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RESUMO

Malhas com restrições no comprimento das arestas são úteis para diversas aplicações,

especialmente para simulações de processos qúımicos e f́ısicos. Este trabalho apresenta

um método iterativo para remalhar uma malha triangular arbitraria de variedade 2 em

uma malha com o comprimento de todas as arestas dentro de um intervalo de restrição

definido pelo usuário. O método usa operações estelares para ajustar a quantidade de

vértices e triângulos no modelo e para melhorar a valência dos vértices. Ele também aplica

o operador Laplaciano em um espaço paramétrico local para melhorar a distribuição de

vértices sobre a superf́ıcie. Propõe-se, uma otimização não linear, aplicada localmente,

para os casos em que a malha é praticamente regular. Perdas geométricas são evitadas

pela realização de uma projeção sobre a superf́ıcie original. O método proposto resulta

em uma malha praticamente regular, com os vértices distribúıdos uniformemente sobre a

superf́ıcie. A dual da malha é usada em simulações de nano estruturas de carbono como

uma aplicação do método. A principal contribuição deste trabalho é uma nova abordagem

para restringir explicitamente o comprimento das arestas em um intervalo dado. Nosso

método ainda garante baixa perda global de geometria e baixo custo de memória em

comparação com métodos dispońıveis na literatura.

Palavras-chave: Método iterativo. Equalização do comprimento das arestas.

Restrição do comprimento das arestas. Parametrização local.



ABSTRACT

Meshes with constraints in the edge length are useful for several applications, spe-

cially for chemical and physical simulations. This work presents an iterative method

for remeshing an arbitrary triangular 2-manifold mesh into a mesh with all edge lengths

within an user-defined constraining interval. The method uses stellar operations to adjust

the amount of vertices and triangles in the model and for improving the valence of the

vertices. It also applies the Laplacian operator in a local parametric space to improve the

distribution of the vertices over the surface. We propose a nonlinear optimization, locally

applied, for cases in which the mesh is almost regular. Geometric losses are prevented by

performing a projection over the original surface. Our method results in a nearly regu-

lar mesh, with vertices uniformly distributed over the surface. The dual of the mesh is

used in simulations of carbon nanostructures as an application of the method. The main

contribution of this work is a new approach for constraining the edge length within an

explicitly given interval. Our method also ensures lower global geometry losses and lower

memory cost in comparison to methods available in the literature.

Keywords: Iterative remeshing. Edge length equalization. Edge length

constraining. Local parametrization.
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1 INTRODUCTION

Geometric models are essential for several computer applications, such as real time render-

ing, simulations of physical and chemical phenomena. However, as computers are discrete

machines, these models must be discretized in order to be represented on them. These dis-

crete representations are commonly named meshes, and are usually composed of vertices

and polygons which represent the original surface. This growing need for meshes leads to

the development of several techniques for mesh generation. For example, there are direct

modeling softwares (DEMBOGURSKI et al., 2013; SCHöBERL, 1997) and techniques

based on computer vision for 3D-scanning (ROCCHINI et al., 2001; VIEIRA et al., 2005).

A number of techniques like those mentioned before have been largely used for creating

meshes. Despite this, in general, meshes built with those techniques are usually not well

sampled. Besides, they may also contain polygons which are almost degenerated. A

degenerate polygon contains an internal angle equal to zero, or a repeated vertex. A model

with these characteristics rarely fits the requirements for being used in simulation methods.

On that matter, remeshing methods can improve some quality aspects of those meshes.

For this reason, development of remeshing methods becomes an interesting research field.

Defining general quality measures is not an easy task. Despite Bommes et al. (2009)

points out some commonly required quality aspects, a globally valid quality measure may

never be proposed, as it usually depends on the constraints required by each specific ap-

plication. For instance, real-time applications may require a simplification of the original

mesh, in order to improve its performance. On the other hand, physical and chemical ap-

plications (IIJIMA et al., 1991; RAPAPORT, 1996) demand several constraints capable of

guaranteeing the fidelity of the results, such as valid vertices valence (number of incident

edges), edge length in a precise interval, overall vertices distribution, angle restrictions,

and so on. Even when there is no evident requirement, an improvement on connectiv-

ity, regularity and vertices distribution may attenuate numerical errors, improving the

performance for a large array of applications.
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1.1 PROBLEM DEFINITION

Let M be an arbitrary 2-manifold triangular surface immersed in R3. This mesh M can

be divided into (V,E, P ), where V are the vertices, E the edges and P the polygons of M.

Given such a mesh and an interval [emin, emax], the problem is to generate a mesh where

every edge e ∈ E has its length constrained to the interval [emin, emax] as in Equation 1.1.

This constraint must be enforced while preserving the original topology and also fairly

preserving the original geometry.

emin ≤ |e| ≤ emax,∀e ∈ E (1.1)

There are some additional features that can be improved. As for instance, the valence

of an vertex should be 6 if it lies in the interior of a surface, and 4 if it lies on the border

(SURAZHSKY; GOTSMAN, 2003). A vertex that attends this is called a regular vertex,

by contrast if it does not attend it is named a irregular vertex. This is also an advantage

for carbon nanostructures simulations, this will be became clearly as you read the next

chapters. Also the average edge length should be as closer to emin+emax
2

as possible and

the standard deviation should be very small.

1.2 OBJECTIVES

The main goal of this work is to propose a method for edge length interval constraining

capable of preserving the topology of the input mesh, besides minimizing the geometric

distance between the output mesh and the original one. It is also essential to reduce the

amount of vertices with extremely irregular valence.

A secondary objective is to improve the distribution of vertices, polygons and angles

in trivalent meshes. Trivalent meshes are meshes in which each vertex has its valence

equal to three. This makes the processed mesh more suitable for usage as a carbon

nanostructure, for example. This is possible because we can convert the trivalent mesh

into a triangular by computing its dual, and after we process the triangular mesh we

compute the dual again. Additionally, an analysis of the behavior of the resulting meshes

in physical simulations shall be presented.
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2 RELATED WORKS

As mentioned before, geometric models are needed for a huge number of applications.

In general, however, the available meshes do not meet the requirements for specific ap-

plications. Thus, a variety of surface remeshing methods have been proposed. These

methods can be divided mainly into two categories: global parametrization (2.1) and ex-

plicit remeshing (2.2). The first category is more formal, and usually has a finer control of

the final mesh. However, computing a global parametrization is complex and consequently

slow. On the other hand, explicit remeshing applies simpler operations directly over the

mesh until some stopping criterion is reached. This is faster than the global parametriza-

tion, but does not present any guarantee that the final objective will be reached.

2.1 GLOBAL PARAMETRIZATION APPROACH

Global parametrization methods usually create a bijective map of the surface in R3 onto

a R2 disk-like surface. However, creating a global parametrization presents a series of

drawbacks. For instance, the result greatly depends on the parametrization strategy.

Besides, in order to compute a global parametrization the model has to be homeomorphic

to the disk. As an arbitrary model may not be homeomorphic to the disk, a graph cut

algorithm must be used to open the model in a plane. As a result, these methods depend

as well on the cut scheme.

Despite these drawbacks, there are several works using this strategy in an effort to

create remeshing algorithms. For example, the work by Bommes et al. (2009) uses a

scheme called N-Symmetric fields (RAY et al., 2008) to build a parametrization, in an

effort to create a highly regular quadrangular mesh. This method presents good results,

but it is quite complex and computationally expensive, as it requires solving a integer

mixed system of equations. Even though this work is not directly interested in edge

lengths or trivalent meshes, the work of Pampanelli (2011) uses it to produce a high

quality trivalent mesh. This trivalent mesh may be used for physics simulations or for

generating a regular triangular mesh by simply computing its dual.

Although the work of Huang et al. (2011) has another goal, it also uses the parametriza-

tion proposed by Ray et al. (2008). It focuses on obtaining a mesh in which the angle
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between two arbitrary edges is approximately 60 degrees. Moreover, this method requires

a set of feature lines in order to compute the N-Symmetric field. These feature lines can

be either given by the user, or estimated by the algorithm. This estimation also has a

high computational cost. This work is not directly concerned with edges lengths, but its

restrictions lead to a mesh where almost all lengths are equal.

The work presented by Pietroni et al. (2010) is able to create an isometric mesh, but it

also requires a set of feature lines. As stated before, estimating this set is computationally

expensive. Additionally, this work generates a mesh where all edges lengths tend to be

equal.

The drawbacks of global parametrization and its usual poor computational perfor-

mance were already mentioned in the beginning of the section. As a direct effect of

that, these methods usually cannot be used for geometrically or topologically complex, or

even large, models. As our work deals with such models, we chose an explicit remeshing

approach.

