Universidade Federal de Juiz de Fora Programa de Pós Graduação em Engenharia Elétrica Mestrado em Sistemas de Energia Elétrica

Luiz Eduardo de Souza Pereira

METODOLOGIA INTERVALAR PARA TRATAMENTO DE INCERTEZAS EM PROBLEMAS DE FLUXO DE POTÊNCIA

Juiz de Fora 2011 Luiz Eduardo de Souza Pereira

METODOLOGIA INTERVALAR PARA TRATAMENTO DE INCERTEZAS EM PROBLEMAS DE FLUXO DE POTÊNCIA

Dissertação submetida ao corpo docente da coordenação do Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Juiz de Fora como parte dos requisitos necessários para a obtenção do grau de mestre em engenharia elétrica.

Orientador: Prof. Vander Menengoy da Costa, D. Sc.

Juiz de Fora 2011 Pereira, Luiz Eduardo de Souza.

Metodologia intervalar para tratamento de incertezas em problemas de fluxo de potência / Luiz Eduardo de Souza Pereira. -2010.

150 f.: il.

Dissertação (Mestrado em Engenharia Elétrica)-Universidade Federal de Juiz de Fora, Juiz de Fora, 2010.

1. Engenharia elétrica. 2. Matemática intervalar. 3. Fluxo de potência. 4. Injeção de correntes. Título.

CDU 621.3

METODOLOGIA INTERVALAR PARA TRATAMENTO DE INCERTEZAS EM PROBLEMAS DE FLUXO DE POTÊNCIA

LUIZ EDUARDO DE SOUZA PEREIRA

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA DA UNIVERSIDADE FEDERAL DE JUIZ DE FORA COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA ELÉTRICA.

Aprovada por:

Prof. Vander Menengoy da Costa, D. Sc. - Orientador - UFJF

Prof. Luciano Vitoria Barboza, D. Sc. - IFSul

Prof. João Alberto Passos Filho, D. Sc. - UFJF

Prof. Abílio Manuel Variz, D. Sc. - UFJF

Juiz de Fora, MG, Brasil. Abril de 2011

AGRADECIMENTOS

À Deus.

Ao professor Vander Menengoy da Costa, pela orientação, confiança, dedicação e amizade durante toda a realização deste trabalho.

A minha família, em especial aos meus pais Luiz e Carlota, que tanto me apoiaram em toda a minha trajetória acadêmica e em todos os momentos importantes da minha vida.

A minha namorada Gisele, por todo amor, compreensão, incentivo e carinho que me motivaram a prosseguir.

A todos os amigos que, de alguma forma, contribuíram ou fizeram parte de mais esta importante etapa da minha vida.

Resumo da Dissertação apresentada à UFJF como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M. Sc.)

METODOLOGIA INTERVALAR PARA TRATAMENTO DE INCERTEZAS EM PROBLEMAS DE FLUXO DE POTÊNCIA

Luiz Eduardo de Souza Pereira Abril de 2011

Orientador: Prof. Vander Menengoy da Costa, D. Sc. Programa: Engenharia Elétrica.

A análise do fluxo de potência determinístico é restrita a um único instante de tempo específico. Contudo, as demandas de potência ativa e reativa, dentre outros, variam constantemente e afetam o perfil das tensões nodais e as distribuições dos fluxos de potência nos ramos do sistema elétrico. Desta forma, a utilização do modelo determinístico seria inviável face às inúmeras simulações necessárias no sentido de representar todas as possíveis combinações das variações envolvidas no problema.

Por outro lado, com a utilização da matemática intervalar é possível representar intervalos de variação da demanda ativa e reativa e obter, através de um fluxo de potência intervalar, o perfil das tensões nodais, as distribuições de fluxo de potência nos ramos e as perdas também na forma intervalar. Por conseguinte, é possível realizar uma análise detalhada e completa do comportamento da rede frente às variações em estudo.

Da mesma forma que no fluxo de potência determinístico, a metodologia intervalar apresenta diferentes desempenhos dependendo da forma como as equações básicas que definem o problema do fluxo de potência são expressas. Portanto, a proposta do trabalho é inicialmente modelar e implementar as metodologias de fluxo de potência intervalar nas versões polar, retangular e injeção de correntes. Posteriormente, o trabalho apresenta um estudo comparativo entre as várias versões aplicada ao problema das incertezas no fluxo de potência em redes de energia elétrica.

Abstract of Dissertation presented to UFJF as a partial fulfillment of the requirements for a Master of Science degree (M. Sc.)

INTERVAL METHOD FOR HANDLING UNCERTAINTIES IN POWER FLOW PROBLEMS

Luiz Eduardo de Souza Pereira April 2011

Advisor: Vander Menengoy da Costa, D. Sc. Department: Electrical Engineering.

The analysis of the deterministic power flow is restricted to a single time instant. However, the active and reactive load powers, among others, vary constantly and affect the voltage profiles and line flows throughout electric power systems. Therefore, the deterministic model is not feasible due to a number of simulations required to represent all possible combinations of the variations involved in the problem.

On the other hand, it is possible to represent the variations of active and reactive load powers by interval mathematics. As a result, voltage profiles, line flows and losses can be calculated, in an interval manner, by using an interval power flow. Therefore, a detailed and comprehensive analysis of the system behavior can be efficiently performed.

Both the interval and deterministic power flow methods have different performance depending on how the basic power flow equations are expressed. Therefore, the purpose is to firstly model and implement load flow methodologies in polar, rectangular and current injections versions. Next, this dissertation presents a comparative study between the versions applied to power flow problem with uncertainties.

Sumário

Capítulo I			
Introdução	1		
I.1. Considerações Gerais	1		
I.2. Objetivos			
I.3. Publicações	3		
I.4. Estrutura do Trabalho	3		
Capítulo II			
Fundamentos da Matemática Intervalar	5		
II.1. Introdução	5		
II.2. Conjunto IR	5		
II.3. Operações Básicas	6		
II.3.1. Adição Intervalar	6		
II.3.2. Pseudo Inverso Aditivo Intervalar	6		
II.3.3. Subtração Intervalar	6		
II.3.4. Multiplicação Intervalar	7		
II.3.5. Pseudo Inverso Multiplicativo Intervalar	7		
II.3.6. Divisão Intervalar	7		
II.4. Ponto Médio de um Intervalo	8		
II.5. Diâmetro de um Intervalo	8		
II.6. Intervalo Simétrico	8		
II.7. Função Seno	8		
II.8. Função Cosseno	8		
II.9. União Entre Dois Intervalos	9		
II.10. Intersecção Entre Dois Intervalos	9		
II.11. Inversa de uma matriz intervalar	9		
II.12. Método de Newton Intervalar	12		
II.12.1. Apresentação do método	12		
II.12.2. Aplicações práticas	13		
II.12.2.1. Aplicação 1	13		

II.12.2.2. Aplicação 2	14		
II.12.2.3. Aplicação 3	16		
II.13. Método de Krawczyk 1			
II.13.1. Modelagem matemática	19		
II.13.2. Aplicações práticas	20		
II.13.2.1. Aplicação 1	20		
II.13.2.2. Aplicação 2	22		
II.13.2.3. Aplicação 3	23		
Capítulo III			
Fluxo de Potência Intervalar	26		
III.1. Introdução	26		
III.2. Fluxo de Potência Convencional	27		
III.2.1. Coordenadas Polares	27		
III.2.2. Coordenadas Retangulares	28		
III.2.3. Fluxo de Potência via Equações de Injeção de Correntes	29		
III.2.3.1. Representação das Barras Tipo PQ	29		
III.2.3.2. Inclusão das Barras Tipo PV	30		
III.2.3.3. Atualização das Tensões	31		
III.3. Fluxo de Potência Intervalar	31		
III.3.1. Inicialização do processo	31		
III.3.2. Cálculo dos resíduos intervalares	32		
III.3.3. Processo iterativo	34		
III.3.4. Cálculo intervalar das variáveis dependentes funcionais	35		
III.3.5. Algoritmo de solução	38		
III.3.6. Aplicação prática	39		
III.3.6.1. Fluxo de Potência Intervalar Polar	41		
III.3.6.2. Fluxo de Potência Intervalar Retangular	48		
III.3.6.3. Fluxo de Potência Intervalar Injeção de Correntes	54		
III.4. Simulação de Monte Carlo	60		
III.4.1. Descrição do Método	60		
III.4.2. Aplicação prática	62		
III.5. Análise dos Resultados	63		

Capítulo IV

Resultados	68
IV.1. Introdução	68
IV.2. Tensão e fase determinística e intervalar	69
IV.2.1. Apresentação dos resultados	69
IV.2.2. Análise dos resultados	75
IV.3. Fluxo de potência ativa e reativa determinística e intervalar	76
IV.3.1. Apresentação dos resultados	76
IV.3.2. Análise dos resultados	82
IV.4. Geração ativa e reativa determinística e intervalar da barra de referência	83
IV.4.1. Apresentação dos resultados	83
IV.4.2. Análise dos resultados	85
IV.5 Geração reativa determinística e intervalar das barras de geração	85
IV.5.1. Apresentação dos resultados	85
IV.5.2. Análise dos resultados	89
IV.6. Perdas ativa e reativa determinística e intervalar	89
IV.6.1. Apresentação dos resultados	89
IV.6.2. Análise dos resultados	96
IV.7. Análise da convergência dos fluxos de potência intervalares	96
IV.7.1. Apresentação dos resultados	96
IV.7.2. Análise dos resultados	99
IV.8. Eficiência computacional	99
IV.8.1. Apresentação dos resultados	99
IV.8.2. Análise dos resultados	101
IV.9. Análise gráfica das variáveis de saída	102
IV.9.1. Análise dos resultados	115
Capítulo V	
Conclusões	116
V.1. Considerações Finais	116
V.2. Proposta para trabalhos futuros	117
Apêndice A	
Sistema Sul-Sudeste 34 Barras	118

Apêndice B

Derivadas das equações das variáveis dependentes funcionais	
B.1. Cálculo do fluxo de potência nas linhas	
B.1.1. Coordenadas polares	122
B.1.2. Coordenadas retangulares	124
B.2. Cálculo da geração ativa e reativa	126
B.2.1. Coordenadas polares	126
B.2.2. Coordenadas retangulares	127
B.3. Cálculo das perdas	128
B.3.1. Coordenadas polares	128
B.3.2. Coordenadas retangulares	129
Referências Bibliográficas	131

Lista de Figuras

Figura IV.1 – Módulo da Tensão – FPI Polar	101
Figura IV.2 – Módulo da Tensão – FPI Retangular	102
Figura IV.3 – Módulo da Tensão – FPI Injeção de Correntes	102
Figura IV.4 – Fase da Tensão – FPI Polar	103
Figura IV.5 – Fase da Tensão – FPI Retangular	103
Figura IV.6 – Fase da Tensão – FPI Injeção de Correntes	104
Figura IV.7 – Fluxo de Potência Ativa – FPI Polar	104
Figura IV.8 – Fluxo de Potência Ativa – FPI Retangular	105
Figura IV.9 – Fluxo de Potência Ativa – FPI Injeção de Correntes	106
Figura IV.10 – Fluxo de Potência Reativa – FPI Polar	106
Figura IV.11 – Fluxo de Potência Reativa – FPI Retangular	106
Figura IV.12 – Fluxo de Potência Reativa – FPI Injeção de Correntes	107
Figura IV.13 – Geração Ativa da Barra de Referência – FPI Polar	107
Figura IV.14 – Geração Ativa da Barra de Referência – FPI Retangular	108
Figura IV.15 – Geração Ativa da Barra de Referência – FPI Injeção de Correntes	108
Figura IV.16 – Geração Reativa da Barra de Referência – FPI Polar	109
Figura IV.17 – Geração Reativa da Barra de Referência – FPI Retangular	109
Figura IV.18 – Geração Reativa da Barra de Referência – FPI Injeção de Correntes	110
Figura IV.19 – Geração Reativa das Barras de Geração – FPI Polar	110
Figura IV.20 – Geração Reativa das Barras de Geração – FPI Retangular	111
Figura IV.21 - Geração Reativa das Barras de Geração - FPI Injeção de Correntes	111
Figura IV.22 – Perdas de Potência Ativa – FPI Polar	112
Figura IV.23 – Perdas de Potência Ativa – FPI Retangular	112
Figura IV.24 – Perdas de Potência Ativa – FPI Injeção de Correntes	113
Figura IV.25 – Perdas de Potência Reativa – FPI Polar	113
Figura IV.26 – Perdas de Potência Reativa – FPI Retangular	114
Figura IV.27 – Perdas de Potência Reativa – FPI Injeção de Correntes	114
Figura A.1 – Sistema Sul-Sudeste – Diagrama Unifilar	118

Lista de Tabelas

Tabela II.1 – Resultados Newton – Aplicação 1	14			
Tabela II.2 – Resultados Newton – Aplicação 216				
Tabela II.3 – Resultados Newton – Aplicação 3 19				
Tabela II.4 – Resultados Krawczyk – Aplicação 1 21				
Tabela II.5 – Resultados Krawczyk – Aplicação 2 23				
Tabela II.6 – Resultados Krawczyk – Aplicação 3 25				
Tabela III.1 – Sistema 3 barras – Dados de Barra 39				
Tabela III.2 – Sistema 3 barras – Dados de Linha	39			
Tabela III.3 – Sistema 3 barras – Tensão nodal	39			
Tabela III.4 – Sistema 3 barras – Geração da barra de referência	40			
Tabela III.5 – Sistema 3 barras – Geração reativa das barras PV	40			
Tabela III.6 – Sistema 3 barras – Fluxo de potência nas linhas k – m	40			
Tabela III.7 – Sistema 3 barras – Fluxo de potência nas linhas m – k	40			
Tabela III.8 – Sistema 3 barras – Perdas de potência nas linhas 40				
Tabela III.9 – Sistema 3 barras – Demandas intervalares				
Tabela III.10 – Sistema 3 barras – Tensões Intervalares Polares 41				
Tabela III.11 – Sistema 3 barras – Tensões Intervalares Retangulares	49			
Tabela III.12 – Simulação de Monte Carlo – Valores de U e das demandas				
Tabela III.13 – Simulação de Monte Carlo – Tensão nas barras 62				
Tabela III.14 – Simulação de Monte Carlo – Geração da barra de referência	62			
Tabela III.15 – Simulação de Monte Carlo – Geração reativa das barras PV	62			
Tabela III.16 – Simulação de Monte Carlo – Fluxo de Potência nas Linhas k – m	62			
Tabela III.17 – Simulação de Monte Carlo – Fluxo de Potência nas Linhas m – k	63			
Tabela III.18 – Simulação de Monte Carlo – Perdas de potência nas linhas	63			
Tabela III.19 – Sistema 3 barras – Iterações	63			
Tabela III.20 – Sistema 3 barras – Magnitude das tensões	64			
Tabela III.21 – Sistema 3 barras – Fase das tensões	64			
Tabela III.22 – Sistema 3 barras – Geração ativa da barra de referência				
Tabela III.23 – Sistema 3 barras – Geração reativa da barra de referência	64			

Tabela III.24 – Sistema 3 barras – Geração reativa da barra PV	65			
Tabela III.25 – Sistema 3 barras – Fluxo de potência ativa nas linhas k – m				
Tabela III.26 – Sistema 3 barras – Fluxo de potência reativa nas linhas k – m				
Tabela III.27 – Sistema 3 barras – Fluxo de potência ativa nas linhas m – k 66				
Tabela III.28 – Sistema 3 barras – Fluxo de potência reativa nas linhas m – k 60				
Tabela III.29 – Sistema 3 barras – Perdas de potência ativa nas linhas				
Tabela III.30 – Sistema 3 barras – Perdas de potência reativa nas linhas67				
Tabela IV.1 – Sistema IEEE 14 barras – Tensão nas barras				
Tabela IV.2 – Sistema Sul-Sudeste – Tensão nas barras				
Tabela IV.3 – Sistema IEEE 57 barras – Tensão nas barras	69			
Tabela IV.4 – Sistema IEEE 300 barras – Tensão nas barras	70			
Tabela IV.5 – Sistema 1768 barras – Tensão nas barras	70			
Tabela IV.6 – Sistema IEEE 14 barras – Módulo das tensões	70			
Tabela IV.7 – Sistema IEEE 14 barras – Fase das tensões	71			
Tabela IV.8 – Sistema Sul-Sudeste – Módulo das tensões	71			
Tabela IV.9 – Sistema Sul-Sudeste – Fase das tensões.72				
Tabela IV.10 – Sistema IEEE 57 barras – Módulo das tensões				
Tabela IV.11 – Sistema IEEE 57 barras – Fase das tensões				
Tabela IV.12 – Sistema IEEE 300 barras – Módulo das tensões				
Tabela IV.13 – Sistema IEEE 300 barras – Fase das tensões				
Tabela IV.14 – Sistema 1768 barras – Módulo das tensões				
Tabela IV.15 – Sistema 1768 barras – Fase das tensões				
Tabela IV.16 – Sistema IEEE 14 barras – Fluxo de potência nas linhas				
Tabela IV.17 – Sistema Sul-Sudeste – Fluxo de potência nas linhas				
Tabela IV.18 – Sistema IEEE 57 barras – Fluxo de potência nas linhas				
Tabela IV.19 – Sistema IEEE 300 barras – Fluxo de potência nas linhas76				
Tabela IV.20 – Sistema 1768 barras – Fluxo de potência nas linhas77				
Tabela IV.21 – Sistema IEEE 14 barras – Fluxo de potência ativa nas linhas				
Tabela IV.22 – Sistema IEEE 14 barras – Fluxo de potência reativa nas linhas				
Tabela IV.23 – Sistema Sul-Sudeste – Fluxo de potência ativa nas linhas	78			
Tabela IV.24 – Sistema Sul-Sudeste – Fluxo de potência reativa nas linhas	79			
Tabela IV.25 – Sistema IEEE 57 barras – Fluxo de potência ativa nas linhas79				
Tabela IV.26 – Sistema IEEE 57 barras – Fluxo de potência reativa nas linhas	80			

