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RESUMO

Muitos jogos modernos apresentam elementos que permitem que o jogador complete

certos objetivos sem ser visto pelos inimigos. Isso culminou no surgimento de um novo

gênero chamado de jogos furtivos, onde a furtividade é essencial. Embora elementos de

furtividade sejam muito comuns em jogos modernos, este tema não tem sido estudado

extensivamente. Este trabalho aborda três problemas distintos: (i) como utilizar uma

abordagem por aprendizado de máquinas de forma a permitir que o agente furtivo aprenda

como se comportar adequadamente em qualquer ambiente, (ii) criar um método eficiente

para planejamento de caminhos furtivos que possa ser acoplado à nossa formulação por

aprendizado de máquinas e (iii) como usar computação evolutiva de forma a definir certos

parâmetros para nossa abordagem por aprendizado de máquinas. É utilizado aprendizado

por reforço para aprender bons comportamentos que sejam capazes de atingir uma alta

taxa de sucesso em testes aleatórios de um jogo furtivo. Também é proposto uma abor-

dagem evolucionária capaz de definir automaticamente uma boa função de reforço para a

abordagem por aprendizado por reforço.

Palavras-chave: Planejamento de Caminhos Furtivos. Aprendizado por Reforço.

Algoritmos Genéticos. Evoluçao de Funçoes de Reforço.



ABSTRACT

Many modern games present stealth elements that allow the player to accomplish a

certain objective without being spotted by enemy patrols. This gave rise to a new genre

called stealth games, where covertness plays a major role. Although quite popular in

modern games, stealthy behaviors has not been extensively studied. In this work, we tackle

three different problems: (i) how to use a machine learning approach in order to allow the

stealthy agent to learn good behaviors for any environment, (ii) create an efficient stealthy

path planning method that can be coupled with our machine learning formulation, and (iii)

how to use evolutionary computing in order to define specific parameters for our machine

learning approach without any prior knowledge of the problem. We use Reinforcement

Learning in order to learn good covert behavior capable of achieving a high success rate

in random trials of a stealth game. We also propose an evolutionary approach that is

capable of automatically defining a good reward function for our reinforcement learning

approach.

Keywords: Stealthy Path Planning. Reinforcement Leaning. Genetic

Algorithms. Evolution of Reward Functions.
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1 INTRODUCTION

Video games have faced a great evolution over the past years and now represents an indus-

try with high economical value that is dedicated in creating high quality entertainment

software (CRANDALL; SIDAK, 2006). The gaming industry have worked hard with the

academic community in order to push the boundaries of several research areas and al-

low the creation of more realistic games. Computer Science played a major role in the

popularization of video games through the development of different research areas, such

as: computer graphics, high performance computing, artificial intelligence, computer net-

works, among others. Each of these areas are still under constant development due to the

growing demands of the gaming industry.

Artificial Intelligence (AI) applied to games represents a major research area that is

concerned in creating special controllers for artificial agents in order to allow them to

behave realistically and autonomously in a game. This area is of great interest for the

gaming industry due to the attractiveness of a believable and realistic AI in a game (SONI;

HINGSTON, 2008; MENDONÇA et al., 2015). There are several studies regarding the

application of AI techniques to different game genres, such as First Person Shooter (FPS)

(GLAVIN; MADDEN, 2015), Real Time Strategy (RTS) (D’SILVA et al., 2005), fighting

(MENDONÇA et al., 2015), etc.

Machine learning techniques applied to video games have been extensively researched

through the past years, especially after the successful application of Reinforcement Learn-

ing to the Gammon game (TESAURO, 1992). Most research focus on using Artificial Neu-

ral Network (D’SILVA et al., 2005; SONI; HINGSTON, 2008) or Reinforcement Learning

(GLAVIN; MADDEN, 2015; WENDER; WATSON, 2012, 2014) in order to learn through

examples or through experience, creating more realistic agents with human behaviors that

adapts to new situations. Other works also focus on how to improve the machine learning

methods by using special algorithms in order to define certain learning parameters without

any prior knowledge of the problem (SINGH et al., 2010; SCHRUM; MIIKKULAINEN,

2015). This helps to automate the learning process and represents an attractive solution

for game developers.
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1.1 PROBLEM DEFINITION AND OBJECTIVES

Machine Learning and video games have a mutual gain relationship, where video games

provide an easy to manipulate testbed for complex machine learning problems, while it

benefits with several methods capable of controlling intelligent agents in order to create

a believable and realistic artificial intelligence for virtual agents. There are several game

genres that benefits with machine learning methods, each with their own characteristics

and challenges. Several of these genres have been extensively researched by the academic

and gaming community, while others present little development with respect to intelligent

behaviors. One such genre is called “Stealth”, that presents stealthy agents that must

complete a specific goal without being spotted by enemy patrols. Several works tackled

the problem of stealthy path planning (GERAERTS; SCHAGER, 2010; MARZOUQI;

JARVIS, 2003; JOHANSSON; DELL’ACQUA, 2010), which is a special path planning

problem where the final path must balance distance traversed and covertness. To our

knowledge, there has been no work related to the application of machine learning tech-

niques to stealth games in order to create an artificial controller for stealthy agents. This

represents a major setback for stealth games due to the lack of techniques capable of

controlling a stealthy agent.

We present herein a reinforcement learning formulation for stealth games. We aim

to allow stealthy agents to successfully interact with the environment in a believable

and realistic way, adopting human-like strategies. We built a stealth game simulator

that allows the creation of random environments with several obstacles and populated

by a set of patrols. This simulator reproduces the basic concepts of a real stealth game,

such as allowing the agent to hide from enemies and use stealthy path planning to reach a

destination without being spotted by enemy patrols. Our objective is to propose a general

approach for stealth games that can be adapted to real games.

Our Reinforcement Learning approach uses high-level actions in order to interact with

the environment. Therefore, it is necessary to create specific algorithms for each of the

possible actions. The most important of them is to allow the agent to move covertly

through the environment. Hence, we also propose here a stealthy path planning approach

which uses simple data structures commonly used in game development, namely, A* algo-

rithm and Navigation Mesh. We tested three different reinforcement learning methods for

our stealth game simulator: Q-Learning, Sarsa(λ), and Dyna-Q. The remaining domain-
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related aspects of the reinforcement learning formulation are also described and justified.

The second problem tackled in our work is related to the complexity of defining some

parameters for reinforcement learning applications, such as: action set, state formulation,

training parameters, and reward function. These parameters are usually defined based on

an expert’s knowledge, but this approach may prove infeasible for more complex problems.

Thus, we propose an evolutionary approach in order to search for a good reward function

without any prior knowledge of the problem.

1.2 CONTRIBUTIONS

Our research presents several contributions to different areas. The first contribution is an

efficient stealthy path planning approach that uses the Navigation Mesh and A* algorithm,

which are largely used in the gaming industry. Our second contribution is the modeling of

a stealth game problem for a reinforcement learning approach in order to allow the stealthy

agent to behave realistically in a general environment. Our third and last contribution

is a proposal for the automatic definition of a reward function for reinforcement learning

methods without any prior knowledge of the problem.

1.3 STRUCTURE

This dissertation is divided into 5 chapters. Chapter 2 presents the stealthy path planning

problem. We also present our stealthy path planning approach and how it compares to one

of the current state of the art algorithm. Chapter 3 shows how we can improve the odds

of success of a stealthy agent by using Reinforcement Learning in conjunction with our

stealthy path planning method. We then show in Chapter 4 how we can automate some

aspects of our Reinforcement Learning formulation by using Evolutionary Computing.

Finally, we present our conclusions and discussions in Chapter 5.
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2 STEALTHY PATH PLANNING

This chapter will address the stealthy path planning problem in video games and virtual

simulations. We start by presenting some of the related work. We then follow by describing

the basic concepts of our stealth game simulator, which is the testing environment for our

entire work. In the sequence, we detail an approach from the literature called the Dark

Path Algorithm, used here to compare with our proposed method. We then describe our

proposed stealthy path planning method. Finally, we present the experimental results

obtained by using our method and the Dark Path Algorithm in the stealth game simulator.

2.1 RELATED WORK

Stealthy path planning is used in several different applications that cover three main

domains: robotics (MARZOUQI; JARVIS, 2003; PARK et al., 2009; JARVIS, 2004),

military vehicles (Unmanned Aerial Vehicle) (BORTOFF, 2000; MOHAN et al., 2008;

WANG et al., 2010; HE; DAI, 2013), and video games (GERAERTS; SCHAGER, 2010;

TREMBLAY et al., 2013; JOHANSSON; DELL’ACQUA, 2010). The former domain fo-

cuses on creating special algorithms for autonomous robot navigation while minimizing

the exposure to observers. The second domain focuses on finding covert paths for air-

crafts and UAVs (Unmanned Aerial Vehicle) in order to avoid enemy radars. The latter

comprises the domain of this work and it is focused on creating stealthy paths through

a virtual environment that is patrolled by enemy sentries. Although these three domains

tackle a similar problem, their different contexts result in different approaches.

Teng et al. (1993) presented one of the pioneering works for stealthy path planning that

focused on determining a covert path for vehicle navigation in a digital elevation map. The

environment is represented by a grid in which each position is associated to an elevation

value. The terrain is also patrolled by several dynamic sentries. The goal is to find a

path from a starting point S to a destination point D that isn’t exposed to the sentries.

The agent uses the different elevation values to avoid visual contact with the observers.

It is considered that a complete path from S to D is not feasible due to uncertainties

of the adversaries predicted positions, given that each sentry moves constantly around

the environment. Thus, the authors use several subgoals in order to achieve the final
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destination. To find a subgoal it is first defined the reachable points from the agent’s

current position and then the points that are visible to nearby observers are removed.

The subgoal is then chosen to be the safest point reachable within a time step, where

safety is defined as the nearest point to the destination which has a good observability of

nearby observers, in order to update their predicted positions. The authors later extended

their work by using parallel computing in order to calculate a stealthy path for multiple

agents (TENG et al., 1992). Another approach for stealth-based path planning in digital

elevation maps is presented by Ravela et al. (1994). The latter work uses harmonic

potential fields in order to define a stealthy path. A method for reconstructing elevation

terrains from images is also presented, and it is used for defining the terrain characteristics

in real time.

When calculating covert paths for UAVs, it is usually necessary to avoid enemy radars.

Thus, the sentries are considered static, given that a radar does not change its position.

Also, the environment does not present any obstacle, since UAVs traverses through the air.

To tackle this problem, Bortoff (2000) presents a method that builds a Voronoi diagram

around each radar site and then calculates the minimum path in the resulting graph. The

resulting path passes as far away as possible from the radars. Finally, virtual forces are

applied to the path in an effort to create a smoother and more realistic path. A similar

problem is addressed by Wang et al. (2010), where a stealthy path for an aircraft through

a radar site is obtained by maintaining a constant azimuth during flight. Mohan et al.

(2008) and He and Dai (2013) tackles a slightly different problem: exploring and covering

a 3D world with multiple UAVs without being seen by enemy outposts. The former work

determines the shorter stealthy path by maximizing a specific metric that balances greater

terrain visibility and short distances traveled for all UAVs. The latter work uses Niched

Genetic Algorithm (NGA) in order to determine the best shortest path that covers the

entire environment.

Stealthy path planning is also widely used for mobile robots. In this type of application,

the environment is usually represented by a 2D grid. One of the main work related to

stealthy pathfinding for mobile robots is presented by Marzouqi and Jarvis (2003), in

which the authors propose an algorithm for calculating stealthy paths in a 2D grid, called

Dark Path Algorithm. This algorithm uses the base concept of the Distance Transform

algorithm (JARVIS, 1984), which calculates the shortest path from one point to every
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other point in a 2D grid world, and a visibility map that indicates, for each grid cell, how

many other cells has a clear view to it. The Dark Path Algorithm extends the Distance

Transform by adding a visibility value to each cell in the grid when calculating the best

path. Thus, that algorithm searches for a path that balances visibility and shortest

distance. Jarvis (2004) later proposed an improvement to his former work (MARZOUQI;

JARVIS, 2003) by adding enemy sentries in the environment. To deal with unknown

environments, Marzouqi and Jarvis (2003) proposed an approach using the Dark Path

Algorithm. It is considered that the robot is equipped with a sensor capable of detecting

obstacles, and for each discovered obstacle the environment grid is updated, followed by

an update to the visibility map. Stentz (2002) presents a variation of the D* algorithm

(STENTZ, 1994), called CD* algorithm, for stealthy pathfinding for robots in unknown

environments. The CD* algorithm considers that the robot is also equipped with sensors

for detecting obstacles and each new obstacle detected updates the environment map.

Birgersson et al. (2003) and Tews et al. (2004) addresses the problem of stealthy path

planning in unknown environments by using potential fields. The environment is also

represented by a 2D grid and the robot is also capable of detecting obstacles with its

sensors. Each new obstacle generates a shadow area, which comprises the unobservable

area by the sentry. The destination point and each shadow area are assigned as an

attractive force and the obstacles generate a repulsive force. The latter work is also

used in dynamic environments with moving obstacles and the robot is allowed to perform

two basic actions: move through the potential fields or wait until a stealthy path is

found. Finally, Marzouqi and Jarvis (2005) extends his Dark Path Algorithm to deal with

unknown sentries location.

Virtual simulations and video games are also an important domain related to stealthy

path planning, being one of the three domains which has received greater attention in

the last years due to its demand for virtual agents with covert behaviors. That type

of application usually considers that the environment is known a priori. Johansson and

Dell’Acqua (2010) proposes a stealthy path planning in a 2D grid which presents several

novel ideas that were used in our work. Path planning is performed by using the A* in

a quad-tree which represents the environment. The environment is patrolled by several

enemy sentries and their previous positions are stored in a probability map, which indicates

the predicted areas being patrolled. A visibility map is then built through the probability
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map. The visibility map is used to weight the quad-tree transitions and guide the A*

in order to find a covert path that passes through low visibility areas. Furthermore, the

virtual agent adopts a higher speed when passing through visible areas and a lower speed

when in shadowed areas. A different approach is proposed by Geraerts and Schager (2010)

where a special structure called corridor maps (GERAERTS; OVERMARS, 2007) is used

in order to calculate the visibility map of the environment. The A* method is then used

on a special graph generated from the corridor map structure, allowing it to be faster

when compared to an A* performed on a high resolution 2D grid. This method is thus

capable of finding a covert path in an environment patrolled by several dynamic sentries

in a static and known world. Also, the method was implemented to run on graphic cards

(GPU) in order to allow it to be executed in real time.