2.2 EXPLICIT REMESHING APPROACH

Explicit remeshing methods usually make use of local/global operations for adjusting the

mesh until it reaches some kind of stopping criteria. These methods are commonly faster

than methods based on global parametrization. As a consequence, there are plenty of

methods based on this approach. For instance, Botsch and Kobbelt (2004) propose a

method based on local operations followed by global relaxations. This strategy is some-

what like ours, but it cannot be used when the desired edge’s length mean is far from the

original length average.

The work of Surazhsky and Gotsman (2004) presents a method for creating a suitable

mesh for morphing. In order to achieve such a mesh, it first tries to equalize all triangle’s

areas. This equalization leads to an uniform distribution of vertices, though the triangles

may be almost degenerated. So it alternately performs angle smoothing and weighted

angle-improving edge flips. Although this work is not interested in lengths of edges, its

method leads to an almost uniform edge length distribution. This method presents good

results, but it can only be used in planar meshes. It cannot be used for constraining the

edges lengths either.

Vorsatz et al. (2003) presents another very interesting work, which uses a set of local



19

operations combined with relaxations. These relaxations occur in a local parametric

space. This allows it to overcome the main drawbacks of the global parametrization, while

preserving the ease of working in a 2D space. Even though this method is not directly

concerned with edges lengths, it also requires an interval for them, but this interval is

used for controlling the desired mesh resolution. The interval in their work also has to

fulfill the condition emax ≥ 2emin. Our work uses the key idea of local parametrization,

but we overcome this interval limitation.

For the problem of edge length equalization, an explicit remeshing method was pro-

posed by Peçanha et al. (2013). In an effort to accelerate its convergence, this algorithm

creates a priority list for the edge split and edge collapse operations presented in Section

3.5. Another important contribution is the division of each iteration into four steps. Each

step has a well defined goal. The first step adjusts the amount of vertices and polygons

over the mesh, while the second step improves the connectivity of the mesh. Then, the

third one uniformly distributes the vertices over the surface. Finally, the last one attenu-

ates the geometric distance to the original surface. Our method uses this elegant division

as well as the priority list proposed. Plus, differently from Peçanha et al. (2013), we also

make use of the priority list during the second step. We made advances in the third step

as well.

Our previous works (HAUCK et al., 2014, 2015) were the firsts in which edges lengths

were explicitly constrained into a given interval. We also proposed a new measure of error

used either as a post-processing step (HAUCK et al., 2014) or included in later iterations

as a replacement for the well known Laplacian filter (HAUCK et al., 2015). The method

developed by (HAUCK et al., 2015) was later used by Silva (2014) for modeling carbon

nanostructures.

In this dissertation the method presented in (HAUCK et al., 2015) is improved in two

different ways. Firstly, we propose a classification scheme for the edge flip operation. In

possession of this classification, a new priority list is built and the edge flip operations

occur in accordance with it. Finally, we make use of a local parametric space for the

Laplacian filter whenever it is possible. This allows the Laplacian filter to become simpler

while its effectiveness is increased, as will be discussed in Chapter 5.
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3 FUNDAMENTALS

For a better understanding of this dissertation, some concepts and definitions must be

elucidated. As this work uses polygon meshes for representing 2-manifold surfaces, a

briefly description of N-manifolds, surfaces, surface representation and polygon will be

presented. We will also discuss some stellar operations used by our method, namely the

edge flip, edge collapse and edge split operations. Other topics to be discussed include

parametrization schemes and the Laplacian operator. Even though this method is based

on explicit remeshing, it locally uses a parametrization for improving the Laplacian op-

erator. In order to clarify the notation used to represent vertices in this work, we use U

when the vertex is on the parametric space and V otherwise.

3.1 N-MANIFOLD

An N-manifold is a space where the neighborhood of each point can be approximated by

an euclidean space of dimension N (GUILLEMIN; POLLACK, 1974). This work focuses

on 2-manifold spaces. More precisely, it focuses on 2-manifold surfaces immersed in the

Euclidean space of dimension 3, commonly known as R3.

3.1.1 SURFACE

A surface is a 2-manifold space immersed in R3. However, this work is interested only in

compact orientable surfaces. A surface is called compact if it has a finite area. In addition,

a surface is orientable if it has two sides. Although it is not intuitive, there are surfaces

which are not orientable. A classical example is the Möbius strip, depicted in Fig (3.1).

This surface can be obtained by giving a paper strip a half-twist before connecting its two

ends, thus forming a loop.

3.2 SURFACE REPRESENTATION

Among the ways in which a surface can be represented, we can point out the parametric

and the implicit forms. Parametric surfaces are represented by a vectorial function f :

R2 → S : R3. The function f maps the two-dimensional parametric space Ω ⊂ R2 onto the
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Figure 3.1: The Möbius strip, an example of a non-orientable surface (KUSHNER et al.,
2007).

surface S immersed in R3. On the other hand, in the implicit representation, the surface

is represented by the zeros of a function F (x) = 0, where x ∈ R3. Despite the elegance

of these two forms of representation, a complex surface usually cannot be represented by

an unique function. In order to represent these complex surfaces, the domain must be

divided, defining a separate function for each piece of the domain. These functions only

need to approximate the surface locally, so they can be simpler than another one which

approximates the surface globally. In this work, surfaces are divided in triangles and a

linear function is used for locally approximating the surface. To do so, it uses polygon

meshes, which will be detailed in the next section.

3.2.1 POLYGON MESHES

As computers are discrete machines, continuous surfaces must go through some sort of

discretization process in order to be represented in computers. Nowadays, the most com-

mon approach is to represent surfaces as polygon meshes. Figure 3.2 shows how polygon

meshes may be used to represent real objects with high fidelity.

A polygon mesh is a simple representation for surfaces, where the surface is locally

approximated by planar polygons. The mesh is structured into sets of faces, edges and

vertices. Each vertex represents a point in the space. An edge is a connection between

two vertices, and a polygon, also known as a face, is a planar closed set of edges. In

addition, the polygons are usually (but not always) convex due to the simplicity of convex

polygons.
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Figure 3.2: The real bunny object, and its polygon mesh representation using the Graphite
renderer (ALICE, 2000-2012).

The vast majority of applications, including this one, focus on triangular meshes. This

makes sense, since the triangle is the simplest polygon which defines a plane. Plus, since

three points are needed for defining a plane, a triangle is the only polygon which defines it

without ambiguity. In addition, convex polygon meshes may be converted into triangular

meshes without great effort by a process called triangulation.

This work also benefits from another property of triangular meshes: the dual of a

triangular mesh is a trivalent mesh, which has several applications in chemical and physical

simulations. Examples of these applications will be presented in Chapter 6.

3.3 DUAL MESH

Given a 2-manifold mesh, its dual is another 2-manifold mesh with the same topology.

Each vertex of the primal mesh is represented by a polygon in the dual and, likewise,

the polygons of the primal mesh are represented by vertices in the dual mesh (TAUBIN,

2001).

The number of vertices of a polygon on the dual mesh corresponds to the valence of

its correspondent primal vertex, e.g. a vertex with valence 3 forms a triangle in the dual,

while one with valence 6 forms a hexagon. This allows us to deal with triangular meshes,

more common and easy to handle, instead of directly processing trivalent meshes to model

carbon nanostructures.
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3.4 REMESHING

Given an input mesh M, a remeshing method is one capable of generating a new mesh

M′, which fairly represents the original mesh M while at the same time improving some

quality criteria of M (BOTSCH et al., 2010). There is not a precise criteria for defining

when the mesh M′ fairly represents M. Even though each application may use its own

measure of similarity between M′ and M, some criteria are used more often. These criteria

may be geometric, topological, or even based on keeping some key vertices unchanged.

For the quality aspects, in an analogous way to the similarity aspect, each application

can also define its own quality measure for being improved. Although Bommes et al.

(2009) enumerates some commonly used criteria, these quality aspects depend more on

the application than the similarity ones. Thus, a quality aspect which is essential in an

application may be useless in another one. This dissertation is mainly concerned with the

edges’ length and the valence of the vertices, as stated in Section 1.2.

3.5 STELLAR OPERATIONS

There are several kinds of operations for changing the mesh’s structure. Stellar operations

are a subset of these operations which preserve the mesh’s topology. They can be divided

into three groups in accordance with how they change the amount of faces. If an operation

increases the amount of faces, it is called a refinement operation. However, if the amount

of faces diminishes, the operation is classified as a simplification. Otherwise it is a neutral

operation.

This work uses only three stellar operations. Those are edge split (refinement), edge

collapse (simplification) and edge flip (neutral). Each one of them will be addressed in

the following sections.

