without increasing its dimension. But there are limitations, as pointed out by Mota et al.

(2013), adding up too much information in a single tensor could lead it to a shape where

there is no dominant direction — an isotropic tensor.
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4 PROPOSED METHOD

Our proposed method has two main contributions. The first one is the cross product

descriptor, which is based on the histogram of the cross product between the local trajec-

tory displacement vector and the gradients in a surrounding window. The cross product

descriptor is capable of encoding both motion and shape information in a single repre-

sentation. The second main contribution is a strategy to cluster trajectories based on

their shape. We create a vector for each trajectory that represents its shape regardless its

direction. By applying k-means to cluster those vectors, we aggregate trajectories that

represents the same type of movement in the same cluster.

In this work we use the dense trajectory method proposed by Wang et al. (2011)

to extract trajectories. Note that our approach is not bounded to the dense trajectory

method and can be implemented on top of any trajectory method. As the dense trajec-

tories showed great results in many different works (JIANG et al., 2012; WANG et al.,

2012; JAIN et al., 2013; WANG; SCHMID, 2013), we chose it as our trajectory extractor.

4.1 THE CROSS PRODUCT DESCRIPTOR

Each trajectory Sti extracted using the dense trajectory can be described as a series of

points
{
pt0,i,p

t
1,i, . . . ,p

t
l,i

}
, where i is the index of that trajectory, l is the size of the

trajectory and t the frame of the first point. The trajectory’s displacement vectors are

then determined using the difference between two consecutive points, that is ∆ptj,i =

(ptj+1,i − ptj,i). We refer those displacement vectors as ~vj,i, which means that this is the

j-th vector of the i-th trajectory. For simplification purposes, we are going to disregard

the index t, but all the above steps are done for every initial frame t.

To compute our descriptor for a trajectory Si we need to find a new vector field Cj,i of

cross products. This is calculated finding, for each point pj,i of the trajectory, the cross

product between the trajectory displacement vector ~vj,i in that point and each 3D gradient

vector in a window around pj,i. As the trajectory displacement vector is composed by a

vector in an optical flow field, it is expected to have two components (u, v). In other to

be able to compute the cross product, we need the vector to lie in R3. Therefore, we add

a third component to it, to represent the displacement of a trajectory in respect to the
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Figure 4.1: Overview of the cross product descriptor calculation. The picture in the left
represents the frame with a trajectory tracked in a point. The picture in the middle
represents the 3D gradient field (green vectors) in a surrounding window around that
point and one displacement vector of the trajectory (red vector). The picture in the right
is a representation of how the final vector field looks after the cross product between the
trajectory displacement vector and each one of the gradients is computed.

time, which is one frame, making it (u, v, 1).

Thus, the vector field representing the cross product between the trajectory vector

and the gradient around that point can be computed using

Cj,i =
{
~cq |q ∈Mpj,i

,~cq = ~vj,i × ~gq
}
,

where q is a point in the window Mpj,i
around the point pj,i and ~gq is the 3D gradient in

the point q. An overview is presented in the Figure 4.1.

The cross product between two vectors has two main properties. The first one is that

the resulting vector is perpendicular to both vectors directions. This is an interesting

property in our case because the resulting vector encode some information about the

original vectors directions. The second one is that its magnitude is related to the sine

of the angle between the original vectors. If they are parallel, the magnitude is 0 and if

they are perpendicular the magnitude is equal to the product of the vectors magnitudes.

This is also a very interesting property in our case, since it encodes the tendency of the

trajectory and the gradient the move together.

The resulting vector Cj,i field is then quantized into a 3D histogram using a spherical

coordinate system, the same way it is done in the HOG3D approach presented in the

Section 3.1. We denote ~hi,j as a vector corresponding to the histogram of the cross

product of the trajectory i in its j-th displacement vector.

The second step is to sum all histograms along the same trajectory into a single

histogram ~gi of all cross products in the trajectory i:
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~gi =
l−1∑
j=0

~hi,j.

The resultant histogram is normalized using the L1-norm and the final vector of in-

formation is created by concatenating the histogram ~gi to the average position of (x̄, ȳ, t)

of all points of the trajectory in frame t:

~fi = (~gi, x̄i, ȳi, t).

The next step to generate the descriptor is to transform it to an orientation tensor form.

This is done multiplying the vector by its transpose, given by the formula

Ti = ~fi ~f
ᵀ
i .

Finally, each trajectory i has one tensor Ti created from the histogram of cross prod-

ucts and the spatio-temporal localization of that trajectory.