Tabela IV.27 – Sistema IEEE 300 barras – Fluxo de potência ativa nas linhas	80			
Tabela IV.28 – Sistema IEEE 300 barras – Fluxo de potência reativa nas linhas	81			
Tabela IV.29 – Sistema 1768 barras – Fluxo de potência ativa nas linhas 81				
Tabela IV.30 – Sistema 1768 barras – Fluxo de potência reativa nas linhas	82			
Tabela IV.31 – Geração da barra de referência	83			
Tabela IV.32 – Sistema IEEE 14 barras – Geração ativa da barra de referência	83			
Tabela IV.33 – Sistema IEEE 14 barras – Geração reativa da barra de referência	83			
Tabela IV.34 – Sistema Sul-Sudeste – Geração ativa da barra de referência	83			
Tabela IV.35 – Sistema Sul-Sudeste – Geração reativa da barra de referência	84			
Tabela IV.36 – Sistema IEEE 57 barras – Geração ativa da barra de referência	84			
Tabela IV.37 – Sistema IEEE 57 barras – Geração reativa da barra de referência	84			
Tabela IV.38 – Sistema IEEE 300 barras – Geração ativa da barra de referência	84			
Tabela IV.39 – Sistema IEEE 300 barras – Geração reativa da barra de referência	84			
Tabela IV.40 – Sistema 1768 barras – Geração ativa da barra de referência	84			
Tabela IV.41 – Sistema 1768 barras – Geração reativa da barra de referência	85			
Tabela IV.42 – Sistema IEEE 14 barras – Geração reativa das barras PV	85			
Tabela IV.43 – Sistema Sul-Sudeste – Geração reativa das barras PV	85			
Tabela IV.44 – Sistema IEEE 57 barras – Geração reativa das barras PV	86			
Tabela IV.45 – Sistema IEEE 300 barras – Geração reativa das barras PV	86			
Tabela IV.46 – Sistema 1768 barras – Geração reativa das barras PV	86			
Tabela IV.47 – Sistema IEEE 14 barras – Geração reativa das barras PV	86			
Tabela IV.48 – Sistema Sul-Sudeste – Geração reativa das barras PV	87			
Tabela IV.49 – Sistema IEEE 57 barras – Geração reativa das barras PV	87			
Tabela IV.50 – Sistema IEEE 300 barras – Geração reativa das barras PV	88			
Tabela IV.51 – Sistema 1768 barras – Geração reativa das barras PV	88			
Tabela IV.52 – Sistema IEEE 14 barras – Perdas de potência nas linhas	89			
Tabela IV.53 – Sistema Sul-Sudeste – Perdas de potência nas linhas	89			
Tabela IV.54 – Sistema IEEE 57 barras – Perdas de potência nas linhas	90			
Tabela IV.55 – Sistema IEEE 300 barras – Perdas de potência nas linhas	90			
Tabela IV.56 – Sistema 1768 barras – Perdas de potência nas linhas	90			
Tabela IV.57 – Sistema IEEE 14 barras – Perdas de potência ativa nas linhas	91			
Tabela IV.58 – Sistema IEEE 14 barras – Perdas de potência reativa nas linhas	91			
Tabela IV.59 – Sistema Sul-Sudeste – Perdas de potência ativa nas linhas	92			

Tabela IV.60 – Sistema Sul-Sudeste – Perdas de potência reativa nas linhas	92
Tabela IV.61 – Sistema IEEE 57 barras – Perdas de potência ativa nas linhas	93
Tabela IV.62 – Sistema IEEE 57 barras – Perdas de potência reativa nas linhas	93
Tabela IV.63 – Sistema IEEE 300 barras – Perdas de potência ativa nas linhas	94
Tabela IV.64 – Sistema IEEE 300 barras – Perdas de potência reativa nas linhas	94
Tabela IV.65 – Sistema 1768 barras – Perdas de potência ativa nas linhas	95
Tabela IV.66 – Sistema 1768 barras – Perdas de potência reativa nas linhas	95
Tabela IV.67 – Sistema Sul-Sudeste – Módulo das tensões	96
Tabela IV.68 – Sistema Sul-Sudeste – Fase das tensões	97
Tabela IV.69 – Sistema Sul-Sudeste – Geração ativa da barra de referência	97
Tabela IV.70 – Sistema Sul-Sudeste – Geração reativa da barra de referência	97
Tabela IV.71 – Sistema Sul-Sudeste – Geração reativa das barras PV	97
Tabela IV.72 – Sistema Sul-Sudeste – Fluxo de potência ativa nas linhas	98
Tabela IV.73 – Sistema Sul-Sudeste – Fluxo de potência reativa nas linhas	98
Tabela IV.74 – Sistema Sul-Sudeste – Perdas de potência ativa nas linhas	98
Tabela IV.75 – Sistema Sul-Sudeste – Perdas de potência reativa nas linhas	98
Tabela IV.76 – Iterações 1	100
Tabela IV.77 – Tempo computacional por iteração 1	100
Tabela IV.78 – Relações de tempo 1	100
Tabela A.1 – Sistema Sul-Sudeste – Dados de Barra 1	119
Tabela A.2 – Sistema Sul-Sudeste – Dados de Linha 1	120

Lista de Abreviaturas e Símbolos

B _{Totalkm}	Suceptância shunt total da linha k – m	
c	Valor entre x e y	
С	Matriz de pré-condicionamento	
E	Tensão	
E _{rel}	Erro relativo	
h	iteração	
Ι	Corrente	
$\mathbf{I}_{\mathbf{r}_{k}}+\mathbf{j}\mathbf{I}_{\mathbf{m}_{k}}$	Corrente complexa da barra k	
Id	Matriz identidade	
IR	Conjunto dos intervalos reais	
J	Matriz Jacobiana	
$P_{d_k}{}^d + jQ_{d_k}{}^d$	Demanda complexa determinística da barra k	
$P_{d_k}{}^i + j Q_{d_k}{}^i$	Demanda complexa intervalar da barra k	
$P_{g_k}{}^d + jQ_{g_k}{}^d$	Geração complexa determinística da barra k	
$P_{g_k}{}^i + j Q_{g_k}{}^i$	Geração complexa intervalar da barra k	
R	Conjunto dos números reais	
R _{km}	Resistência da linha k - m	
S	Potência aparente	
U	Número aleatório uniforme	
$ V_k^d \underline{\theta_k^d}$	Tensão determinística polar da barra k	
$\mid V_{k}^{\ i}\mid \underline{\theta_{k}^{\ i}}$	Tensão intervalar polar da barra k	
$V_{r_k}{}^d + j V_{m_k}{}^d$	Tensão determinística retangular da barra k	
$V_{r_k}{}^i + j V_{m_k}{}^i$	Tensão intervalar retangular da barra k	
Х	Vetor de intervalos	
X _{MC}	Valor da variável de saída obtida nas simulações tipo Monte Carlo	
X _{MET}	Valor da variável de saída determinada pela metodologia em análise	

X_{km}	Reatância da linha k – m	
x ₁ , x ₂	Elementos de R ($x_1 \le x_2$)	
У	Valor incremental a partir de x	
Y	Matriz Admitância	
α_{P_k}	Variação percentual da demanda ativa da barra k	
α_{Q_k}	Variação percentual da demanda reativa da barra k	
ϕ_k	Conjunto das barras vizinhas a barra k	

Os sobrescritos i e d denotam, respectivamente, quantidades intervalares e determinísticas.

Capítulo I

Introdução

I.1. Considerações gerais

As gerações, as cargas ativas e reativas e os dados de linha no cálculo do fluxo de potência são considerados quantidades determinísticas, ou seja, descritas por um único valor. Com isto, as tensões nas barras, os fluxos de potência e as perdas são calculadas de forma determinística. Contudo, a realidade é bem diferente. Na verdade, as gerações, as cargas e os parâmetros de linha sofrem variações aleatórias. Do lado da geração, essas variações decorrem das incertezas associadas à disponibilidade da energia primária e da ocorrência casual de falhas nos grupos geradores. Do lado da carga, as variações decorrem das incertezas associadas à sua previsão, que são tanto maiores quanto mais longínquo é o horizonte envolvido. Nos dados de linha também estão embutidos erros de medição.

Portanto, o modelo determinístico só poderia analisar a influência de tais variações através da realização de um conjunto exaustivo de estudos, simulando todas as combinações possíveis das diversas variações o que, além de exigir um elevado tempo computacional, produziria um grande número de resultados de difícil parecer conclusivo. Desta forma, a maneira mais eficiente no tratamento do problema é considerar as gerações, as cargas e os parâmetros de linha passíveis de variações. Consequentemente, os resultados do fluxo de potência, tais como as tensões, os fluxos nas linhas e as perdas, são apresentados não como numa forma pontual, mas sim como numa faixa de possíveis valores. Esta consideração permite uma avaliação muito mais realista a respeito da operação de um sistema de energia elétrica.

Uma conhecida ferramenta que incorpora as incertezas presentes nos dados de entrada é o fluxo de potência probabilístico [1 - 5]. No entanto, esse modelo não é

capaz de representar tais informações integralmente, visto que são baseados em repetições de eventos ou em dados experimentais. Os fluxos de potência probabilísticos ainda apresentam a desvantagem de necessitarem de rotinas de cálculo mais complexas.

Uma outra ferramenta para o tratamento de incertezas considera que uma informação vaga ou imprecisa é representada por um número fuzzy. Cargas e gerações são representadas através de distribuições de possibilidades. Por conseguinte, as variáveis de saída do fluxo de potência, tais como tensões e fluxos, também possuem distribuições de possibilidades [6 - 9].

Finalmente, a matemática intervalar [10 - 18], que considera um conjunto de métodos para manipulação de intervalos numéricos que aproximam dados incertos, é uma maneira simples de tratar as incertezas inerentes aos sistemas de energia elétrica e vem sendo utilizada em diferentes situações [16, 19 - 28].

I.2. Objetivos

O objetivo é desenvolver um fluxo de potência intervalar que possibilite uma avaliação quantitativa adequada das diferentes incertezas inerentes aos parâmetros de geração, de carga e de linha.

A metodologia proposta de análise para tratamento de incertezas é a matemática intervalar. Com a utilização da matemática intervalar é possível considerar intervalos de carga ativa e reativa e, por conseguinte, obter o perfil de tensões nodais e as distribuições de fluxo de potência também na forma intervalar.

Como no caso do fluxo de potência determinístico, três abordagens de solução do fluxo de potência intervalar serão desenvolvidas e apresentadas. Uma delas utiliza as equações básicas de potência expressas em termos das coordenadas polares da tensão, outra considera as mesmas equações escritas em coordenadas retangulares e a terceira utiliza as equações básicas de corrente expressas em termos das coordenadas retangulares.

Desta forma, resultados das três abordagens intervalares serão apresentados, discutidos e comparados no intuito de verificar vantagens e desvantagens e definir o melhor método de solução do fluxo de potência a ser utilizado em conjunto com a matemática intervalar no estudo das incertezas de uma rede elétrica. A validação dos resultados intervalares será feita através da simulação Monte Carlo.

Sistemas testes do IEEE, um sistema real brasileiro e um sistema de grande porte, serão utilizados na simulação e validação dos modelos. Assim, o presente trabalho visa desenvolver e programar uma metodologia rápida e robusta, para o tratamento de incertezas em estudos de fluxo de potência. Espera-se que este estudo venha a abrir novos horizontes de pesquisa dentro do setor elétrico brasileiro, ampliando os conhecimentos já existentes e inserindo outros conceitos da matemática intervalar nas modelagens de sistemas de energia elétrica.

I.3. Publicações

Durante o desenvolvimento da pesquisa relacionada a esta dissertação, os seguintes artigos foram produzidos:

- "Metodologia intervalar para tratamento de incertezas em problemas de fluxo de potência". Transmition & Distribution Conference and Exposition (T&D) 2010, São Paulo – SP
- "Interval arithmetic in current injection power flow analysis" a ser submetido a uma revista internacional.

I.4. Estrutura do trabalho

O trabalho está dividido em cinco capítulos e dois apêndices, os quais estão descritos a seguir:

O Capítulo II apresenta os conceitos e definições básicas relacionados à matemática intervalar.

O Capítulo III apresenta as formulações dos diferentes fluxos de potência determinísticos, do fluxo de potência intervalar e da simulação de Monte Carlo.

O Capítulo IV apresenta os resultados para diferentes sistemas elétricos, com análises e explicações de cada parte dos cálculos realizados.

O Capítulo V apresenta as conclusões sobre este trabalho e propõe possíveis estudos futuros.

O Apêndice A apresenta os dados de linha, de barra e o diagrama unifilar do sistema equivalente Sul-Sudeste de 34 barras.

O Apêndice B apresenta as relações matemáticas referentes às variáveis dependentes funcionais dos fluxos de potência intervalar polar, retangular e injeção de correntes.

Capítulo II

Fundamentos da Matemática Intervalar

II.1. Introdução

A matemática intervalar, baseada na aritmética de Moore [10 - 16], surgiu para resolver o problema da qualidade do resultado na computação científica, que depende do conhecimento dos erros computacionais nos dados.

A matemática intervalar considera um conjunto de métodos para manipulação de intervalos numéricos que aproximam dados incertos. Segundo [17], os intervalos podem ser aplicados para representar valores desconhecidos e, também, valores contínuos, para controlar o erro de arredondamento e para representar dados inexatos, aproximações e erros de truncamento de procedimentos.

II.2. Conjunto IR

O conjunto de todos os intervalos reais \mathbb{IR} é definido por:

$$\mathbb{IR} = \{ [x_1; x_2] \mid x_1; x_2 \in \mathbb{R}, x_1 \le x_2 \}$$
(II.1)

II.3. Operações básicas

Para apresentação das principais operações básicas, sejam X = [x₁; x₂] e Y = [y₁; y₂] $\in \mathbb{IR}$.

II.3.1. Adição intervalar

A adição intervalar é definida por:

$$X + Y = [(x_1 + y_1); (x_2 + y_2)]$$
(II.2)

Como ilustração, se X = [10; 20] e Y = [30; 39], então X + Y = [10 + 30; 20 + 39] = [40; 59].

II.3.2. Pseudo inverso aditivo intervalar

O pseudo inverso aditivo intervalar é definido por:

$$-X = [-x_2; -x_1]$$
 (II.3)

Portanto, se X = [-4; 9], então -X = [-9; 4].

II.3.3. Subtração intervalar

A subtração intervalar é definida por:

$$X - Y = [(x_1 - y_2); (x_2 - y_1)]$$
(II.4)

Assim, se X = [-1; 4] e Y = [3; 8], então X - Y = [-1 - 8; 4 - 3] = [-9; 1].

II.3.4. Multiplicação intervalar

A multiplicação intervalar é definida por:

$$X.Y = [\min \{x_1.y_1, x_1.y_2, x_2.y_1, x_2.y_2\}; \max\{x_1.y_1, x_1.y_2, x_2.y_1, x_2.y_2\}]$$
(II.5)

Como ilustração, se X = [-2; 3] e Y = [4; 5], então X.Y = $[\min \{(-2) \times 4, (-2) \times 5, 3 \times 4, 3 \times 5\}$; max $\{(-2) \times 4, (-2) \times 5, 3 \times 4, 3 \times 5\}$] = [-10; 15].

A adição e a multiplicação intervalar são associativas e comutativas, contudo, a propriedade distributiva nem sempre é verdadeira para a aritmética intervalar.

II.3.5. Pseudo inverso multiplicativo intervalar

Se $0 \notin X$, o pseudo inverso multiplicativo intervalar é definido por:

$$X^{-1} = \frac{1}{X} = \left[\frac{1}{x_2}; \frac{1}{x_1}\right]$$
(II.6)

Portanto, se X = [3; 4], então $X^{-1} = [1/4; 1/3]$.

II.3.6. Divisão intervalar

Se $0 \notin Y$, a divisão intervalar é definida por:

$$X/Y = [\min \{x_1/y_1, x_1/y_2, x_2/y_1, x_2/y_2\}; \max\{x_1/y_1, x_1/y_2, x_2/y_1, x_2/y_2\}]$$
(II.7)

Portanto, se X = [2; 4] e Y = [1; 3], então X/Y = [min {2/1; 2/3; 4/1; 4/3}; max {2/1; 2/3; 4/1; 4/3} = [0,6666; 4].

II.4. Ponto médio de um intervalo

O ponto médio do intervalo X é definido por:

$$med(X) = \frac{x_1 + x_2}{2}$$
 (II.8)

II.5. Diâmetro de um intervalo

O diâmetro do intervalo X é definido por:

$$diam(X) = |x_2 - x_1|$$
 (II.9)

II.6. Intervalo simétrico

X é um intervalo simétrico se -X = X. [-1 ; 1], [- π ; π] e [0 ; 0] são exemplos de intervalos simétricos.

II.7. Função seno

O seno do intervalo X é definido por:

 $sen(X) = [min{sen(x_1); sen(x_2)}; max{sen(x_1); sen(x_2)}]$

II.8. Função cosseno

O cosseno do intervalo X é definido por:

$$\cos(X) = [\min\{\cos(x_1); \cos(x_2)\}; \max\{\cos(x_1); \cos(x_2)\}]$$

II.9. União entre dois intervalos

A união dos intervalos X e Y é definida por:

$$X \cup Y = [\min \{x_1; y_1\}; \max \{x_2; y_2\}]$$
(II.10)

II.10. Intersecção entre dois intervalos

A intersecção dos intervalos X e Y é definida por:

$$X \cap Y = [\max \{x_1; y_1\}; \min \{x_2; y_2\}];$$
(II.11)
se max $\{x_1; y_1\} \le \min \{x_2; y_2\};$
se min $\{x_2; y_2\} < \max \{x_1; y_1\};$
então $X \cap Y = 0$.