3.5.1 EDGE SPLIT

This operation splits an edge into two new edges. The process consists of inserting a new

vertex somewhere over the edge. Then the new vertex is also connected to its opposed

vertices. At the end of the operation, the amount of vertices increases by one, the number

of edges by three, and the amount of triangles increases by two. The operation is depicted

in Figure 3.3.
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Figure 3.3: Example of an edge split operation.

3.5.2 EDGE COLLAPSE

The collapse operation basically removes the edge being collapsed and one of its vertices.

Each edge previously connected to any vertex of the removed one is then connected to the

preserved vertex. As a consequence of this operation, an edge, a vertex and two triangles

of the mesh are removed. This operation is illustrated in Figure 3.4.

Figure 3.4: Example of an edge collapse operation.

3.5.3 EDGE FLIP

This operation has no effect in the total amount of vertices, edges or polygons, so it is

used in an effort to improve the mesh’s connectivity. As depicted in Figure 3.5, the flip

operation consists in the replacement of an edge ai, by a new one connecting the opposing

vertices of ai. In this work, we only consider a flip valid if it does not decrease too much the

minimum angle of the affected triangles. More precisely, the flip is valid if the minimum

angle after the flip is greater than half of the original minimum angle. This prevents the

creation of degenerate triangles.
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Figure 3.5: Example of an edge flip operation.

3.6 PARAMETRIC SPACES

Surfaces usually are embedded in R3, although several procedures become easily if the

surface is embedded in R2. As a large variety of procedures benefit from the surface being

embedded in a R2 space, several methods were developed for mapping a surface onto such

a space, which is also called a parametric space. Figure 3.6 illustrates a surface and its

parametric space.

Figure 3.6: The first image shows the original mesh, the second one illustrates the para-
metric space.

There are several examples of parametrization in the literature. For example, each

method in Section 2.1 uses a specific parametrization method. Even though a global

parametrization is expensive and complex, there are simple and efficient methods for

cases where the topology of the model is constrained. Those methods usually require the

topology to be homeomorphic to a disk (FLOATER, 1997) or a sphere (GOTSMAN et

al., 2003). Since locally the surface is homeomorphic to the disk, this dissertation uses the
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parametrization scheme proposed by Floater (1997) for creating a local parametrization

around a vertex.

This scheme by Floater (1997) extends the parametrization of curves, allowing it to

also handle bounded triangular surfaces. The key idea of his work is to make each point

Ui in the parametric space a convex combination of its neighbors. Thus, Ui can be written

as in Equations (3.1, 3.2):

Ui =
∑
Uj∈S

λijUj, (3.1)

∑
j

λij = 1 (3.2)

where Ui is a vertex not on the border, and Uj are the vertices of the surface S, and λij

is a non-negative weight associated to the edge connecting Ui and Uj. If the edge does

not exist, λij = 0. If we map the boundary of the surface onto a K-sided convex polygon

immersed in R2, then we can rewrite the Equation 3.1.

Ui −
∑
Uk /∈B

λikUk =
∑
Uj∈B

λijUj, (3.3)

where Ui and Uk are the vertices of the surface that are not on the border, and Uj are the

vertices on the border of the k-sided convex polygon. Since the position of Uj is known,

Equation 3.3 may be rewritten as a set of two linear systems, one for each coordinate of

Ui.

There are several weights for λij, and each one of them leads to a different parametriza-

tion. We must carefully choose the weights which mostly preserve the geometric details

of the original surface. Floater (1997) first proposes 3 weights, and, in a later work

(FLOATER, 2003), he proposes another one. Among those weights, two can be pointed

out: the shape-preserving one and the mean value. Floater (2003) argues that these two

present better results.

Both weights are a generalization of the well known barycentric coordinates. The

shape-preserving one is an average of the barycentric coordinates of the triangles contain-

ing Vi. Each triangle is composed by the vertices in the first star of Vi. These weights

depend continually (but not smoothly) on the positions of Vi and on its first start vertices.



27

Figure 3.7: The angles αi,j−1 and αi,j will be used for computing the weights λij.

The mean value weights are defined by the Equations (3.4, 3.5):

λij =
wpij∑
j wpij

(3.4)

wpij =
tan(

αi,j−1

2
) + tan(

αi,j
2

)

||vj − vi||
, (3.5)

where αi,j−1 and αi,j are the angles depicted in Figure 3.7. wpij is an intermediate weight

related to the restriction defined in Equation 3.2. Each weight λij depends smoothly on

the positions of Vi and on its first start vertices. Additionally, computing those weights

is easier and faster than computing the shape-preserving ones.

In Section 4.3.1, we will explain how this parametrization scheme is used together with

the Laplacian filter.

3.7 LAPLACIAN OPERATOR

The dispersion in Rn of a function f : Rn → R may be measured by the Laplacian operator

∇2, which is defined by Equation 3.6:

∇2f =
n∑
i=1

∂f

∂xi
. (3.6)

A mesh can be seen as a three-dimensional graph signal(TAUBIN et al., 2000), and

the Laplacian increases in conjunction with the frequency. Hence, if we find values for
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(x1 · · ·xn) which minimizes the Laplacian, we attenuate the higher frequencies of the mesh.

In this work, we focus on finding values for (x1 · · ·xn) which minimize the value of the

Laplacian operator. So we are in fact applying a low-pass filter over the three-dimensional

graph signal.

Taubin (1995) shows that the problem of smoothing a polygonal surface is equiva-

lent to minimize its higher frequencies. In order to minimize those frequencies, we can

minimize the value of the Laplacian operator, as pointed out before. To do so, a linear

approximation for the Laplacian operator, also proposed by Taubin (1995), is used due

to its simplicity. This linear approximation is given by Equation 3.7:

L(Vi) =
∑
Vj

wij(Vj − Vi), (3.7)

where Vj is each vertex in the neighborhood of Vi, wij is a weight associated to each pair

of vertices.

A simple search in the literature reveals that several formulations for the weights

wij were proposed. For instance, there are weights based on the length of the edges

(TAUBIN, 1995), on the cotangent (ALLIEZ et al., 2002) and one based on the star

number (PEÇANHA et al., 2013). This work uses the approach based on the star number.

However, in an effort to improve the Laplacian effectiveness and simplify its application,

we apply it on a local parametric space.

Figure 3.8: Application of the Laplacian filter

The Laplacian filter tends to put every vertex in the barycenter of its neighbors. This

process is depicted in Fig 3.8. Plus, the Laplacian also decreases the standard deviation
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of the edges’ length, leading to a smoother and more equalized mesh.
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4 PROPOSED METHOD

This dissertation proposes a method for generating a mesh without long or short edges.

An edge ai is classified as:

long, if |ai| > emax
,

short, if |ai| < emin

where emin and emax are, respectively, the minimum and the maximum values allowed for

the length of an edge. Although not the main goal, this method also seeks a mesh in

which the valence of each vertex is as close as possible to its ideal valence.

The input for this algorithm is a tuple (M, emin, emax, n, kl, kn, p, l, w), where M

is a triangular mesh, emin and emax are the lower and upper bounds of the constraining

interval, and n is the maximum number of iterations allowed. kl and kn are the star

numbers used, respectively, in the Laplacian filter and in the nonlinear optimizer. The

parameter p defines the number of iterations before the method updates the mesh in

which it projects the vertices. Finally, l is a threshold used for deciding how the method

optimizes the vertices positions (Laplacian filtering or nonlinear optimization), and w is

the weight used in the parametrization, which may be the shape-preserving one or the

mean value. After each iteration, if the mesh has fewer long and short edges than the

currently best mesh, we save it. We also save the mesh if it has the same amount of long

and short edges, but a higher percentage of regular vertices.

As an implementation detail, we use the half-edge data structure to represent meshes

(WEILER, 1985). The proposed method is outlined in Algorithm 1 and in the flowchart

(Fig. 4.1). Its steps will be explained in detail in the next sections.

Figure 4.1: Flowchart showing the steps of the proposed algorithm. The algorithm stops
anytime it achieves a mesh with all edges lengths within the given interval.
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Algorithm 1: UniformRemeshing(M, emin, emax, n, kl, kn, p, l,w)

M′ = Copy(M)

m = emin+emax
2

while (short+ long) > 0 and iter < n do

if p > 0 and (iter mod p) = 0 then

M = Copy(M′)
end if
StellarOperations(M′)
CorrectValence(M′)
if CalcEdgesPercent(M′) ≤ l then

NonLinearOptimizer(M′, kn)
else

LowPassFiltering(M′, kl,w)
end if
Projection(M, M′)

SaveBestMesh(M′)
end while
if (short+ long) > 0 then

M′ = GetBestMesh(M′)
PostProcess(M′)

end if
return M′

The resulting effects of each step are depicted in Fig 4.2. For each step, excluding

the projection, one Figure representing its effects is presented. The first image shows the

original mesh, the second one the mesh after the stellar operation. The third illustrates

the application of the valence optimizer. Finally the last figure shows the effect of the

Laplacian Operator.