4.2 CLUSTERING TRAJECTORIES BY SHAPE

Dealing with camera motion is one of the most frequent problems in the human action

recognition field. To address this problem, we propose a method to cluster trajectories

based on their shape. Our hypothesis is that clustering trajectories by shape makes it

possible to separate trajectories that are created by the camera’s motion and that they

are characterized by having the highest angle between each connected local displacement

vector. Those trajectories are not discarded, as they are still source of information but,

separated from the rest. Additionally we also expect that, even when there is no camera

movement, separating trajectories with different shapes might improve the distinguishing

power of our descriptor.

In order to distinguish the trajectory by its shape, we create a vector of angles associ-

ated with each on of the trajectories. The angles are calculated between two consecutive

displacement vectors of the trajectory. The vector ~a of the trajectory i is created using

~ai = (a0,i, a1,i, . . . , al−2,i) ,
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Figure 4.2: Illustration of how the vector of angles is computed.

where

aj,i = cos−1
(

~vj,i · ~vj+1,i

‖~vj,i‖ . ‖~vj+1,i‖

)
. (4.1)

The Equation 4.1 gives us the smallest angle between two connected displacement

vectors in the trajectory. The resulting number is between 0 and 180 and the higher

the number is, straighter is that connection. The Figure 4.2 shows an example of how

the vector is computed for a specific trajectory. After that, we use k-means to cluster

the trajectories using each of its angles vector. The mean of all angles of each cluster

is then used to sort the cluster and determine how straight that group is. This step is

required because the k-means does not give us any information about the clusters, just a

symbolic label. Classifying the clusters using this metric increase the chance that most

of the camera movement will rely on the first cluster as it tends to be straighter than

trajectories generated by other movements. Also, trajectories are clustered in the same

range in time. In other words, trajectories that have started at the frame t are clustered

together. This enforces the need to sort the clusters to match them between trajectories

that have started in different frames.

The idea of using the angles to cluster trajectories comes from the fact that clustering

only the original trajectories vectors cannot deal with trajectories created by the zoom

of the camera. An illustration of this effect can be seen in the Figure 4.3. In 4.3a

trajectories created by the zoom of the camera are clustered mostly by directions, and

not by shape. But as those trajectories do not have the same direction, they have a

tendency to be clustered in different clusters. In 4.3b, we can see that using the vector

of angles, trajectories are clustered by their actual shape, and not by their directions and

thus, most of the trajectories generated by the camera movement are clustered together.
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(a) Clustering using trajectory vectors

(b) Clustering using vector of angles

Figure 4.3: An illustration of two different approaches to cluster trajectories. The trajec-
tories are clustered in three clusters and the color of the trajectory indicates which cluster
it is associated with. Red indicates the cluster with higher mean angle, blue and green
indicates lower mean angles.

4.3 CALCULATING THE FINAL DESCRIPTOR

In order to generate the final descriptor, we use both cross product descriptor and shape-

based clustering approaches. An overview of our method is illustrated in the Figure 4.4.

First, trajectories are extracted using the dense trajectory approach. For each group

of trajectories that start in the frame t, we apply the proposed strategy to cluster based

on shape and sort using the mean angle of all trajectories in each cluster. The trajectories

are now separated in k different groups and the tensor of the histogram of cross product

Tt
i is calculated for each trajectory i. The next step is to sum all trajectory’s tensor that

belongs to the same cluster, therefore creating a new tensor for each cluster, using

Rt
b =

∑
i

Tt
i | g(i) = b,

where Rt
b is the tensor of the cluster b ∈ [0, k − 1] in the frame t, and g is a function

that determines to which cluster a trajectory i belongs, after the trajectories are already

clustered by k-means. These tensors are then normalized using the L2-norm to keep its

directions discarding the magnitude. This step is required to ensure that clusters with
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Figure 4.4: Overview of our method. Trajectories that start in the frame t are clustered
by their shape into k clusters. The figure shows an example for k = 3 clusters.

higher population will not generate a bigger tensor, compared to other clusters. After

that, we have k tensors for each frame in the video. Since clusters are ordered using a

metric, we can match tensors from different frames together. Thus, all tensors from the

same cluster b from different frames are summed using

Sb =
∑
t

Rt
b.

Finally, we have k tensors for the whole video. Each tensor Sb is again normalized to

keep only its directions and the final descriptor ~d is a vector resultant of the concatenation

of all tensors, or

~d = (S0,S1, . . . ,Sk−1) .
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5 EXPERIMENTAL RESULTS

To evaluate the applicability of our descriptor in the human action recognition problem,

we chose two of the most used datasets in the area: KTH and Hollywood2. All clustering

steps are done using a sequential k-means1 implementation with the stopping criterion of

500 iterations or less than 0.01% of change in the cluster membership from last iteration.