Other work addresses different problems related to stealthy behavior that are equally

important to the path planning phase. One important aspect of stealthy agents is not

only the path chosen by it, but also how it performs this path. A stealthy path must

not only avoid enemy sentries, but also behave covertly by passing through cover areas

whenever possible. Rook and Kamphuis (2005); Kamphuis et al. (2005) and Coleman

(2009) present two different approaches for stealthy aesthetics in covert paths. The former

proposes a stealthy path planning method that calculates a path in a special structure

called roadmap corridors. The path planning considers each vertex of the polygons which

comprises the roadmap corridor and weights each point considering their exposure to

enemies, proximity to a wall, and distance to an enemy threat. Thus, the resulting path

passes near walls and covers, even when no threats are near. The latter work uses fractal

models to modify a minimum path, in order to guarantee that it passes through cover

areas and near walls whenever possible. It is important to note that this fractal model

does not consider enemy sentries in the environment. Other approaches related to stealthy

behaviors are also present in the literature and addresses other problems, for example,

predicting stealthy behaviors in specific level designs in order to aid level designers to build

viable environments for games (TREMBLAY et al., 2013). Although useful for stealthy

behaviors and for game developers, these approaches are not the focus of our work and,

thus, are not discussed further.
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2.2 STEALTH GAME SIMULATOR

We created a simple stealth game simulator in order to perform the experiments and vali-

date our approach. The simulator was built using C++ with the OpenGL library (SEGAL;

AKELEY, 1994) and simulates a square shaped environment with several rectangular

shaped walls patrolled by a variable number of sentries. The simulator also presents a

virtual agent that must traverse the environment from one starting point to a destination.

The environment’s size, minimum and maximum size of the walls, minimum and max-

imum number of walls, and the number of sentries are all set as parameters for the

simulator, allowing for a wide range of possible configurations. The size and number of

walls are selected randomly between their respective minimum and maximum parameters.

Each wall is placed in a random position, and each wall must be at a minimum distance

from each other. If there are no free space for a wall to be placed, we ignore it. Thus,

the resulting environment for each run in the simulator is unique, allowing our tests to

consider a more general stealth game environment and not only a fixed set. Figure 2.1

depicts two possible configurations with different minimum number of walls, resulting in

a greater or lesser number of walls in the environment. For our experiments, we used only

environments with a size of 500 world units.

(a) (b)

Figure 2.1: Different environment configurations. (a) shows an environment with a mini-
mum number of walls set to 20, while (b) shows an environment with a minimum number
of walls set to 1. The maximum number of walls for both environments was set to 100.
The orange dot in both images represents the stealthy agent.

Each sentry moves around the environment between a starting point and a destination
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with a fixed speed through a minimum distance path. The starting and destination points

for either the agent and sentries are randomly generated. Thus, the enemy sentries do not

present any movement pattern. Also, the enemy sentries have a limited field of view that

is shaped in a triangular form of 120 world units, as depicted in Figure 2.2. We have also

implemented a simple system to detect if the sentry has a clear sight to the agent or if it

is being occluded by an obstacle. To do this, we check if there exists an intersecting point

between the line segment formed by the enemy’s and agent’s current position and any

line segment which comprises the nearby walls. If at least one intersecting point exists,

then the agent is being occluded by a wall and, thus, can not be seen by the enemy patrol

(even when it is inside the sentry’s field of view). This situation is illustrated in Figure

2.2.

(a) Agent hidden from the enemy (b) Agent detected by the enemy

Figure 2.2: The agent is capable of hiding from enemy patrols. (a) depicts a situation
where the agent is hidden behind a wall. The red lines represent the intersecting line
segments, one being the line formed by the agent’s and patrol’s location and the other
is a wall’s line segment. (b) shows a situation where the agent is detected by the enemy
patrol, since no wall intersects with the enemy’s line of sight.

Further informations regarding the simulator are described through the remaining of

the text as they are deemed necessary.
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2.3 DARK PATH ALGORITHM

The Dark Path Algorithm was developed by Marzouqi and Jarvis (2003) and later ex-

panded in several other work of the same author (JARVIS, 2004; MARZOUQI; JARVIS,

2003, 2005, 2006). It represents one of the state of the art methods related to stealthy

path planning and is used here for comparisons. The Dark Path Algorithm is used to

determine a covert path from a starting point to a destination point in a 2D grid envi-

ronment patrolled by several dynamic sentries. Although originally proposed for mobile

robots, that method can be extended and adapted for video games and virtual simula-

tions. In order to adjust the Dark Path Algorithm to our simulator, presented in Section

2.2, we used a 2D grid to represent the environment. Therefore, the agent is only allowed

to move to one of its 8 neighbor cells. The grid is comprised of free spaces and obstacles,

allowing each cell to assume one of these two types.

The Dark Path Algorithm is an extension of the Distance Transform (DT) method

(JARVIS, 1984), a global path-planning algorithm capable of finding the shortest path

from one cell to every other cell in a grid-based map. Each cell is associated with a

distance value that indicates how far this cell is to the destination. Initially, the distance

value of the destination cell is set to zero and the distance value of every other cell is set

to a very large number. Then, the distance value of each free cell is updated according to

d(c) = min[d(c), min8
i=1[d(ni) + ED(ni, c)]] (2.1)

where it is associated the lowest distance value of the cell’s neighbors plus the distance

to reach its neighbor, but only if this value is lower than its actual distance value. In

Equation 2.1, d(c) represents the distance value of cell c, ni represents the neighbor i

of cell c and ED(a, b) represents the Euclidean Distance from cell a to cell b. The min

function returns the minimum between two values and min8
i=1 returns the minimal value

between the eight neighbors of cell c. The authors considered the distance from one cell

to their horizontal or vertical neighbors equal to 1 and the distance to their diagonal

neighbors equal to
√

2, approximating it to the Euclidean distance. The distance value

of the obstacle cells are not updated. That update procedure is performed in what the

authors call forward and reverse rasters, in order to reduce the complexity of the algorithm

(MARZOUQI; JARVIS, 2003). The forward raster follows from left to right and from top
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to the bottom. The reverse raster follows from right to left and from bottom to the

top. This process follows until no distance value is altered. The code for the Distance

Transform is presented in Algorithm 1 (we consider the starting and ending indexes of a B

sized array to be 0 and B-1, respectively). In Algorithm 1, the variable Grid e represents

the environment, where e[i, j] = 1 if cell(i, j) is an obstacle and e[i, j] = 0 otherwise. The

forward pass in Algorithm 1 starts at line number 4 and ends at line number 10, while

the backward pass starts at line number 11 and ends at line number 17. The variable N

represents the size of the grid.

Algorithm 1 Distance Transform (Grid e, Cell goal)

1: d[goal.x, goal.y] ← 0;
2: d[c.x, c.y] ← 99999999 ∀ c 6= goal;
3: repeat
4: for i = 1 to N − 1 do
5: for j = 1 to N − 1 do
6: if e[i, j] = 0 then
7: d[i, j] ← min[d(ci,j), min

8
i=1[d(ni) + ED(ni, ci,j)]];

8: end if
9: end for
10: end for
11: for i = N − 2 to 0 do
12: for j = N − 2 to 0 do
13: if e[i, j] = 0 then
14: d[i, j] ← min[d(ci,j), min

8
i=1[d(ni) + ED(ni, ci,j)]];

15: end if
16: end for
17: end for
18: until d is not moddified;
19: return d;

The Distance Transform method is then used for generating a Visibility Map. The

visibility map is responsible for indicating, for each cell, how many other cells are visible

from it. High visibility values indicate that a cell is visible from many other cells. Lower

visibility values indicates that a cell is more concealed. The visibility value for each cell

is determined by executing the Distance Transform algorithm with the corresponding cell

as the destination for an obstacle-free environment and then for the original environment

with obstacles. Then, we compare the distance map calculated for the obstacle-free envi-

ronment and for the original environment. If the distance from the target cell to other cell

is greater in the original environment when compared to the obstacle-free environment,

then the pair of cells are not visible to each other, since this difference indicates that there
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is an obstacle between these cells.

Jarvis (2004) indicated that certain anomalies occurs on tessellated spaces (such as

our grid map) when calculating the visibility map. The main problem occurs when the

distance value between two cells for the obstacle-free and original environments are the

same but these cells are concealed from each other, that is, the straight line connecting the

two cells intersects with a wall. This happens due to the diagonal moves, which creates

a non-straight shortest path between two cells in the obstacle-free environment, allowing

paths to go around small edges of walls without loosing sight of the destination cell. Thus,

Equation 2.2 was proposed in order to determine if a cell is visible from the target cell.

V is(i, j) =


1, if

DTfree(i, j)

DToriginal(i, j)
> β

0, otherwise

(2.2)

In Equation 2.2, V is(i, j) indicates if cell i is visible from cell j (V is(i, j) = 1 if cells

i and j are visible to each other and V is(i, j) = 0 otherwise), DTfree(i, j) represents the

distance from cell j to cell i in the obstacle-free environment, DToriginal(i, j) represents the

distance from cell j to cell i in the original environment and β is the visibility coefficient.

When β is set to a value equal or greater than 1, then no cell will be visible to each other,

since DToriginal(i, j) ≥ DTfree(i, j). Figure 2.3 shows four visibility maps with different

values of β and for different environments. Here, we have chosen β = 0.99. The code for

generating the visibility map is presented in Algorithm 2, where the variable v indicates

the visibility value for each cell of the environment.

By analyzing the Visibility Map Algorithm, presented in Algorithm 2, we notice that

its time complexity depends of the grid dimension N , where the number of cells in the

grid is given by N2. The asymptotic complexity of this algorithm is given by O(N4). We

have chosen N = 100 due to the algorithm’s high complexity. Thus, our experiments were

performed on a 100x100 grid environment.

After calculating the Visibility Map, the visibility value of cells observed by enemy

sentries are updated to a very high value. This make these cells behave almost like

obstacles for the Dark Path Algorithm, although the agent is still capable of passing

through these cells, unlike what happens for obstacle cells. The original idea proposed

by the authors was to use the visibility algorithm for each sentry location to determine

which cells are visible to them. But, in order to adapt this algorithm to our simulator
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Algorithm 2 Visibility Map ()

1: v[x][y] ← 0 ∀ x, y;
2: g1 ← obstacle-free environment grid;
3: g2 ← original environment grid;
4: for i = 0 to N − 1 do
5: for j = 0 to N − 1 do
6: if g2[i][j] is not an obstacle then
7: d1 ← Distance Transform (g1, cell(i, j));
8: d2 ← Distance Transform (g2, cell(i, j));
9: for a = 0 to N − 1 do
10: for b = 0 to N − 1 do
11: if d1[a][b]/d2[a][b] > β then
12: v[i][j]++;
13: end if
14: end for
15: end for
16: end if
17: end for
18: end for
19: return v;

and allow a fair comparison to our method, we use the visibility method presented in

Section 2.2 (illustrated in Figure 2.2) to determine which cells are visible to each sentry.

For each sentry, we use this method for every cell in order to determine which cells are

inside the corresponding sentry’s field of view and are not occluded by obstacles. The

resulting visibility map with the enemy sentries is presented in Figure 2.4.

The Dark Path Algorithm uses informations regarding the distance and visibility values

of each cell in order to determine a stealthy path to the destination. The algorithm starts

by initializing the cost of the destination cell to its visibility value and a high number for

the other cells. After initializing the cost value of every cell, we use the same steps used for

the Distance Transform: update the cost value of each cell to the minimum value between

its actual value and the cost of its neighbors summed with the Euclidean Distance and

the visibility value of the corresponding neighbor. Marzouqi and Jarvis (2006) also use

a stealth coefficient, η, to control the importance given to the visibility value of a cell.

Higher η values results in paths which prioritize stealth over the distance traveled. The

cost value update function is given by

CV (c) = min[CV (c), min8
i=1[CV (ni) + ED(ni, c) + ηV (ni)]] (2.3)
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(a) Visibility Map for β = 0.9 (b) Visibility Map for β = 0.98

(c) Visibility Map for β = 0.99 (d) Visibility Map for β = 0.999

Figure 2.3: Visibility Maps generated with different β values in a 100x100 world grid.
Black cells represent obstacles and the other gray-shaded cells represent free spaces, where
darker cells are assigned to less visible cells. Since our environment presents several small
obstacles, going around the obstacles takes only a few steps, that is DToriginal(i, j) is
only slightly bigger than DTfree(i, j). Thus, for β = 0.9, every cell can see every other
cell, resulting in completely white free cells. When comparing the visibility maps with
β = 0.98(b) and β = 0.99(c), we note that (c) presents less visible cells. For the visibility
maps presented in (c) and (d) one can notice that there are no significant differences. The
green dot represents the agent’s location.

where CV (c) represents the cost value of the Dark Path Algorithm for cell c and V (c)

represents the visibility value for cell c. It is important to note that η may assume small

values, given that V (c) >> ED(i, c). Figure 2.5 depicts the resulting paths for different

values of η in a 100x100 grid. We have chosen η = 10, due to its greater stealth behavior.

The update process is performed using the forward and reverse rasters, just like the

Distance Transform. This update process continues until no further changes occurs in the
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Figure 2.4: Final Visibility Map generated for a 100x100 grid and β = 0.99. The red cells
are the ones visible by the enemy sentries. The blue dots represent the enemy positions.

cost value for every cell, that is, when Equation 2.3 returns only CV (c) for every cell.

The Dark Path Algorithm is presented in Algorithm 3.

2.4 STEALTHY PATH PLANNING USING NAVIGATION MESH

The quality of a path is directly related to how the environment is mapped and presented

to the agent. By using a 2D grid, the agent is only allowed to move in eight possible

directions, resulting in an unrealistic movement. Also, 2D grid representations are rarely

used in modern commercial games due to the resulting path’s quality and memory usage.

Thus, we use Navigation Meshes to represent the environment, since this structure is

widely used in commercial games and is able to efficiently represent a large environment

with lower memory usage. We created a simple algorithm for generating special navigation

meshes adapted to our stealthy path planning method.