4.1 STELLAR OPERATIONS WITH PRIORITY LIST

The first step uses stellar operations in an effort to adjust the amount of vertices, polygons

and edges of the mesh. For an arbitrary mesh, some regions may need to be refined while

others may have to be simplified (PEÇANHA et al., 2013). Therefore, this procedure

must be applied locally.

The average edge length directly depends on the amount of vertices, edges and poly-

gons. As this average should converge to the mean of the constraining interval m, the

method must adjust these amounts in order to achieve its objectives. The resulting mesh

should have an average edge length equal to m. Thus, if the current average mi is much

smaller than m, a strong simplification is performed in a single iteration. This could lead
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(a) The original mesh. (b) The model after the application of
stellar operations. Long edges are split
while short edges are collapsed.

(c) Result of the valence optimizer
step. The valence of most vertices be-
come equal to its ideal valence, as we
can see by the amount of blue vertices.

(d) Result of the optimization step, in
which the edges are equalized. The tri-
angles become more regular, and the
length of most edges are constrained
to the interval (edges in blue).

Figure 4.2: Overview of the Adaptive Remeshing steps.

to a degenerate mesh. In order to prevent this, the method uses intermediate values for

emin and emax, which allows for smoother changes in the mesh. Those values are defined

as:

eimin, =MIN(2 ·mi,m)− emax−emin
2

,
eimax, =MIN(2 ·mi,m) + emax−emin

2

Every edge with length smaller than eimin or greater than eimax is included in a list

for later processing. As the processing order influences the result, a priority criterion

must be defined. Peçanha et al. (2013) proposes a priority list in order to guarantee the

stability of the method while improving its convergence. Finally, in order to improve the

scheme proposed by (PEÇANHA et al., 2013), this method positions both the new vertex

from the edge split operation and the remaining vertex of the edge collapse operation,
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minimizing the Equation 4.1 proposed by (HAUCK et al., 2014).

∑
Vj

(|Vi − Vj| −m)2, (4.1)

where Vi is the vertex being repositioned and Vj is a vertex connected to Vi.

4.2 VALENCE OPTIMIZER WITH PRIORITY LIST

Vertex valence plays an important role on the quality of a mesh. It also has a huge impact

on the dual mesh. For example, a vertex with valence 6 generates a hexagon on the dual

mesh, while a vertex with valence 5 results in a pentagon, and so on. Some applications

are interested in a highly regular trivalent mesh, which is the dual for the triangular

mesh, composed mostly of hexagons. For those applications, the mesh connectivity is also

decisive.

The ideal valence of a vertex may be estimated. The neighborhood of an internal

vertex can be approximated by a disk, so the angle sum must be equal to 360 degrees.

An equilateral triangle has all three internal angles equal to 60 degrees. Thus, in an ideal

scenario, the valence of each vertex should be equal to 360o

60o
. However, if the vertex lies on

the border, its neighborhood can be imagined as a half disk. In this case, two edges are

cut off, hence the ideal valence becomes 4.

An error measure for mesh valence was proposed by (SURAZHSKY; GOTSMAN,

2003). This error measure Eval is defined as in Equation 4.2:

Eval =
∑
Vi∈M

(IdealV (Vi)− V al(Vi))2, (4.2)

where Vi is a vertex that belongs to the mesh M, IdealV (Vi) is the ideal valence of the

vertex Vi , and V al(Vi) is the actual valence of Vi.

In order to improve the mesh’s connectivity, a series of edge flips may be done. How-

ever, as already mentioned, the order of each flip significantly changes the final result. In

an effort to ensure method stability, besides improving its convergence and effectiveness,

this work proposes the creation of a priority list. First, for each edge we assign a number
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Imp which is defined in Equation 4.3:

Imp = E
bf
val − E

af
val, (4.3)

where E
bf
val and E

af
val are, respectively, the error measures Eval before and after performing

the edge flip. The priority list is built taking this Imp values as reference. Edges with

higher Imp have higher priority. If two edges have the same Imp, the most distant edge

from the center of the interval has a higher priority. This ensures that edges which are

most distant from the objective are flipped earlier.

After the priority list is built, each valid edge flip operation is executed in accordance

with the list. An edge flip operation is considered valid if it simultaneously reduces Eval

and does not decrease the associated minimum angle by more than a half. This guarantees

that each flip operation always reduces the connectivity error. Plus, it also makes sure

that it does not generate a degenerate triangle. Algorithm 2 is an overview of this step.

Algorithm 2: CorrectValence(M′)

do

foreach Ai ∈M′ do

if calcValImprovement (Ai)>0 then

priorityList.Add(Ai)
end if

end foreach
SortDescent(priorityList)
foreach Ai ∈ priorityList do

if calcValImprovement (Ai)>0 then

preMinα = getMinalpha(Ai)

EdgeFlip(Ai)

postMinα = getMinalpha(Ai)

if postMinα <
preMinα

2
then

UndoEdgeFlip(Ai)

else

NFlips = NFlips+ 1
end if

end if

end foreach

while NFlips > 0;
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4.3 LOW PASS FILTER

The vertices must be uniformly distributed over the surface in order to have equalized

edge lengths. For achieving this uniform distribution, the method optimizes the positions

of the vertices by applying a Laplacian filter. As already pointed out in Section 3.7, its

application minimizes the higher frequencies of the mesh while smoothing it. However,

we do not apply the Laplacian directly. Instead, we apply it in a parametric space as

described in the following section.

4.3.1 LOCAL PARAMETRIZATION

In an effort to minimize the geometric error and maximize the effectiveness of the filter,

we must constrain the vertices over the surface during its application. The simplest way

to do this is by mapping the surface onto R2. However, this may be extremely inefficient.

So we map the kl-star of each vertex onto a disk like surface. Then, for each vertex, the

filter is applied in the parametric space.

The kl-star is homeomorphic to the disk in almost all cases, so we can apply the

method proposed by Floater (1997). Figure 4.3 illustrates a 2-star around a vertex. The

border of the vertex star is mapped onto a circle, in such a way that the length of each

edge is the same both in the parametric space and in the original surface. We use two

weights for λij, as defined in Section 3.6: the Shape-Preserving and the Mean Value. The

uniform weight and the length-based one were also implemented, but the results were

even worse than applying the Laplacian directly. In the cases where the kl-star is not

homeomorphic to the disk, the parametrization fails and the ordinary Laplacian operator

is applied.

4.3.2 LAPLACIAN FILTER

This method uses an iterative approach for applying the Laplacian filter. If a local

parametrization could be created around a vertex, it applies the Laplacian in the para-

metric space. Otherwise, it directly applies the Laplacian constrained to the tangent

plane.

This work uses the kl-star of a vertex for computing its new position. However, the

kl-star becomes extremely unbalanced when the vertex is close to the border, producing
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Figure 4.3: The 2-star around a vertex Vi. The vertex Vi is in red, the first star in green
and the second star in blue.

not so good results. Therefore, if the kl-star of a vertex contains the border, we do not use

the kl-star (Skl) directly. In order to maximize the balance, we use a kli-star as defined

in Equation 4.4:

kli = min{Star(Vj)},∀Vj ∈ B ∩ Sikl, (4.4)

where kli is the maximum star number for the vertex Vi, Star(Vj) is the star in which Vj

lies, and Vj is a vertex located simultaneously on the border (B) and in the kl-star of the

vertex Vi (Sikl). Although this restriction constrains the compression effect close to the

border, it cannot eliminate the effect completely.

A secondary effect of this restriction is the constrainment of the vertices located over

the border. This is a result of the fact that the kli of a vertex on the border is 0. This

may be a problem, since those vertices cannot be moved to a better position. Thus, we

propose another strategy for repositioning these vertices. For each vertex Vi on the border,

a quadratic curve interpolating the two edges of the border containing Vi is computed.

The vertex Vi is then repositioned over this quadratic curve, minimizing Equation 4.1, the

same one used for the stellar operations.

Algorithm 3 presents an overview of the aforementioned step.