We used the default dense trajectory method2 proposed by Wang et al. (2011) to extract

trajectories. Our data is classified using a non-linear support vector machine (CORTES;

VAPNIK, 1995), using Gaussian and Triangle kernel and an one-against-all strategy for

multiclass classification.

All our tests ran under a machine with a IntelrXeonrE5-4607 CPU. The machine

counts with 32 GB of RAM and our method is not optimized for parallelism. In the best

results, our descriptors were computed with an average of 0, 343 frames per second for

the Hollywood2 database, and an average of 1, 38 frames per second for the KTH dataset.

This time computation includes all steps required to generate the descriptor, including the

dense trajectory extraction and both cross product and trajectory clustering strategies.

5.1 DATASETS

5.1.1 KTH

This database was proposed by Schuldt et al. (2004) and is composed of 6 actions: walking,

jogging, running, boxing, hand waving and hand clapping. These actions are performed

several times by 25 people in four different scenarios: outdoors, outdoors with camera

zoom, outdoors with changed clothes and indoors. All sequences are taken with homoge-

neous backgrounds and a static camera. The KTH dataset has a total of 2391 sequences,

divided into a training set (8 people), a validation set (8 people) and a test set (9 peo-

ple). The classifier is trained with the training set, the validation set is used to optimize

the parameters of the classifier and the final recognition rate is based on the number of

correctly predicted actions for the test set. The Figure 5.1 shows a sample of the videos

from the dataset.

1Available at http://www.ece.northwestern.edu/˜wkliao/Kmeans/index.html
2Available at http://lear.inrialpes.fr/people/wang/dense trajectories
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Figure 5.1: Illustration of KTH actions (SCHULDT et al., 2004).

Figure 5.2: Illustration of the Hollywood2 actions (MARSZALEK et al., 2009).

5.1.2 HOLLYWOOD 2

The Hollywood2 dataset was proposed by Marszalek et al. (2009) and is composed by 12

actions: answering phone, driving car, eating, fighting, getting out of car, hand shaking,

hugging, kissing, running, sitting down, sitting up, and standing up. The sequences are

made by video clips extracted from 69 different Hollywood movies and many challenges

like camera movement, illumination conditions and background clutter are applied. There

are a total of 1707 sequences in the dataset, which are divided in a training set with 823

samples and a test set with 884 samples. The classifier is trained with the training set

and the final recognition performance is measured by the mean average precision (mAP),

which is the mean of the percentage of correctly predicted actions of the test set for each

class. An example of the sequences is shown in the Figure 5.2.
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5.2 PARAMETERS

There are some parameters of our method that should be considered. For instance:

� Number of clusters: k represents the number of clusters the trajectories are grouped

to. When k = 1, it means that our approach to cluster trajectories is not applied

and thus a single tensor for all trajectories is computed for the whole frame and

consequently for the entire video. There is a trade-off between increasing and de-

creasing the k. Low values for k may lead to different movement types grouped

in the same cluster. Higher values for k, not just increase linearly the size of the

final descriptor but there also is a chance to cluster similar movements in different

clusters;

� Histogram bins: bin represents the number of subdivisions in the histogram of cross

product. Low values to bin do not acquire the information we need and lead to a

histogram that is not able to capture the cross product field direction’s tendency.

High values to bin do not summarize well the information and does not match well

cross product fields that are similar but slightly different. Also, increasing the bin

increases quadratically the size of the final descriptor so, higher numbers should be

avoided;

� Window size: M ×M is the size of the window around each point of the trajec-

tory where the cross product is calculated. A small window size may not capture

important features along the trajectory and a big window size may overlap between

nearby trajectories and acquire redundant or too much information that should be

discarded. Due to the complexity of our parameter space, we fixed the window size

to a default value of 16 × 16, based on preliminary experiments. We are going to

analyze the impact of changing the window size using our best result in subsections

5.3.1.6 and 5.3.2.5;

� Sampling stride: w defines the space between points that compose the sampling

grid for new trajectory points. In other words, points that are candidate to start a

trajectory are sampled in a grid spaced by w pixels in both x and y dimensions. A

lower number for stride increases the coverage of the method, because more points

are being sampled. The downside is that more trajectories are extracted and more
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computation power is required to process that information. Also, sampling lots of

points does not necessary increase the amount of meaningful information, as the

trajectories windows tend to overlap. Unless otherwise stated, the value for the

stride is 5, as it is done in the original dense trajectory work (WANG et al., 2011);