II.11. Inversa de uma matriz intervalar

Seja A uma matriz intervalar 2x2 inversível:

$$\mathbf{A} = \begin{pmatrix} [7,000;8,000] & [3,000;7,000] \\ [2,000;3,000] & [4,000;6,000] \end{pmatrix}$$

Utilizando a biblioteca INTLAB [18]:

$$\mathbf{A}^{-1} = \begin{pmatrix} \begin{bmatrix} -0,172;0,572 \end{bmatrix} & \begin{bmatrix} -1,000;0,600 \end{bmatrix} \\ \begin{bmatrix} -0,429;0,229 \end{bmatrix} & \begin{bmatrix} -0,400;1,000 \end{bmatrix} \end{pmatrix}$$

Calculando A · A⁻¹ obtém-se:

$$\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I} = \begin{pmatrix} \begin{bmatrix} -4,572;6,572 \end{bmatrix} & \begin{bmatrix} -12,000;12,000 \end{bmatrix} \\ \begin{bmatrix} -3,286;3,286 \end{bmatrix} & \begin{bmatrix} -6,000;8000 \end{bmatrix} \end{pmatrix}$$

cuja matriz ponto médio é:

$$\operatorname{med}(\mathbf{I}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

A matriz ponto médio da matriz A é:

$$\mathbf{B} = \mathrm{med}(\mathbf{A}) = \begin{pmatrix} 7,500 & 5,000\\ 2,500 & 5,000 \end{pmatrix}$$

A inversa de B é:

$$\mathbf{B}^{-1} = \begin{pmatrix} 0,200 & -0,200 \\ -0,100 & 0,300 \end{pmatrix}$$

que é igual a matriz ponto médio da matriz A⁻¹.

Considere agora uma matriz 3x3:

$$\mathbf{C} = \begin{pmatrix} [5,000;6,000] & [2,000;4,000] & [6,000;9,000] \\ [11,000;13,000] & [8,000;9000] & [5,000;7,000] \\ [1,000;3,000] & [18,000;20,000] & [6,000;7,000] \end{pmatrix}$$

Utilizando a biblioteca INTLAB:

$$\mathbf{C}^{-1} = \begin{pmatrix} \left[-0, 236; 0, 125\right] \left[-0, 004; 0, 236\right] \left[-0, 093; 0, 007\right] \right] \\ \left[-0, 178; 0, 054\right] \left[-0, 056; 0, 095\right] \left[0, 020; 0, 086\right] \\ \left[-0, 089; 0, 487\right] \left[-0, 275; 0, 090\right] \left[-0, 065; 0, 085\right] \end{pmatrix}$$

Calculando $C \cdot C^{-1}$ obtém-se:

$$\mathbf{C} \cdot \mathbf{C}^{-1} = \mathbf{I} = \begin{pmatrix} [-3, 526; 5, 526] & [-2, 885; 2, 885] & [-1, 200; 1, 200] \\ [-5, 689; 5, 689] & [-2, 744; 4, 744] & [-1, 554; 1, 554] \\ [-5, 090; 5, 090] & [-3, 333; 3, 333] & [-0, 435; 2, 435] \end{pmatrix}$$

cuja matriz ponto médio é:

$$med(I) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

A matriz ponto médio da matriz C é:

$$D = med(C) = \begin{pmatrix} 5,500 & 3,000 & 7,500 \\ 12,000 & 8,500 & 6,00 \\ 2,000 & 19,000 & 6,500 \end{pmatrix}$$

A inversa de D é:

$$\mathbf{D}^{-1} = \begin{pmatrix} -0,055 & 0,115 & -0,043 \\ -0,062 & 0,019 & 0,054 \\ 0,199 & -0,093 & 0,010 \end{pmatrix}$$

que é igual a matriz ponto médio da matriz C^{-1} .

Portanto, a inversa de uma matriz intervalar é calculada da mesma forma que a inversa de uma matriz pontual.

II.12. Método de Newton Intervalar

II.12.1. Apresentação do método

O método de Newton é um algoritmo para calcular a raiz de uma dada equação, através da construção de uma sequência convergente de pontos. De maneira análoga, a versão intervalar do método de Newton permite construir uma sequência convergente de intervalos, cujo limite será um intervalo que contém a raiz real da função dada. O método de Newton intervalar foi proposto por Moore em 1966 [19 – 20].

Considere a função não linear f, tal que f(x)=0. A aplicação do teorema do valor médio resulta:

$$\mathbf{f}(\mathbf{y}) = \mathbf{f}(\mathbf{x}) + \mathbf{J}(\mathbf{c})(\mathbf{y} - \mathbf{x}) \tag{II.12}$$

Assumindo f(y) = 0:

$$J(c)(y-x) = -f(x)$$
 (II.13)

Definindo o intervalo $[x ; y] \in X$ então:

$$\mathbf{J}(\mathbf{X})(\mathbf{X} - \mathbf{x}) = -\mathbf{f}(\mathbf{x}) \tag{II.14}$$

Definindo N(x, X) como o operador de Newton intervalar que fornece o intervalo solução X da equação (II.14) então:

$$N(x, X) = x - J^{-1}(X)f(x)$$
(II.15)

A equação (II.15) define o método de Newton intervalar onde x é o ponto médio do intervalo X. Introduzindo a iteração h na equação (II.15):

$$N(x^{h}, X^{h}) = x^{h} - \mathbf{J}^{-1}(X^{h})f(x^{h})$$
(II.16)

$$X^{h+1} = X^h \cap N(x^h, X^h) \tag{II.17}$$

A equação (II.17) mostra que o método de Newton intervalar reduz as soluções candidatas através da intersecção de dois intervalos. Além disso, o método de Newton intervalar necessita resolver a equação linear intervalar (II.16) a cada iteração h.

II.12.2. Aplicações práticas

II.12.2.1. Aplicação 1

Considere a função intervalar:

$$f(X) = X^{2} + 2X - [7;9] = 0$$

Uma solução no intervalo $X^0 = [0;6] é$ buscada. A Jacobiana avaliada neste intervalo é dada por:

$$\mathbf{J}(\mathbf{X}^{0}) = \frac{\mathrm{df}(\mathbf{X})}{\mathrm{dX}^{0}} = 2\mathbf{X}^{0} + 2 = [2;14]$$

Um ponto específico $x^0 \in X^0$ é selecionado da seguinte forma:

$$\mathbf{x}^{0} = \operatorname{med}(\mathbf{X}^{0}) = 3$$

A função f(X) é calculada no ponto x^0 :

$$f(x^{0}) = 3^{2} + 2 \cdot 3 - [7;9] = [6;8]$$

O operador N é calculado segundo (II.16)

$$N(x^{0}, X^{0}) = x^{0} - J^{-1}(X^{0})f(x^{0}) = [-1; 2, 57]$$

O valor de X¹é obtido fazendo a intersecção apresentada em (II.17)

$$X^{1} = X^{0} \cap N(x^{0}, X^{0}) = [0; 2, 57]$$

A convergência é testada da seguinte maneira:

$$\frac{\left|\operatorname{diam}(X^{0}) - \operatorname{diam}(X^{1})\right|}{2} = [1, 72] > \operatorname{Tolerância} = 10^{-4}$$

Como a tolerância não é satisfeita, o processo é repetido calculando-se $J(X^1)$, x^1 e um novo intervalo X^2 :

$$X^{2} = X^{1} \cap N(x^{1}, X^{1}) = [1, 67; 2, 57]$$

Esse processo é repetido até que $\frac{\left|\operatorname{diam}(X^n) - \operatorname{diam}(X^{n-1})\right|}{2} \le \operatorname{Tolerância}$. A Tabela II.1 apresenta os resultados de X para cada iteração. A convergência ocorre na quinta

iteração para o intervalo [1,82;2,17].

Iteração	X
0	[0,00;6,00]
1	[0,00 ; 2,57]
2	[1,67;2,57]
3	[1,80;2,17]
4	[1,82;2,17]
5	[1,82;2,17]

Tabela II.1 - Resultados Newton - Aplicação 1

II.12.2.2. Aplicação 2

Considere a mesma função intervalar da seção anterior:

$$f(X) = X^{2} + 2X - [7;9] = 0$$

Uma solução será buscada no novo intervalo $X^0 = [1,5;2,5]$. A Jacobiana avaliada neste intervalo é dada por:

$$\mathbf{J}(\mathbf{X}^{0}) = \frac{\mathrm{df}(\mathbf{X})}{\mathrm{dX}^{0}} = 2\mathbf{X}^{0} + 2 = [5;7]$$

Um ponto específico $x^0 \in X^0$ é selecionado da seguinte forma:

$$\mathbf{x}^{0} = med(\mathbf{X}^{0}) = 2$$

A função f(X) é calculada no ponto x^0 :

$$f(x^{0}) = 2^{2} + 2 \cdot 2 - [7;9] = [-1;1]$$

O operador N é calculado segundo (II.16)

$$N(x^{0}, X^{0}) = x^{0} - J^{-1}(X^{0})f(x^{0}) = [1, 80; 2, 20]$$

O valor de X¹é obtido fazendo a intersecção apresentada em (II.17)

$$X^{1} = X^{0} \cap N(x^{0}, X^{0}) = [1, 80; 2, 20]$$

A convergência é testada da seguinte maneira:

$$\frac{\left|\operatorname{diam}(\mathbf{X}^{0}) - \operatorname{diam}(\mathbf{X}^{1})\right|}{2} = [0, 30] > \operatorname{Tolerância} = 10^{-4}$$

Como a tolerância não é satisfeita, o processo é repetido calculando-se $J(X^1)$, x^1e um novo intervalo X^2 :

$$X^{2} = X^{1} \cap N(x^{1}, X^{1}) = [1, 82; 2, 17]$$

Esse processo é repetido até que $\frac{|\operatorname{diam}(X^{h}) - \operatorname{diam}(X^{h-1})|}{2} \le \operatorname{Tolerância}$. A Tabela

II.2 apresenta os resultados de X para cada iteração. A convergência ocorre na terceira iteração para o intervalo [1,82 ; 2,17].

Iteração	Х
0	[1,50 ; 2,50]
1	[1,80 ; 2,20]
2	[1,82;2,17]
3	[1,82 ; 2,17]

Tabela II.2 - Resultados Newton - Aplicação 2

Como o diâmetro do intervalo inicial de X na aplicação 2 é menor que o da aplicação 1, a aplicação 2 necessita de um número menor de iterações para a sua convergência.

II.12.2.3. Aplicação 3

Considere a função intervalar:

$$f(X) = X^2 + 2X - [5;11] = 0$$

Uma solução será buscada no intervalo $X^0 = [1,5;2,5]$. A Jacobiana avaliada neste intervalo é dada por:

$$\mathbf{J}(\mathbf{X}^{0}) = \frac{\mathrm{df}(\mathbf{X})}{\mathrm{dX}^{0}} = 2\mathbf{X}^{0} + 2 = [5;7]$$

Um ponto específico $x^0 \in X^0$ é selecionado da seguinte forma:

$$\mathbf{x}^0 = \mathrm{med}\left(\mathbf{X}^0\right) = 2$$

A função f(X) é calculada no ponto x^0 :

$$f(x^{0}) = 2^{2} + 2 \cdot 2 - [5;11] = [-3;3]$$

O operador N é calculado segundo (II.16)

$$N(x^{0}, X^{0}) = x^{0} - J^{-1}(X^{0})f(x^{0}) = [1, 40; 2, 60]$$

O valor de X¹é obtido fazendo a intersecção apresentada em (II.17)

$$\mathbf{X}^{1} = \mathbf{X}^{0} \cap \mathbf{N}(\mathbf{x}^{0}, \mathbf{X}^{0}) = [1, 50; 2, 50]$$

A convergência é testada da seguinte maneira:

$$\frac{\left|\operatorname{diam}(X^{0}) - \operatorname{diam}(X^{1})\right|}{2} = [0] < \operatorname{Tolerância} = 10^{-4}$$

Como a tolerância é satisfeita, o processo é encerrado na primeira iteração, porém com o resultado errado, já que não houve diminuição do intervalo inicial de X. Repetindo o processo com um intervalo inicial de X maior, $X^0 = [1;3]$, a Jacobiana avaliada neste intervalo é dada por:

$$\mathbf{J}(X^{0}) = \frac{df(X)}{dX^{0}} = 2X^{0} + 2 = [4;8]$$

Um ponto específico $x^0 \in X^0$ é selecionado da seguinte forma:

$$\mathbf{x}^0 = \mathrm{med}\left(\mathbf{X}^0\right) = 2$$

A função f(X) é calculada no ponto x^0 :

$$f(x^{0}) = 2^{2} + 2 \cdot 2 - [5;11] = [-3;3]$$

O operador N é calculado segundo (II.16)

$$N(x^{0}, X^{0}) = x^{0} - J^{-1}(X^{0})f(x^{0}) = [1, 25; 2, 75]$$

O valor de X¹é obtido fazendo a intersecção apresentada em (II.17)

$$X^{1} = X^{0} \cap N(x^{0}, X^{0}) = [1, 25; 2, 75]$$

A convergência é testada da seguinte maneira:

$$\frac{\left|\operatorname{diam}(X^{0}) - \operatorname{diam}(X^{1})\right|}{2} = [0, 25] > \operatorname{Tolerância} = 10^{-4}$$

Como a tolerância não é satisfeita, o processo é repetido calculando-se $J(X^1)$, x^1 e um novo intervalo X^2 :

$$X^{2} = X^{1} \cap N(x^{1}, X^{1}) = [1, 33; 2, 67]$$

Esse processo é repetido até que $\frac{\left|\operatorname{diam}(X^{h}) - \operatorname{diam}(X^{h-1})\right|}{2} \le \operatorname{Tolerância}$. A Tabela

II.3 apresenta os resultados de X para cada iteração. A convergência ocorre na quarta iteração para o intervalo [1,36 ; 2,64].
Iteração	Х
0	[1,00 ; 3,00]
1	[1,25 ; 2,75]
2	[1,33 ; 2,67]
3	[1,36 ; 2,64]
4	[1,36 ; 2,64]

Tabela II.3 - Resultados Newton - Aplicação 3

Contudo, o valor convergido de X apresenta erro em relação ao resultado correto de [1,45 ; 2,46]. Este fato mostra que a variação intervalar assumida no problema pode interferir na exatidão do processo iterativo.

II.13. Método de Krawczyk

II.13.1. Modelagem matemática

Na matemática intervalar um dos métodos mais utilizados para a resolução de sistemas não-lineares é o método de Krawczyk, criado a partir do método de Newton. Neste método o sistema não-linear é resolvido somente por produto de matrizes[19, 21]. Adicionando o termo (x – y) nos dois lados da equação (II.13)

$$[Id - J(X)](x - y) = -f(x) + x - y$$
(II.18)

A equação (II.14) pode ser reescrita da seguinte forma:

$$\mathbf{y} = \mathbf{x} - \mathbf{f}(\mathbf{x}) + (\mathbf{Id} - \mathbf{J}(\mathbf{X}))(\mathbf{y} - \mathbf{x})$$
(II.19)

Como $[x; y] \in X$, y pode ser substituído pelo intervalo X. Assim:

$$\mathbf{K}(\mathbf{x}, \mathbf{X}) = \mathbf{x} - \mathbf{f}(\mathbf{x}) + (\mathbf{Id} - \mathbf{J}(\mathbf{X}))(\mathbf{X} - \mathbf{x})$$
(II.20)

K(x, X), denominado operador Krawczyk, propicia o intervalo de solução da equação (II.19). Introduzindo uma matriz de pré-condicionamento mais a iteração h em (II.20) obtém-se:

$$\mathbf{K}(\mathbf{x}^{\mathbf{h}}, \mathbf{X}^{\mathbf{h}}) = \mathbf{x}^{\mathbf{h}} - \mathbf{C}\mathbf{f}(\mathbf{x}^{\mathbf{h}}) + (\mathbf{Id} - \mathbf{C}\mathbf{J}(\mathbf{X}^{\mathbf{h}}))(\mathbf{X}^{\mathbf{h}} - \mathbf{x}^{\mathbf{h}})$$
(II.21)

$$\mathbf{C} = (\mathrm{med}(\mathbf{J}(\mathbf{X}^{\mathrm{h}})))^{-1}$$
(II.22)

$$\mathbf{X}^{\mathbf{h}+\mathbf{l}} = \mathbf{X}^{\mathbf{h}} \cap \mathbf{K}(\mathbf{x}^{\mathbf{h}}, \mathbf{X}^{\mathbf{h}}) \tag{II.23}$$

C é a matriz de pré-condicionamento igual à inversa do ponto médio de $J(X^h)$. No operador Krawczyk não é necessário o cálculo da inversa da Jacobina intervalar, como é necessário no método de Newton intervalar.