4.4 NONLINEAR OPTIMIZER

After some iterations of the algorithm, the Laplacian operator has its effectiveness greatly

reduced. This is specially true in regions with a high curvature. Those regions cannot
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Algorithm 3: LowPassFiltering(M′, k,w)

foreach Vi ∈M′ do

kStar=getKStar (Vi,k)
if ComputeParametrization(kStar,w) then

fat = 0
V p
i = 0

foreach Vj ∈ kStar do

V p
i = V p

i +
V pj

2star−1

fat = fat+ 1
2star−1

end foreach

V p
i =

V pi
fat

V ′i =Computed3dPosition(V p
i )

else
V ′i = 0
foreach Vj ∈ kStar do

V ′i=V ′i+
Vj
star

fat=fat+ 1
star

end foreach

V ′i =
V ′i
fat

Di = V ′i -Vi
Di = Di -projection (Di,Ni)
V ′i = Vi +Di

end if

end foreach
foreach Vi ∈M′ do

if Vi ∈ B then

BorderOptimizer(Vi)
else

Vi = V ′i
end if

end foreach

be corrected by a simple operator like the Laplacian. Hence, a new strategy is required

for obtaining further improvements in those regions. A specific optimization for edge

length equalization is proposed in (HAUCK et al., 2014, 2015). This optimization is

computationally expensive, so we must apply it following a local scheme. A new priority

list of edges is created, and this new optimization is applied to the most troubling edges

and to the region around them.

To support this nonlinear optimization procedure, Hauck et al. (2014) propose an error
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measure for a region, as defined in Equation 4.5:

Errora =
∑
Vi

∑
Vj

(|Vi − Vj|2 −m2)2, (4.5)

where Vi are the vertices in the region, Vj are the vertices connected to Vi, and m is the

center of the given interval.

If Errora is minimized, the lengths of the edges become closer to m. However, since

the vertices displacements have three degrees of freedom, the local geometry may suffer a

huge loss. Thus, we constrain those displacements to the tangent plane. In order to do so,

we compute an orthonormal base for each vertex Vi using the normal vector in Vi. This

local base is defined as < Ti, T
′
i , Ni >, where Ti and T ′i are the directions over the tangent

plane, and Ni is the normal direction. Using this base we can write the displacement of

each vertex Vi as defined in Equation 4.6

Di = αi · Ti + βi · T ′i + γi ·Ni (4.6)

where αi and βi are the displacements over the tangent plane, and γi is the displacement

in the normal direction. Since we want to constrain the displacement to be over the

tangent plane, we must set γi = 0. So we can write a new error measure in which the

only variables to be minimized are αi and βi.

Errorb =
∑
Vi

∑
Vj

(|Vi + αi · Ti + βi · T ′i − (Vj + αj · Tj + βj · T ′j)|2 −m2)2, (4.7)

where both αj and βj are set to zero when the index j does not exist. The error defined

in Equation 4.7 can be minimized without significant geometric losses.

Similarly to the stellar operations step, the order in which the troubling edges are

processed affects the final result. Considering that some geometry is lost each time we

run this optimization, we want to remove all troubling edges by optimizing as few regions

as possible. Troubling edges are classified in accordance with the amount of long and short

edges present in their neighborhood. The neighborhood is the knl-star of the edge, and

knl is a parameter of the method. Applying the optimization to regions containing more

long and short edges may reduce their total amount quicker. Thence, we create a new

priority list, with the priority pj of each edge being defined as pj = nlj+n
s
j . In this relation,
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nlj and nsj are, respectively, the amount of long and short edges in the neighborhood of an

edge Aj. Ultimately, each edge is processed in accordance with its priority.

This nonlinear optimization was first used as a post processing step (HAUCK et al.,

2014), and finally as a replacement for the Laplacian operator in later iterations (HAUCK

et al., 2015). Despite this step is used as it is in (HAUCK et al., 2015), we do not fix

the star number in which the optimization takes place. Instead, this is a new parameter

for the method and its effects will be further analyzed in Chapter 5. This nonlinear

optimization also has a drawback for vertices over the border. If it optimizes a vertex on

the border, the vertex will certainly be moved outside. So, to preserve the border, we do

not optimize vertices over it. If a troubling edge contains a vertex on the border, we run

the same optimization presented in Subsection 4.3.2.
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4.5 PROJECTION

Following the previous steps, some vertices may be positioned outside the original surface

M. In order to prevent geometric losses, those vertices must be projected onto M. Al-

though the projection of a surface onto another surface seems easy, it is in fact a problem

of high complexity (BOTSCH et al., 2010).

Peçanha et al. (2013) proposes a low-cost method, which achieves good results when

the two surfaces are close enough. This method to project a vertex Vi onto M finds the

closest vertex to Vi. The vertex Vi is then projected onto every triangle which contains the

closest vertex. This generates a list of projections {P1 · · ·Pn}, and we select the projection

Pj which presents the smallest distance to Vi to be the final projection.

This dissertation extends the above method, as the k closest vertices are selected,

instead of only the closest one. The method projects the vertex Vi onto every triangle

which contains at least one of the k closest vertices. It also creates a list of projections,

projecting the vertex Vi onto the projection Pj which presents the smallest value for

|Vi − Pj|. This cannot find the optimal solution for every case, but it improves the

approximation. In our tests, the projection improves as k increases until it reaches the

value 5. Thus, in order to guarantee that the best projection is selected, we overestimate

k setting it to 10. We also now consider the sum |Vi−Pj|+
∑

Vk
|Vi−Vk|−|Pj−Vk|, where

Vk are the vertices connected to Vi. This adds some information about the neighborhood

of the vertex in the projection, which also improves the process.

The mesh Mp in which the projections are performed may be updated over the iter-

ations. In order to control how often Mp is changed, the algorithm uses the parameter

p. At every p iterations, the projection mesh is replaced by the current mesh M′. This

relaxes even more the mesh, improving the convergence. However, the geometric error

also increases, as the mesh is being projected onto a mesh Mp which is progressively more

distant from the original mesh M. If minimizing the geometric distortions is desired, p

must be set to 0 so the mesh Mp is never replaced.

The projection procedure is detailed in Algorithm 4.
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Algorithm 4: Projection(M, M′)

foreach Vi ∈M′ do

Nearest = getNearest (Vi,M,10)
Projections = getProjections(Vi,Nearest)
foreach Pj ∈ Projections do

distj = |Vi − Pj|
distf = |Vi − Pf |
foreach Vk do

distj = distj + |Vi − Vk| − |Pj − Vk|
distf = distf + |Vi − Vk| − |Pf − Vk|

end foreach
if distj ≤ distf then

Pf = Pj
end if

end foreach
Vi = Pj

end foreach

4.6 POST PROCESSING

In some complex models, the defined n iterations may not be enough to remove all long

and short edges. In those cases, the method applies the nonlinear optimizer without

projecting the result while the amount of long and short edges are decreasing. This adds

some geometric error for each time it runs the nonlinear optimizer, but can put a large

number of edges within the interval. As a consequence, better results are found when the

method does not need to enter this step. Even though better results are presented when

the method do not use this step, in some complex models this may be the only way for

achieving the desired objective.
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5 RESULTS

This chapter presents the experimental results of the proposed method. It also ana-

lyzes the impact of each parameter of the method on the results. Furthermore, observed

drawbacks of the method will also be discussed here. An application of this method for

modeling carbon nanostructures will be presented in details in Chapter 6. All tests pre-

sented here were run on an Intel Xeon(R) CPU 31220 @ 3.10GHz x 4 computer with 8GB

of RAM. The algorithm is implemented in C++, without any kind of parallelism.

In order to generate the results, we ran tests over five models. The first one is the

Bunny, which is a commonly used model, so we use it for comparison. The second is the

Fertility model. This one contains a genus greater than 0, so we use it to show how the

method behaves in such models. The third model is the Armadillo, which was chosen for

being a large model. It allows us to show how the method performs for large inputs. The

fourth one is the Hand model, used here because it contains a border. Finally, the last

model is the Octopus. This model has a variable density of vertices, along with extremely

high curvature points in its tentacles. It will be used only in Section 5.6 in order to

demonstrate a flaw case of the method. Figure 5.1 shows each model used in the tests

along with their processed version.

(a) Bunny
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(b) Armadillo

(c) Fertility

(d) Hand

Figure 5.1: These images show the original models on the left and the processed versions
on the right. The weight used in the local parametrization was the Mean Value and the
other parameters were:(1.2,1.8,150,2,2,0,0.5).
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5.1 PARAMETRIZATION AND LAPLACIAN OPERATOR

In this section, the Shape Preserving and Mean Value weights for the parametrization

are compared. The parametrization is extensively affected by the star number kl, so this

parameter was also varied for these tests. In order to analyze the impact of these param-

eters, the evolution of long and short edges for each model is plotted. For visualization

purposes, we use a log10 scale for the amount of long and short edges.

Figures 5.2, 5.3, 5.4 and 5.5 show the amount of long and short edges per iteration for

the models. Each figure presents one graph for each kl value, and each graph contains both

weights for the parametrization. Since the parametrization being analyzed only affects

the Laplacian operator, the parameter l was fixed and equals to 0.5, while the parameter

knl is equal to 2. The parameter p was also fixed and set to 0, as this represents the most

troubling scenario.
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Figure 5.2: Evolution of long and short edges per iteration for the Bunny model. The
amount of long and short edges are in log10 scale.