� Cornerness of the point: the parameter q of the dense trajectory defines the mini-

mum value for the maximum eigenvalue of a point so it can start a trajectory. A

higher q increases the pressure to the candidate points, so the cornerness measure,

defined by the Harris detector should be higher and more corner-like points are

selected. In opposition to that, a lower q allows more points to be tracked but

increases the chance of getting points that rely in flat or edge regions and are less

reliable. Just like the dense trajectory work, our default value for q is 0.001;

� Maximum scale depth: dense trajectories are extracted in multiple scales individu-

ally to achieve some scale invariance. Increasing the maximum scale grants a better

coverage of the method but also increases its computational complexity. The default

value for the maximum scale depth in our methods is 5. The factor of each scale is

f =1 /√2, which means that each new scale has half the area of the previous scale;

� Trajectory size: l defines for how many frames the initial point will be tracked to

compose the trajectory. Low values for l will generate short trajectories that does

not encode properly the executed motion. High values for the trajectory size lead

to longer trajectories that are more likely to drift from the original tracked point

and therefore are less reliable;

� Power normalization: power normalization is a technique to equalize descriptors in

order to lower high peaks on it. Peaks that are too high tend to cover information

in the lower coefficients of the descriptor. To address this problem, all coefficients

of the descriptor are powered by a number α ∈ ]0, 1[. This is the same of taking the

1/α-th root of each coefficient. By using this technique, coefficients that carry too

much energy are reduced and the low energy coefficients are enhanced. Nevertheless,

they do not lose their relationship and coefficients that are greater than others

before the power normalization are still greater after it. In our experiments we used

{0.30, 0.27, 0.25, 0.20, 0.15, 0.10} for α;
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� SVM kernel: we use both Triangle and Gaussian kernel on the SVM classifier in our

experiments.

5.3 EXPERIMENTS

5.3.1 KTH DATASET

For the KTH dataset we tested the following range of parameters: l ∈ {5, 10, 20}, bin ∈

{(6 × 3), (10 × 5), (16 × 8), (18 × 9), (22 × 11), (24 × 12)}, k ∈ {1, 2, 3, 5, 10}, w ∈ {2, 5}

using the factorial experiment, which means that every permutation of those parameters

is considered. To measure the impact of each parameter, we calculate the mean, standard

deviation, minimum and maximum recognition rate for each one of them. These values

are computed using the results from the permutation of all parameters, but individually

fixing each value of analyzed parameter.

5.3.1.1 Number of clusters

To analyze the impact of the number of clusters in our method, we computed the mean

recognition rate in the KTH dataset for each value of k. The result can be seen in the Table

5.1. One may see that not applying the proposed clustering strategy for the trajectories

(i.e. k = 1) decrease the average recognition rate by a reasonable amount. In average,

the best configuration was for k = 5.

Table 5.1: Recognition rate analysis for each number of clusters used to group trajectories
in the KTH dataset. Each value of k was tested 432 times with different parameters.

k Min Max Avg SD
1 87.10% 93.50% 91.56% 1.32%
2 88.00% 93.70% 91.85% 0.99%
3 88.90% 93.90% 92.03% 0.86%
5 87.50% 94.10% 92.19% 0.94%
10 87.80% 93.90% 92.17% 0.92%

It is interesting to notice that the KTH dataset does not contain much camera’s

movement. Even so, clustering the trajectories shows the best result in average.This

is an indication that our clustering method is not just a good strategy to separate the

trajectories made by the camera, but also to separate different movement types. Also,
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as the k goes higher, the number of information on each final tensor is smaller. In other

words, the information that would be stored in just one tensor using k = 1 is distributed

over more tensors for the video, as the value of k is increased. That might be a sign that

using just one tensor for the whole video might end up with an isotropic tensor, where

there is no dominant direction.

5.3.1.2 Number of bins

The Table 5.2 shows the comparison between each value of bin. We can see that by using

even a very small 6× 3 value for bin, there is still a fair mean recognition rate. This is an

evidence that the cross product descriptor has a good discriminative power. Additionally,

using bin = 10× 5 showed a very good result, comparable with the highest bins. This is

an important feature because it shows that the cross product descriptor is suitable even

when a smaller descriptor is necessary. For instance, the descriptor size for both 6 × 3

and 10× 5 are respectively 231 and 1431 coefficients, using k = 1. We can see that there

is a tendency to increase the mean recognition rate together with the number of bins and

bin = 24× 12 showed the best results for the dataset.