II.13.2. Aplicações práticas

II.13.2.1 Aplicação 1

Considere a função intervalar:

$$f(X) = X^{2} + 2X - [7;9] = 0$$

 $X^{0} = [0;6]$

Da mesma forma que no método de Newton:

$$J(X^{0}) = \frac{df(X)}{dX^{0}} = 2X^{0} + 2 = [2;14]$$
$$x^{0} = med(X^{0}) = 3$$
$$f(x^{0}) = 3^{2} + 2 \cdot 3 - [7;9] = [6;8]$$

O operador K é calculado segundo (II.21) onde:

$$\operatorname{med}\left(\mathbf{J}\left(\mathbf{X}^{0}\right)\right) = 8$$

$$\mathbf{C} = \frac{1}{8}$$
$$\mathbf{K} \left(\mathbf{x}^{0}, \mathbf{X}^{0} \right) = 3 - \left[\frac{6}{8}; 1 \right] - \left[[1;1] - \left[\frac{2}{8}; \frac{14}{8} \right] \right] [-3;3] = [-0, 25; 4, 50]$$

Portanto, de (II.23):

$$X^{1} = X^{0} \cap K(x^{0}, X^{0}) = [0; 4, 50]$$

A convergência é testada de forma análoga aquela utilizada no método de Newton. Como $\frac{\left| \text{diam}(X^0) - \text{diam}(X^1) \right|}{2} = [0,75], \text{ o processo é repetido calculando-se}$ $\mathbf{J}(X^1), x^1 \text{e um novo intervalo } X^2:$

$$X^{2} = X^{1} \cap K(x^{1}, X^{1}) = [0, 30; 3, 72]$$

Esse processo é repetido até que $\frac{\left|\operatorname{diam}(X^{h}) - \operatorname{diam}(X^{h-1})\right|}{2} \le$ Tolerância . A Tabela

II.4 apresenta os resultados de X para cada iteração. A convergência ocorre na sétima iteração para o intervalo [1,82 ; 2,17].

Tabela II.4 - Resultados Krawczyk - Aplicação 1

Iteração	X
0	[0,00 ; 6,00]
1	[0,00 ; 4,50]
2	[0,30;3,72]
3	[0,86 ; 3,14]
4	[1,40 ; 2,60]
5	[1,81 ; 2,19]
6	[1,82 ; 2,17]
7	[1,82 ; 2,17]

II.13.2.2 Aplicação 2

Considere a mesma função intervalar da seção anterior e o novo intervalo inicial de X:

$$f(X) = X^{2} + 2X - [7;9] = 0$$
$$X^{0} = [1,5;2,5]$$

Da mesma forma que no método de Newton:

$$J(X^{0}) = \frac{df(X)}{dX^{0}} = 2X^{0} + 2 = [5;7]$$
$$x^{0} = med(X^{0}) = 2$$
$$f(x^{0}) = 2^{2} + 2 \cdot 2 - [7;9] = [-1;1]$$

O operador K é calculado segundo (II.21) onde:

$$\operatorname{med}(\mathbf{J}(\mathbf{X}^{0})) = 6$$
$$\mathbf{C} = \frac{1}{6}$$
$$\mathbf{K}(\mathbf{x}^{0}, \mathbf{X}^{0}) = 2 - \left[-\frac{1}{6}; \frac{1}{6}\right] - \left[[1; 1] - \left[\frac{5}{6}; \frac{7}{6}\right]\right] \left[-0, 5; 0, 5\right] = \left[1, 75; 2, 25\right]$$

Portanto, de (II.23):

$$X^{1} = X^{0} \cap K(x^{0}, X^{0}) = [1, 75; 2, 25]$$

A convergência é testada de forma análoga aquela utilizada no método de Newton. Como $\frac{\left| \text{diam}(X^0) - \text{diam}(X^1) \right|}{2} = [0, 25], \text{ o processo é repetido calculando-se}$ $\mathbf{J}(X^1), x^1 \text{e um novo intervalo } X^2:$

$$X^{2} = X^{1} \cap K(x^{1}, X^{1}) = [1, 81; 2, 19]$$

Esse processo é repetido até que $\frac{|\operatorname{diam}(X^{h}) - \operatorname{diam}(X^{h-1})|}{2} \le \operatorname{Tolerância}$. A Tabela

II.5 apresenta os resultados de X para cada iteração. A convergência ocorre na quarta iteração para o intervalo [1,82 ; 2,17].

Iteração	Х
0	[1,50 ; 2,50]
1	[1,75 ; 2,25]
2	[1,81 ; 2,19]
3	[1,82;2,17]
4	[1,82;2,17]

Tabela II.5 – Resultados Krawczyk – Aplicação 2

Como o diâmetro do intervalo inicial de X na aplicação 2 é menor que o da aplicação 1, a aplicação 2 necessita de um número menor de iterações para a sua convergência.

II.13.2.3 Aplicação 3

Considere a função intervalar:

$$f(X) = X^{2} + 2X - [5;11] = 0$$

 $X^{0} = [1,5;2,5]$

Da mesma forma que no método de Newton:

$$\mathbf{J}(X^{0}) = \frac{\mathrm{df}(X)}{\mathrm{d}X^{0}} = 2X^{0} + 2 = [5;7]$$

$$x^{0} = med(X^{0}) = 2$$

f(x^{0}) = 2² + 2 · 2 - [5;11] = [-3;3]

O operador K é calculado segundo (II.21) onde:

$$\operatorname{med}(\mathbf{J}(\mathbf{X}^{0})) = 6$$
$$\mathbf{C} = \frac{1}{6}$$
$$\mathbf{K}(\mathbf{x}^{0}, \mathbf{X}^{0}) = 2 - \left[-\frac{1}{2}; \frac{1}{2}\right] - \left[[1; 1] - \left[\frac{5}{6}; \frac{7}{6}\right]\right] \left[-0, 5; 0, 5\right] = \left[1, 42; 2, 58\right]$$

Portanto, de (II.23):

$$X^{1} = X^{0} \cap K(x^{0}, X^{0}) = [1, 50; 2, 50]$$

A convergência é testada de forma análoga aquela utilizada no método de Newton. Como $\frac{\left|\operatorname{diam}(X^0) - \operatorname{diam}(X^1)\right|}{2} = [0]$, o processo é encerrado na primeira iteração, porém com o resultado errado, já que não houve diminuição do intervalo inicial de X. Repetindo o processo com um intervalo inicial de X maior, $X^0 = [1;3]$:

$$\mathbf{J}(\mathbf{X}^{0}) = \frac{\mathrm{df}(\mathbf{X})}{\mathrm{dX}^{0}} = 2\mathbf{X}^{0} + 2 = [4;8]$$
$$\mathbf{x}^{0} = \mathrm{med}(\mathbf{X}^{0}) = 2$$
$$\mathbf{f}(\mathbf{x}^{0}) = 2^{2} + 2 \cdot 2 - [5;11] = [-3;3]$$

O operador K é calculado segundo (II.21) onde:

$$\operatorname{med}\left(\mathbf{J}\left(\mathbf{X}^{0}\right)\right) = 6$$
$$\mathbf{C} = \frac{1}{6}$$

$$K(x^{0}, X^{0}) = 2 - \left[-\frac{1}{2}; \frac{1}{2}\right] - \left[1; 1\right] - \left[\frac{4}{6}; \frac{8}{6}\right] \left[-1; 1\right] = \left[1, 17; 2, 83\right]$$

Portanto, de (II.23):

$$X^{1} = X^{0} \cap K(x^{0}, X^{0}) = [1, 17; 2, 83]$$

A convergência é testada de forma análoga aquela utilizada no método de Newton. Como $\frac{\left|\operatorname{diam}(X^{0}) - \operatorname{diam}(X^{1})\right|}{2} = [0.17]$

$$X^{2} = X^{1} \cap K(x^{1}, X^{1}) = [1, 27; 2, 73]$$

Esse processo é repetido até que $\frac{|\operatorname{diam}(X^{h}) - \operatorname{diam}(X^{h-1})|}{2} \le \operatorname{Tolerância}$. A Tabela

II.6 apresenta os resultados de X para cada iteração. A convergência ocorre na sexta iteração para o intervalo [1,36 ; 2,64].

Tabela II.6 –	- Resultados	Krawczyk
---------------	--------------	----------

Iteração	X
0	[1,00;3,00]
1	[1,17;2,83]
2	[1,27;2,73]
3	[1,32 ; 2,68]
4	[1,35 ; 2,65]
5	[1,36 ; 2,64]
6	[1,36 ; 2,64]

Contudo, o valor convergido de X apresenta erro em relação ao resultado correto de [1,45 ; 2,46]. Este fato mostra que a variação intervalar assumida no problema pode interferir na exatidão do processo iterativo.

Capítulo III

Fluxo de Potência Intervalar

III.1. Introdução

A primeira utilização da matemática intervalar para o tratamento de incertezas no problema de fluxo de potência [22] apresenta uma metodologia de solução baseada em intervalos aritméticos para a determinação da solução do fluxo de potência com incertezas nas demandas. As referências [16, 19, 23 – 25] também apresentam uma técnica, baseada em matemática intervalar, para incorporar as incertezas associadas às cargas no problema de fluxo de potência. Os resultados são obtidos através da solução de um sistema não linear de equações, definidas por intervalos, empregando-se o método de Krawczyk juntamente com o fluxo de potência em coordenadas retangulares.

Em [26] é proposta a utilização de intervalos aritméticos para a realização de análise de contingências.

A referência [27] apresenta resultados de um fluxo de potência trifásico para sistemas de distribuição de energia elétrica no qual são consideradas incertezas na demanda e nos parâmetros dos alimentadores utilizando uma técnica baseada em intervalos aritméticos.

Finalmente, a referência [28] propõe uma metodologia baseada na utilização da matemática intervalar, onde as variáveis de interesse são representadas como combinações de certas variáveis primitivas que representam as fontes de incertezas nos dados dos sistemas elétricos.

Este capítulo esta dividido em quatro partes. Na primeira e segunda partes são apresentados, respectivamente, os fluxos de potência convencionais e fluxo de potência intervalar. Na terceira parte é apresentada a simulação de Monte Carlo e na quarta parte são analisados os resultados dos fluxos de potência intervalar e da simulação de Monte Carlo para um sistema elétrico de 3 barras.

III.2. Fluxo de potência convencional

O problema do fluxo de potência pode ser expresso em função das equações de potência ou de corrente, escritas em termos das coordenadas polares ou retangulares das tensões nas barras. A seguir será apresentada uma rápida revisão das técnicas empregadas para a solução do fluxo de potência.

III.2.1. Coordenadas polares

As expressões para as potências ativa e reativa líquidas injetadas em uma barra genérica *k*, em função das coordenadas polares das tensões, são dadas por [29]:

$$P_{k} = V_{k} \sum_{m \in \phi_{k}} V_{m} (G_{km} \cos \theta_{km} + B_{km} \sin \theta_{km})$$
(III.1)

$$Q_{k} = V_{k} \sum_{m \in \phi_{k}} V_{m} (G_{km} \operatorname{sen} \theta_{km} - B_{km} \cos \theta_{km})$$
(III.2)

Linearizando-se as equações (III.1) e (III.2), por intermédio da série de Taylor, obtém-se o seguinte sistema de equações a ser resolvido a cada iteração do método de Newton-Raphson:

ſ	ΔP_1		H ₁₁	N ₁₁	H ₁₂	N ₁₂		H_{1n}	N _{1n}	$\Delta \theta_1$
	ΔQ_1		M ₁₁	L_{11}	M ₁₂	L_{12}		M_{1n}	L _{1n}	ΔV_1
	ΔP_2		H ₂₁	N 21	H ₂₂	N ₂₂		H_{2n}	N _{2n}	$\Delta \theta_2$
	ΔQ_2	=	M_{21}	L_{21}	M 22	L_{22}		M_{2n}	L _{2n}	ΔV_2
	÷		:	÷	:	:	·.	÷	:	:
	ΔP_{n}		H _{n1}	N _{n1}	H _{n2}	N _{n2}		H_{nn}	N _{nn}	$\Delta \theta_n$
	ΔQ_n		M _{n1}	L_{n1}	M _{n2}	L_{n2}		M_{nn}	L _{nn}	ΔV_n

A matriz apresentada na equação (III.3) é denominada matriz Jacobiana polar. Os vetores P e Q são as injeções de potência ativa e reativa. As submatrizes H, N, M e L, são as derivadas parciais de P e Q em relação ao ângulo de fase θ e à magnitude V da tensão complexa expressa em coordenadas polares.

Após o cálculo dos incrementos das tensões das barras através de (III.3), a atualização das tensões em uma iteração genérica (h+1) é dada por:

$$\theta_{k}^{(h+1)} = \theta_{k}^{h} + \Delta \theta_{k}^{h} \tag{III.4}$$

$$\mathbf{V}_{k}^{(h+1)} = \mathbf{V}_{k}^{h} + \Delta \mathbf{V}_{k}^{h} \tag{III.5}$$

III.2.2. Coordenadas retangulares

As expressões para as potências ativa e reativa líquidas injetadas em uma barra genérica k, em função das coordenadas retangulares das tensões, são dadas por [30]:

$$P_{k} = \sum_{m \in \phi_{k}} V_{r_{k}} (G_{km} V_{r_{m}} - B_{km} V_{m_{m}}) + V_{m_{k}} (G_{km} V_{m_{m}} + B_{km} V_{r_{m}})$$
(III.6)

$$Q_{k} = \sum_{m \in \phi_{k}} V_{m_{k}} (G_{km} V_{r_{m}} - B_{km} V_{m_{m}}) - V_{r_{k}} (G_{km} V_{m_{m}} + B_{km} V_{r_{m}})$$
(III.7)

Linearizando-se as equações (III.6) e (III.7), por intermédio da série de Taylor, obtém-se o seguinte sistema de equações a ser resolvido a cada iteração do método de Newton-Raphson:

ΔP_1		H ₁₁	N_{11}	H ₁₂	N_{12}		H _{1n}	N _{1n}	ΔV_{r_1}
ΔQ_1		M ₁₁	L_{11}	M ₁₂	L ₁₂		M _{1n}	L _{1n}	ΔV_{m_1}
ΔP_2		H ₂₁	N 21	H ₂₂	N 22		H _{2n}	N _{2n}	ΔV_{r_2}
ΔQ_2	=	M 21	L_{21}	M 22	L_{22}		M_{2n}	L _{2n}	ΔV_{m_2}
:		:	÷	:	÷	·.	:	:	:
ΔP_n		H _{n1}	N _{n1}	H _{n2}	N _{n2}		H _{nn}	N _{nn}	ΔV_{r_n}
ΔQ_n		M _{n1}	L_{n1}	M _{n2}	L _{n2}		M _{nn}	L _{nn}	ΔV_{m}
									L

A matriz apresentada na equação (III.8) é denominada matriz Jacobiana retangular. Os vetores V_R e V_M representam a parte real e a parte imaginária, respectivamente, das tensões nas barras. As submatrizes H, N, M e L, são as derivadas parciais de P e Q em relação às componentes reais e imaginárias das tensões.

Após o cálculo dos incrementos das tensões das barras através de (III.8), a atualização das tensões em uma iteração genérica, h+1, é dada por:

$$V_{r_{k}}^{(h+1)} = V_{r_{k}}^{h} + \Delta V_{r_{k}}^{h}$$
(III.9)

$$\mathbf{V}_{m_{k}}^{(h+1)} = \mathbf{V}_{m_{k}}^{h} + \Delta \mathbf{V}_{m_{k}}^{h}$$
(III.10)

III.2.3. Fluxo de potência via equações de injeção de correntes

III.2.3.1. Representação das barras tipo PQ

Esta formulação para o cálculo do fluxo de potência utiliza um conjunto de 2*n* equações de injeção de corrente, escritas em coordenadas retangulares. As equações básicas são dadas por [31].

$$I_{r_{k}} = \sum_{i \in \phi_{k}} (G_{ki} V_{r_{i}} - B_{ki} V_{m_{i}}) - \frac{V_{r_{k}} P_{k} + V_{m_{k}} Q_{k}}{V_{r_{k}}^{2} + V_{m_{k}}^{2}}$$
(III.11)

$$I_{m_{k}} = \sum_{i \in \phi_{k}} (G_{ki} V_{m_{i}} + B_{ki} V_{r_{i}}) - \frac{V_{m_{k}} P_{k} - V_{r_{k}} Q_{k}}{V_{r_{k}}^{2} + V_{m_{k}}^{2}}$$
(III.12)

Linearizando-se as equações (III.11) e (III.12), por intermédio da série de Taylor, obtém-se o seguinte sistema de equações a ser resolvido a cada iteração do método de Newton Raphson:

$$\begin{bmatrix} \Delta I_{m_{1}} \\ \Delta I_{r_{1}} \\ \Delta I_{m_{2}} \\ \vdots \\ \Delta I_{r_{2}} \\ \vdots \\ \Delta I_{r_{n}} \\ \Delta I_{r_{n}} \end{bmatrix} = \begin{bmatrix} B_{11}^{'} & G_{11}^{'} & B_{12} & G_{12} & \cdots & B_{1n} & G_{1n} \\ G_{11}^{'} & B_{11}^{'} & G_{12}^{'} & -B_{12}^{'} & \cdots & G_{1n}^{'} & -B_{1n} \\ B_{21}^{'} & G_{21}^{'} & B_{22}^{'} & G_{22}^{'} & \cdots & B_{2n}^{'} & G_{2n} \\ G_{21}^{'} & -B_{21}^{'} & G_{22}^{'} & B_{22}^{'} & \cdots & G_{2n}^{'} & -B_{2n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ B_{n1}^{'} & G_{n1}^{'} & B_{n2}^{'} & G_{n2}^{'} & \cdots & B_{nn}^{'} & G_{nn}^{'} \\ G_{n1}^{'} & -B_{n1}^{'} & G_{n2}^{'} & -B_{n2}^{'} & \cdots & G_{nn}^{'} & B_{nn}^{'} \end{bmatrix} \begin{bmatrix} \Delta V_{r_{1}} \\ \Delta V_{r_{2}} \\ \vdots \\ \Delta V_{r_{n}} \\ \Delta V_{r_{n}} \\ \Delta V_{r_{n}} \end{bmatrix}$$

$$(III.13)$$

onde, de [31]:

$$\mathbf{B}_{kk}^{'} = \frac{\partial \mathbf{I}_{m_{k}}^{'}}{\partial \mathbf{V}_{r_{k}}} = \mathbf{B}_{kk} - \mathbf{a}_{k}$$
(III.14)

$$\mathbf{G}_{kk}^{'} = \frac{\partial \mathbf{I}_{m_{k}}^{'}}{\partial \mathbf{V}_{m_{k}}} = \mathbf{G}_{kk} - \mathbf{b}_{k}$$
(III.15)

$$\mathbf{G}_{kk}^{''} = \frac{\partial \mathbf{I}_{\mathbf{r}_{k}}^{'}}{\partial \mathbf{V}_{\mathbf{r}_{k}}} = \mathbf{G}_{kk} - \mathbf{c}_{k}$$
(III.16)

$$\dot{\mathbf{B}_{kk}} = \frac{\partial \dot{\mathbf{I}_{r_k}}}{\partial \mathbf{V}_{m_k}} = -\mathbf{B}_{kk} - \mathbf{d}_k$$
(III.17)