Results shown that, except for the Fertility model with kl = 3 (Graph in Figure 5.3b),



45

0

1

2

3

4

0 10 20 30 40
Iterations

A
m

o
u

n
t 

o
f 

e
d

g
e

s

Mean Value       Shape−Preserving       

(a) Evolution for kl = 2

0

1

2

3

4

0 10 20 30
Iterations

A
m

o
u
n
t 
o
f 
e
d
g
e
s

Mean Value       Shape−Preserving       

(b) Evolution for kl = 3

0

1

2

3

4

0 10 20 30 40
Iterations

A
m

o
u
n
t 
o
f 
e
d
g
e
s

Mean Value       Shape−Preserving       

(c) Evolution for kl = 4

Figure 5.3: Evolution of long and short edges per iteration for the Fertility model. The
amount of long and short edges are in log10 scale.

kl = 2 yields the best results. The Fertility is an easy model for refinement, without

extremely high curvature regions or borders. Therefore we can conclude that raising kl

accelerates the convergence rate for simple regions.

The Hand (Graph in Figure 5.4) model is an special case, the only model with border.

The method is not capable of achieving a mesh with all edges within the given interval.

This is explained by the additional restrictions added for preserving the border. They are

effective in preserving the geometry of the border, but constrains the method preventing

it from reach the final objective.

The comparison between Mean Value weight and the Shape-Preserving one is not

conclusive, as it depends on the model. For example, the Bunny model presents the best

results when using the Mean Value weight. On the other hand, the Fertility model presents

better results using the Shape-Preserving one. This may be explained as the Shape-
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Figure 5.4: Evolution of long and short edges per iteration for the Hand model. The
amount of long and short edges are in log10 scale.
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(a) Evolution for kl = 2

Figure 5.5: Evolution of long and short edges per iteration for the Armadillo model. The
amount of long and short edges are in log10 scale.

Preserving one maps the neighborhood of each vertex onto a plane before computing

the weights, while the Mean Value computes the weights directly. So meshes in which
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Figure 5.5: Evolution of long and short edges per iteration for the Armadillo model. The
amount of long and short edges are in log10 scale.

Table 5.1: Total time and the average time per iteration.

Model Parametrization kl Iterations (It) Total time (s) Avg. time per It (s)

Bunny Shape Preserving 2 40 279.793 6.995
Bunny Mean Value 2 30 153.630 5.121
Bunny Shape Preserving 3 44 512.660 11.651
Bunny Mean Value 3 35 204.808 5.852
Bunny Shape Preserving 4 150 2125.789 14.172
Bunny Mean Value 4 71 513.794 7.237

Armadillo Shape Preserving 2 45 1536.370 34.142
Armadillo Mean Value 2 42 1178.062 28.049
Armadillo Shape Preserving 3 150 7112.029 47.414
Armadillo Mean Value 3 112 3343.206 29.850
Armadillo Shape Preserving 4 150 10486.290 69.909
Armadillo Mean Value 4 150 4924.962 32.833

Fertility Shape Preserving 2 37 596.764 16.129
Fertility Mean Value 2 40 487.634 12.191
Fertility Shape Preserving 3 33 804.650 24.383
Fertility Mean Value 3 33 468.438 14.195
Fertility Shape Preserving 4 37 1379.940 37.296
Fertility Mean Value 4 39 697.291 17.880

Hand Shape Preserving 2 150 533.302 3.553
Hand Mean Value 2 150 348.160 2.321
Hand Shape Preserving 3 150 934.763 6.232
Hand Mean Value 3 150 444.773 2.965
Hand Shape Preserving 4 150 1605.294 10.702
Hand Mean Value 4 150 639.963 4.266

the the neighborhood of each vertex is not closer to a plane present better results with

the Mean Value weight. Additionally, as kl increases, the local parametrization area

becomes larger. This also raises the relative time spent computing the parametrization,

increasing the performance impact of changing the weights from the Mean Value to the

Shape-Preserving one as seen in Table 5.1. Even when considering the best case for each
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parametrization weight, the results are not so different, but the Mean Value is faster. For

this reason, it was used in the majority of the following tests.

5.2 NONLINEAR OPTIMIZER

This section shows the influence of parameters knl and l in the final result. To do so we

ran several test varying these parameters.

Figures 5.6, 5.7, 5.8 and 5.9 show the results for each test model. Each sub-figure

illustrates a different l, with each one of the three lines representing a different knl value.

Even though a higher l accelerates convergence, it can easily lead to a local minimum.

However, if l is too small, the method may never reach the nonlinear optimization phase

(Fig. 5.8a), preventing its convergence. The best value for l, when only the mesh’s

quality is a concern, is the lowest value in which the method can enter the nonlinear

phase. Increasing knl may slow down a little the convergence rate. Nevertheless, for some

models, a knl higher than 2 results in a local minimum. Thus, it is recommended to adopt

a knl value equal to 2.
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Figure 5.6: Evolution of long and short edges per iteration for the Armadillo model. The
amount of long and short edges are in log10 scale.

Sometimes the method presents an oscillatory behavior (for example, Figure 5.6).

This could be explained as the interaction between the nonlinear optimizer and the stellar

operations. For a better understanding, an example of the problem will be analyzed.

First, the nonlinear optimizer finds the best position for the vertices. However, some edge

still remains bigger than emax. In the next iteration, the stellar operation step split the

long edge. The nonlinear optimizer computes the best positions for the vertices again, but
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Figure 5.6: Evolution of long and short edges per iteration for the Armadillo model. The
amount of long and short edges are in log10 scale.
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Figure 5.7: Evolution of long and short edges per iteration for the Fertility model. The
amount of long and short edges are in log10 scale.

this time with the extra vertex added by the edge split. This results in an edge becoming

smaller than emin. Finally, in the next iteration the stellar operation step collapses the

short edge. Now the method has returned to the state where we started the example, as



50

2.5

3.0

3.5

4.0

0 50 100 150
Iterations

A
m

o
u

n
t 

o
f 

e
d

g
e

s

Kl−Star 2       Kl−Star 3       Kl−Star 4       

(a) Evolution for l = 0.5

2.0

2.5

3.0

3.5

4.0

0 50 100 150
Iterations

A
m

o
u
n
t 
o
f 
e
d
g
e
s

Knl−Star 2       Knl−Star 3       Knl−Star 4

(b) Evolution for l = 1

2.0

2.5

3.0

3.5

4.0

0 50 100 150
Iterations

A
m

o
u
n
t 
o
f 
e
d
g
e
s

Knl−Star 2       Knl−Star 3       Knl−Star 4

(c) Evolution for l = 2

2.0

2.5

3.0

3.5

4.0

0 50 100 150
Iterations

A
m

ou
nt

 o
f e

dg
es

Knl−Star 2       Knl−Star 3       Knl−Star 4

(d) Evolution for l = 5

Figure 5.8: Evolution of long and short edges per iteration for the Hand model. The
amount of long and short edges are in log10 scale.

the extra vertex was removed with the edge collapse.

In order to have a better understanding of the impact of l over the quality of the

meshes, the histograms of the edges lengths are depicted for each model in Figure 5.10.

Those histograms evince that lower values for l present better results than higher values,

except for the Hand model. This is expected because the method spends more iterations

improving regions in which the edges are already within the interval. For the Hand model,

in addition, the method changes the border during those iterations. As the border has

several constraints for preserving the geometry, when a long or short edge appears, those

changes cannot always be undone.
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Figure 5.9: Evolution of long and short edges per iteration for the Bunny model. The
amount of long and short edges are in log10 scale.

5.3 PROJECTION

This section presents the results for different values of p. The results are analyzed taking

into consideration the convergence and the fidelity of the mesh. In order to compare

the differences between two surfaces, Cignoni et al. (1998) proposes an error measure

called Hausdorff distance. As the projection is used to minimize the distance between

the original and the processed one, the Hausdorff distance is used to measure how the

parameter p affects the distance between them. For computing the Hausdorff distance,

the software MeshLab (CIGNONI et al., 2008) was used.

Table 5.2 shows the Hausdorff distance, the number of iterations performed and the

percentage of regular vertices for each model, only varying the parameter p. As the method

for computing the Hausdorff distance uses a Monte Carlo approach, the Hausdorff max

value may decrease even when p increases, however the Hausdorff root mean square (RMS)
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(a) Histogram of the Bunny model with l = 0.5 (left) and l = 5 (right)
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(b) Histogram of the Armadillo model with l = 0.5 (left) and l = 5 (right)
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(c) Histogram of the Fertility model with l = 0.5 (left) and l = 5 (right)
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(d) Histogram of the Hand model with l = 0.5 (left) and l = 5 (right)

Figure 5.10: Distribution of edge lengths in the models after processing with different l
values.
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always increases along with p.