Table 5.2: Recognition rate analysis for each number of histogram bins in the KTH
dataset. Each value of bin was tested 360 times with different parameters.

bin Min Max Avg SD
6× 3 87.10% 92.60% 90.35% 1.10%
10× 5 89.60% 93.90% 92.12% 0.70%
16× 8 90.40% 93.60% 92.27% 0.63%
18× 9 90.00% 93.70% 92.32% 0.67%
22× 11 90.00% 94.00% 92.23% 0.62%
24× 12 90.50% 94.10% 92.48% 0.68%

5.3.1.3 Trajectory’s size

The Table 5.3 shows the comparison between each value of l. The value l = 10 shows a

slightly better result than l = 5 in average but it is not enough to assert which trajectory

size would be ideal for our method. Our results for l = 20 showed that there is a tendency

to decrease the recognition rate for long trajectories. This is expected because trajectories

that are too long tends to drift from the their real locations.
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Table 5.3: Recognition rate analysis for each trajectory’s size in the KTH dataset. Each
value of l was tested 720 times with different parameters.

l Min Max Avg SD
5 87.10% 93.70% 91.88% 1.11%
10 88.20% 94.10% 92.13% 0.95%
20 87.50% 93.90% 91.87% 1.05%

5.3.1.4 Stride

The Table 5.4 shows the comparison between both values of w. The default value for

the stride is 5 but, we also tested a second value for w to analyze its response in the

recognition rate. This step was necessary because the resolution for the KTH dataset

videos is very small and thus, some videos had very few trajectories created. Reducing

the gap between the sampled points is the strategy applied to increase the number of the

trajectories. We can see that, although w = 2 really shows a better recognition rate in the

average, it is not that significant — about 0.035. Thus, w = 5 would be a better option

if faster computation is crucial, as a bigger stride means fewer points computed and less

trajectories tracked.

Table 5.4: Recognition rate analysis for each sampling stride in the KTH dataset. Each
value of w was tested 1080 times with different parameters.

w Min Max Avg SD
2 87.50% 94.10% 91.98% 1.01%
5 87.10% 93.90% 91.94% 1.08%

5.3.1.5 Power normalization and kernel method

The Table 5.5 shows the comparison between both values of the power normalization and

the kernel for the SVM. We can clearly see that the triangle kernel presented a better

result in the classification task than the Gaussian kernel. Also, 0.2, 0.25 and 0.27 showed

to be the best value for the power normalization, among the chosen values.
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Table 5.5: Recognition rate analysis in the KTH for each normalization coefficient and
each kernel applied. Each value of α was tested 360 times with different parameters. Each
kernel was tested 1080 times with different parameters.

α Min Max Avg SD
0.3 88.00% 94.00% 92.02% 1.05%
0.27 87.50% 94.10% 92.16% 1.03%
0.25 87.50% 93.90% 92.20% 1.00%
0.2 88.10% 93.90% 92.16% 0.97%
0.15 87.80% 93.70% 91.91% 0.99%
0.1 87.10% 93.10% 91.30% 0.96%

kernel Min Max Avg SD
triangle 88.30% 94.10% 92.17% 0.96%
gauss 87.10% 94.00% 91.75% 1.09%

5.3.1.6 Analysis of the best result

The Table 5.6 shows our best result for the KTH dataset. The parameters are k = 5,

bin = 24 × 12, l = 10, w = 2, α = 0.27 using a triangle kernel. The overall recognition

rate is 94.1%. In the confusion matrix we can see the classes Boxing, Hand Clapping,

Hand Waving and Walking achieved a very good recognition rate. Most of the wrong

predictions are concentrated mutually between Running and Jogging and between Walking

and Jogging. This is expected because in the KTH dataset, those movements are very

similar and, for as much as we want the descriptor to be able to complete differentiate

them, sometimes there is an intersection in the actions performed that are just impossible

to separate.

Table 5.6: Confusion matrix for our best result for the KTH dataset. The recognition
rate is 94.1%.

Box HClap HWav Jog Run Walk
Box 98.6% 1.4% 0% 0% 0% 0%

HClap 1.4% 98.6% 0% 0% 0% 0%
HWav 1.4% 1.4% 97.2% 0% 0% 0%

Jog 0% 1.4% 0% 87.5% 6.9% 4.2%
Run 0% 0% 0% 16.7% 83.3% 0%
Walk 0% 0% 0% 0.7% 0% 99.3%

In the Figure 5.3 we analyze the impact of modifying each one of the parameter in our

best result. In every case, the default values for our best configuration are kept, changing



54

only the parameter we are interested in. In the Figure 5.3a we can see that increasing k

improved the recognition rate until k = 5 and dropped for k = 10. In the Figure 5.3b

we vary the values for bin. In general, there is a tendency to improve the recognition

rate as bin increases but, even for small values our method is still has a fair performance.