In this section we present our proposed stealthy path planning method. We start by

describing our algorithm for generating a special navigation mesh. In the sequence, we

describe our stealthy path planning method and how it is performed in real time.
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Algorithm 3 Dark Path (Grid e, Cell goal)

1: CV[goal.x, goal.y] ← V[goal.x, goal.y];
2: CV[c.x, c.y] ← 99999999 ∀ c 6= goal;
3: repeat
4: for i = 1 to N − 1 do
5: for j = 1 to N − 1 do
6: if e[i, j] = 0 then
7: CV[i, j] ← min[CV (ci,j), min

8
i=1[d(ni) + ED(ni, ci,j) + ηV (ni)]];

8: end if
9: end for
10: end for
11: for i = N − 2 to 0 do
12: for j = N − 2 to 0 do
13: if e[i, j] = 0 then
14: CV[i, j] ← min[CV (ci,j), min

8
i=1[d(ni) + ED(ni, ci,j) + ηV (ni)]];

15: end if
16: end for
17: end for
18: until CV is not moddified;
19: return CV;

2.4.1 NAVIGATION MESH GENERATION

A navigation mesh is a set of convex polygons used to represent the walkable areas of an

environment. Each polygon of the navigation mesh represents a traversable area where the

agent can move freely inside. The agent is also allowed to move between adjacent polygons.

Thus, we can build a graph that represents the connections between the navigation mesh’s

polygons. It is over this graph that we apply our stealthy path planning method.

Each polygon of a navigation mesh may be associated with some specific terrain fea-

tures (water, forest, snow, etc.) which allows for an increased complexity of the path

planning. We use a special navigation mesh with two types of polygons: (i) cover poly-

gons and (ii) normal polygons. The cover polygons represent cover areas around an

obstacle and the normal polygons represent the remaining free area. Figure 2.6 shows the

two types of polygons present in our navigation mesh.

Building a navigation mesh means defining every polygon that comprises it. This

can be done manually (a task usually accomplished by game designers during the envi-

ronment creation step) or by using special algorithms for generating a navigation mesh

automatically (KALLMANN, 2010; HALE et al., 2008). The literature doesn’t present

any algorithm for generating a navigation mesh with the characteristics necessary for our
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(a) Path for η = 0 (b) Path for η = 0.0001

(c) Path for η = 1 (d) Path for η = 10

Figure 2.5: Resulting paths for different stealth coefficient values. When η = 0 (a), the
resulting path doesn’t consider the visibility values and, thus, depicts a similar result
as the original Distance Transform Algorithm. For η = 0.0001 (b), the resulting path
prioritizes the distance over visibility values. The resulting paths for η = 1 and η = 10
presents a similar stealthy behavior, showing that values for η greater than 1 results in a
similar behavior for a 100x100 grid environment. Both paths use cover in order to avoid
high visibility areas.

method. Thus, we propose here an algorithm for creating a simple navigation mesh with

the characteristics needed for our covert pathfinding method that receives the environ-

ment size and a list of obstacles as input. The procedure starts by creating the cover

polygons. Since in our simulator all of the obstacles are rectangles, then 8 rectangles are

created around each obstacle. For the normal polygons, we use a sweeping technique that

starts by checking, from left to right, the first cover polygon encountered. A rectangle

that covers the entire area is then created from the starting point of the sweep to the cover

polygon found. The upper and lower regions of the cover polygon are swept following the
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Figure 2.6: Polygon types. The obstacles are represented in black, the cover polygons are
represented in green and the normal polygons are shown in blue. The exact boundaries
of each polygon is not shown in this figure. It is important to note that the obstacles are
not included in the navigation mesh.

same procedure. This is repeated until the end of the environment is reached and, thus,

no more sweeps are executed.

The presence of stretched rectangles on the navigation mesh can influence the overall

quality of the calculated paths, since these polygons present disproportional sizes. Thus,

we don’t allow the creation of rectangles with one side greater than three times the other

side. This way, when a polygon created presents this characteristic, then it is broken into

several smaller rectangles, contained within the original rectangle, that follows this rule.

The resulting navigation mesh is presented in Figure 2.7.

(a) Navigation Mesh with 155 polygons (b) Navigation Mesh with 1004 polygons

Figure 2.7: Navigation mesh generated over a random terrain. (a) presents a navigation
mesh with 155 polygons and (b) presents a navigation mesh with 1004 polygons.

Path planning techniques can’t be used directly in a navigation mesh. Thus, a proper
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structure is required to execute the proposed stealthy path planning method. For this

purpose, we create a graph that represents the connections between each polygon. The

graph’s vertexes represent each polygon and each edge represents the connection between

two polygons. Each vertex is positioned at the center point of its corresponding polygon.

Figure 2.8 shows the resulting graph of a random environment.

Figure 2.8: Graph of a navigation mesh built over a random terrain. Each node of the
graph is given by a polygon (represented by the red dots ). If two polygons are connected,
then an edge is created between their respective nodes (represented by the red lines).

2.4.2 STEALTHY PATH PLANNING

Moving stealthily through an environment means moving between cover areas without

being detected by patrolling agents. This behavior is usually observed by human players

in stealth games, even when there are no patrols around. The Dark Path Algorithm also

depicts this behavior, as shown in Section 2.3.

Our algorithm presents three main steps: (i) generating an initial stealthy path without

considering the enemy patrols, (ii) path smoothening process in order to generate realistic

paths, and (iii) path update in order to avoid the enemies. We use the A* algorithm

(HART et al., 1968) over the graph presented in Figure 2.8 in order to calculate a stealthy

path. The A* algorithm was chosen due to its efficiency, simplicity, and popularity for

commercial games, making our approach more appealing for game developers. We then
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use a B-Spline in order to smooth the resulting path.

The weight of each edge of the graph represents the distance between the central points

of the polygons (vertexes) that comprises the corresponding edge. We also apply penalties

over an edge’s weight in order to guarantee that the resulting path passes through cover

areas. The penalties are applied according to the following rules:

� Transition between normal areas: penalty of 3 times the actual weight, since

it is not desirable for the agent to walk in open areas;

� Transition from normal to cover or from cover to normal areas: penalty of

3 times the actual weight, since the distance walked in open area is generally greater

than the distance walked under cover, due to the small size of cover polygons;

The heuristic method used for the A* algorithm represents the Euclidean Distance

from the central point of a polygon to the destination point. This heuristic is admissible

and thus guarantees the best path (based on the penalties and transition weights presented

previously).

By using the mentioned penalties, the resulting path balances small distances with

the low visibility. The amount of covertness can be adjusted by altering the penalties,

allowing the simulation of several different behaviors. The output of the A* algorithm is

a sequence of polygons to be visited, where the first polygon contains the starting point

and the final polygon contains the destination point. Figure 2.9 shows the polygon path

(green polygons) calculated in a random environment without enemy patrols, where the

agent passes through covers in order to reach its goal.

After building a low resolution path formed by a sequence of polygons, a more accurate

path must be generated in order to define the exact points which the agent will pass. We

generate the exact path by using a quadratic B-Spline. B-Splines have already been used

to generate smooth paths in another work from the literature (JUNG; TSIOTRAS, 2008).

The control points of the B-Spline are positioned according to the low resolution

path outputted by the previous step. First, two control points are placed in the starting

point and two control points are placed in the destination point. We use two points in

these situations because quadratic B-Splines don’t pass exactly through their first and

last control points (and for any other control point). By placing two control points at

each end of the B-Spline, we force it to pass at the starting and ending points. The
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Figure 2.9: Resulting path in an enemy free terrain. The green polygons represent the
path determined by the A* method and the black curve represents the smoothed path.
The agent is represented by the orange dot at the top-end of the curve.

remaining control points are placed at a position inside each of the following polygons

in the low resolution path, where the selected position minimizes the distance from the

previous control point plus the distance to the central point of the next polygon (if the

next polygon does not exist, then we consider the distance equal to zero). The tested

positions inside each polygon were: each vertex of the polygon, the central point of the

polygon, and the median points of each edge of the polygon. The B-Spline is represented

by a set of 150 points. Figure 2.9 presents a smoothed path generated in a random

environment. Figure 2.10 shows a smoothed path built using a B-Spline and its control

points positioned along the polygons that belong to the path.

So far, we have detailed how to create a stealthy path in an enemy-free environment.

In an environment patrolled by one or more enemies, it is also necessary to avoid their

line of sight and stay at a safe distance from them in order to achieve a stealthy behavior.

To avoid paths that passes close to an enemy, we penalize polygons whose center point is

closer to an enemy within a 150 world units radius when compared to the center point of

the actual polygon. Thus, the edge that connects the actual polygon and the penalized

polygon is penalized by multiplying its current weight by 2. This penalty is applied

separately for each enemy sentry. This penalization is responsible for adjusting the path

to pass as further as possible from enemies.
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Figure 2.10: Smoothed path using a B-Spline. The red dots represent the control points
of the B-Spline.

After building a path, we test each of the discretized points of the B-Spline to see if at

least one of them is in an enemy’s field of view. The stealthy agent is capable of detecting

enemies within a radius of 220 world units. Thus, we only check the discretized points

that are within the stealthy agent’s radar area. If at least one point is visible to an enemy

in the vicinity, the transition that led the agent to that point is penalized. This transition

can be found by searching for the closest control point of the B-Spline. The transition is

then defined as the transition between the corresponding polygon of the closest control

point to the next polygon in the path. Through empirical evaluation, we found that the

same penalty should be applied to the the transition followed by the penalized transition,

since the agent detection may occur not only because of a single transition, but by the

union of two consecutive transitions. Each transition is allowed to be penalized three

times. After the third penalty the given transition becomes inviable and it is disregarded

of the path planning step. Figure 2.11 illustrates the process: the dark blue dot represents

the point where the agent enters into the enemy sight. Then, it is determined that the

transition that led to this situation is the transition from polygon 1 to polygon 2. Thus, a

penalty is applied to this transition, followed by a penalization of the following transition,

given by polygons 2 and 3.

After applying these penalties, the A* algorithm is re-executed considering the new

weights. The A* may be executed several times until a viable path is found. It is important

to note that not all paths are tested, since the penalties used can remove transitions

between two polygons, that is, remove edges from the graph. Hence, by removing edges

from the graph, we can separate it into two or more components, making it impossible for



41

the agent to reach the destination that is located in another component. Thus, the agent

cancels the search.

Figure 2.11: Illustration of the penalization process. The blue dot represents the patrolling
agent and the orange dot is the stealthy agent. The dark blue dot represents the point
where the agent became visible to the patrolling agent. A penalty is applied when the
agent moves from polygon 1 to 2, followed by a penalty to the transition between polygon
2 to 3.

The resulting path is presented in Figure 2.12, where the black curve represents the

stealthy agent’s path and the red curves represent the paths of the patrolling agents. It

is important to note that the patrolling agents move through a minimum cost path to

reach their destination, as mentioned in Section 2.2. The agent’s resulting path uses cover

whenever possible, maintains a safe distance to enemy patrols, and stays out from their

line of sight. This is all done in real time and by using simple and well known data

structures and algorithms, such as navigation mesh and the A* algorithm.

Figure 2.12: Path calculated in a random environment patrolled by 4 enemies. Each
patrolling agent’s path is represented by the red curve.
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In this work it is not only considered the path planning phase but also the movement

phase, in which the agent moves along the determined path. At each time step, the agent

advances along the smoothed path with a given movement speed, which can vary between

three possible values: sneaking, walking, and running. While moving, the agent emits

footstep noises that depends on the current movement speed: the higher the speed, the

greater the emitted sound.

Sneaking doesn’t produce any sound and is used only when an enemy is too close to

the stealthy agent. Walking produces a medium range sound with a 100 world units radius

and it is used whenever the agent is in cover areas or when enemies are close enough to

hear the running sound. Running is used whenever the agent traverses open areas and

there are no enemies within a 170 world units radius. By moving faster in open areas, the

agent avoids exposure and, by moving slower on cover areas, the agent spends more time

in safe zones. Sneaking is used only in critical situations, when the agent is at a close

range from an enemy. The agent always follows these restrictions, that is, it won’t ever

alert the nearby enemies through its footsteps noise. Each enemy sentry moves through

the environment with a movement speed that is equal to 0.75 times the sneaking speed.

The stealth-based path planning method described previously uses enemies momentary

locations to plan a viable path. Thus, the resulting path becomes obsolete as the agent

and enemies move around the environment. This problem is bypassed by setting time

intervals in which a new path is calculated, called the re-planning phase. Hence, when

the path becomes outdated, it is replaced by a new and updated path that considers the

latest changes in the environment. The chosen time interval is 0.07 seconds, defined based

on empirical analysis.

2.5 EXPERIMENTAL RESULTS

We performed a set of experiments in order to verify the efficiency of the proposed stealthy

path planning method, as well as how it performs in real-time executions. Every test

performed used random environments, random moving patterns for the enemies, and

random starting and destination points for the stealthy agent and for the enemies (as

described in Section 2.2). The maximum number of allowed polygons in a mesh was

limited to 2000, in order to guarantee real-time executions.

The number of enemies in the environment is strongly related to the stealthy agent’s
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success rate. We performed executions of the proposed stealth simulator with different

number of enemies in the environment in order to determine how the agent’s success

rate varies with the different number of enemies. We performed 40 sets of 1000 runs of

the stealth simulator in order to achieve a success rate with a statistical certainty. The

mean and standard deviation that resulted through these 40 sets of experiments were

66.9 and 1.62, respectively. Therefore, we can determine the agent’s success rate through

1000 executions with a small error of ±0.66 and a confidence level of 95%. The resulting

success rate of the stealthy agent for different number of enemies through 1000 runs of

the stealth simulator is presented in Table 2.1.

1 Enemy 2 Enemies 3 Enemies 4 Enemies
Success Rate 95.0% 85.7% 78.7% 67.5%

Table 2.1: Results obtained after several executions of the stealth simulator in random
environments with varying number of enemy sentries. It was executed 1000 executions
for each fixed number of enemies.

Table 2.1 shows that the agent’s success rate is related to the number of enemies in the

environment, where the success rate increases as the number of enemies decreases. The

agent’s failures occur, most of the time, when the agent is surrounded by the enemies.

Our second experiment is to compare our stealthy path planning method with one of

the state of the art methods present in the literature. Herein, we will compare our method

with the Dark Path Algorithm, described in details in Section 2.3. We also tested how the

number of enemies in the environment influences the Dark Path Algorithm’s success rate.