Table 5.2: How the method reacts to changes in the parameter p.

p Model Iteration Hausdorff max Hausdorff RMS Regular Vertices

0 Bunny 30 0.482711 0.037560 86.788922

10 Bunny 31 0.771324 0.056754 86.879900

25 Bunny 30 0.738167 0.040200 86.829786

50 Bunny 30 0.482711 0.037560 86.788922

0 Armadillo 42 0.596794 0.047534 87.134187

10 Armadillo 37 1.063591 0.075737 87.277898

25 Armadillo 40 0.689957 0.055863 87.032985

50 Armadillo 42 0.596794 0.047534 87.134187

0 Fertility 40 0.400242 0.023533 87.331223

10 Fertility 35 0.465996 0.038418 87.261435

25 Fertility 40 0.374687 0.026338 87.290300

50 Fertility 40 0.400242 0.023533 87.331223

0 Hand 150 0.528416 0.040157 86.049544

10 Hand 150 0.797670 0.077079 86.805937

25 Hand 150 0.627367 0.054135 86.338857

50 Hand 150 0.523630 0.047686 86.377507

Additionally, MeshLab was also used for generating a color map of the Hausdorff

distance over the mesh. Figures 5.11, 5.12, 5.13 and 5.14 illustrates the Hausdorff distance

over the four meshes for p = 10, giving an idea of which parts of the mesh have bigger

geometric losses.

Figure 5.11: Hausdorff distance of the processed Bunny model to the original one onto a
blue-green-red scale.
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Figure 5.12: Hausdorff distance of the processed Armadillo model to the original one onto
a blue-green-red scale.

Figure 5.13: Hausdorff distance of the processed Fertility model to the original one onto
a blue-green-red scale.

Figure 5.14 clearly shows that our efforts to preserve the boundary were effective, as

the border does not present the highest Hausdorff distance. It is also possible to notice

from Figures 5.11, 5.12, 5.13 and 5.14 that regions with higher curvature are also the

ones with the greatest Hausdorff distance. This is expected, since the Laplacian operator

smooths those regions, while the constant change in the projection mesh make this smooth

permanent.
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Figure 5.14: Hausdorff distance of the processed Hand model to the original one onto a
blue-green-red scale.

5.4 INTERVAL

This section shows how changes in the desired interval affects the method. In order to do

so, we performed tests varying the constraining interval for each one of the four models.

(a) Processed Armadillo with emin = 1.44 and
emax = 2.16.

(b) Processed Armadillo with emin = 3.2 and
emax = 4.8.

(c) Processed Armadillo with emin = 4.8 and
emax = 7.2.

(d) Processed Armadillo with emin = 7.2 and
emax = 10.8.

Figure 5.15: Resulting Armadillo model for different constraining intervals.
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(a) Processed Bunny with emin = 1.44 and
emax = 2.16.

(b) Processed Bunny with emin = 3.2 and
emax = 4.8.

(c) Processed Bunny with emin = 4.8 and
emax = 7.2.

(d) Processed Bunny with emin = 7.2 and
emax = 10.8.

Figure 5.16: Resulting Bunny model for different constraining intervals.

(a) Processed Fertility with emin = 1.44 and
emax = 2.16.

(b) Processed Fertility with emin = 3.2 and
emax = 4.8.

(c) Processed Fertility with emin = 4.8 and
emax = 7.2.

(d) Processed Fertility with emin = 7.2 and
emax = 10.8.

Figure 5.17: Resulting Fertility model for different constraining intervals.
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(a) Processed Hand with emin = 1.44 and
emax = 2.16.

(b) Processed Hand with emin = 3.2 and
emax = 4.8.

(c) Processed Hand with emin = 4.8 and
emax = 7.2.

(d) Processed Hand with emin = 7.2 and
emax = 10.8.

Figure 5.18: Resulting Hand model for different constraining intervals.

Figures 5.15, 5.16, 5.17 and 5.18 show the impact of different intervals over the geom-

etry of the models. Each original model has an initial edge length average of 2.25. It is

possible to notice that, for every model, when the mesh is refined the geometry is largely

preserved. Slightly simplifications also fairly preserve the geometry. However, when a

huge simplification is performed, the method cannot preserve the geometry. This makes

sense, since information has to be lost due to the reduction in the numbers of points and

triangles representing the same model.

5.5 COMPARISON WITH PREVIOUS WORKS

This work is an improvement of the work by (HAUCK et al., 2015). This work enhances

the Laplacian operator and the valence optimizer step. The Laplacian operator now is

applied in a local parametric space. As for the valence optimizer step, a new priority list

is included to minimize the maximum valence error per vertex Evali.

The first comparison is related to the convergence rate, excluding the nonlinear opti-

mizer as it remains unchanged. To do so, we run the method with the parameter l = 0

for 150 iterations. Table 5.3 presents the results for each test. Every test presented in the
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table uses the same parameters (1.2,1.8,150,2,2,0,0.5,MEANVALUE), with the except of

kn and w which are not used in the previous version of the method. It is possible to notice

that even with the parameter p set to 0, the current method constrains all edges lengths

within the given interval, except for the Hand model, while the previous one cannot do

the same.

Figure 5.19 shows a graph for each model containing the evolution of long and short

edges for both versions of the method. The current version is clearly superior, as the

amount of long and short edges is always smaller than in the previous version.
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(d) Evolution for the Hand Model

Figure 5.19: The evolution of long and short edges for this method and its previous version
(HAUCK et al., 2015). The amount of long and short edges are in log10 scale.

The method of Hauck et al. (2015) uses a non quadratic error for the valence optimizer

(Equation 4.2). That approach can achieve a higher percentage of vertices with the ideal

valence, but results in several vertices with Evali greater than 1. In the current version of

the method, there is not a single vertex with Evali greater than 1. This is especially useful

for the application that will be presented in Chapter 6, as carbon nanostructures usually
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Table 5.3: Comparison of the current method with its previous version (HAUCK et al.,
2015).

Method Model Long/Short x S Evali = 0 Evali = 1 Evali > 1

Current Bunny 0 1.52789 0.104681 87.35% 12.65% 0.00%
Previous Bunny 90 1.54694 0.103674 89.47% 10.29% 0.24%

Current Fertility 0 1.52923 0.102217 87.84% 12.16% 0.00%
Previous Fertility 66 1.54877 0.099626 90.09% 9.78% 0.13%

Current Armadillo 0 1.52765 0.104133 88.12% 11.88% 0.00%
Previous Armadillo 676 1.54587 0.109272 88.45% 10.88% 0.67%

Current Hand 118 1.52668 0.110736 86.37% 13.63% 0.00%
Previous Hand 235 1.54419 0.112366 88.45% 9.81% 1.74%

do not form quads and/or octagons. These polygons only appear in meshes containing at

least one vertex with Evali > 1.

5.6 FLAW CASES

Even though the method has improved a lot over the previous versions, it still has some

drawbacks. For instance, if a strong simplification is required, it almost destroys the

original geometry. This is expected, as a lot of information will be lost. The method also

has problems when the model presents a huge variation over vertices distribution. The

Octopus model is an example of this. It is oversampled in some areas of high curvature,

so in those areas a strong simplification is performed, locally destroying the geometry.

A clear example of failure when a strong simplification is performed can be seen in the

Fertility model depicted in Figure 5.17d on page 45. As evinced by the arm of fertility,

not only the geometry is lost, but the topology may also be destroyed.

Figure 5.20 shows the original Octopus model and its processed version. It can be

noticed that the model presents a huge geometric loss. The processed version also has

problems in the topology, as a border is added in the tentacles.

The method also fails to put every edge within a too tight constraining interval. This

problem usually appear when emin >
2
3
emax. In those cases the Laplacian operator cannot

diminish the amount of long and short edges because a large amount of stellar operations

are done per iteration. Thus, it is recommended that Inequality 5.1 be respected.

emin ≤
2

3
emax (5.1)

If this restriction is not respected, the method may achieve an almost uniform mesh, but



60

(a) Original Octopus (b) Processed version

(c) Zoom on the problematic tentacle

Figure 5.20: The result of processing the Octopus model.

it usually cannot constrain every edge into the given interval.
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6 AN APPLICATION IN PHYSICS

The method proposed in this work may be used for modeling carbon nanostructures

(SILVA, 2014). In order to do so, an arbitrary mesh is processed, constraining all its

edges to the interval in which Carbon-Carbon bounds exist. In an effort to validate this

claim, the resulting mesh is simulated using molecular dynamics. This usually needs an

expression for the potential energy, and this energy is combined with Newton’s laws to

determine the movement of each atom in the simulation. The simulations performed

in this work use REBO2 (BRENNER et al., 2002) for computing the potential of the

Carbon-Carbon interactions, a referential temperature of 300 kelvin and a time step of 1

femtoseconds. The processed models presented in this chapter were processed using the

parameters (1.2,1.8,150,2,2,0,0.5,MEANVALUE).