The trajectory size l is evaluated in the Figure 5.3c and l = 10 showed as the best result,

approximately 0.5% higher recognition rate than l = 5 and l = 20. In the Figure 5.3d we

can see the impact of the varying the stride. For the best result, changing w showed a

great difference. The value w = 2 is about 1% higher in the recognition rate than w = 5.

We can see in the Figure 5.3e that the kernel chosen to classify the data had a very

significant impact in our best result. The triangle kernel showed an approximately 1.5%

greater result than the Gaussian kernel. The Figure 5.3f shows the impact of changing the

power normalization coefficient. α = 0.27 showed the best result overall but α = 0.25 has

a comparable recognition rate. For last, the Figure 5.3g shows that changing the window

size from its default value does not lead to great changes in our method’s recognition rate.

5.3.2 HOLLYWOOD2 DATASET

For the Hollywood2 dataset we tested the following range of parameters: l ∈ {5, 10, 15},

bin ∈ {(6× 3), (10× 5), (16× 8), (22× 11), (24× 12), (26× 13)}, k ∈ {1, 2, 3, 5, 10} using

the factorial experiment, which means that every permutation of those parameters is

considered. Just like the experiments in the KTH dataset, we measure the impact of each

parameter, fixing each one of its values and varying all the other parameters.

5.3.2.1 Number of clusters

The Table 5.7 shows the impact of changing the number of clusters in the Hollywood2

dataset. Analyzing the average values for each value of k, we can presume that increasing

the number of clusters has a positive impact in the recognition rate. But looking at the

maximum values for each parameter, we can see that all values for k except k = 1 reached

a good recognition rate in the database. The value for k with the best mean average

precision is 10. Although increasing the number of clusters shows a very good result, one

should analyze whether it is feasible or not. Increasing the number of clusters linearly

increases the final descriptor size. This is also why we did not test any further values for

k.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.3: Impact of parameters variation in the best result for the KTH dataset.
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Table 5.7: Recognition rate analysis in the Hollywood2 dataset for each number of clusters
used to group trajectories. Each value of k was tested 216 times with different parameters.

k Min Max Avg SD
1 26.70% 45.00% 39.54% 3.60%
2 29.00% 46.10% 40.92% 3.23%
3 29.30% 46.10% 41.20% 3.20%
5 30.10% 46.30% 41.43% 3.12%
10 29.90% 46.10% 41.63% 3.25%

5.3.2.2 Number of bins

We measure the impact of different bins on the Hollywood2 dataset in the Table 5.8.

Just like the KTH dataset, we can see that increasing the number of subdivisions in the

histogram have a positive effect in the recognition rate. In average, the value for bin that

showed the best result is 26× 13. Increasing it too much would lead to a final descriptor

that is too big to the required application. For example, each tensor using a histogram

with bin = 26 × 13 plus its spatio-temporal information (x, y, t) has 58311 coefficients.

While the same tensor, using bin = 10× 5 has only 1431 coefficients.

Table 5.8: Recognition rate analysis for each number of subdivisions in the histogram in
the Hollywood2 dataset. Each value of bin was tested 180 times with different parameters.

bin Min Max Avg SD
6× 3 26.70% 42.20% 35.33% 3.20%
10× 5 35.00% 45.40% 40.18% 2.07%
16× 8 37.50% 45.60% 41.68% 1.72%
22× 11 39.10% 46.10% 42.64% 1.48%
24× 12 38.80% 46.00% 42.73% 1.56%
26× 13 38.70% 46.30% 43.11% 1.53%

5.3.2.3 Trajectory’s size

The trajectory size showed as a very important parameter in our method for the Holly-

wood2 dataset. The Table 5.9 shows the mean average precision for each fixed trajectory’s

size. The value l = 5 clearly shows a better performance over other values.
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Table 5.9: Recognition rate analysis for each trajectory’s size in the Hollywood2 dataset.
Each value of l was tested 360 times with different parameters.

l Min Max Avg SD
5 26.70% 46.30% 41.32% 3.52%
10 27.50% 45.30% 40.62% 3.30%
15 27.70% 45.40% 40.89% 3.23%

5.3.2.4 Power normalization and kernel method

The impact of the power normalization and the kernel method on the Hollywood2 dataset

can be seen in the Table 5.10. We can see that α = 0.20 together and the triangle kernel

shows the best mean recognition rate in the database. As using the power normalization

in the descriptor with α = 0.2 is the same of taking the 5-th root of each coefficient,

having such low values for α shows that our final descriptor is probably carrying peaks

on it.