The environment’s variables were set to the same values used for the tests of our stealthy

path planning method. The only difference is the use of a grid (instead of a navigation

mesh) for the Dark Path Algorithm due to that method’s restrictions. We used a 100x100

grid for the experiments. Grids with higher dimensions were not used due to the excessive

time demanded by the Dark Path Algorithm (see Section 2.3). We tested each method

in 1000 different environments and retrieved their success rate. It is important to note

that we used the same 1000 environments for both methods and for different number of

enemies in order to perform a fair comparison between the methods. The comparison of

the two stealthy path planning methods is presented in Figure 2.13.

Figure 2.13 shows that the proposed Navigation Mesh based method achieves higher

success rates when compared to the Dark Path Algorithm. One of the main advantages of

our method is that it allows the agent to move freely through the environment, without any
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Figure 2.13: Comparison of the success rate for different numbers of enemies between our
Navigation Mesh based stealthy path planning method and the Dark Path Algorithm.

movement restrictions. This allows the agent to traverse the environment more effectively.

In contrast, the Dark Path Algorithm only allows the agent to move between grid blocks.

Also, the Dark Path Algorithm considers the enemies’ field of view as obstacles. Therefore,

the resulting path doesn’t try to maintain a safe distance to the enemies, which occurs in

our method.

(a) Resulting path using the Dark Path Algorithm. (b) Resulting path using the Navigation Mesh ap-
proach.

Figure 2.14: Illustration of the resulting path generated by the Dark Path Algorithm,
presented in (a), and by the proposed Navigation Mesh approach, presented in (b).
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The main advantages of the proposed navigation mesh based stealthy pathfinding are

the path’s final quality and real-time performance. This method, as mentioned before,

tries to maintain a safe distance to the enemies, just as a human player would. It also

creates paths with realistic curves. These differences are presented in Figure 2.14. We also

recorded two videos showing how the stealthy agent behaves by using different stealthy

path planning techniques: the first video1 shows the proposed method and the second

video2 shows the behavior of the Dark Path Algorithm.

Another important aspect of a stealthy path planning method is related to its per-

formance. Our method uses the A* algorithm in a Navigation Mesh. Thus, the time

complexity for finding a stealthy path is O(P + E), where P is the number of polygons

in the navigation mesh and E is the number of edges in the resulting graph (which is

the same as the number of connections between the polygons). Since the value of E is

normally greater than P, then the time complexity can be considered O(E). The number

of connections of each polygon is usually a value near 4. Thus, P < E < P 2, where

E ≈ cN and c is a constant. Therefore, the time complexity of our method is linear in

relation to the number of polygons in the environment (which is the same as the number

of nodes in the graph). The time complexity of the Dark Path Algorithm is related to the

grid dimension. The time complexity for the Dark Path Algorithm, previously presented

in Section 2.3, is O(N4), considering a grid of size NxN. Figures 2.15 and 2.16 present a

comparison between the time complexity of both algorithms. Note that a linear function

can surpass the time demanded by the proposed method (Figure 2.15), while the time

demanded by the Dark Path Algorithm can only be surpassed by a fourth-degree function

(Figure 2.16). Although the proposed method presents a lower time complexity, it is im-

portant to note that it is executed several times during a simulation, while the Dark Path

Algorithm is executed only once, before the simulation starts. But even then, to achieve

a realistic environment represented by a large grid, the computational time demanded by

the Dark Path Algorithm can be prohibitive.

1https://youtu.be/2AFqYN_eoAI
2https://youtu.be/RUBCG9ZuIVY

https://youtu.be/2AFqYN_eoAI
https://youtu.be/RUBCG9ZuIVY
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3 REINFORCEMENT LEARNING FOR STEALTH

GAMES

We showed in the previous chapter how to use stealthy path planning in order to achieve

a covert behavior. Although the agent was able to successfully evade the enemy patrols,

it was only capable of performing one action: move toward the destination. This impacts

directly over the realism and believability of the agent’s behavior, since the agent is not

capable of making smart decisions such as a human player would. Thus, we propose to

use Reinforcement Learning (RL) in order to allow the agent to perform more actions and

learn how to coordinate them, just as a human player.

We start this chapter by presenting some of the work related to the application of

RL techniques to several game genres. The RL methods that we used in our work are

described in the sequence. We then present the proposed RL approach for a stealth game,

describing the defined state formulation, actions and reward function which were used.

Finally, we present the experimental results using the previously presented stealth game

simulator.

3.1 RELATED WORK

Reinforcement Learning applied to games was first introduced by Tesauro (1992), where

the computer learned how to play Gammon at a master’s level by using Temporal Differ-

ence techniques. His RL approach suppressed even his previous Artificial Neural Network

approach (TESAURO, 1989). Modern games present several different difficulties when

compared to board games, such as different game genres, greater number of agents to

be accounted for and believable human-like behaviors. Thereby, different approaches are

required in order to attend the demand of the gaming industry.

First Person Shooter(FPS) is a common game genre and the application of RL over

this game type has been studied in previous works. In this genre, the player must move

through an environment while shooting at its enemies and avoiding being shot. A com-

mon approach for FPS is to separate the game mechanics into modules and create special

algorithms for each of these modules. The approach presented by McPartland and Gal-
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lagher (2011) uses two reinforcement learning modules: the first trains the agent on how to

move around the environment without colliding with walls, while the second trains com-

bat strategies. These modules are then connected through another RL layer that learns

when to use each of the modules. A similar approach was used in a capture the flag game,

presented by Hefny et al. (2008). Those authors used three modules: a high-decision

module trained using RL, a path planning module, and a combat module trained by an

Artificial Neural Network (ANN). Reinforcement learning can also be used to learn only

specific controllers in a FPS game, as presented by Glavin and Madden (2015). The agent

uses RL only to learn how to shoot by selecting the right weapon and aiming to specific

spots at the right moment. The remaining controllers, such as navigation, is controlled

by other techniques. Smith et al. (2007) used RL only to learn high-level decision.

Machine Learning techniques applied to Fighting games have also been extensively

researched. The main reason is that fighting games provides a set of low level actions

(walk forward, walk backwards, punch, etc.) that can be combined into a complex chain

of basic actions. Therefore, learning a sequence of actions is very important to achieve

success. Graepel et al. (2004) and Andrade et al. (2005) presented two similar approaches

of RL for fighting games by using simple reward functions. The former work uses the

Sarsa algorithm and the latter uses the Q-Learning algorithm. A more complex reward

function is presented by Mendonça et al. (2015), where the aim was to create a fighter with

a human-like behavior. That reward function allowed the agent to perform more complex

chain of attacks, although it wasn’t able to surpass a human player. Those authors also

used an ANN in order to simulate a human behavior and compared the results obtained

by the two machine learning approaches.

Real Time Strategy (RTS) games represent a more complex genre, where the player

has to manage and build a base, comprised by several structures and units with different

behaviors and abilities. Building RL controllers for RTS games requires a simplification

to the game mechanics in order to reduce the number of states and action complexity.

Wender and Watson (2012) used this simplification approach for a RTS game, where each

unit’s abilities were simplified to two high-level actions: fight and retreat. Therefore, each

unit must only learn when to fight and when to retreat, where each action encodes special

algorithms that are executed when an action is taken. In the work presented by Wender

and Watson (2014), the authors were concerned in creating a navigation algorithm for
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each individual unit in a RTS game. The states was represented by a set of Influence

Maps that abstracts environmental informations. With these influence maps, the agent

learns how to move through the environment without colliding with objects and avoiding

enemy units. The remaining layers of the RTS game were controlled by other techniques.

Another approach, presented by Amato and Shani (2010), uses RL in order to learn when

to use previously defined strategies. The state variables are also abstractions of the actual

state, in order to reduce the learning complexity. The agent retrieves a set information

(such as enemy’s wealth, military power, etc.) and then determines which strategy is best

suited for the current environment configuration.

A more general approach has also been proposed by Mnih et al. (2013), where it

is presented a general artificial controller capable of playing several different games by

analyzing the visual feedback from each game. That approach involved image processing

in order to determine when to apply a positive or negative reward.

3.2 REINFORCEMENT LEARNING METHODS

Reinforcement Learning is characterized as a learning problem where a given agent must

learn to interact with the environment such that its actions maximize a reward function

(SUTTON; BARTO, 1998). An agent is any entity that interacts with the environment.

When interacting with the environment, the agent may receive a reward signal, indicating

that it accomplished a task or not. These rewards are sent according to a reward function,

which decides when to send a positive or a negative reward to the agent. Therefore, the

agent learns to interact with the environment through its experiences, by analyzing future

rewards when performing a given action in a certain state. A Reinforcement Learning

method is any algorithm capable of teaching an agent how to interact with an environment

through its experience of past actions.

The agent is constantly interacting with the environment by performing actions. These

actions may alter the environment, which sends a reward signal to the agent in response.

The environment’s characteristics at a given moment is represented by a state s. In

the reinforcement learning problem, the environment is represented by a state map that

indicates all possible states S, where s ∈ S. At any moment, the agent can perform an

action a that is chosen within a set of all possible actions A. The agent chooses an action

a ∈ A while in state s ∈ S based on its current policy π, that indicates which action must
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be performed for each state. The reward function r(s, a) determines the reward signal

that must be sent when the agent performs an action a ∈ A while in state s ∈ S. The

quality of a state-action pair (s, a) is given by the Q-Value Q(s, a), which measures the

expected future rewards after performing action a while in state s. Figure 3.1 summarizes

the interaction between the agent and the environment.

Figure 3.1: Interaction between agent and environment.

There are three main categories of Reinforcement Learning methods: Dynamic Pro-

gramming (DP), Monte Carlo (MC), and Temporal Difference (TD) (SUTTON; BARTO,

1998). Dynamic Programming uses the best Q-Value of the possible next states (s′) in

order to update the Q-Value of the current state s. Therefore, DP methods require a

distribution model p(s′|s, a) that indicates the probability of reaching state s′ after per-

forming action a while in state s. The distribution model requires a full knowledge of how

the environment works, which is very rare in practical situations. This way, DP methods

can’t be effectively used in real situations. Monte Carlo methods make use of experience

in order to learn how to behave in an environment and thus, don’t require a distribution

model. Instead, they use a sequence of states, actions, and reward signals to learn. When

the end of an episode is reached, each state-action pair (s, a) visited during the episode is

updated according to the rewards received after it was visited. One disadvantage of MC

methods is that the Q-Values are only updated during the end of an episode (a terminal

state is reached). Temporal Difference methods, like MC methods, also uses experience in

order to learn. The main difference between TD and MC is that the former approximates

the expected future rewards following the state-action pair (s, a) by using the Q-Value

Q(s′, a′) of the next state. By using an approximation, TD methods update the Q-Values

after each step. Practical applications has shown that TD methods converge faster than

MC methods, although this statement lacks a mathematical proof (SUTTON; BARTO,
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1998).

We applied three different TD methods in our stealth game simulator: one step Q-

Learning, Sarsa(λ), and Dyna-Q. We chose TD methods due to their known efficiency

and simple implementation. The TD methods adopted here also represents a great diver-

sity among the TD methods: the one step Q-Learning is a very efficient off-policy algo-

rithm, the Sarsa(λ) blends Temporal Difference and Monte Carlo characteristics, while the

Dyna-Q represents a model based Temporal Difference method. We adopted a stochas-

tic policy π, called ε-greedy policy, that selects random actions with a ε probability

and actions with maximum expected future rewards with a 1 − ε probability, that is,

maxaQ(s′, a), where s′ is the next state after visiting the state-action pair (s, a). The

remainder of this section will present more details regarding the chosen TD methods.

3.2.1 Q-LEARNING

One step Q-Learning (WATKINS, 1989) represents one of the main Temporal Difference

learning method. It uses only the immediate reward signal given by r(s, a) and the Q-

Value of the next state Q(s′, a′) in order to update the Q-Value of a state-action pair

(s, a). Also, Q-Learning is an off-policy method: it approximates the expected future

rewards for the state-action pair (s, a) by choosing the following state-action pair (s′, a′)

using a different policy used for choosing actions. Here, we use a ε-greedy policy called π

(described previously in section 3.2) to choose the action a to be executed during state s,

while another policy, called π∗, is used to select the next action of the following state in

order to determine the value of Q(s′, a′). Policy π∗ chooses the optimal action for a given

state s′, that is, maxaQ(s′, a).

Q-Learning works by performing the following steps: (i) the environment informs the

agent its current state s ∈ S; (ii) the agent uses its policy π to choose its following action

a ∈ A; (iii) the environment returns the next state s′ after carrying action a while in state

s and the immediate reward signal given by r(s, a); (iv) policy π∗ is used for determining

the optimal action a′ of the next state s′ (Q(s′, a′) = maxaQ(s′, a)); (v) the Q-Value

Q(s, a) is updated according to

Q(s, a) = (1− α)Q(s, a) + α[r(s, a) + γmaxa(Q(s′, a))] (3.1)
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These steps are executed until a termination state is reached, that is, the current episode

is finished.

There are two rates accounted in the Q-Learning’s update function: learning and

discount rates. The learning rate (α) determines how much the immediate reward given by

r(s, a) and the approximate expected future rewards will be considered during the update

process. Higher α values results in greater variations of the Q(s, a) value during an update,

while lower α values results in smaller variations. The discount rate (γ) determines how

the expected future rewards (Q(s′, a′)) will influence the update process. Higher γ values

makes the agent select actions with long-term rewards, that is, it prefers actions with

higher future rewards instead of actions with higher immediate rewards. Lower γ values

makes the agent select actions with higher immediate rewards r(s, a). During training, the

learning rate α should start with higher values, since during the initial stages of training,

the expected future rewards are not accurate. At more advanced stages of training, the

expected future rewards are more accurate, since the agent learned them during previous

stages. Therefore, α is set to lower values (MILLINGTON; FUNGE, 2009). The learning

and discount rates are set always to the following range: 0 ≤ α ≤ 1 and 0 ≤ γ ≤ 1.

The pseudo-code of the One step Q-Learning is presented in Algorithm 4.