Os parâmetros a_k , b_k , c_k , e d_k são calculados em função do modelo de carga adotado. Para modelo de carga do tipo potência constante, tais parâmetros são dados por [31]:

$$a_{k} = d_{k} = \frac{Q_{k}(V_{r_{k}}^{2} - V_{m_{k}}^{2}) - 2V_{r_{k}}V_{m_{k}}P_{k}}{V_{k}^{4}}$$
(III.18)

$$b_{k} = -c_{k} = \frac{P_{k}(V_{r_{k}}^{2} - V_{m_{k}}^{2}) + 2V_{r_{k}}V_{m_{k}}Q_{k}}{V_{k}^{4}}$$
(III.19)

III.2.3.2. Inclusão das barras tipo PV

Para uma barra do tipo PV, o resíduo de potência reativa é desconhecido, sendo tratado, portanto, como uma nova variável de estado. Com a inserção dessa nova variável, deve também ser introduzida uma equação adicional. A equação (III.20) é utilizada para impor a restrição de tensão em uma barra *k*, do tipo PV.

$$\left(\Delta \mathbf{V}_{\mathbf{k}}\right)^{2} = 2\mathbf{V}_{\mathbf{r}_{\mathbf{k}}}\Delta \mathbf{V}_{\mathbf{r}_{\mathbf{k}}} + 2\mathbf{V}_{\mathbf{m}_{\mathbf{k}}}\Delta \mathbf{V}_{\mathbf{m}_{\mathbf{k}}} \tag{III.20}$$

Assim, o sistema de equações linearizado a ser resolvido a cada iteração do método de Newton-Raphson, considerando-se a barra k do tipo PV é dado por:

	B_{11}	$G_{11}^{'}$	B ₁₂	G_{12}		B_{lk}	G_{lk}	••••	B _{1n}	G_{ln}	0		
$\Delta \mathbf{I}_{m_1}$	$G_{11}^{''}$	$B_{11}^{'}$	G ₁₂	$-B_{12}$		G_{lk}	$-B_{lk}$		G _{ln}	$-B_{ln}$	0	ΔV_{r_1}	
ΔI_{r_1}	B ₂₁	G ₂₁	B ' ₂₂	G'_22		B _{2k}	G _{2k}	•••	B _{2n}	G _{2n}	0	ΔV_{m_1}	
ΔI_{m_2}	G ₂₁	-B ₂₁	$G_{22}^{''}$	B ₂₂		G_{2k}	$-B_{2k}$		G _{2n}	$-\mathbf{B}_{2n}$	0	ΔV_{r_2}	
ΔI_{r_2}	:	:	:	÷	:	:	÷	÷	:	:	:	ΔV_{m_2}	
$\left \frac{1}{\Delta I_{m_k}} \right _{=}$	B _{k1}	G _{k1}	B _{k2}	G _{k2}		B' _{kk}	$G_{kk}^{'}$		B _{kn}	G _{kn}	$\frac{V_{r_k}}{V_k^2}$	$\boxed{\frac{1}{\Delta V_{r_k}}}$	(111.21)
$\Delta \mathbf{I}_{\mathbf{r}_{k}}$	G _{k1}	$-\mathbf{B}_{k1}$	G_{k2}	$-\mathbf{B}_{k2}$		$G_{kk}^{'}$	\mathbf{B}_{kk}	••••	\mathbf{G}_{kn}	$-\mathbf{B}_{kn}$	$\frac{-V_{m_k}}{V_k^2}$	$\left \frac{\Delta V_{m_k}}{\vdots} \right $	(111.21)
ΔI_m	:	÷	÷	÷	:	÷	÷	:	:	÷	÷	ΔV_r	
ΔI_r	B _{n1}	G _{n1}	B _{n2}	G _{n2}	•••	B _{nk}	G _{nk}	•••	B' _{nn}	G' _{nn}	0	ΛV	
$\left \frac{\mathbf{u}_{n}}{(\mathbf{AV})^{2}} \right $	G _{n1}	$-B_{n1}$	G _{n2}	$-B_{n2}$		G _{nk}	$-B_{nk}$		G_{nn}	\mathbf{B}_{nn}	0	$\frac{-m_n}{\Delta \Omega}$	
$\left\lfloor \left(\Delta \mathbf{v}_{k} \right) \right\rfloor$	0	0	0	0		$2V_{r_k}$	$2V_{\!m_k}$		0	0	0		

A matriz apresentada na equação (III.21) é denominada matriz Jacobiana injeção.

Conforme pode ser observado, os blocos (2x2) fora da diagonal são constituídos por elementos da matriz admitância nodal, permanecendo constantes durante todo o processo iterativo. Essa é uma das características mais importantes do método de injeção de corrente. Por outro lado, os elementos dos blocos diagonais (2x2) devem ser atualizados a cada iteração, segundo as equações (III.14), (III.15), (III.16) e (III.17).

III.2.3.3. Atualizações das tensões

Após o cálculo dos incrementos das tensões das barras através de (III.21), a atualização das tensões em coordenadas retangulares, em uma iteração genérica, h+1, é feita conforme as equações (III.9) e (III.10).

III.3. Fluxo de Potência Intervalar

III.3.1. Inicialização do processo

O fluxo de potência intervalar só é executado após a convergência do fluxo de potência convencional. Assim, se não há convergência no fluxo de potência convencional, o processo intervalar não será executado. Isso significa que o sistema de

equações não-lineares não possui solução e, portanto, é impossível obter um ponto de operação factível para a rede elétrica [16].

A inicialização do fluxo de potência intervalar é realizada com base no perfil de tensões pontuais, determinado pelo fluxo de potência determinístico, e na definição das variações percentuais de cada demanda feita da seguinte forma:

$$\mathbf{P}_{\mathbf{d}_{k}}^{i} = \left[\mathbf{P}_{\mathbf{d}_{k}}^{d} \cdot \left(1 - \boldsymbol{\alpha}_{\mathbf{P}_{k}} \right); \mathbf{P}_{\mathbf{d}_{k}}^{d} \cdot \left(1 + \boldsymbol{\alpha}_{\mathbf{P}_{k}} \right) \right]$$
(III.22)

$$\mathbf{Q}_{d_{k}}^{i} = \left[\mathbf{Q}_{d_{k}}^{d} \cdot \left(1 - \boldsymbol{\alpha}_{\mathbf{Q}_{k}} \right); \mathbf{Q}_{d_{k}}^{d} \cdot \left(1 + \boldsymbol{\alpha}_{\mathbf{Q}_{k}} \right) \right]$$
(III.23)

Com as variações das demandas definidas, as tensões intervalares são inicializadas utilizando o perfil de tensões determinístico como ponto médio e a maior variação percentual de demanda como o raio para os intervalos. Assim:

$$\mathbf{V}_{\mathbf{r}_{k}}^{i} = \left[\mathbf{V}_{\mathbf{r}_{k}}^{d} \cdot \left(1 - \boldsymbol{\alpha}_{\max}\right); \mathbf{V}_{\mathbf{r}_{k}}^{d} \cdot \left(1 + \boldsymbol{\alpha}_{\max}\right) \right]$$
(III.24)

$$\mathbf{V}_{\mathbf{m}_{k}}^{i} = \left[\mathbf{V}_{\mathbf{m}_{k}}^{d} \cdot \left(1 - \boldsymbol{\alpha}_{\max}\right); \mathbf{V}_{\mathbf{m}_{k}}^{d} \cdot \left(1 + \boldsymbol{\alpha}_{\max}\right) \right]$$
(III.25)

Para o fluxo de potência intervalar em coordenadas polares, após a inicialização das tensões intervalares utilizando (III.24) e (III.25), as tensões são transformadas da seguinte forma:

$$|\mathbf{V}_{k}^{i}| = \sqrt{\left(\mathbf{V}_{r_{k}}^{i}\right)^{2} + \left(\mathbf{V}_{m_{k}}^{i}\right)^{2}}$$
(III.26)

$$\theta_{k}^{i} = \operatorname{arctg} \frac{V_{m_{k}}^{i}}{V_{r_{k}}^{i}}$$
(III.27)

III.3.2. Cálculo dos resíduos intervalares

O próximo passo é o cálculo dos resíduos das potências intervalares para os fluxos em coordenadas polares e retangulares. Assim, a corrente injetada em uma barra genérica k é dada por:

$$\mathbf{I}_{k}^{i} = \sum_{\mathbf{m} \in \phi_{k}} \mathbf{Y}_{km}^{i} \cdot \mathbf{\underline{E}}^{d}$$
(III.28)

Portanto, a potência complexa injetada na barra é da forma:

$$\mathbf{S}_{k}^{i} = \mathbf{E}_{k}^{d} \cdot \left(\mathbf{I}_{k}^{i}\right)^{*} = \mathbf{P}_{k}^{i} + j\mathbf{Q}_{k}^{i}$$
(III.29)

Logo, os resíduos de potência intervalares na barra k são dados por:

$$\Delta \mathbf{P}_{k}^{i} = \mathbf{P}_{k}^{i} - \left(\mathbf{P}_{g_{k}}^{i} - \mathbf{P}_{d_{k}}^{i}\right)$$
(III.30)

$$\Delta Q_{k}^{i} = Q_{k}^{i} - \left(Q_{g_{k}}^{i} - Q_{d_{k}}^{i}\right)$$
(III.31)

Generalizando para o conjunto de todas as barras, o vetor f(x) em (II.20) é expresso por:

$$f(x) = \begin{bmatrix} \Delta P^{i} \\ \Delta Q^{i} \end{bmatrix}$$
(III.32)

Para o fluxo de potência intervalar injeção de corrente, as potências ativa e reativa líquidas na barra k são dadas por

$$P_{k}^{i} = P_{g_{k}}^{i} - P_{d_{k}}^{i}$$
 (III.33)

$$Q_{k}^{i} = Q_{g_{k}}^{i} - Q_{d_{k}}^{i}$$
 (III.34)

De (III.11) e (III.12), os resíduos de corrente intervalares, componentes real e imaginária, são dados por:

$$\Delta \mathbf{I}_{\mathbf{r}_{k}^{i}} = \mathbf{I}_{\mathbf{r}_{k}^{i}} - \frac{\mathbf{P}_{k}^{i} \cdot \mathbf{V}_{\mathbf{r}_{k}^{d}} + \mathbf{Q}_{k}^{i} \mathbf{V}_{\mathbf{m}_{k}^{d}}}{\left(\mathbf{V}_{k}^{d}\right)^{2}}$$
(III.35)

$$\Delta \mathbf{I}_{m_{k}}{}^{i} = \mathbf{I}_{m_{k}}{}^{i} - \frac{\mathbf{P}_{k}{}^{i} \cdot \mathbf{V}_{m_{k}}{}^{d} - \mathbf{Q}_{k}{}^{i} \mathbf{V}_{r_{k}}{}^{d}}{\left(\mathbf{V}_{k}{}^{d}\right)^{2}}$$
(III.36)

Generalizando para o conjunto de todas as barras, o vetor f(x) em (II.20) é expresso por:

$$f(x) = \begin{bmatrix} \Delta I_m^{\ i} \\ \Delta I_r^{\ i} \end{bmatrix}$$
(III.37)

Como as potências intervalares são constantes durante todo o processo do fluxo de potência intervalar, os resíduos de potência e de corrente são calculados apenas uma vez.

III.3.3. Processo iterativo

A aplicação do método de Krawczyk é feita segundo (II.21). A Jacobiana intervalar é calculada, da mesma forma que a Jacobiana convencional, utilizando as tensões intervalares e a matriz de admitância intervalar. A matriz **C** definida em (II.22) é calculada apenas uma vez, pois é a inversa do ponto médio de $J(X^0)$. Como o ponto médio de $J(X^0)$ é a matriz Jacobiana no ponto de solução do fluxo de potência determinístico, então a matriz **C** é constante durante todo o processo do fluxo de potência intervalar. O termo f(x) corresponde aos resíduos de potência ou de corrente, Equações (III.32) ou (III.37), sendo calculado uma única vez. O termo x corresponde ao módulo e a fase da tensão em coordenadas polares. Em coordenadas retangulares, este termo refere-se às componentes real e imaginária da tensão. Em ambos os casos, o termo **x** advém da solução do fluxo de potência determinístico. O termo X refere-se à solução intervalar do fluxo de potência.

Após a aplicação do método de Krawczyk, um novo perfil das tensões intervalares utilizando (II.23) é calculado. A convergência é verificada utilizando:

$$\frac{\left|\operatorname{diam}(\mathbf{X}^{h}) - \operatorname{diam}(\mathbf{X}^{h-1})\right|}{2}$$
(III.38)

Se (III.38) for maior que uma tolerância determinada, o método de Krawczyk é utilizado para o cálculo do novo perfil das tensões intervalares. Caso contrário, o processo é encerrado.

III.3.4. Cálculo intervalar das variáveis dependentes funcionais [32]

Após o término do processo iterativo, os fluxos de potência e as perdas nas linhas são calculadas de modo intervalar. Seja g a denotação de qualquer variável dependente funcional. Além disso, considere k - m o ramo em análise. Em coordenadas retangulares e polares, a função g pode ser representada das seguintes formas:

$$g = g_1 \left(V_{r_k}, V_{m_k}, V_{r_m}, V_{m_m} \right)$$
(III.39)
$$g = g_1 \left(V_{r_k}, V_{m_k}, Q_{m_m} \right)$$
(III.39)

$$g = g_2(V_k, V_m, \theta_k, \theta_m)$$
(III.40)

O acréscimo correspondente a g pode ser expresso como funções não lineares das componentes real e imaginária e do módulo e da fase da tensão nas barras k e m. Como conseqüência, é possível linearizar (III.39) e (III.40), usando a série de Taylor, em torno das variáveis de estado correspondentes calculadas pelo fluxo de potência determinístico. Assim, em coordenadas retangulares:

$$\Delta g = \frac{\partial g_1}{\partial V_{r_k}} \Delta V_{r_k} + \frac{\partial g_1}{\partial V_{m_k}} \Delta V_{m_k} + \frac{\partial g_1}{\partial V_{r_m}} \Delta V_{r_m} + \frac{\partial g_1}{\partial V_{m_m}} \Delta V_{m_m}$$
(III.41)

De forma análoga, em coordenadas polares:

$$\Delta g = \frac{\partial g_2}{\partial V_k} \Delta V_k + \frac{\partial g_2}{\partial V_m} \Delta V_m + \frac{\partial g_2}{\partial \theta_k} \Delta \theta_k + \frac{\partial g_2}{\partial \theta_m} \Delta \theta_m$$
(III.42)

Portanto, o incremento intervalar de g pode ser expresso em coordenadas retangulares da seguinte forma:

$$\Delta g^{i} = \frac{\partial g_{1}}{\partial V_{r_{k}}} \Delta V_{r_{k}}^{i} + \frac{\partial g_{1}}{\partial V_{m_{k}}} \Delta V_{m_{k}}^{i} + \frac{\partial g_{1}}{\partial V_{r_{m}}} \Delta V_{r_{m}}^{i} + \frac{\partial g_{1}}{\partial V_{m_{m}}} \Delta V_{m_{m}}^{i}$$
(III.43)

De forma análoga, em coordenadas polares:

$$\Delta g^{i} = \frac{\partial g_{2}}{\partial V_{k}} \Delta V_{k}^{i} + \frac{\partial g_{2}}{\partial V_{m}} \Delta V_{m}^{i} + \frac{\partial g_{2}}{\partial \theta_{k}} \Delta \theta_{k}^{i} + \frac{\partial g_{2}}{\partial \theta_{m}} \Delta \theta_{m}^{i}$$
(III.44)

As gerações ativa e reativa das barras de geração na forma intervalar são calculadas de forma análoga. Seja k a barra em análise. Neste caso, g em coordenadas polares é função tanto da tensão e do ângulo de fase na barra k, quanto da tensão e ângulo de todas as barras adjacentes a k. Em coordenadas retangulares, ao invés de tensão e ângulo, utilizam-se as componentes real e imaginária da tensão nestas barras. Portanto, ao invés de quatro derivadas parciais como em (III.41) e (III.42), é necessário o cálculo de duas vezes o número de barras adjacentes mais duas derivadas parciais.