Table 5.10: Mean recognition rate in the Hollywood2 for each normalization coefficient
and each kernel applied. Each value of α was tested 180 times with different parameters.
Each kernel was tested 540 times with different parameters.

α Min Max Avg SD
0.3 26.70% 43.50% 39.07% 3.82%
0.27 28.20% 45.00% 40.45% 3.80%
0.25 29.60% 45.40% 41.22% 3.74%
0.2 32.90% 46.30% 42.09% 3.13%
0.15 34.90% 45.50% 41.85% 2.32%
0.1 34.90% 44.90% 40.98% 1.98%

kernel Min Max Avg SD
triangle 41.37% 26.70% 46.30% 3.92%
gauss 40.51% 31.60% 45.40% 2.63%

5.3.2.5 Analysis of the best result

The Table 5.11 shows the best recognition rate achieved by our method in the Hollywood2

dataset. The results were obtained by using k = 5, bin = 26× 13, l = 5, w = 5, α = 0.20

and the triangle kernel.

In the Figure 5.4 we can see the impact of changing the parameters for our best result.

Changing the value for k in the Figure 5.4a shows that when k = 1 and our strategy
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Table 5.11: Average precision for each class of Hollywood2 for our best configuration.
The mean average precision is 46.3%.

Action APhone DCar Eat FPerson GetOutCar HShake
AP(%) 26.5 85.2 59 58 29.8 32.3
Action HPerson Kiss Run SDown SUp StandUp
AP(%) 24.3 48.3 66.1 54.3 19.6 52.8

to cluster trajectories is not applied the mean recognition rate decreases for a reasonable

amount. The best result was achieved with k = 5 but, other values for k still reaches

a good performance. The Figure 5.4b shows that increasing the number of bins in the

histogram has a positive effect in the final recognition rate, although it tends to stabilize

after bin = 22 × 11. The trajectory size is evaluated in the Figure 5.4c and l = 5 shows

the best result over l = 5 and l = 15. We can see in the Figure 5.4d that the chosen

kernel also had a very significant impact in our best result. The triangle kernel showed

an approximately 1.25% greater result than the Gaussian kernel. The Figure 5.3e shows

the impact of changing the power normalization coefficient. α = 0.2 showed the best

result overall. The Figure 5.4f shows that the recognition rate in function of the window

size for the Hollywood2 dataset. Note that using a window of 12× 12 improved the best

result by 0.2%, which is a significant improvement. Unfortunately, we could not perform

experiments with the same parameters used with the 16× 16 due to time limitations.

5.4 COMPARISON WITH PREVIOUS WORKS

In this section we compare our best results with the state-of-the-art in literature. To

compare our results, we need to take into account that most of the methods are not

restricted to the self-descriptor constraint and use approaches similar to the BoF. That

means that their final descriptor for each video is calculated using the information of all

videos merged together. In the Table 5.12 we present a comparison between our best

results and these works.

We can see that, among self-descriptor works, our method shows the best performance

for both KTH and Hollywood2 datasets. For the KTH, we achieve a recognition 0.8%

better than the previous best result for self-descriptor methods and a comparable result

against dictionary-based methods. For the Hollywood2, we improved the best result for
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Impact of parameters variation in the best result for the Hollywood2 dataset.
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Table 5.12: Comparison with state-of-the-art for KTH and Hollywood2 datasets. The
best results of our method were obtained with 16× 16 and 12× 12 window size for KTH
and Hollywood2, respectively.

KTH Hollywood2
Dictionary-based Methods

Wang et al. (2011) 94.2 58.2
Kobayashi and Otsu (2012) 95.6 47.7

Wang et al. (2012) 95.3 59.9
Jain et al. (2013) 62.5

Wang and Schmid (2013) 64.3
Self-descriptor Methods

Perez et al. (2012) 92.0 34.0
Mota et al. (2013) 92.5 40.3
Sad et al. (2013) 93.3 41.9

Mota et al. (2014) 93.2 40.3
Figueiredo et al. (2014) 87.7 34.9

Our method 94.1 46.5

self-descriptor methods by 4.4%. We believe this great improvement comes from the fact

that the Hollywood2 is a challenging dataset as it contains lots of camera movement and

many different scenarios. In this particular situation, our method to cluster trajectories

can separate those movements quite well, which is not done in the previous self-descriptor

works. The same impact can not be seen in the KTH dataset because it does not contain

much camera movement and the background is very homogeneous. In despite of the great

improvement for the Hollywood2, we can see that our method is still not able to reach

the current state-of-start methods that are based on a dictionary of visual words (BoF,

VLAD, Fisher Vector, etc.).
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6 CONCLUSION

In this work, we propose a method to calculate a descriptor for videos, based on the

histogram of the cross products between trajectories and 3D gradients. We also propose

a strategy to cluster trajectories based on their shape. Both contributions have improved

the recognition rate in two known datasets, achieving, to our best knowledge, the highest

recognition rate among self-descriptor methods and a fairly recognition rate compared

with dictionary-based methods.