Algorithm 4 One step Q-Learning (S, A)

1: Initialize Q(s,a) for all s ∈ S and a ∈ A;
2: repeat
3: repeat
4: s← current state;
5: a← action chosen through policy π;
6: Execute action a and retrieve r(s, a) and s′;
7: Q(s, a)← (1− α)Q(s, a) + α[r(s, a) + γmaxa(Q(s′, a))];
8: until end of the episode
9: until number of episodes is reached

3.2.2 SARSA(λ)

Sarsa (RUMMERY; NIRANJAN, 1994) is a Temporal Difference method and it represents

the on-policy version of the Q-Learning. This means that the Sarsa algorithm approxi-

mates the expected future rewards after visiting the state-action pair (s, a) by using the

same policy π used for selecting an action to be performed, that is, the chosen action a′

while in the following state s′ is not necessarily optimal, it only follows the same policy π.
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Thus, Sarsa updates a Q-Value Q(s, a) by using Q(s′, a′) instead of maxa(Q(s′, a)), where

a′ represents the action selected by our ε-greedy policy π when in state s′. The update

function of the Sarsa algorithm is given by

Q(s, a) = (1− α)Q(s, a) + α[r(s, a) + γQ(s′, a′)] (3.2)

Sarsa(λ) is a variation of the original Sarsa that blends Monte Carlo and Temporal

Difference characteristics by using eligibility traces. Eligibility traces are associated to

each state-action pair and they work as memory variables that indicate the last time a

state-action pair (s, a) was visited. Whenever a state-action pair (s, a) is visited, its cor-

responding eligibility trace is incremented, informing that (s, a) was visited recently. The

eligibility trace of the remaining (unvisited) state-action pairs at a given time step are all

decreased. Eligibility traces are stored in a table Z(s, a) that represents the corresponding

eligibility traces for each state-action pair (s, a). At a given time step t, after performing

action at while in state st, the table Z(s, a) is updated according to

Z(s, a) =

γλZ(s, a) + 1, if s = st and a = at

γλZ(s, a), otherwise

(3.3)

where γ represents the discount rate and λ represents the trace decaying parameter, whose

value is limited to 0 ≤ λ ≤ 1. This parameter corresponds to the decaying speed of the

eligibility traces. Low values for λ result in faster decaying, while high values make the

decaying process slower. The eligibility trace of a recently visited state-action pair must

be incremented. Eligibility traces that are incremented are called cumulative traces, such

as the one presented in Equation 3.3, since their values are not restricted. Instead of

incrementing the traces, one can simply assign a value of 1 for every eligibility trace of

state-action pairs recently visited. This is called trace replacement and it is given by

Z(s, a) =

1, if s = st and a = at

γλZ(s, a), otherwise

(3.4)

Here, we adopt the trace replacement technique.

After performing an action at while in state st, all state-action pairs are updated. The

update function of the Sarsa(λ) algorithm considers the current Q-Value of a state-action
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pair (s, a), their corresponding eligibility trace, the immediate reward signal received after

visiting (st, at), and the approximate expected rewards for (st, at) (given by Q(s′, a′)). The

update rule first calculates a δ value according to

δ = r(st, at) + γQ(s′, a′)−Q(st, at) (3.5)

and then updates every Q-Value Q(s, a) according to

Q(s, a) = Q(s, a) + αδZ(s, a) (3.6)

An important aspect of the Sarsa(λ) is that it can behave like a full Temporal Difference

method or a full Monte Carlo method, or a mixture of TD and MC. Its behavior is defined

by the trace decaying parameter λ. When λ = 0, the eligibility traces of all non-recently

visited state-action pairs will be 0, and 1 for the recently visited state-action pair (st, at).

The result of Equation 3.6 for λ = 0 will be the same as the update function of the one

step Sarsa (Equation 3.2). When λ = 1, the eligibility traces will remain 1 for every visited

state-action pair (considering that the discount rate is also set to γ = 1) and thus, will

update all state-action pairs visited during one episode, just like a Monte Carlo method.

When 0 < λ < 1, the visited state-action pairs will be updated with different intensities,

depending on their eligibility traces.

The pseudo-code for the Sarsa(λ) algorithm is presented in Algorithm 5.

3.2.3 DYNA-Q

Dynamic Programming methods use a distribution model of the environment in order to

update the Q-Values. The distribution model informs the probability of occurrence of all

possible next states for each state. Hence, it requires a full knowledge of the environment’s

dynamics. Another approach for obtaining the environment’s dynamics is by observing

sequences of states during an episode and registering only one of the possible next states.

This is called a sample model. Distribution and sample models are used to learn how the

agent’s actions impact on the environment and how the environment behaves in response

to these actions. Sample models are less accurate than distribution models, but are easy

to obtain and, thus, are more useful in real world applications. Distribution models, on

the other hand, are more accurate, but given the stochastic nature of many real problems,
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Algorithm 5 Sarsa(λ) (S, A)

1: Initialize Q(s,a) for all s ∈ S and a ∈ A;
2: repeat
3: Z(s,a) = 0 for all s ∈ S and a ∈ A;
4: repeat
5: s← current state;
6: a← action chosen through policy π;
7: Execute action a and retrieve r(s, a) and s′;
8: Z(s, a) = 1;
9: δ = r(s, a) + γQ(s′, a′)−Q(s, a);
10: for all s ∈ S do
11: for all a ∈ A do
12: Q(s, a) = Q(s, a) + αδZ(s, a);
13: Z(s, a) = γλZ(s, a);
14: end for
15: end for
16: until end of the episode
17: until number of episodes is reached

it is hardly used.

Knowledge can be attained by learning through experience of past actions or by plan-

ning. Learning is the approach used in Monte Carlo and Temporal Difference methods,

where the agent updates its Q-Values based on real experience. Planning, on the other

hand, uses simulated experience through models in order to plan its next action, as done

by Dynamic Programming methods. The Dyna-Q (SUTTON, 1991) uses planning and

learning in conjunction by using sample models to learn how the environment behaves

and by using Temporal Difference to learn.

The Dyna-Q algorithm observes sequences of states in order to build a model. It uses

a table M to store the observed next state and the immediate reward received for any

previously visited state-action pair (s, a). This way, the sample model is represented by

table M , which is built by observing past samples. The sample model used allows the

agent to predict possible outcomes for all previously visited state-action pairs, although

it is not as accurate as a distribution model. This model is used to simulate experience

by reconstructing a sequence of state-action pairs previously observed. The Dyna agent

uses the Q-Learning update function (Equation 3.1) with its simulated experiences. The

Q-Learning update function is also applied to current events: the agent selects an action

using a given policy, observe the reward received and the following state, and update the

Q-Value of the currently visited state-action pair (s, a) by using Equation 3.1.



56

The pseudo-code of the Dyna-Q algorithm is presented in Algorithm 6.

Algorithm 6 Dyna-Q (S, A)

1: Initialize Q(s,a) for all s ∈ S and a ∈ A;
2: Initialize M(s,a) for all s ∈ S and a ∈ A;
3: repeat
4: repeat
5: s← current state;
6: a← action chosen through policy π;
7: Execute action a and retrieve r(s, a) and s′;
8: Q(s, a)← (1− α)Q(s, a) + α[r(s, a) + γmaxa(Q(s′, a))];
9: M(s, a)← (r(s, a), s′);
10: for i = 0 to N do
11: (s, a)← randomly select a previously visited state-action pair;
12: r, s′ ←M(s, a);
13: Q(s, a)← (1− α)Q(s, a) + α[r + γmaxa(Q(s′, a))];
14: end for
15: until end of the episode
16: until number of the episodes is reached

3.3 METHODOLOGY

Reinforcement Learning is very dependent on the application at hand. Several aspects of

reinforcement learning methods are domain dependent and thus, require a careful formu-

lation. The main domain dependent aspects of a RL method are: state formulation, set

of possible actions and reward function. In this section, we will address to these three

topics.

3.3.1 STATE FORMULATION

The state formulation, as already mentioned, defines which information is available to

the agent during a decision making process. Therefore, we have to consider every impor-

tant environmental characteristic. The state variables were defined based on an expert’s

knowledge, which analyzed important game aspects that are taken into account by a

player during a decision making process. The state variables used are as follows:

� Enemy Proximity: represents the approximate distances between the stealthy

agent and the enemies. The distances are discretized between three values: very

near (distance of 140 world units or less), near (distance between 141 and 150 world
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units) or far (distance between 151 and 170 world units). This variable considers only

enemies within a 170 world unit radius from the stealthy agent and it is discretized

into 8 values that are presented in Table 3.1. As an example, consider the situation

were there is only one enemy located at a ”very near“ distance from the stealthy

agent. In this case, the value for the Enemy Proximity variable is 1;

� Enemy Approaching: indicates if the enemies are moving away or approaching

the stealthy agent. This variable uses a discretized distance between the enemy and

the stealthy agent. Therefore, we discretized this variable into 4 values that are

presented in Table 3.2. The definitions of very near, near, and far were defined

previously;

� Enemy visible: indicates if the nearest enemy is visible or not to the stealthy

agent;

� Nearest Enemy Distance: represents the distance to the nearest enemy dis-

cretized into 2 values: close (distance of 60 world units or less) or not close (dis-

tance of 61 world units or more). If the nearest enemy is close, then the agent can

eliminate it by using the “Eliminate nearby enemy” action (see Subsection 3.3.2 for

more details);

� Nearest Enemy Moving: indicates if the nearest enemy is moving or not. This

variable is important since when an enemy agent is standing still, it is possible that

it starts moving to any direction. Therefore, it is important to wait and see where

the enemy will move;

3.3.2 ACTION SET

With the state variables defined, the agent is now capable of perceiving the current envi-

ronmental characteristics. The next step is to define the possible actions that the agent

can execute for each state. It is important to consider which actions will contribute for

the agent’s success when defining the possible actions. In a stealth game, it is desirable to

allow the agent to hide from enemies for a given period, eliminate nearby patrols silently,

and move toward the destination. Also, in order to reduce the learning complexity, we

define high-level actions that, instead of performing a simple task, defines a goal that is
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Very Near Near Far
0 0 0 0
1 1 0 0
2 1 1+ 0+
3 1 0 1+
4 2+ 0+ 0+
5 0 1+ 0+
6 0 1+ 1+
7 0 0 1+

Table 3.1: Possible values for the“Enemy Proximity”state variable. The columns indicates
how many enemies are at each of the discretized distances, while the rows indicates the
variable value for each configuration. The value X+ indicates that X or more enemies at
a specific distance are approaching the enemy.

Very Near Near Far
0 0 0 0
1 0 0 1+
2 0 1+ 0+
3 1+ 0+ 0+

Table 3.2: Possible values for the “Enemy Approaching” state variable. The value X+
indicates that X or more enemies at a specific distance are approaching the enemy.

achieved by a separate algorithm. By doing this, we can define only a small set of high-

level actions instead of several low-level actions (such as: move right, move left, move

forward, etc.). The action set was also defined based on an expert’s knowledge and it is

comprised of the following actions:

� Move toward the destination: this is the only action that allows the agent to

reach the destination, and therefore, is crucial to the agent’s success. When this

action is executed, the agent calculates a stealthy path using the Navigation Mesh

Stealthy Path Planning method, presented in Chapter 2, and starts moving through

the resulting path;

� Hide: the agent searches for the nearest cover area that is hidden from nearby

enemies and moves to that location;

� Eliminate nearby enemy: the agent eliminates the nearest enemy using a silenced

weapon. When the enemy is far from the agent, then this action may fail. Whenever

the agent misses the shot, all enemies enter in an alert state, in which they move

faster. Also, the enemy that the agent tried to eliminate will move to the agent’s
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current location in order to identify the threat. We discretized the distance between

the agent and the nearest enemy into four values: close (distance of 60 world units

or less), medium (distance between 60 and 100 world units), far (distance between

100 and 150 world units) and very far (distance greater than 150 world units). The

chance of successfully hitting the shot for each distance value are 100%, 50%, 10%

and 0%, respectively;

� Pursue the nearest enemy: the agent walks toward the nearest enemy by using

a minimum path. If the enemy is facing the agent, then this action will result in the

agent walking right into the enemy’s field of vision. Therefore, the agent must learn

to use this action only when the nearest enemy is facing the opposite direction.

The state formulation defined here results in 256 different states. Since there are

4 different actions, the Q-Table is represented by a 256x4 table. For a more complex

problem (such as the stealth game problem), it is important to carefully define the state

and action sets in order to reduce the overall complexity of the learning algorithm. With

the current state and action formulation, it is possible to define complex behaviors and

allow the agent to behave realistically in any given environment.

3.3.3 REWARD FUNCTION

Another important element of any reinforcement learning method is the Reward Function.

The reward function is responsible for delivering rewards and punishments to the agent

based on past actions or states. Reward functions can focus only on previous states

visited by the agent or on previous actions performed for each state. We will adopt here

the approach where the reward is defined based on the state-action pairs visited.

Reward functions are domain dependent. Therefore, it is important to determine a

set of rules that are considered good for the agent or a set of goals that the agent must

complete in order to gain a reward. This also means defining a set os rules and goals that

grant the agent punishments when completed.

We propose two different reward functions: a simple reward function that rewards the

agent when it achieves success and punishes it otherwise (called here the Simple Reward

Function), and a more complex reward function that rewards the agent for following a set

of rules, as the one used by Mendonça et al. (2015) (called here the Rule-Based Reward
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Function).

The Simple Reward Function (SRF) represents a straight-forward function that is used

in many problems. It uses the basic concept of rewarding upon success and punishing when

the agent fails to accomplish its goal, where success is achieved when the agent reaches

its destination and failure occurs whenever the agent is detected by an enemy patrol,

as mentioned previously. We used a maximum reward of +1 when the agent achieved

success and a minimum reward of -1 when it failed. The only information needed for

this function is the goal to be accomplished, that is, which states that indicates that

the agent succeeded and which indicates that it failed. Therefore, the SRF is simple to

define. The main problem is that it may fail to find an efficient policy for complex and

stochastic environments. On the other hand, the Rule-Based Reward Function (RBRF)

is good for problems where it is desirable to learn a behavior capable of achieving the goal

instead of simply learning how to solve the problem directly. For example: in a stealth

game with a non-stochastic environment, one could simply memorize the enemy patrols’

pattern and avoid their paths. But if the environment is stochastic, it is impossible to

memorize sequences of states, since it changes every time. In this case, it is desirable to

learn a good behavior capable of generalizing for every environment, instead of learning

how to achieve success in a specific scenario. The main drawback of the RBRF is that it

relies on specific domain-related informations that are defined by an expert. Therefore, it

depends on and expert’s knowledge in order to define the reward rules. The RBRF also

uses the SRF when the agent achieves success or when it fails. This way, the agent is

capable of changing its tactic when the rules fail to guide it toward the goal.