O intervalo das tensões calculadas no final do processo iterativo pode ser substituído em (III.43) e (III.44). No entanto, novas operações intervalares devem ser realizadas e este procedimento pode levar a um grande e impreciso diâmetro de Δg^{i} . Para superar esta desvantagem, (III.43) e (III.44) devem ser escritas em termos de resíduos intervalares de potência ou de corrente, que são calculados a partir dos dados de entrada do programa de fluxo de potência. Assim, para o fluxo de potência intervalar polar:

$$\begin{bmatrix} \vdots \\ \Delta \theta_{k}^{i} \\ \Delta \theta_{m}^{i} \\ \vdots \\ \Delta V_{k}^{i} \\ \Delta V_{m}^{i} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ X_{p} \\ Y_{p} \\ \vdots \\ Z_{p} \\ W_{p} \\ \vdots \end{bmatrix} \begin{bmatrix} \Delta P^{i} \\ \Delta Q^{i} \end{bmatrix}$$
(III.45)

De forma análoga, para o fluxo de potência intervalar retangular:

$$\begin{array}{c} \vdots \\ \Delta V_{r_{k}}^{i} \\ \Delta V_{r_{m}}^{i} \\ \vdots \\ \Delta V_{m_{k}}^{n} \\ \vdots \end{array} = \begin{bmatrix} \vdots \\ X_{R} \\ Y_{R} \\ \vdots \\ Z_{R} \\ U_{R} \\ \vdots \end{bmatrix} \begin{bmatrix} \Delta P^{i} \\ \Delta Q^{i} \end{bmatrix}$$
(III.46)

Finalmente, para o fluxo de potência intervalar injeção de correntes:

$$\begin{bmatrix} \vdots \\ \Delta V_{r_{k}}^{i} \\ \Delta V_{r_{m}}^{i} \\ \vdots \\ \Delta V_{m_{k}}^{i} \\ \Delta V_{m_{m}}^{i} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ X_{I} \\ Y_{I} \\ \vdots \\ Z_{I} \\ \Delta I_{r}^{i} \end{bmatrix} \begin{bmatrix} \Delta I_{m}^{i} \\ \Delta I_{m}^{i} \\ \Delta I_{r}^{i} \end{bmatrix}$$
(III.47)

onde X, Y, Z e W são as linhas da respectiva matriz Jacobiana inversa avaliada após a convergência do fluxo de potência determinístico.

Substituindo (III.45) em (III.44), (III.46) em (III.43) e (III.47) em (III.43) obtémse:

$$\Delta f^{i} = \left[\frac{\partial f_{2}}{\partial \theta_{k}}X_{p} + \frac{\partial f_{2}}{\partial V_{k}}Z_{p} + \frac{\partial f_{2}}{\partial \theta_{m}}Y_{p} + \frac{\partial f_{2}}{\partial V_{m}}W_{p}\right] \begin{bmatrix}\Delta P^{i}\\\Delta Q^{i}\end{bmatrix}$$
(III.48)

$$\Delta \mathbf{f}^{i} = \left[\frac{\partial \mathbf{f}_{1}}{\partial \mathbf{V}_{\mathbf{r}_{k}}} \mathbf{X}_{\mathbf{R}} + \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{V}_{\mathbf{m}_{k}}} \mathbf{Z}_{\mathbf{R}} + \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{V}_{\mathbf{r}_{m}}} \mathbf{Y}_{\mathbf{R}} + \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{V}_{\mathbf{m}_{m}}} \mathbf{W}_{\mathbf{R}} \right] \begin{bmatrix} \Delta \mathbf{P}^{i} \\ \Delta \mathbf{Q}^{i} \end{bmatrix}$$
(III.49)

$$\Delta f^{i} = \left[\frac{\partial f_{1}}{\partial V_{r_{k}}} X_{I} + \frac{\partial f_{1}}{\partial V_{m_{k}}} Z_{I} + \frac{\partial f_{1}}{\partial V_{r_{m}}} Y_{I} + \frac{\partial f_{1}}{\partial V_{m_{m}}} W_{I} \right] \begin{bmatrix} \Delta I_{m}^{i} \\ \Delta I_{r}^{i} \end{bmatrix}$$
(III.50)

Os multiplicandos do lado direito das equações (III.48), (III.49) e (III.50) são resolvidos através de simples operações algébricas. Assim, para os fluxos de potência intervalar polar, retangular e injeção de correntes obtém-se respectivamente:

$$\Delta \mathbf{f}^{i} = \mathbf{R}_{P} \begin{bmatrix} \Delta \mathbf{P}^{i} \\ \Delta \mathbf{Q}^{i} \end{bmatrix}$$
(III.51)

$$\Delta f^{i} = R_{R} \begin{bmatrix} \Delta P^{i} \\ \Delta Q^{i} \end{bmatrix}$$
(III.52)

$$\Delta f^{i} = \mathbf{R}_{I} \begin{bmatrix} \Delta \mathbf{I}_{m}^{\ i} \\ \Delta \mathbf{I}_{r}^{\ i} \end{bmatrix}$$
(III.53)

As operações intervalares são realizadas pela multiplicação do vetor R pelo vetor dos resíduos de potência (III.51) e (III.52) ou de corrente (III.53). O intervalo correspondente de g é calculado da seguinte forma:

$$g^{i} = g^{d} + \Delta g^{i} \tag{III.54}$$

Embora a forma de cálculo baseada nas equações (III.51) a (III.53) não seja satisfatória para alguns casos específicos, tais como em linhas levemente carregadas, pois podem ocorrer erros grosseiros no processo de linearização [32], o escopo básico deste trabalho é verificar o desempenho das formulações polar, retangular e injeção de correntes no processo de solução do fluxo de potência intervalar. Futuramente, pretende-se, como continuidade deste trabalho, desenvolver algoritmos que eliminam qualquer tipo de erro grosseiro.

O apêndice B apresenta as derivadas mostradas nas equações (III.48) a (III.50), referentes às diversas variáveis dependentes funcionais, nos dois tipos de coordenadas em análise.

III.3.5. Algoritmo de solução

De forma resumida, os passos do fluxo de potência intervalar são:

Passo 1: Obter o perfil de tensões do sistema elétrico em estudo através de um fluxo de potência determinístico.

Passo 2: Calcular as variações percentuais das demandas utilizando (III.22) e (III.23).

Passo 3: Inicializar o perfil das tensões intervalares utilizando (III.24) e (III.25).

Passo 4: Calcular os resíduos das potências utilizando (III.28 – III.32) ou os resíduos das correntes utilizando (III.33 – III.37).

Passo 5: Aplicar o operador de Krawczyk definido em (II.21);

Passo 6: Obter o novo perfil das tensões intervalares utilizando (II.23);

Passo 7: Testar a convergência usando (III.38). Não havendo a convergência, retornar ao Passo 5. Caso contrário, proceder para o próximo passo.

Passo 8: Calcular as gerações, os fluxos e as perdas nas linhas na forma intervalar.

A seguir, resolveremos o fluxo de potência intervalar para um mesmo sistema teste utilizando os três diferentes fluxos intervalares.

III.3.6. Aplicação prática

Seja o sistema de 3 barras [29]. As Tabelas III.1 a III.8 apresentam os dados e os resultados do fluxo de potência determinístico.

Barra	Tipo	V (PU)	θ (°)	P (MW)	Q (MVar)
1	Vθ	1,00000	0,00000	-	-
2	PQ	-	-	- 5,00000	- 2,00000
3	PV	0,98000	-	- 15,00000	-

Tabela III.1 – Sistema 3 barras – Dados de barra

Tabela III.2 – Sistema 3 barras – Dados de linhas

De	Para	R _{km} (PU)	X _{km} (PU)	B _{TOTAL} (PU)
1	2	0,10000	1,00000	0,02000
1	3	0,20000	2,00000	0,04000
2	3	0,10000	1,00000	0,02000

Tabela III.3 - Sistema 3 barras - Tensão nodal

Barra	V (PU)	θ (°)	θ (rad.)	V _r (PU)	V _m (PU)
1	1,00000	0,00000	0,00000	1,00000	0,00000
2	0,98274	-6,60550	-0,11529	0,97621	-0,11305
3	0,98000	-10,36303	-0,18087	0,96401	-0,17629

Tabela III.4 - Sistema 3 barras - Geração da barra de referência

P (MW)	Q (MVar)			
20,33346	-0,85521			

Tabela III.5 - Sistema 3 barras - Geração reativa da barra PV

Barra	Q (MVar)
3	-1,62292

Tabela III.6 – Sistema 3 barras – Fluxo de potência nas linhas k $-\,m$

Linha k –m	P (MW)	Q (MVar)
1 - 2	11,42824	0,23601
1 – 3	8,90522	-1,09122
2-3	6,29611	-1,11954

Tabela III.7 – Sistema 3 barras – Fluxo de potência nas linhas m – k

Linha m – k	P (MW)	Q (MVar)
2 - 1	-11,29611	-0,88046
3 – 1	-8,74496	-1,22700
3 – 2	-6,25504	-0,39592

Linha	P (MW)	Q (MVar)
1 – 2	0,13213	-0,64444
1 – 3	0,16026	-2,31822
2 - 3	0,04107	-1,51546

De posse do resultado do fluxo de potência determinístico:

$$\mathbf{x}_{\text{Polar}} = \begin{bmatrix} \theta \\ \mathbf{V} \end{bmatrix} = \begin{bmatrix} 0,00000 \\ -0,11529 \\ -0,18087 \\ 1,00000 \\ 0,98274 \\ 0,98000 \end{bmatrix} \qquad \mathbf{x}_{\text{Retangular}} = \begin{bmatrix} \mathbf{V}_{\text{r}} \\ \mathbf{V}_{\text{m}} \end{bmatrix} = \begin{bmatrix} 1,00000 \\ 0,97621 \\ 0,96401 \\ 0,00000 \\ -0,11305 \\ -0,17629 \end{bmatrix}$$

O vetor x_{Polar} é usado no fluxo de potência intervalar polar. O vetor $x_{Retangular}$ é usado nos fluxos de potência intervalar retangular e injeção de correntes.

A Tabela III.9 apresenta as demandas intervalares considerando uma variação de 2%.

Tabela III.9 - Sistema 3 barras - Demandas intervalares

Barra	Pd _{Inferior} (MW)	Pd _{Superior} (MW)	Qd _{Inferior} (MVar)	Qd _{Superior} (MVar)
2	4,90000	5,10000	1,96000	2,04000
3	14,70000	15,30000	0,00000	0,00000

III.3.6.1. Fluxo de potência intervalar polar

A partir das equações (III.24) a (III.27) são calculadas as tensões intervalares iniciais. As tensões intervalares polares estão apresentadas na Tabela III.10. Neste trabalho, optou-se em manter os ângulos de fase nas barras de geração constantes, de modo a garantir o módulo da tensão nestas barras.

$$\begin{aligned} V_{r_{2}}^{i} &= \left[0,97621 \cdot (1-0,0200); 0,97621 \cdot (1+0,02)\right] = \left[0,95669; 0,99574\right] \\ V_{m_{2}}^{i} &= \left[-0,11305 \cdot (1+0,02000); -0,11305 \cdot (1-0,02000)\right] = \left[-0,11531; -0,11079\right] \\ &|V_{2}^{i}| = \sqrt{\left(V_{r_{2}}^{i}\right)^{2} + \left(V_{m_{2}}^{i}\right)^{2}} = \left[0,96308; 1,00239\right] \\ &\theta_{2}^{i} = \arctan \left[\frac{V_{m_{2}}^{i}}{V_{r_{2}}^{i}}\right] = \left[-0,11995; -0,11080\right] \end{aligned}$$

Tabela III.10 - Sistema 3 barras - Tensões intervalares polares

Barra	V _{Inferior} (PU)	V _{Superior} (PU)	θ_{Inferior} (rad.)	θ_{Superior} (rad.)
1	1,00000	1,00000	0,00000	0,00000
2	0,96308	1,00239	-0,11995	-0,11080
3	0,98000	0,98000	-0,18087	-0,18087

De posse das tensões intervalares:

$$\mathbf{X}^{0} = \begin{bmatrix} \boldsymbol{\theta}^{i} \\ \mathbf{V}^{i} \end{bmatrix} = \begin{bmatrix} [0,00000;0,00000] \\ [-0,11995;-0,11080] \\ [-0,18087;-0,18087] \\ [1,00000;1,00000] \\ [0,96308;1,00239] \\ [0,98000;0,98000] \end{bmatrix}$$

Utilizando as equações (III.28) à (III.32):

$$I^{i} = \begin{pmatrix} 0,20342 + j0,00855 \\ -0,04837 + j0,02607 \\ -0,14750 + j0,04382 \end{pmatrix}$$
$$S^{i} = \begin{pmatrix} 0,20342 - j0,00855 \\ -0,05017 - j0,01997 \\ -0,14992 - j0,01624 \end{pmatrix}$$
$$\Delta P^{i} = \begin{pmatrix} [-0,00195;0,00212] \\ [-0,00117;0,00083] \\ [-0,00292;0,00308] \end{pmatrix}$$
$$\Delta Q^{i} = 10^{-3} \cdot \begin{pmatrix} [-0,08416;0,08688] \\ [-0,37852;0,42148] \\ [-0,17632;0,14826] \end{pmatrix}$$

Fazendo $\Delta P^i = \Delta Q^i = 0$, para a barra de referência e $\Delta Q^i = 0$, para a barra PV:

$$f(x) = \begin{pmatrix} [0,00000;0,00000] \\ [-0,00117;0,00083] \\ [-0,00292;0,00308] \\ [0,00000;0,00000] \\ [-0,00038;0,00042] \\ [0,00000;0,00000] \end{pmatrix}$$

O próximo passo é o calculo da matriz Jacobiana intervalar:

	[1,000;1,000]	[0,000;0,000]	[0,000;0,000]	[0,000;0,000]	[0,000;0,000] [0,000;0,000]
	[0,000;0,000]	[1,875;1,951]	[-0,977;-0,939]	$\left[0,000;0,000 ight]$	[0,141;0,147] [0,000;0,000]
$\mathbf{I}(\mathbf{V}^0) =$	[0,000;0,000]	[-0,945;-0,945]	[1,414;1,414]	$\left[0,000;0,000 ight]$	$\begin{bmatrix} -0, 160; -0, 160 \end{bmatrix} \begin{bmatrix} 0, 000; 0, 000 \end{bmatrix}$
$\mathbf{J}(\mathbf{X}) =$	[0,000;0,000]	[0,000;0,000]	[0,000;0,000]	[1,000;1,000]	[0,000;0,000] $[0,000;0,000]$
	[0,000;0,000]	[-0,245;-0,237]	[0,032;0,034]	$\left[0,000;0,000 ight]$	[1,869;1,945] [0,000;0,000]
	[0,000;0,000]	[0,000;0,000]	[0,000;0,000]	$\left[0,000;0,000 ight]$	[0,000;0,000] [1,000;1,000]

Portanto, de (II.22):

 $\mathbf{C} = \begin{bmatrix} 1,00000 & 0,00000 & 0,00000 & 0,00000 & 0,00000 & 0,00000 \\ 0,00000 & 0,78322 & 0,53093 & 0,00000 & -0,01442 & 0,00000 \\ 0,00000 & 0,53387 & 1,06786 & 0,00000 & 0,04953 & 0,00000 \\ 0,00000 & 0,00000 & 0,00000 & 1,00000 & 0,00000 & 0,00000 \\ 0,00000 & 0,08992 & 0,04883 & 0,00000 & 0,52177 & 0,00000 \\ 0,00000 & 0,00000 & 0,00000 & 0,00000 & 0,00000 & 1,00000 \end{bmatrix}$

O operador Krawczyk é dado por (II.21):

$$\mathbf{K}^{0} = \begin{bmatrix} \boldsymbol{\theta}^{i} \\ \mathbf{V}^{i} \end{bmatrix} = \begin{bmatrix} [0,00000;0,00000] \\ [-0,11786;-0,11271] \\ [-0,18479;-0,17695] \\ [1,00000;1,00000] \\ [0,98187;0,98360] \\ [0,98000;0,98000] \end{bmatrix}$$

A atualização das tensões intervalares é calculada segundo (II.23):

$$\mathbf{X}^{1} = \begin{bmatrix} [0,00000;0,00000] \\ [-0,11786;-0,11271] \\ [-0,18087;-0,18087] \\ [1,00000;1,00000] \\ [0,98187;0,98360] \\ [0,98000;0,98000] \end{bmatrix}$$

Testando a convergência (III.38):

$$\frac{\left|\operatorname{diam}(\mathbf{X}^{1}) - \operatorname{diam}(\mathbf{X}^{0})\right|}{2} = \begin{bmatrix} 0,0000\\ 0,00199\\ 0,00000\\ 0,00000\\ 0,01879\\ 0,00000 \end{bmatrix} > \operatorname{Tolerância} = 10^{-4}$$

Como a convergência não é satisfeita, é necessária mais uma iteração. Com os novos valores das tensões intervalares (X^1) :

$$\mathbf{K}^{1} = \begin{bmatrix} \boldsymbol{\theta} \\ \mathbf{V} \end{bmatrix} = \begin{bmatrix} [0,00000;0,00000] \\ [-0,11767;-0,11290] \\ [-0,18463;-0,17711] \\ [1,00000;1,00000] \\ [0,98229;0,98318] \\ [0,98000;0,98000] \end{bmatrix}$$

Portanto, a intersecção entre $K^1 e X^1$ resulta:

$$X^{2} = X^{1} \cap K^{1}(x, X^{1}) = \begin{bmatrix} [0, 00000; 0, 00000] \\ [-0, 11767; -0, 11290] \\ [-0, 18087; -0, 18087] \\ [1, 00000; 1, 00000] \\ [0, 98229; 0, 98318] \\ [0, 98000; 0, 98000] \end{bmatrix}$$

Testando a convergência:

$$\frac{\left|\operatorname{diam}(X^{2}) - \operatorname{diam}(X^{1})\right|}{2} = \begin{bmatrix} 0,00000\\0,00002\\0,00000\\0,00000\\0,00042\\0,00000 \end{bmatrix} > \operatorname{Tolerância} = 10^{-4}$$