Our results showed that for the Hollywood dataset, the best setup can achieve 46.3%

in the mean average precision, using 10 trajectory’s clusters, trajectories with 5 frames

long and 26 × 13 subdivisions in the histogram of cross product. For the KTH dataset,

the best setup can achieve 94.1% using 5 trajectory’s clusters, trajectories with 10 frames

long, 24× 12 subdivisions in the histogram of cross product and sampling trajectories in

a 2 pixel spaced grid.

Due to the wideness of our parameter space, the window size parameter M was initially

fixed on 16 × 16. We used the best result found with this configuration to analyze the

impact of changing the window size for both databases. Our results showed that other

values for M does not have a strong impact the final result. At the last moment of

our work, we performed tests with the window size 12 × 12 in the Hollywood2 dataset,

achieving 46.5%. Due to the dissertation’s deadline we could not compute the recognition

rates varying parameters as we did with the 16 × 16 window. This result shows that

further experiments are necessary to explore the parameter space. However, we believe

that the experiments using 12 × 12 will not be significantly higher than the exposed in

this work.

One suggestion to future works is to cluster all trajectories from the whole video just

one time. This is different to the strategy to cluster trajectories applied in this work.

In our method we cluster trajectories that start in the same frame. This is a good idea

because our strategy to match clusters from different frames using the mean of its angles

may not always work. For example, consecutive frames with very different motion patterns

will end up to be summed in the same tensor. The problem with clustering all video’s

trajectories just one time is that it would require a bigger space in the main memory. The
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descriptors are extracted along trajectories and it would be necessary to store them before

clustering. Thus, to address this problem a new data structure and clustering method

using the secondary memory should be taken into account.

An important investigation that can be done in the future is to analyze different

strategies to quantize the 3D histogram. Currently, we quantize θ and φ to equally

spaced bins, which is known for having a singularity on the poles showed in the Figure

3.2. We apply this strategy here because, when quantizing the HOG3D, previous works

showed no difference between this and the platonic solids approach proposed by Klaser

et al. (2008). This behavior may not occur with the cross product descriptor due to

a different distribution over the bins. For example, the cross product could have more

vectors matching in the bins located at the poles than the HOG3D, therefore being more

affected by the known singularity in those areas. Further analysis can show the impact of

changing the quantize method for the cross product descriptor.

In our results we noticed that very low values for the power normalization showed

to be the best results. This might be an effect of dealing with tensors in the Euclidean

space, instead of the Log-Euclidean space. We tried to apply the Log-Euclidean in our

tensors as done by Yuan et al. (2010). But we had numerical precision problems on log

and exponential functions on higher numbers. Thus, further studies using Log-Euclidean

are recommended.
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<http://dx.doi.org/10.1016/j.cviu.2007.09.014>.

BLANK, M.; GORELICK, L.; SHECHTMAN, E.; IRANI, M.; BASRI, R. Actions as

space-time shapes. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE Inter-

national Conference on, 2005. v. 2, p. 1395–1402 Vol. 2. ISSN 1550-5499.

CORTES, C.; VAPNIK, V. Support-vector networks. Mach. Learn., Kluwer Academic

Publishers, Hingham, MA, USA, v. 20, n. 3, p. 273–297, set. 1995. ISSN 0885-6125.
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ISSN 0167-8655. Dispońıvel em: <http://dx.doi.org/10.1016/j.patrec.2013.08.008>.

MOTA, V. F.; PEREZ, E. A.; VIEIRA, M. B.; MACIEL, L. M.; PRECIOSO, F.; GOS-

SELIN, P. H. A tensor based on optical flow for global description of motion in videos. In:

Proceedings of the 2012 25th SIBGRAPI Conference on Graphics, Patterns

and Images, 2012. (SIBGRAPI ’12), p. 298–301. ISBN 978-0-7695-4829-6. Dispońıvel
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A tensor motion descriptor based on multiple gradient estimators. In: Proceed-



ings of the 2013 XXVI Conference on Graphics, Patterns and Im-

ages, 2013. (SIBGRAPI ’13), p. 70–74. ISBN 978-0-7695-5099-2. Dispońıvel em:
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