Our Rule-Based Reward Function was designed to teach the agent how to behave in a

generic environment. The rules were created based on an expert’s knowledge, inspired by

how human players perceive and react in a stealth game environment. The adopted rules

are as follows:

� Eliminate enemy when near it: whenever the agent is close to an enemy (dis-

tance of 60 world units or less), then use the “Eliminate nearby enemy” action.

This rule teaches the agent to eliminate its enemies whenever they are close (dis-

tance of 60 world units or less) and the chance of successfully eliminating the enemy

is 100%. If this rule is followed, the agent receives a reward of 0.07. Otherwise, it

receives a punishment of 0.04;
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� Move when there are no enemies around: move toward the destination when

the previous condition isn’t met and there are no enemies within a 170 world units

radius around the agent (this value is based on those ones presented in the “Enemy

Proximity” state variable presented in Subsection 3.3.1). This rule prevents the

agent from getting stuck by performing other actions when there are no enemies

around (when all enemies are eliminated, then the agent must move toward the

destination). If this rule is followed, the agent receives a reward of 0.07. Otherwise,

it receives a punishment of 0.04;

� Hide from enemies: this rule teaches the agent to hide when none of the above

conditions are met, and there is at least one enemy at a near distance (distance

between 131 and 150 world units) and it is also moving closer to the agent or

halted. This rule helps the agent to avoid entering in dangerous zones and waiting

until the enemies are at a safe distance. If this rule is followed, the agent receives a

reward of 0.07. Otherwise, it receives a punishment of 0.04;

� Pursue enemies that are moving away: if none of the above conditions are met,

and there is only one enemy at a close distance (“Enemy Proximity” = 1) and it is

moving away from the agent, then pursue it. This rule teaches the agent to pursue

isolated enemies in an effort to approach and eliminate them without alerting the

others. If this rule is followed, the agent receives a reward of 0.07. Otherwise, it

receives a punishment of 0.04;

� Move toward the destination: if none of the above conditions are met, then

reward the agent for just moving to the destination. This helps the agent to always

move closer to the destination point. If this rule is followed the agent receives a

reward of 0.07;

� Reward upon success: this is the reward based on the SRF, where the agent is

rewarded with a maximum reward of 1.0 when it achieves success and a punishment

of -1.0 when it is detected by the enemy patrols.
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3.4 EXPERIMENTAL RESULTS

We performed several experiments in order to test the efficiency of using reinforcement

learning for a stealth game. We compared the two reward functions applied to the stealth

simulator: the Simple Reward Function (SRF) and the Rule-Based Reward Function

(RBRF). Finally, we compared the results obtained by using RL with the results obtained

by only using stealthy path planning, presented in Chapter 2.

Before performing any experiments, it is necessary to define how to test the quality of

a given trained agent. To define a trained agent’s quality, we perform several executions of

the stealth simulator using random environments. The success rate attained will represent

the quality of its training. Due to the stochastic nature of the stealth simulator, it is

necessary to define the number of episodes to be executed while validating the agent that

results in a success rate that is statistically valid. We ran 50 validation sessions with

1000 executions of the stealth simulator with a trained agent and we set the learning and

exploration rates to zero (α = 0 and ε = 0) in order to test only the current knowledge

of the agent. These 50 sessions resulted in a mean and standard deviation equal to 79.68

and 1.32, respectively. The confidence interval for these 50 sessions was 79.68 ± 0.47 with

a confidence of 95%. Although these results were obtained for a specific trained agent, it

is consider here that similar results are obtained for different agents. Thus, all validations

performed used 1000 executions of the simulator with the learning and exploration rates

set to α = 0 and ε = 0, resulting in a success rate with an error of approximately ± 0.47

and a confidence of 95%.

There are three main parameters that must be defined for RL methods: learning rate

(α), discount rate (γ) and the exploration rate (ε). We performed preliminary tests in

order to find a good set of parameters for our application. We used the Q-Learning

method to test the α, γ and ε parameters. The learning parameter was set to a low value

in order to reduce the variation of the Q-Values during an update and the exploration

was also set to a low value to encourage exploitation over exploration. Therefore, we set

α = 0.1 and ε = 0.1. The discount rate is usually set to a high value in order to consider

long-term rewards. But in the proposed RL formulation using the RBRF, the rewards

received when succeeding or failing ended up degrading the final policy. This happens

due to some failures that occur when the agent is hiding: sometimes, it chooses a bad

hiding spot and ends up being found by enemy patrols. When γ is set to a high value,
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these failures ends up changing the initially defined strategy (defined by the set of rules of

the RBRF) and, consequentially, achieving a lower success rate. Table 3.3 shows how the

success rate varies with regard to the value of γ in an environment patrolled by 4 sentries.

Therefore, we set γ = 0.1 in order to maintain our strategy. For the remaining of this

work, except to specific tests that will be identified later, the training parameters used are

α = 0.1, γ = 0.1 and ε = 0.1. The trace decaying parameter λ of the Sarsa(λ) algorithm

and the number of simulated experiences of the Dyna-Q algorithm (the N variable of

Dyna-Q pseudo-code presented in Algorithm 6) were defined based on other experiments

that will be shown later.

γ = 0.1 γ = 0.5 γ = 0.9
Success Rate 80.6% 77.7% 73.1%

Table 3.3: Success rate obtained in 1000 random executions of the stealth game simula-
tor with 4 enemy patrols using the Q-Learning algorithm and with varied values of the
discount rate (γ).

The first set of experiments was designed to test the efficiency of the SRF. As discussed

previously, the SRF is best suited for deterministic environments, where the agent can

learn the sequences of actions that led him to a successful state. If the discount rate is kept

high, the agent can learn to carry actions that will only reward it in the long term. We

used a specific scenario patrolled by 4 enemies where success couldn’t be achieved by only

moving toward the destination. The agent was then trained in this specific environment

to learn how to obtain success by using other actions. We also used three different RL

algorithms to test how each one behaves for this specific task. We performed several tests

in order to determine the best parameters for all three methods. We start by analyzing

the parameters of the Q-Learning algorithm: learning and discount rate. Since we want

to create a deterministic environment, we fixed the exploration rate to ε = 0. We tested

which combination of parameters converged faster to a winning policy. When the agent

converges to a winning policy, it will not fail any more in the same environment. The

results of the different parameter combinations are presented in Figure 3.2. The dots in

each curve represents the point where the agent converged to a winning policy (represented

by a diagonal line in Figure 3.2). It is possible to observe that the combination that

converged faster was α = 0.2 and γ = 0.9, taking 35 episodes to converge to a winning

policy. Therefore, we used this parameter combination for the Q-Learning, Sarsa(λ) and

Dyna-Q algorithms when using the SRF.
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Figure 3.2: Parameters test for the Q-Learning algorithm in a fixed environment using
the SRF.

The Sarsa(λ) algorithm also uses the decaying parameter λ. Several possible λ values

were tested, but any value greater than zero resulted in the same results. The Sarsa(λ)

updates every state-action pair visited during an episode. Therefore, when the agent fails,

every state-action pair visited during an episode will be reduced, regardless of the value

of λ. Likewise, when the agent achieves success, then every state-action pair visited will

be incremented. When this happens, the method converges, since it will now choose this

same sequences of actions and obtain success for the following episodes. Thus, the method

will converge within the same number of episodes for any λ > 0.

The Dyna-Q algorithm uses the N parameter that determines how many simulated

experiences are generated during each step. This parameter was variated to test which

value makes the algorithm converge in less episodes. The results are presented in Figure

3.3. It shows that Dyna-Q converges faster when N = 30, taking 30 episodes until it

converges to a winning policy. Thus, we adopted N = 30 for the Dyna-Q algorithm.

The final results for the SRF in a fixed environment are shown in Figure 3.4. These

results show that Sarsa(λ) is capable of learning a winning police in only two episodes.

Also, Sarsa(λ) converged faster than Dyna-Q and Q-Learning algorithms, which took 30

and 35 episodes to converge, respectively. The main reason for the faster convergence of

the Sarsa(λ) is that it updates all state-action pairs visited in a given episode. This allows
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Figure 3.3: Parameters test for the Dyna-Q algorithm in a fixed environment using the
SRF.

the agent to converge as soon as it achieves success for the first time.
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Figure 3.4: Number of episodes until convergence for Dyna-Q, Q-Learning and Sarsa(λ)
in a fixed environment using the SRF.

The results presented in Figure 3.4 shows that the SRF is enough for a deterministic

stealth game environment, where the agent must learn sequences of actions that it must
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execute in order to achieve success. The agent may act unrealistically, since its only goal

is to achieve success, no matter how it behaves. Therefore, if its knowledge is used in

another environment, it probably won’t achieve success, since its knowledge is specific to

the environment it trained in. If we use the SRF in a stochastic environment, it may

not be able to effectively teach the agent how to attain success due to the restrictions

that were already mentioned of the SRF. The goal in a stochastic environment is to

teach a behavior to the stealthy agent, and not only a sequence of actions that is capable

of achieving success. This is what happens in the stealth game simulator: the moving

pattern of enemies and the environment are all randomly generated. When the agent

succeeds in a stochastic environment, it may not have performed only good actions. It

could have executed several bad decisions until it succeeded. Therefore, SRF isn’t suited

to the stealth game problem. We show this by using the SRF in a stochastic environment,

where the moving pattern of enemies and the environment were all randomly generated

between episodes. All the environments generated here were patrolled by 4 enemies. The

results are presented in Figure 3.5.
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Figure 3.5: Convergence time for Dyna-Q, Q-Learning and Sarsa(λ) in stochastic envi-
ronments using the SRF.

Figure 3.5 shows that none of the RL methods used here were capable of defining a

good policy for the problem. These results were generated by training the agents a varied

number of episodes (to a maximum of 500 episodes, although higher numbers were also
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tested) and then validating the agents after each training session. Therefore, Figure 3.5

shows how the number of training episodes influences the overall quality of an agent. Each

training was performed with α = 0.1, γ = 0.1 and ε = 0.1, as discussed at the beginning

of this section. The λ parameter of Sarsa(λ) was set to λ = 0.7 and the N parameter of

Dyna-Q was set to N = 30 (based on preliminary tests). Sarsa(λ) once again converged

faster, although any of the methods were capable of effectively converging to a winning

policy. We can see that Dyna-Q and Q-Learning required more episodes to converge to a

stable policy. The Q-Learning algorithm eventually reached a similar success rate depicted

by the Sarsa(λ) and then stabilized (although not shown in this figure, the success rate

for Q-Learning stabilizes after 500 episodes during training). The Dyna-Q algorithm

presented the worst performance between the three tested methods. The main reason for

this behavior is due to the simulated experiences that does not effectively represent the

environment’s model. Therefore, these simulated experiences mislead the agent’s learning

process.

The RBRF, unlike the SRF, outlines behaviors that the agent must follow in order

to receive a reward. We designed several tests to measure the performance of Dyna-Q,

Sarsa(λ) and Q-Learning while using the Rule-Based Reward Function. One agent was

trained for each of the RL algorithms used. The number of training episodes was varied

for each agent and validated after its different training sessions. The results are presented

in Figure 3.6.

The results depicted in Figure 3.6 show the success rates for each agent for different

training sessions. It shows that all three reinforcement learning methods converge to

an approximate success rate of about 79% after approximately 200 episodes of training.

The success rate curves for all tested methods are similar. This happens due to the

reward function adopted: the RBRF outlines specific behaviors that should be followed

and delivers small reward signals for visiting several state-action pairs. The reward sent

by obtaining success or failure presents little importance in this scenario, since the rules

adopted already guarantee a high success rate. Thus, the agent’s knowledge converges to

a policy that obeys the outlined rules, regardless of the RL method used.

The agent’s success rate depends on the number of enemies in the environment. We

validated each agent with a varied number of enemies in the environment in order to

measure how this parameter influences the agent’s success rate. Each agent was trained
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Figure 3.6: Success rate obtained by different RL algorithms using the RBRF in stochastic
environments with varied number of episodes during the training stage.

in an environment patrolled by 4 enemies using one of the three RL methods. The trained

agents were then validated in 1000 different environments. It is important to note that we

used the same 1000 environments for all agents and for all different numbers of patrols.

This set of 1000 environments is also the same used in the experiments of Figure 2.13

of Chapter 2. The results are presented in Figure 3.7, where one can see that all three

RL methods performed equally for each number of enemies. Also, the success rate of

all methods increases as the number of enemies decrease. The success rate varied from

approximately 79% with 4 enemies to approximately 98% with 1 enemy.

Regarding the agent’s behavior after training with any of the three methods used, it

is evidenced that they effectively learned the rules outlined by the RBRF, as can seen in

this video1. The agent pursues enemies that are near it and that are also moving away

from it, eliminating them afterwards; it uses the Hide action when there are enemies

approaching its location; walks to the destination when there are no enemies around; and

it eliminates enemies that are very near it (when there is a 100% chance that the shot will

hit its target). The agent usually fails when it is hiding from enemies and the hide action

fails to find an efficient hiding spot. The agent also fails when it is surrounded by enemies

in all directions. The RL presents these behaviors independently of the RL method used.

1https://youtu.be/ZaEZbhw9974

https://youtu.be/ZaEZbhw9974
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Figure 3.7: Success rate obtained for each RL method used in an environment patrolled
by a varied number of enemies.

The training stage must visit as many states as it can in order to efficiently train the

agent. If only 1 enemy is used during the training stage in the stealth game simulator,

then the agent won’t learn how to behave in an environment with more than 1 enemy. On

the other hand, training the agent with 4 enemies will guarantee that all state-action pairs

are visited a reasonable amount of times. This happens due to our state formulation: if

there are several enemies in the environment but only one of them are near to the agent,

then the state will inform that only 1 enemy is present. Also, the agent can learn how to

eliminate enemies by using the Eliminate action, which reduces the number of enemies

on the environment and helps the agent to learn state-action pairs with fewer enemies.