_

_

Como a tolerância não é satisfeita, é necessária mais uma iteração, Assim:

$$\mathbf{K}^{2} = \begin{bmatrix} \boldsymbol{\theta} \\ \mathbf{V} \end{bmatrix} = \begin{bmatrix} [0,00000;0,00000] \\ [-0,11767;-0,11290] \\ [-0,18462;-0,17711] \\ [1,00000;1,00000] \\ [0,98229;0,98318] \\ [0,98000;0,98000] \end{bmatrix}$$

Portanto,

$$X^{3} = X^{2} \cap K^{2}(x, X^{2}) = \begin{bmatrix} [0, 00000; 0, 00000] \\ [-0, 11767; -0, 11290] \\ [-0, 18087; -0, 18089] \\ [1, 00000; 1, 00000] \\ [0, 98229; 0, 98318] \\ [0, 98000; 0, 98000] \end{bmatrix}$$

Testando a convergência:

$$\frac{\left|\operatorname{diam}(\mathbf{X}^{3}) - \operatorname{diam}(\mathbf{X}^{2})\right|}{2} = \begin{bmatrix} 0,00000\\0,00000\\0,00000\\0,00000\\0,00000\\0,00000 \end{bmatrix} < \operatorname{Tolerância} = 10^{-4}$$

O processo iterativo é então encerrado. Agora, as variáveis dependentes funcionais são calculadas. Apenas alguns cálculos serão ilustrados. Com relação ao fluxo de potência ativa na linha 1 - 2 intervalar são utilizadas as equações (B.2) à (B.5) para a obtenção das derivadas. Assim:

$$\frac{\partial P_{12}}{\partial V_1} = (a_{12})^2 2V_1 g_{12} - a_{12} V_2 (g_{12} \cos \theta_{12} + b_{12} \sin \theta_{12}) = 0,21338$$
$$\frac{\partial P_{12}}{\partial V_2} = -a_{12} V_1 (g_{12} \cos \theta_{12} + b_{12} \sin \theta_{12}) = 0,01563$$

$$\frac{\partial P_{12}}{\partial \theta_1} = a_{12} V_1 V_2 (g_{12} \mathrm{sen} \theta_{12} - b_{12} \mathrm{cos} \theta_{12}) = 0,97774$$
$$\frac{\partial P_{12}}{\partial \theta_2} = -a_{12} V_1 V_2 (g_{12} \mathrm{sen} \theta_{12} - b_{12} \mathrm{cos} \theta_{12}) = -0,97774$$

De (III.48) e (III.51)

$$\mathbf{R}_{P} = \begin{bmatrix} 0,97774; -0,76438; -0,51834; 0,21338; 0,02224; 0,00000 \end{bmatrix}$$
$$\Delta \mathbf{P}_{12}^{i} = \begin{bmatrix} -0,00224; 0,00224 \end{bmatrix} \mathbf{MW}$$

De (III.54)

$$\mathbf{P}_{12}^{i} = \left(\mathbf{P}_{12}^{d} + \Delta \mathbf{P}_{12}^{i}\right) \cdot 100 = \begin{bmatrix}11, 20411; 11, 66978\end{bmatrix} \mathbf{MW}$$

Para a geração ativa intervalar da barra de referência são utilizadas as equações (B.42) à (B.45) para a obtenção das derivadas. Assim:

$$\frac{\partial P_{g_1}}{\partial V_1} = \frac{P_1 + V_1^2 G_{11}}{V_1} = 0,35185$$
$$\frac{\partial P_{g_1}}{\partial \theta_1} = -V_1^2 B_{11} - Q_1 = 1,46370$$
$$\frac{\partial P_{g_1}}{\partial V_2} = V_1 (G_{12} \cos \theta_{12} + B_{12} \sin \theta_{12}) = 0,01563$$
$$\frac{\partial P_{g_1}}{\partial V_3} = V_1 (G_{13} \cos \theta_{13} + B_{13} \sin \theta_{13}) = 0,04035$$
$$\frac{\partial P_{g_1}}{\partial \theta_2} = V_1 V_2 (G_{12} \sin \theta_{12} - B_{12} \cos \theta_{12}) = -0,97774$$
$$\frac{\partial P_{g_1}}{\partial \theta_3} = V_1 V_3 (G_{13} \sin \theta_{13} - B_{13} \cos \theta_{13}) = -0,48596$$

De (III.48) e (III.51)

$$R_{P} = [1,463700;-1,02383;-1,03728;0,35184;-0,00184;0,04035]$$
$$\Delta P_{g_{1}}^{i} = [-0,00405;0,00422]MW$$

De (III.54)

$$\mathbf{P}_{g_{1}}^{i} = \left(\mathbf{P}_{g_{1}}^{d} + \Delta \mathbf{P}_{g_{1}}^{i}\right) \cdot 100 = \left[19,92852;20,75580\right] \mathbf{MW}$$

Para a geração reativa intervalar da barra PV são utilizadas as equações (B.47) à (B.50) para a obtenção das derivadas. Assim:

$$\frac{\partial Q_{g_3}}{\partial V_3} = \frac{Q_3 - V_3^2 B_{33}}{V_3} = 1,40949$$
$$\frac{\partial Q_{g_3}}{\partial \theta_3} = -V_3^2 G_{33} + P_3 = -0,29263$$
$$\frac{\partial Q_{g_3}}{\partial V_1} = V_3 (G_{31} \text{sen}\theta_{31} - B_{31} \cos\theta_{31}) = -0,46851$$
$$\frac{\partial Q_{g_3}}{\partial V_2} = V_3 (G_{32} \text{sen}\theta_{32} - B_{32} \cos\theta_{32}) = -0,96187$$
$$\frac{\partial Q_{g_3}}{\partial \theta_1} = -V_3 V_1 (G_{31} \cos\theta_{31} + B_{31} \text{sen}\theta_{31}) = 0,13499$$
$$\frac{\partial Q_{g_3}}{\partial \theta_2} = -V_3 V_2 (G_{32} \cos\theta_{32} + B_{32} \text{sen}\theta_{32}) = 0,15756$$

De (III.48) e (III.51)

$$R_{p} = [0,13499; -0,11936; -0,27583; -0,46851; -0,51885; 1,40948]$$
$$\Delta Q_{g_{3}}^{i} = [-0,00117; 0,00114] \text{ MVar}$$

De (III.54)

$$Q_{g_3}^{i} = (Q_{g_3}^{d} + \Delta Q_{g_3}^{i}) \cdot 100 = [-1, 73977; -1, 50889] MVar$$

Para a perda ativa da linha 2 – 3 intervalar são utilizadas as equações (B.62) à (B.64) para a obtenção das derivadas. Assim:

$$\frac{\partial P^{\text{Perdas}}}{\partial V_2} = g_{23} \left(2V_2 - 2V_3 \cos\theta_{23} \right) = 9,57674 \cdot 10^{-4}$$
$$\frac{\partial P^{\text{Perdas}}}{\partial V_3} = g_{23} \left(2V_3 - 2V_2 \cos\theta_{23} \right) = -1,24441 \cdot 10^{-4}$$
$$\frac{\partial P^{\text{Perdas}}}{\partial \theta_2} = g_{23} \left(2V_2 V_3 \sin\theta_{23} \right) = 0,01248$$
$$\frac{\partial P^{\text{Perdas}}}{\partial \theta_3} = -g_{23} \left(2V_2 V_3 \sin\theta_{23} \right) = -0,01248$$

De (III.48) e (III.51)

$$R_{P} = [0,00000; 0,00319; -0,00665; 0,00000; -0,00030; -0,00012]$$
$$\Delta P^{\text{Perdas}_{23}i} = [-0,24393; 0,22171] \cdot 10^{-4}$$

De (III.54)

$$\mathbf{P}^{\text{Perdas} \ i}_{23} = \left(\mathbf{P}^{\text{Perdas} \ d}_{23} + \Delta \mathbf{P}^{\text{Perdas} \ i}\right) \cdot 100 = \left[0,03863;0,04329\right] \text{MW}$$

III.3.6.2. Fluxo de potência intervalar retangular

Utilizando as equações (III.24) a (III.25) são calculadas as tensões intervalares. As tensões intervalares retangulares estão apresentadas na Tabela III.11.

Barra	Vr _{Inferior} (PU)	Vr _{Superior} (PU)	Vm _{Inferior} (PU)	Vm _{Superior} (PU)
1	1,00000	1,00000	0,00000	0,00000
2	0,95669	0,99574	-0,11531	-0,11079
3	0,96401	0,96401	-0,17629	-0,17629

Tabela III.11 - Sistema 3 barras - Tensões intervalares retangulares

De posse das tensões intervalares:

$$\mathbf{X}^{0} = \begin{bmatrix} \mathbf{V}_{r} \\ \mathbf{V}_{m} \end{bmatrix} = \begin{bmatrix} [1,00000;1,00000] \\ [0,95669;0,99567] \\ [0,96401;0,96401] \\ [0,00000;0,00000] \\ [-0,11531;-0,11079] \\ [-0,17629;-0,17629] \end{bmatrix}$$

Utilizando as equações (III.28) à (III.32):

$$f(x) = \begin{pmatrix} [0,00000;0,00000] \\ [-0,00117;0,00083] \\ [-0,00292;0,00308] \\ [0,00000;0,00000] \\ [-0,00038;0,00042] \\ [0,00000;0,00000] \end{pmatrix}$$

A sexta linha de f(x) refere-se à imposição da tensão da barra PV. O próximo passo é o cálculo da matriz Jacobiana intervalar.

$$\mathbf{J}(\mathbf{X}^{0}) = \begin{bmatrix} [1,000;1,000] & [0,000;0,000] & [0,000;0,000] & [0,000;0,000] & [0,000;0,000] & [0,000;0,000] \\ [0,000;0,000] & [0,363;0,371] & [-0,211;-0,207] & [0,000;0,000] & [1,917;1,918] & [-0,956;-0,955] \\ [0,000;0,000] & [-0,270;-0,270] & [0,252;0,252] & [0,000;0,000] & [-0,937;-0,937] & [1,420;1,421] \\ [0,000;0,000] & [0,000;0,000] & [0,000;0,000] & [1,000;1,000] & [0,000;0,000] & [0,000;0,000] \\ [0,000;0,000] & [1,865;1,866] & [-0,956;-0,955] & [0,000;0,000] & [-0,467;-0,459] & [0,207;0,211] \\ [0,000;0,000] & [0,000;0,000] & [1,928;1,928] & [0,000;0,000] & [0,000;0,000] & [-0,353;-0,353] \end{bmatrix}$$

	1,00000	0,00000	0,00000	0,00000	0,00000	0,00000
	0,00000	0,17799	0,10864	0,00000	0,51691	0,26117
C -	0,00000	0,09412	0,18825	0,00000	0,00875	0,50856
C-	0,00000	0,00000	0,00000	1,00000	0,00000	0,00000
	0,00000	0,75425	0,51267	0,00000	-0,07401	-0,02213
	0,00000	0,51468	1,02943	0,00000	0,04787	-0,05525

O operador Krawczyk é dado por (II.21):

$$\mathbf{K}^{0} = \begin{bmatrix} \mathbf{V}_{r} \\ \mathbf{V}_{m} \end{bmatrix} = \begin{bmatrix} [1,00000;1,00000] \\ [0,97548;0,97695] \\ [0,96334;0,96468] \\ [0,00000;0,00000] \\ [-0,11534;-0,11057] \\ [-0,17995;-0,17262] \end{bmatrix}$$

A atualização das tensões intervalares é calculada segundo (II.23):

$$\mathbf{X}^{1} = \begin{bmatrix} [1,00000;1,00000] \\ [0,97548;0,97695] \\ [0,96401;0,96401] \\ [0,00000;0,00000] \\ [-0,11531;-0,11079] \\ [-0,17629;-0,17629] \end{bmatrix}$$

Testando a convergência:

$$\frac{\left|\operatorname{diam}(X^{1}) - \operatorname{diam}(X^{0})\right|}{2} = \begin{bmatrix} 0,00000\\0,01879\\0,00000\\0,00000\\0,00000\\0,00000 \end{bmatrix} > \operatorname{Tolerância} = 10^{-4}$$

Como a tolerância não é satisfeita, é necessária mais uma iteração. Com os novos valores das tensões intervalares (X^1) :

$$\mathbf{K}^{1} = \begin{bmatrix} \mathbf{V}_{r} \\ \mathbf{V}_{m} \end{bmatrix} = \begin{bmatrix} [1,00000;1,00000] \\ [0,97551;0,97693] \\ [0,96335;0,96467] \\ [0,00000;0,00000] \\ [-0,11528;-0,11064] \\ [-0,17991;-0,17266] \end{bmatrix}$$

Portanto, a intersecção entre $K^1 e X^1$ resulta:

$$X^{2} = \begin{bmatrix} [1,00000;1,00000] \\ [0,97551;0,97693] \\ [0,96401;0,96401] \\ [0,00000;0,00000] \\ [-0,11528;-0,11078] \\ [-0,17629;-0,17629] \end{bmatrix}$$

Testando a convergência:

$$\frac{\left|\operatorname{diam}(X^{2}) - \operatorname{diam}(X^{1})\right|}{2} = \begin{bmatrix} 0,0000\\0,0000\\0,0000\\0,0000\\0,0000\\0,00000\\0,00000 \end{bmatrix} < \operatorname{Tolerância} = 10^{-4}$$

O processo iterativo é então encerrado. Agora, as variáveis dependentes funcionais são calculadas. Apenas alguns cálculos são ilustrados. Com relação ao fluxo de potência ativa na linha 1 - 2 intervalar são utilizadas as equações (B.22) à (B.25) para a obtenção das derivadas. Assim:

$$\frac{\partial P_{12}}{\partial V_{r_1}} = 2V_{r_1}a_{12}^2g_{12} - a_{12}g_{12}V_{r_2} + a_{12}b_{12}V_{m_2} = 0,21329$$
$$\frac{\partial P_{12}}{\partial V_{r_2}} = -a_{12}g_{12}V_{r_1} - a_{12}b_{12}V_{m_k} = -0,09900$$
$$\frac{\partial P_{12}}{\partial V_{m_1}} = 2V_{m_1}a_{12}^2g_{12} - a_{12}g_{12}V_{m_2} - a_{12}b_{12}V_{r_2} = 0,97773$$

$$\frac{\partial P_{12}}{\partial V_{m_2}} = -a_{12}g_{12}V_{m_1} + a_{12}b_{12}V_{r_1} = -0,99009$$

De (III.49) e (III.52)

$$R_{R} = [0, 21329; -0, 76441; -0, 51835; 0, 97774; 0, 02210; -0, 00394]$$
$$\Delta P_{12}^{i} = [-0, 00224; 0, 00224]$$

De (III.54)

$$\mathbf{P}_{12}^{i} = \left(\mathbf{P}_{12}^{d} + \Delta \mathbf{P}_{12}^{i}\right) \cdot 100 = \left[11, 20411; 11, 66978\right] \mathbf{MW}$$

Para a geração ativa intervalar da barra de referência são utilizadas as equações (B.52) à (B.55) para a obtenção das derivadas. Assim:

$$\begin{aligned} \frac{\partial P_{g_1}}{\partial V_{r_1}} &= V_{r_1}G_{11} + V_{m_1}B_{11} + I_{r_1} = 0,35193\\ \frac{\partial P_{g_1}}{\partial V_{m_1}} &= -V_{r_1}B_{11} + V_{m_1}G_{11} + I_{m_1} = 1,46369\\ \frac{\partial P_{g_1}}{\partial V_{r_2}} &= V_{r_1}G_{12} + V_{m_1}B_{12} = -0,09900\\ \frac{\partial P_{g_1}}{\partial V_{r_3}} &= V_{r_1}G_{13} + V_{m_1}B_{13} = -0,04950\\ \frac{\partial P_{g_1}}{\partial V_{m_2}} &= -V_{r_1}B_{12} + V_{m_1}G_{12} = -0,99009\\ \frac{\partial P_{g_1}}{\partial V_{m_3}} &= -V_{r_1}B_{13} + V_{m_1}G_{13} = -0,49505 \end{aligned}$$

De (III.49) e (III.52)

 $R_{R} = [0,35194; -1,02386; -1,03729; 1,46370; -0,00203; -0,00177]$ $\Delta P_{g_{k}}^{i} = [-0,00405; 0,00422]$

De (III.54)

$$\mathbf{P}_{g_{k}}^{i} = \left(\mathbf{P}_{g_{k}}^{d} + \Delta \mathbf{P}_{g_{k}}^{i}\right) \cdot 100 = \left[19,92851;20,75582\right] \mathrm{MW}$$

Para a geração reativa intervalar da barra PV são utilizadas as equações (B.57) à (B.60) para a obtenção das derivadas. Assim:

$$\begin{aligned} \frac{\partial Q_{g_3}}{\partial V_{r_3}} &= -V_{r_3}B_{33} + V_{m_3}G_{33} - I_{m_3} = 1,33278\\ \frac{\partial Q_{g_3}}{\partial V_{m_3}} &= -V_{r_3}G_{33} - V_{m_3}B_{33} + I_{r_3} = -0,54719\\ \frac{\partial Q_{g_3}}{\partial V_{r_1}} &= -V_{r_3}B_{31} + V_{m_3}G_{31} = -0,46851\\ \frac{\partial Q_{g_3}}{\partial V_{r_2}} &= -V_{r_3}B_{32} + V_{m_3}G_{32} = -0,93702\\ \frac{\partial Q_{g_3}}{\partial V_{m_1}} &= -V_{r_3}G_{31} - V_{m_3}B_{31} = 0,13499\\ \frac{\partial Q_{g_3}}{\partial V_{m_2}} &= -V_{r_3}G_{32} - V_{m_3}B_{32} = 0,26999\end{aligned}$$