6.1 ORDINARY MODELS

The first results here presented are simple structures. Despite their simplicity, these

structures still gather the interest of the scientific community, due to the fact they are

useful for experimentation. In this work, we used a sphere and a helix.

(a) Original Sphere model. (b) After 10 picoseconds of simulation, keeping
the original connectivity.

Figure 6.1: The result of simulating the Sphere model.

Figure 6.1 shows the original sphere model and after being simulated as a carbon

nanostructure for 10 picoseconds. Even though models seem uniform, they lose stability

when simulated as a carbon nanostructure.
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(a) Processed Sphere. (b) After 10 picoseconds of simulation, keeping
the original connectivity.

Figure 6.2: The result of simulating a sphere processed by this method.

Figure 6.2 shows a sphere processed by our method after being simulated as a carbon

nanostructure for 10 picoseconds. Even though it is possible to notice some deformations,

a huge improvement was obtained when compared to Figure 6.1.
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Figure 6.3: Histogram of the distance, in number of edges, from a pentagon to its closest
pentagon on the sphere.

The sphere is a special structure, which has symmetry in all directions, hence it can be

used to measure how well the method distributes irregular polygons. We use the number

of edges as a measure of distance for computing two histograms. The first one (Fig. 6.3)

measures the distance between a pentagon and its closest pentagon, the second one (Fig.

6.4) likewise measures the distance between a heptagon and its closest heptagon. It is

possible to notice that pentagons and heptagons have on most times an irregular neighbor
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Figure 6.4: Histogram of the distance, in number of edges, from a heptagon to its closest
heptagon on the sphere

with a distance smaller than 50 edges. This suggests that pentagons and heptagons are

well distributed over the surface, with few exceptions.

Figure 6.5 shows the original helix model and the result of its simulation as a carbon

nanostructure for 10 picoseconds. Although the model is visually well sampled, it is not

stable when simulated. Figure 6.6 also shows a helix being simulated, but this time it was

previously processed by our method. The structure now suffers some deformations, but

clearly maintains its shape. Even though a helix is a simple structure, there are several

applications for them as carbon nanosprings.

6.2 GEOMETRICALLY AND TOPOLOGICALLY MORE COMPLEX

MODELS

The method proposed in this work is really useful for modeling complex structures of

carbon, which cannot be modeled directly by any mathematical technique. For these

structures, a method like this may be the only way for modeling them. In this section we

will simulate the Fertility, Horse, Armadillo, Elk and Woman models as carbon nanos-

tructures.

Figure 6.7 shows the original Fertility model and the resulting mesh after simulating

it as a carbon nanostructure for 10 picoseconds. The model is not stable, and it is
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(a) Original helix model. (b) After 10 picoseconds of simulation, keeping
the original connectivity.

Figure 6.5: The result of simulating original helix as a carbon nanostructure.

completely destroyed after the simulation. On the other hand, Figure 6.8 shows the

processed version of the Fertility model and the result of its simulation. Although the

simulated model has some geometric distortions, the model is pretty stable and the overall

geometry is preserved. One may observe that the geometric distortions are higher in the

regions around a non-hexagon polygon. This could be an important clue for future works.

The Fertility model has a symmetry in the plane parallel to the camera plane in

Figure 6.8. The amount of irregular polygons of each region was computed. The first

region has 1987 pentagons and/or heptagons while the second one has 2021. As one

may see the amount is almost the same, revealing that even though our method does

not explicitly constrain the distribution of irregular polygons over the surface, they were

equally distributed in this example.

The figure 6.9 shows the simulation of a horse model. This model is smaller than the

Fertility model, allowing the analysis of the method in a model with fewer vertices and

polygons. The simulation in this case greatly preserve the geometry. For this model and
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(a) Processed helix. (b) After 10 picoseconds of simulation, keeping
the original connectivity.

Figure 6.6: The result of simulating a helix processed by this method.

(a) Original Fertility model. (b) After 10 picoseconds of simulation, keeping
the original connectivity.

Figure 6.7: The result of simulating the original Fertility model.

the next ones, we present only the simulation of the processed model, since the previous

results already shown that the original model is not stable.

Figure 6.10 illustrates the behavior in a bigger and more geometrically complex model,

the Armadillo. This model lost much of its geometric details, but maintains its general

form. This is the last model presented in which the method was capable of generating a

stable carbon nanostructure.



66

(a) Processed Fertility model (b) After 10 picoseconds of simulation, keeping
the original connectivity.

Figure 6.8: The result of simulating the processed Fertility model.

(a) Processed Horse model (b) After 10 picoseconds of simulation, keeping
the original connectivity.

Figure 6.9: The result of simulating the processed Horse model.

(a) Processed Armadillo model (b) After 10 picoseconds of simulation, keeping
the original connectivity.

Figure 6.10: The result of simulating the processed Armadillo model.
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This model also has an obvious symmetry, dividing the model on two sides (right

and left) in Figure 6.10. The amount of irregular polygons was computed for each side.

The right side has 3161 irregular polygons while the left side has 3147. The results in

this model are similar to the ones found in the Fertility model, with equally distributed

pentagons and heptagons in the model.

6.2.1 FLAW CASES

Even though the method can transform a variety of models in carbon nanostructures, some

models may have geometric and/or topological features which cannot be modeled with

carbon-carbon bonds. This subsection presents two models with those characteristics.

(a) Processed Elk model (b) After 10 picoseconds of simulation, keeping
the original connectivity.

Figure 6.11: The result of simulating the processed Elk model.

(c) Zoom in the connection between the sphere
and the model.

Figure 6.11: The result of simulating the processed Elk model.

Figure 6.11 shows a model with challenging geometry, as seen on the connection be-

tween the spheres and the main body of the model. These regions present a huge curvature,
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which is also changing fast. For these reasons even the processed version of model is not

stable. The connection between the sphere and the model presents invalid polygons, as

illustrated in Figure 6.11c.

(a) Processed Woman model (b) After 10 picoseconds of simulation, keeping
the original connectivity.

Figure 6.12: The result of simulating the processed Woman model.

Finally the most challenging model is the Woman model. This model has a genus

greater than it appears, as the region closer to the right hand has a tunnel. As for the

left hand, there is an intrusion, which almost forms a tunnel (Fig. 6.12). Figure 6.12

illustrates the resulting of simulating this model as carbon nanostructure. The simulation

clearly fails next to the left hand, probably because in the tiny intrusion the curvature is

higher than a carbon bond can support.
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7 CONCLUSION

This work presented a method for remeshing an arbitrary model into another one with all

edges within an user-defined interval. As demonstrated in Chapter 6, the method is also

capable of transforming several arbitrary models into carbon nanostructures. This work

also analyzed the effects of each parameter over the results.

The inclusion of a local parametric space for Laplacian operation proves its value, as

the method convergence improves, in comparison to our previous work (HAUCK et al.,

2015). It also diminishes the geometric error introduced by the Laplacian operator, as the

new vertex position computed by the operator is already on the surface. In addition, the

inclusion of a priority list in the valence optimizer improves method stability, since a fixed

order is imposed for applying the flips. Another effect of this priority list is the reduction

of the vertices with the valence error Eval greater than 1. All these improvements allow

the usage of lower l values, which presents better results.

Even though the method usually presents satisfactory results, there are some cases in

which the method fails, as discussed in Section 5.6. For instance, meshes with points of

extremely high curvature and/or variable density of vertices are especially challenging.

The method also does not converge when the constraining interval is too tight.

There are plenty of improvements that could be done to this method. The most

obvious improvement is to extend the local parametrization for the nonlinear optimization.

Another possibility is to use a mass spring system to smooth the mesh while maintaining

the edges lengths inside the desired interval. The method could also automatically adjust

its parameters, improving its usability. This automatic parametrization could lead to

better results, as the parameters may change during the iterations in a similar way to the

eimin and eimax.

Additionally, our method could be extended in order to have a variable constraining

interval over the model. This is useful when some regions of the mesh must be extremely

detailed while others have not. In our method the entire model should be oversampled to

increase the odds of achieving the global constraint requirement.

In order to improve the performance of the method in the generation of carbon nanos-

tructures, an optimization step for the dual mesh could be added. This is useful as the
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dual mesh may still present some long or short edges even when the primal does not.

Another problem that requires attention for generating carbon nanostructures is the

number of interior vertices with valence not equal to 6 and their positions. Those vertices

generate polygons which are not hexagons. These polygons, during the simulation, create

distortions over the geometry. Thus, a new algorithm for the valence optimizer step which

takes this into account could be proposed.
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