To demonstrate this, we trained an agent using only 1 enemy in the environment using

each of the RL methods adopted. We then validated the resulting agent against 1 and

4 enemies and the results are presented in Table 3.4. The results show that the agents

trained with only 1 enemy performed poorly when validated with 4 enemies, although they

present a good performance when validated with only 1 enemy. On the other hand, the

agent trained with 4 enemies performed well when validated with either 1 or 4 enemies.

Therefore, it is desirable to always use 4 enemies during the training stage.

The stealthy agent’s success rate is somehow related to how it perceives the world

and how it reacts to its changes. Using reinforcement learning in our stealth game si-
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Trained with 1 Enemy Trained with 4 Enemies
1 Enemy 4 Enemies 1 Enemy 4 Enemies

Q-Learning 97.7% 59.4% 96.5% 80.1%
Sarsa(λ) 96.5% 55.5% 96.6% 78.9%
Dyna-Q 97.2% 59.7% 97.2% 79.6%

Table 3.4: Performance achieved by agents trained with only 1 enemy or 4 enemies in the
environment and with different RL methods.

mulator provides the stealthy agent with new world perceptions and a more diverse set

of actions, resulting in more complex and realistic reactions to the world changes. We

tested how the application of RL methods to the stealth simulator affected the success

rate of the stealthy agent when compared to the approach presented in Chapter 2. We

used the Q-Learning method with the RBRF, since it presented a slightly better result

among the tested methods, and compared it with the agent that only uses the proposed

stealthy path planning method, presented in Chapter 2, in order to achieve the desti-

nation. The results presented in Figure 3.8 show that the RL approach achieves higher

success rates. Therefore, we successfully improved the success rate of the stealthy agent

by using reinforcement learning.
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Figure 3.8: Success rate obtained for different number of enemies by using the Q-Learning
method and the Navigation Mesh based stealthy path planning.
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4 EVOLVED REWARD FUNCTIONS FOR

STEALTH GAMES

Reinforcement Learning requires several parameters adjustment, such as state variables,

action set, reward function and special rates (α, γ, ε, λ, and N). Manually setting these

parameters is time consuming and may require an expert’s knowledge. One way to solve

this problem is by using algorithms capable of defining such parameters automatically.

Thus, we propose the use of evolutionary techniques in order to generate a reward function

suited to the stealth problem without an expert’s knowledge.

This chapter starts by reviewing some of the work related to evolved reward functions.

The evolutionary methods used are detailed in the sequence. It is then showed how

Evolutionary Computing was applied to evolve reward functions for the stealth game

simulator.

4.1 RELATED WORK

Creating a reward function for a RL problem may be a difficult task, since it requires an

expert’s knowledge in order to hand-craft a good solution. It is possible to use search

algorithms in order to find a good reward function without any prior knowledge of the

problem. Singh et al. (2009) presented a work where a reward function was defined

through Evolutionary Computing, requiring only the state formulation of the problem.

Those authors presented a general framework for evolving reward functions that works

as follows: define a state formulation for the problem, a set of possible environments, a

set of possible reward functions, a history of states (or state-action pairs) generated while

learning in a given environment using a given reward function, and a fitness function that

takes into account the history of states. We can then search for a good reward function

by measuring its fitness value using a fitness function. An extension of this work is then

presented by Singh et al. (2010), where each reward function maps a numerical reward

(positive or negative) for each state. Therefore, the reward function can be interpreted

as a set of conditional statements and their respective reward. Another extension of that

work is presented by Niekum et al. (2010) and Niekum et al. (2011), where the authors
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used Genetic Programming in order to evolve a population of reward functions. Each

reward function was represented by a set of conditional statements and their respective

reward, allowing for a more efficient search over large search spaces.

Evolutionary algorithms can also be used in order to evolve other aspects of a Re-

inforcement Learning problem, such as state variables, policy, action set, among others.

When the number of possible state-action pairs is too large to fit in a table, it is necessary

to use function approximation techniques in order to determine the value function of a

given state-action pair. Whiteson and Stone (2006) uses the NEAT technique (STAN-

LEY; MIIKKULAINEN, 2002) in order to evolve a set of function approximators based

on Artificial Neural Network (ANN). The resulting method, called NEAT+Q, searches

for a near optimal topology of an ANN capable of effectively defining the expected future

rewards of each state-action pair. Another approach is presented by Girgin and Preux

(2008), where genetic programming is used in order to evolve feature variables that define

the current state. Each individual is comprised of a list of feature variables and their

fitness corresponds to the performance of small RL trials using a state formulation based

on the individual’s feature variables.

4.2 EVOLUTIONARY COMPUTING

Evolutionary Computing (EC) represents a class of search algorithms for problem opti-

mization that uses evolutionary processes in order to evolve a population and find an

individual capable of solving a given problem. Each individual represents a candidate

solution to the current problem and its representation is problem dependent. The pop-

ulation is comprised of a set of individuals. The process is divided between generations,

where each generation is divided into: (i) evaluation, (ii) recombination, (iii) mutation

and (iv) selection (ENGELBRECHT, 2007). The evaluation step is responsible for de-

termining a fitness value for each individual that measures its capability in solving the

problem. The recombination process is where two or more individuals are combined into

one or more offspring. Recombination is repeated several times until a set of offspring is

generated. Mutation is responsible for altering certain characteristics of an individual in

order to explore its surroundings in the search space. The selection process is responsible

for selecting the individuals that will be carried to the next generation and for selecting

the individuals that will participate in the recombination process. Several generations are



73

executed until a stopping criterion is met.

Evolutionary Computing is used for optimization problems, where search methods

are adopted in order to find a good individual. Therefore, each individual is encoded

with values for a set of variables from the problem being optimized. This structure is

called chromosome, which is comprised by several genes. Each gene commonly represents

a variable’s value. The quality of an individual is measured by a fitness value that is

calculated based on a fitness function, which depends of the problem.

The search process adopted by EC methods are based on Recombination and Mu-

tation. Recombination is based on the evolutionary process called Crossover, where two

chromosomes are recombined into two new chromosomes by swapping some of their genes.

A general recombination process in EC takes two individuals (parents) and swaps some of

their characteristics, resulting in their offspring. Therefore, the new individuals present

characteristics from their parents. If two very distinct parents are selected to recombine,

their offspring will probably present very different traits. For this reason, the recombina-

tion process helps to explore new regions in the search space.

Mutation in EC is also based on an evolutionary process, where random changes to

a chromosome occurs. This process in EC occurs over any individual, resulting in a new

individual with a similar chromosome, although with some mutated genes. Mutation plays

a major role in many EC because it is the process responsible for inserting new values

for genes, while the recombination only recombine the already existing values. Therefore,

mutation is very important and it also helps to exploit an already explored region in the

search space by making small changes to individuals in the population.

Selection represents the final step of a generation in a EC method. This process is

responsible for selecting the population of the following generation, chosen between the

individuals of the current generation and the new individuals generated through recom-

bination and mutation. There are several selection methods: we can choose the fittest

individuals, we can can simply replace the entire population with the new individuals

(generated through mutation and recombination), etc.

4.2.1 GENETIC ALGORITHM

Genetic Algorithms (GA) were one of the first algorithmic models based on genetic sys-

tems (ENGELBRECHT, 2007). It was first presented by Fraser (1957), Bremermann
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(1962) and Reed et al. (1967), although it only became popular after the extensive re-

search presented by Holland (1975). Genetic Algorithms use a bit string or an array of

characteristics in order to represent an individual. It also makes extensive use of the Se-

lection and Recombination operators. Although mutation wasn’t originally used in GA,

it later became one of the operators of GA.

Genetic Algorithms usually represent a chromosome as a vector of characteristics. The

early implementations of GA used only bit strings in order to represent an individual,

although this was improved to a more general array of values in order to improve the

expressive power of the method.

Recombination in GA was initially restricted to fixed point crossover, that is, the off-

spring would inherit a portion of a parent’s traits until a specific point, and the remaining

traits would be inherited from the other parent. Later implementations presented sev-

eral new recombination methods, such as multiple points crossover, one-parent crossover,

multi-parent crossover, and floating-point crossover. The recombination method used

depends on the problem being optimized.

Parent selection is also a very important step in GA. It is responsible for selecting a

set of parents for breeding. Selecting the right parents is essential in order to avoid local

minimum or local maximum (depends on the problem’s nature). In a minimization prob-

lem, a local minimum represents the best solution in a local region of the search space,

although it is not necessarily the best global solution. The local minimum problem is

represented in Figure 4.1. The local maximum problem is similar to the local minimum,

although it applies to maximization problems. Therefore, selecting parents with different

characteristics is important to escape from local regions, while recombination between

similar parents is important to further explore a specific region. There are several par-

ent selection techniques, such as tournament selection, random selection, and roulette

selection.

The mutation operator in GA is performed over each individual generated through re-

combination. The mutation over each gene of an individual being mutated occurs with a

probability pm. Each mutated gene is assigned a new random value (in the simplest exam-

ple). Mutation is important because it is responsible for inserting new genetic information

in the population by randomly altering the existing genes.

The Selection operator in GA, as for other EC methods, is responsible for selecting the
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Figure 4.1: Example of Local and Global minima in a search space.

individuals to comprise the population of the following generation. As already mentioned

for EC methods, there are several selection methods. A commonly adopted method in

GA is elitism: this technique always selects the best individuals of the current population

and passes it to the following generation. This helps the search process to maintain the

best individuals in the population.

The GA operators (recombination, mutation, and selection) are not restricted and

have already been used in many different forms, since these aspects of a GA are domain

related. Therefore, each problem must be tackled differently. Algorithm 7 presents a

general purpose genetic algorithm, without worrying with domain-related details.

Algorithm 7 Genetic Algorithm ()

1: Create an initial population P ;
2: Calculate the fitness value for every individual i ∈ P ;
3: repeat
4: Select individuals for reproduction;
5: Apply the Crossover operator and generate the offspring;
6: Apply the Mutation operator;
7: Calculate the fitness value of the new individuals;
8: Select individuals to comprise the population P of the next generation;
9: until stopping criterion is met
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4.3 METHODOLOGY

Using Reinforcement Learning for the stealth game problem allowed the stealthy agent

to learn how to behave in any environment, as shown in Chapter 3. The main drawback

presented is that building an efficient reward function for this problem is time-consuming

and demanded an expert’s knowledge. Thus, we used Evolutionary Computing in order

to evolve an efficient reward function without any prior knowledge of the problem.

We chose Genetic Algorithms among the existing EC methods due to its simplicity

and efficiency. The population in the GA is composed of several reward tables, each one

representing an individual. The fitness of each individual consists on the success rate

obtained over a few test episodes. We developed two different GA approaches for our

stealth game problem and compared them in order to determine the best idea.

4.3.1 TABLE BASED GENETIC ALGORITHM

The first GA developed, called here Table Based Genetic Algorithm (TBGA), evolves

directly the reward table. The reward table is responsible for delivering a reward signal

to the agent for every action executed. It works as a lookup table that takes into account

the current state s of the agent and the action a performed, and returns the value stored

at the position (s, a). Since there are 256 states and 4 possible actions, the reward table is

represented by a 256x4 table (more details can be found in Section 3.3.2). Each individual

in the population is then represented by a reward table. The fitness function of TBGA

executes 100 simulations of the stealth game simulator using the Q-Learning algorithm and

returns the success rate attained. Q-Learning was chosen based on its efficiency presented

in Chapter 3 and we did not apply any reward for obtaining success or failure in order to

test only the behavior depicted by the reward table. We used deterministic environments

(randomly generated using the same seeds) for the fitness function in order to guarantee

that every individual is tested in the same 100 environments. Thus, the fitness function

always uses the same set of 100 environments (and enemies movement pattern) in order

to determine the fitness of an individual. We also used 100 environments that are difficult

to achieve success in an effort to guarantee that only the most fit obtain a high success

rate.

Each generation of TBGA is divided in the same steps presented in Section 4.2: (i)



77

evaluation, (ii) recombination, (iii) mutation, and (iv) selection. The population size was

set to 40 individuals. TBGA also uses Elitism by always passing the 3 best individuals to

the next generation.

The recombination process adopted for TBGA uses two parents to generate a single

offspring. The recombination operates over each value of the new individual’s reward

table by assigning to it the weighted mean of the reward table’s values of each parent.

Each value of the offspring’s reward table is assigned according to

Roff (s, a) = W ×Rp1(s, a) + (1−W )×Rp2(s, a) (4.1)

where W represents the weight associated to the first parent (we used W = 0.85),

Roff (s, a) represents the value at the position (s, a) of the offspring’s reward table, and

Rp1(s, a) and Rp2(s, a) represent the reward table’s value at the position (s, a) of the

first and second parents, respectively. The recombination process used for the TBGA is

presented in Figure 4.2.

Figure 4.2: Example of the recombination process used for the TBGA. Note that only a
portion of each individual is shown.

It is important to carefully select the pair of parents for the recombination process in

order to guide the search process through different areas of the search space. Therefore,

a Tournament selection method is used in order to select a pair of parents for breeding

and allow all individuals to take part in the recombination process. For the first parent,

two random individuals are selected from the population and the tournament operation

selects the most fitted one. For the second parent, we select sequentially the first individual
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of the tournament in order to make possible that any individual participate at least of

one tournament. The second individual of the second tournament is randomly selected.

After performing two tournaments and selecting the parents, the crossover operation is

performed and a new individual is generated. The number of crossovers performed during

each generation is 34, resulting in 34 new individuals (the remaining individuals of the

population are assigned according to the elitism and through the mutation of the elite, as

described in the remainder of this section).

The mutation operator is applied over each value of an individual’s reward table with

a probability pm (TBGA uses pm = 0.02). Given that each individual in the genetic

algorithm is a table of real values, we chose to apply random variations normally dis-

tributed over specific values of the reward table. This allows the mutation to perform

subtle changes over several different values of a reward function without altering the main

characteristics of an individual. We use the Box-Muller Transform (BOX; MULLER,

1958) in order to generate random numbers normally distributed and use these numbers

as variation values for the current value being mutated. The mean of the Normal Dis-

tribution used for the Box-Muller Transform is set as the current value being mutated

and the standard deviation is set as a parameter of the genetic algorithm, where higher

values generates greater variations. The standard deviation of the Box-Muller Transform

of TBGA was set to 0.6. The mutation process used for the TBGA is presented in Figure

4.3.

Figure 4.3: Example of the mutation process used for the TBGA. Note that only a portion
of each individual is shown. The red values of the original individual are mutated using
normally distributed variations.

Recombination is usually the process responsible for generating new individuals. In-

stead of only using recombination, we also generate new individuals using mutation. This

helps the search process to further explore a specific region in the search space. TBGA

generates new individuals by mutating the individuals from the elite and placing them in

the next generation. Thus, 3 new individuals are created through mutation. The popu-



79

lation of the following generation will then be comprised of the three best individuals of

the current generation (elitism), three individuals generated through the mutation of the

elite individuals, and 34 new individuals generated through recombination and mutation.

4.3.2 RULE BASED GENETIC ALGORITHM

A reward table can be created by applying several rules over the states and actions, such as

we did for our Reinforcement Learning approach with the Rule-Based Reward Function,

presented in Chapter 3. After defining a set of rules, we just need to pass through all

states s ∈ S and test all rules for each state, assigning the correct reward for each state-

action pair visited. The following rule can be used to illustrate this situation: when the

value of the state variable X is equal to Y, reward the agent for performing action Z (a

state variable in this case will be any variable presented in Section 3.3.1 of Chapter 3).

Thus, the agent will be rewarded for performing action Z with a large reward of 1.0 while

giving a small punishment of -0.05 for executing any action a 6= Z when the state variable

X is Y. A large reward is adopted to accelerate the learning process, since the agent must

learn quickly during the fitness function.

Evolving a reward table directly can be more difficult and time-consuming, since there

are many possible values in a single individual. Another approach is to evolve a set of rules

that defines a reward table instead of working directly with it. Therefore, each individual

in the Rule Based Genetic Algorithm (RBGA) is represented by a set of simple rules

similar to the one previously presented. Each individual may have a maximum number

of rules, which depends upon the complexity of the problem to be optimized (we set the

maximum number of rules to 20, given that this is enough to determine a good reward

table for the stealth game problem). Each rule has a priority value assigned to it, where

lower priority rules are applied first. Thus, we pass through every state s ∈ S and check

for each rule sequentially (following an ascending order in relation to the priority) when

deriving the corresponding reward table of a given individual through its set of rules. An

example of an individual is presented in Table 4.1.

RBGA follows the same basic structure of TBGA: each generation starts by evaluating

each individual of the population, followed by the recombination process, mutation and

selection. The population of the following generation of RBGA follows the same idea as

TBGA: select the best three individuals of the current generation, mutate the elite of the
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State Variable Value Action
Enemy Approaching 0 Move

Enemy visible 0 Move
Nearest Enemy Distance 0 Eliminate

Enemy Proximity 3 Hide

Table 4.1: Example of an individual of RBGA.

current generation, and recombine and mutate the individuals to generate the remaining

individuals. The population size of RBGA was also set to 40 individuals and the elite

size was set 3 individuals. Therefore, the difference between TBGA and RBGA lies in the

individual’s representation, recombination and mutation processes.

The fitness function works just like the one used for the TBGA: we perform 100

simulations using the Q-Learning algorithm and then return its success rate. We don’t

reward nor punish the agent for achieving success or failure.

The recombination process for RBGA also takes two parents in order to create a single

offspring. The offspring is created by randomly selecting a set of rules from each parent.

We pass through each rule of the set of rules of the first parent and assign it to the offspring

with a probability of 50%. The same procedure is performed for the second parent. The

recombination process ends when all rules of the second parent are visited or when the

offspring reaches the maximum number of rules. It is important to note that a higher

priority is assigned to the rules derived from the second parent, since they are added last

(and are then associated to higher priority values). The recombination process used for

the RBGA is presented in Figure 4.4. The parent selection mechanism follows the same

tournament selection method described for TBGA.

Figure 4.4: Example of the recombination process used for the RBGA. The shaded rules
were passed to the offspring.



81

Mutation in RBGA is applied to every new individual generated through recombina-

tion and to the elite. The mutation is applied to each rule individually. Changes are

applied to each rule with a probability pm, where the variation can occur over either the

state variable, the value, or the action of the given rule. Thus, the mutation process is

responsible for generating new rules from the already existing ones. We set pm = 0.1 for

RBGA, determined through preliminary tests. The mutation process used for the RBGA

is presented in Figure 4.5.

Figure 4.5: Example of the mutation process used for the RBGA. The original individual’s
rule highlighted in red represents the rule that will be mutated, where the red value
represents the rule’s region that will be effectively mutated.

4.4 EXPERIMENTAL RESULTS

We tested the two proposed Genetic Algorithm approaches to see if a good reward function

could be found. Both algorithms are executed slowly due to the fitness function, that

executes 100 episodes of the stealth game simulator (the same 100 environments and

enemies’ movement pattern were used in order to make the fitness function deterministic,

as mentioned in Section 4.3). This allowed only a limited number of generations to be

executed, although it was enough to study the behavior of both algorithms. 5 independent

runs of TBGA and RBGA were performed. The convergence of Table Based Genetic

Algorithm is present in Figure 4.6 and the convergence of Rule Based Genetic Algorithm is

presented in Figure 4.7. Figure 4.6 and 4.7 present the fitness value of the best individuals.

It is easy to see through the analysis of Figure 4.6 that TBGA wasn’t able to effectively

define a good reward table, although it evolved from a very low success rate to a moderate

fitness value. The best individual obtained presented a fitness value of 61. We tested how

accurate this value was by testing the mean and confidence level of this reward table

in 50 sets of 100 simulations of random environments. It achieved a success rate of

70.2% ± 1.43 with a confidence of 95% for 100 random simulations. The fitness value is
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Figure 4.6: Convergence of 5 different instances of Table Based Genetic Algorithm, each
with a random initial population.
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Figure 4.7: Convergence of 5 different instances of Rule Based Genetic Algorithm, each
with a random initial population.

lower than its expected success rate in random simulations due to the hardness set to the

100 environments of the fitness function, as mentioned is Section 4.3. Since this value is

not very inaccurate, we tested it through 1000 episodes with random environments and

4 enemies patrolling each scenario (as it was done for validation purposes, as mentioned
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State Variable Value Action
Enemy Proximity 0 Move

Enemy Approaching 2 Move
Nearest Enemy Moving No Eliminate
Nearest Enemy Moving Yes Move
Nearest Enemy Distance Far Hide

Enemy visible No Hide
Enemy Approaching 0 Move

Table 4.2: Best individual found by RBGA.

in Section 3.4). The success rate achieved was 69.1%± 0.47 with a confidence of 95% for

1000 executions(see Section 3.4 of Chapter 3 for more details on the confidence level test).

Differently from TBGA, RBGA was capable of successfully finding a good reward

table that reaches a high success rate and a more realistic behavior. The fitness value

of the best individual found by RBGA was 75 (Figure 4.7), which is close to the results

achieved by the Reinforcement Learning approach with the Rule-Based Reward Function.

As mentioned for TBGA, the fitness function may not be completely accurate due to the

low number of simulations (100) and the difficulty set to the environments of the fitness

function. In this case, this reward function achieves a success rate of 76.0%± 1.14 with a

confidence of 95% for 100 random simulations. Therefore, the best individual was tested

for 1000 executions of the simulator with random environments and it achieved a success

rate of 76.5%±0.47 with a confidence of 95%. The set of rules adopted by this individual

is presented in Table 4.2. It is important to note that the first rule has the lowest priority,

while the last rule has the highest priority.

Figure 4.8 shows the mean fitness value of the best individuals for the 5 instances of

TBGA and RBGA. One can see through this figure that both algorithms converged to a

stable fitness value in only a few generations. As already mentioned, it was only possible

to execute a limited number of generations due to time restrictions, but it is possible for

the fitness value to be increased, although it could take several generations in order to

achieve a small increment.

We then tested the best individuals found by TBGA and RBGA in the validation

scenario, where they are used in 1000 executions with the same sequence of environments

and variating the number of enemies (as done for the results presented in Chapter 2

and 3). The Q-Learning algorithm was used in order to train each agent with their

respective reward table, found by the TBGA and RBGA. The success rate obtained by
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Figure 4.8: Mean fitness value of the best individuals of the 5 instances of the TBGA and
RBGA measured for each generation.

these individuals were then compared with the stealthy path planning agent and the best

reinforcement learning agent obtained here (Q-Learning). The results are shown in Figure

4.9, where we compare how well each agent performed in the 1000 validation environments

with different number of enemies patrolling them. It is possible to notice that RBGA was

capable of finding an individual with similar performance to that achieved by the Q-

Learning agent. The behavior of the individual found by RBGA (shown in this video1)

indicates that the agent rarely uses the eliminate action (only when the nearest enemy is

halted), but it learned to hide correctly. The individual found by TBGA, on the other

hand, was not capable of finding an efficient reward table, presenting a performance only

slightly better than that obtained by the stealthy path planning agent. Regarding the

behavior of the individual found by TBGA2, it usually uses the Move action, just like the

stealthy path planning agent, although it also tends to pursue the enemies and eliminate

them when near.

One can notice through the results that we were capable of developing an effective

Genetic Algorithm which finds a good reward function for the stealth game problem.

Table Based Genetic Algorithm did not perform as well as expected, although it was able

1https://youtu.be/6unj0Ub0d7M
2https://youtu.be/7ks9WgCY1FY

https://youtu.be/6unj0Ub0d7M
https://youtu.be/7ks9WgCY1FY
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Figure 4.9: Success rate obtained for different number of enemies by using the Navigation
Mesh based stealthy path planning, the Q-Learning method with the Rule-Based Re-
ward Function, and Q-Learning using the reward function found by Table Based Genetic
Algorithm and Rule Based Genetic Algorithm.

to evolve individuals from a very low fitness value. On the other hand, RBGA performed

very well, finding a good behavior by evolving simple rules, allowing the definition of a

good reward function without the need of an expert’s knowledge.
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5 CONCLUSION

We presented here how to effectively control a stealthy agent in stealth games. A stealth

game simulator was developed in order to allow the implementation of different methods

capable of controlling a stealthy agent. We proposed an efficient stealthy path planning

method that allowed the generation of stealthy paths in a random environment patrolled

by several enemy agents. Reinforcement learning was later used in conjunction with the

proposed stealthy path planning method in order to allow the stealthy agent to perform

different actions and behave realistically in the stealth game simulator. The reward func-

tion of the reinforcement learning method was defined using two approaches: based on

specific strategies defined by an expert, and through evolutionary computing. The evolu-

tionary method used a simple genetic algorithm in order to define a good reward function

without any prior knowledge of the problem. Therefore, our approach represents a good

alternative for commercial stealth games, in the sense that it uses simple algorithms and

it is capable of finding a good behavior automatically.

Stealth has become a common element in modern games. One problem that devel-

opers face is the lack of techniques capable of controlling an agent that exhibits stealthy

behaviors. The stealthy path planning presented here is capable of defining a stealthy

path in real-time in an environment patrolled by several enemy agents. The environment

is represented by a Navigation Mesh that separates cover areas from normal areas. The

stealthy path is calculated using the A*. We then use a B-Spline in order to smooth the

resulting path.

Reinforcement Learning represents a powerful tool that allows the agent to learn

through experience. Although it presents a great potential for several real world ap-

plications, reinforcement learning is very difficult to be modeled for complex problems.

Several of its aspects are very sensitive to the application at hand, such as the action set,

the state formulation, the reward function, and the several parameters. These components

must be carefully set in order to allow the reinforcement learning to properly work for

a given problem. This work showed how we can effectively apply reinforcement learning

to the stealth game problem. We used a set of high-level actions in order to better con-

trol the agent and to reduce the overall learning complexity by reducing the number of



87

possible actions. One of these high-level actions consisted on defining a stealthy path to

the destination point by using the stealthy path planning method proposed here. We also

used other high-level actions that presents complex behaviors when executed. The state

formulation consisted of important informations that were discretized in order to reduce

the learning complexity of the agent. Finally, we created a reward function that delivers

small rewards for accomplishing specific tasks defined by an expert and high rewards when

succeeding or failing. This allows the agent to learn a specific behavior and also to adapt

in case the specified strategy is not effective.

Defining a good reward function may be difficult and time consuming for complex

problems, such as the stealth game problem. Therefore, we developed a genetic algorithm

capable of evolving a reward function. Two different approaches were proposed: the

first (Table Based Genetic Algorithm – TBGA) evolves a reward table that represents

a reward function, while the latter (Rule Based Genetic Algorithm – RBGA) evolves a

set of rules that defines a reward table. We showed that evolving a set of rules is more

effective, resulting in a good reward function with only a few generations (approximately

30 generations). The main flaw of this method is that the reward function found by the

RBGA is very restrictive: it delivers high reward signals when the agent completes a rule,

not allowing the agent to change its strategy in case the enemies start behaving differently,

for example. This problem can be solved by adjusting the reward values and inserting the

Simple Reward Function in conjunction, in order to allow the agent to adapt in case the

defined strategy is not good.

There are several real world problems that are much more complex than that presented

here. Commercial stealth games, for example, are much more complex than the simulator

that we built: the stealthy agent is usually capable of performing several other actions

(even in a high-level), such as hiding an enemies’ body to avoid attracting the attention of

other patrols, use distraction techniques (throwing a rock to make the patrol move away

from the agent’s position, for example), and other weapons with specific behaviors. The

state formulation might also become more complex if the stealth game uses a 3D world

(which is the case of most commercial games). Therefore, the action and state formulation

might become too large to fit in a Q-Table. The same may happen to the reward function.

The table must then be replaced by any method capable of approximating a function (in

this case, the future rewards and the reward functions). We could then use evolutionary
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methods in order to evolve a Neural Network, for example, that defines a good reward

function without any prior knowledge of the problem (similar to what Whiteson and Stone

(2006) propose).

We showed here that only rewarding or punishing an agent when it achieves success

or failure may not be a good solution for some complex reinforcement learning problems.

There might be cases where the agent performs several bad decisions during an episode,

but it eventually ends up completing its objective. Hence, we could change the reward

function to define scores to the agent’s performance in order to achieve a good behavior.

These scores can be defined by an expert through a set of rules, similar to the Rule-Based

Reward Function presented here. Another possible approach is to use gameplay records

of human players and measure the similarity of the stealthy agent’s behavior with the

behavior depicted by the player. Whenever the agent behaves similarly to the human

player, it receives a reward, and if it behaves differently, it receives a punishment. This

allows the agent to learn a reward function automatically by analyzing the gameplay of a

human player.
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