De (III.49) e (III.52)

$$R_{R} = [-0, 46851; -0, 11934; -0, 27579; 0, 13499; -0, 51886; 0, 45733]$$
$$\Delta Q_{g_{3}}^{i} = [-0, 00111; 0, 00104] MVar$$

De (III.54)

$$Q_{g_3}^{i} = (Q_{g_3}^{d} + \Delta Q_{g_3}^{i}) \cdot 100 = [-1, 73347; -1, 51904] MVar$$

Para a perda ativa intervalar da linha 2 – 3 são utilizadas as equações (B.70) à (B.73) para a obtenção das derivadas. Assim:

$$\frac{\partial P^{\text{Perdas}}}{\partial V_{r_2}} = 2g_{23} \left(V_{r_2} - V_{r_3} \right) = 0,00241$$
$$\frac{\partial P^{\text{Perdas}}}{\partial V_{r_3}} = 2g_{23} \left(V_{r_3} - V_{r_2} \right) = -0,00241$$
$$\frac{\partial P^{\text{Perdas}}}{\partial V_{m_2}} = 2g_{23} \left(V_{m_2} - V_{m_3} \right) = 0,01252$$
$$\frac{\partial P^{\text{Perdas}}}{\partial V_{m_3}} = 2g_{23} \left(V_{m_3} - V_{m_2} \right) = -0,01252$$

De (III.49) e (III.52)

$$R_{R} = [0,00000;0,00320;-0,00666;0,00000;-0,00030;-0,00018]$$
$$\Delta P^{\text{Perdas}_{12}i} = [-0,24425;0,22200] \cdot 10^{-4}$$

De (III.54)

$$\mathbf{P}^{\text{Perdas} \ i}_{12} = \left(\mathbf{P}^{\text{Perdas} \ d} + \Delta \mathbf{P}^{\text{Perdas} \ i}_{12}\right) \cdot 100 = \begin{bmatrix}0,03862;0,04329\end{bmatrix}$$

III.3.6.3. Fluxo de potência intervalar injeção de correntes

As tensões intervalares iniciais estão mostradas na Tabela III.11. De posse das tensões intervalares:

$$X^{0} = \begin{bmatrix} V_{r} \\ V_{m} \\ Q_{g_{3}} \end{bmatrix} = \begin{bmatrix} [1,00000;1,00000] \\ [0,95669;0,99567] \\ [0,96401;0,96401] \\ [0,00000;0,00000] \\ [-0,11531;-0,11079] \\ [-0,17629;-0,17629] \\ [-0,01839;-0,01414] \end{bmatrix}$$
Utilizando as equações (III.28) e (III.33) à (III.37):

$$I^{i} = \begin{pmatrix} 0,20342 + j0,00855 \\ -0,04837 + j0,02607 \\ -0,14749 + j0,04382 \end{pmatrix}$$

De (III.35) e (III.36)

$$\Delta I_{r}^{i} = \begin{pmatrix} [0,0000;0,00000] \\ [-0,00123;0,00089] \\ [-0,00295;0,00313] \end{pmatrix}$$
$$\Delta I_{m}^{i} = \begin{pmatrix} [0,00000;0,00000] \\ [-0,00005;0,000005] \\ [-0,00007;0,00007] \end{pmatrix}$$
$$f(x) = \begin{pmatrix} [0,00000;0,00000] \\ [-0,00051;0,00052] \\ [-0,00071;0,00071] \\ [0,00000;0,00000] \\ [-0,00122;0,00088] \\ [-0,00295;0,00312] \\ [-0,00210;0,00210] \end{pmatrix}$$

A última linha de f(x) é referente a geração de potência reativa intervalar. O próximo passo é o cálculo da matriz Jacobiana intervalar.

$$\mathbf{J}(\mathbf{X}^0) = \begin{bmatrix} [1,000;1,000] & [0,000;0,00$$

 $\mathbf{C} = \begin{bmatrix} 1,00000 & 0,00000 & 0,00000 & 0,00000 & 0,00000 & 0,00000 & 0,00000 \\ 0,00000 & -0,52491 & -0,01948 & 0,00000 & 0,11618 & 0,10653 & 0,26124 \\ 0,00000 & -0,01951 & -0,03377 & 0,00000 & 0,09249 & 0,18467 & 0,50868 \\ 0,00000 & 0,00000 & 0,00000 & 1,00000 & 0,00000 & 0,00000 & 0,00000 \\ 0,00000 & -0,01386 & -0,09197 & 0,00000 & 0,74904 & 0,50293 & -0,02182 \\ 0,00000 & -0,10672 & -0,18467 & 0,00000 & 0,50578 & 1,00989 & -0,05458 \\ 0,00000 & 0,52050 & 1,01349 & 0,00000 & -0,06017 & -0,09431 & 0,46560 \end{bmatrix}$

O operador Krawczyk é dado por (II.21):

$$\mathbf{K}^{0} = \begin{bmatrix} 1,00000; 1,00000] \\ [0,97548; 0,97696] \\ [0,96331; 0,96471] \\ [0,00000; 0,00000] \\ [-0,11535; -0,11056] \\ [-0,18008; -0,17249] \\ [-0,01739; -0,01514] \end{bmatrix}$$

A atualização das tensões intervalares é calculada segundo (II.23):

$$\mathbf{X}^{1} = \begin{bmatrix} [1,00000;1,00000] \\ [0,97548;0,97696] \\ [0,96401;0,96401] \\ [0,00000;0,00000] \\ [-0,11530;-0,11078] \\ [-0,17628;-0,17628] \\ [-0,01739;-0,01514] \end{bmatrix}$$

Testando a convergência:

$$\frac{\left|\operatorname{diam}(X^{1}) - \operatorname{diam}(X^{0})\right|}{2} = \begin{bmatrix} 0,00000\\0,01878\\0,00000\\0,00000\\0,00000\\0,00000\\0,00000\\0,00100 \end{bmatrix} > \operatorname{Tolerância} = 10^{-4}$$

Como a tolerância não é satisfeita, é necessária mais uma iteração. Com os novos valores das tensões intervalares (X^1) :

$$\mathbf{K}^{1} = \begin{bmatrix} [1,00000;1,00000] \\ [0,97548;0,97695] \\ [0,96332;0,96470] \\ [0,00000;0,00000] \\ [-0,11535;-0,11056] \\ [-0,18008;-0,17249] \\ [-0,01739;-0,01514] \end{bmatrix}$$

Portanto, a intersecção entre K^1 e X^1 resulta:

$$X^{2} = \begin{bmatrix} [1,00000;1,00000] \\ [0,97548;0,97696] \\ [0,96401;0,96401] \\ [0,00000;0,00000] \\ [-0,11530;-0,11078] \\ [-0,17628;-0,17628] \\ [-0,01739;-0,01514] \end{bmatrix}$$

Testando a convergência:

$$\frac{\left|\operatorname{diam}\left(X^{2}\right)-\operatorname{diam}\left(X^{1}\right)\right|}{2} = \begin{bmatrix} 0,00000\\0,00000\\0,00000\\0,00000\\0,00000\\0,00000\\0,00000 \end{bmatrix} < \operatorname{Tolerância} = 10^{-4}$$

O processo iterativo é então encerrado. Agora, as variáveis dependentes funcionais são calculadas. Apenas alguns cálculos são calculados. Com relação ao fluxo de potência ativa na linha 1 - 2 intervalar são utilizadas as equações (B.22) à (B.25) para a obtenção das derivadas. Assim:

$$\frac{\partial P_{12}}{\partial V_{r_1}} = 2V_{r_1} a_{12}^{2} g_{12} - a_{12} g_{12} V_{r_2} + a_{12} b_{12} V_{m_2} = 0,21329$$

$$\begin{aligned} \frac{\partial P_{12}}{\partial V_{r_2}} &= -a_{12}g_{12}V_{r_1} - a_{12}b_{12}V_{m_k} = -0,09900\\ \frac{\partial P_{12}}{\partial V_{m_1}} &= 2V_{m_1}a_{12}^{-2}g_{12} - a_{12}g_{12}V_{m_2} - a_{12}b_{12}V_{r_2} = 0,97773\\ \frac{\partial P_{12}}{\partial V_{m_2}} &= -a_{12}g_{12}V_{m_1} + a_{12}b_{12}V_{r_1} = -0,99009 \end{aligned}$$

De (III.50) e (III.53)

$$R_{I} = [0, 21329; 0, 06570; 0, 09298; 0, 97774; -0, 75313; -0, 50851; -0, 00426]$$
$$\Delta P_{12}^{i} = [-0, 00236; 0, 00253]$$

De (III.54)

$$\mathbf{P}_{12}^{i} = \left(\mathbf{P}_{12}^{d} + \Delta \mathbf{P}_{12}^{i}\right) \cdot 100 = \left[11, 19245; 11, 68116\right] \mathbf{MW}$$

Para a geração ativa intervalar da barra de referência são utilizadas as equações (B.52) à (B.55) para a obtenção das derivadas. Assim:

$$\frac{\partial P_{g_1}}{\partial V_{r_1}} = V_{r_1}G_{11} + V_{m_1}B_{11} + I_{r_1} = 0,35193$$
$$\frac{\partial P_{g_1}}{\partial V_{m_1}} = -V_{r_1}B_{11} + V_{m_1}G_{11} + I_{m_1} = 1,46369$$
$$\frac{\partial P_{g_1}}{\partial V_{r_2}} = V_{r_1}G_{12} + V_{m_1}B_{12} = -0,09900$$
$$\frac{\partial P_{g_1}}{\partial V_{r_3}} = V_{r_1}G_{13} + V_{m_1}B_{13} = -0,04950$$
$$\frac{\partial P_{g_1}}{\partial V_{m_2}} = -V_{r_1}B_{12} + V_{m_1}G_{12} = -0,99009$$
$$\frac{\partial P_{g_1}}{\partial V_{m_2}} = -V_{r_1}B_{13} + V_{m_1}G_{13} = -0,49505$$

De (III.50) e (III.53)

$$R_{I} = [0,35195;0,11950;0,18609;1,46370;-1,00809;-1,01759;-0,00242]$$
$$\Delta P_{g_{k}}^{i} = [-0,00427;0,00444]$$

De (III.54)

$$\mathbf{P}_{g_{k}}^{i} = \left(\mathbf{P}_{g_{k}}^{d} + \Delta \mathbf{P}_{g_{k}}^{i}\right) \cdot 100 = \left[19,90639;20,77757\right] \mathbf{MW}$$

Para a perda ativa intervalar da linha 2 – 3 são utilizadas as equações (B.70) à (B.73) para a obtenção das derivadas. Assim:

$$\frac{\partial P^{\text{Perdas}}}{\partial V_{r_2}} = 2g_{23} \left(V_{r_2} - V_{r_3} \right) = 0,00241$$
$$\frac{\partial P^{\text{Perdas}}}{\partial V_{r_3}} = 2g_{23} \left(V_{r_3} - V_{r_2} \right) = -0,00241$$
$$\frac{\partial P^{\text{Perdas}}}{\partial V_{m_2}} = 2g_{23} \left(V_{m_2} - V_{m_3} \right) = 0,01252$$
$$\frac{\partial P^{\text{Perdas}}}{\partial V_{m_3}} = 2g_{23} \left(V_{m_3} - V_{m_2} \right) = -0,01252$$

De (III.50) e (III.53)

 $R_{I} = [0,0000; -0,00005; 0,00119; 0,00000; 0,00310; -0,00653; -0,00018]$ $\Delta P^{\text{Perdas} i}_{12} = [-0,25151; 0,22940] \cdot 10^{-4}$

De (III.54)

$$\mathbf{P}_{12}^{\text{Perdas i}} = \left(\mathbf{P}_{12}^{\text{Perdas d}} + \Delta \mathbf{P}_{12}^{\text{Perdas i}}\right) \cdot 100 = \left[0,03855;0,04336\right] \mathbf{MW}$$

III.4. Simulação de Monte Carlo

III.4.1. Descrição do Método [33]

A Simulação de Monte Carlo tem este nome devido à famosa roleta de Monte Carlo, no Principado de Mônaco. Seu nome, bem como o desenvolvimento sistemático do método, data de 1944, na Segunda Guerra Mundial, período em que foi ferramenta de pesquisa para o desenvolvimento da bomba atômica.

Hammersley e Handscomb, definem o Método de Monte Carlo como sendo a parte da matemática experimental que está preocupada em experiências com números aleatórios. O Método de Monte Carlo é uma expressão muito geral, onde as formas de investigação estão baseadas no uso de números fortuitos e estatística de probabilidade.

Esse método consiste na substituição do estudo de um processo físico ou matemático por um modelo probabilístico que possa tratar problemas determinísticos por meio de amostras aleatórias ou por meio de números pseudo-aleatórios gerados por um computador.

Para resolver um problema através desse método, são utilizadas séries de tentativas aleatórias. A precisão do resultado final depende, em geral, do número de tentativas. O equilíbrio entre a precisão do resultado e o tempo de computação é uma característica útil dos métodos de Monte Carlo.

Para executar o Método de Monte Carlo, existem algumas fases básicas que devem ser seguidas: definição das variáveis envolvidas com base em dados passados ou em estimativas subjetivas dos administradores; identificação das distribuições de probabilidades das variáveis aleatórias relevantes para o estudo; construção das distribuições de probabilidades acumuladas para cada uma das variáveis definidas; definição dos intervalos dos números aleatórios para cada variável; geração dos números aleatórios e simulação dos experimentos.

Ressalta-se que as populações analisadas devem ter certos parâmetros, como média e desvio padrão, e podem apresentar vários comportamentos como Normal, Exponencial e Uniforme. As amostras obtidas devem ser aleatórias. Para isso, é preciso obter uma seqüência de números aleatórios. Computacionalmente, esta sequência é facilmente obtida, utilizando um gerador de números aleatórios. Os números gerados são pseudo-aleatórios, mas, geralmente, são suficientes para obter aproximações razoáveis de números aleatórios inteiros e podem ser utilizados para obter amostras aleatórias de alguma população de interesse.

A distribuição de frequência estatística de interesse é frequentemente chamada de distribuição aleatória empírica, e pode ser comparada com a distribuição aleatória teórica apropriada. Para isso, é preciso confrontar o comportamento da distribuição aleatória empírica com a distribuição aleatória teórica da estatística.

Os números aleatórios de qualquer distribuição de probabilidade são gerados empregando números aleatórios uniformes, designados com a letra U, que devem cumprir com as propriedades de uniformidade e independência.

Uma vez determinado um número aleatório uniforme U, é possível gerar uma observação da variável aleatória de interesse da seguinte forma:

 Qualquer função de distribuição de probabilidade avaliada em qualquer valor x é igual a um número entre 0 e 1. Isto pode ser representado da seguinte forma:

$$F_{x}(x) = U \tag{III.55}$$

2. Assim é possível obter artificialmente uma observação da variável x encontrando a função inversa da distribuição de probabilidade:

$$\mathbf{x} = \mathbf{F}_{\mathbf{x}}^{-1}(\mathbf{U}) \tag{III.56}$$

No programa desenvolvido, as seguintes expressões para as demandas ativas são utilizadas:

$$\begin{split} P_{dSuperior} &- P_{dInferior} \rightarrow 1 \\ & x \rightarrow U \\ & x = U \left(P_{dSuperior} - P_{dInferior} \right) \\ P_{d} &= P_{dInferior} \left(1 - U \right) + U P_{dSuperior} \\ P_{d} &= P_{dInferior} + U \left(P_{dSuperior} - P_{dInferior} \right) \end{split} \tag{III.57}$$

De forma análoga, para as demandas reativas e para os elementos das linhas de transmissão:

$$Q_{d} = Q_{dInferior} + U (Q_{dSuperior} - Q_{dInferior})$$
(III.58)

$$\mathbf{R} = \mathbf{R}_{\text{Inferior}} + \mathbf{U} \left(\mathbf{R}_{\text{Superior}} - \mathbf{R}_{\text{Inferior}} \right)$$
(III.59)

$$X = X_{\text{Inferior}} + U \left(X_{\text{Superior}} - X_{\text{Inferior}} \right)$$
(III.60)

$$B^{sh} = B^{sh}_{Inferior} + U (B^{sh}_{Superior} - B^{sh}_{Inferior})$$
(III.61)

III.4.2. Aplicação prática

Considerando o sistema elétrico de 3 barras descrito na secção III.3.6 e as demandas intervalares apresentadas na Tabela III.9, o processo é iniciado sorteando os valores de U para as demandas ativas e reativas. A Tabela III.12 apresenta os valores de U sorteados para a primeira iteração e das demandas ativas e reativas. As Tabelas III.13 a III.18 apresentam o resultado do fluxo de potência determinístico para a primeira iteração da simulação de Monte Carlo. Um milhão de simulações de Monte Carlo foram executadas.

Tabela III.12 – Simulação de Monte Carlo – Valores de U e das demandas

Valor Sorteado de U		
0,50000	$Pd_2(MW)$	5,00000
1,00000	Qd ₂ (MVar)	2,05000
0,00000	Pd ₃ (MW)	14,70000

Tabela III.13 – Simulação de Monte Carlo – Tensão nas barras

Barra	V (PU)	θ (°)
1	1,00000	0,00000
2	0,98262	-6,51386
3	0,98000	-10,180

Tabela III.14 – Simulação de Monte Carlo – Geração da barra de referência

P(MW)	Q(MVar)	
20,02247	-0,85834	

Tabela III.15 - Simulação de Monte Carlo - Geração reativa da barra PV

Barra	Q(MVar)
3	-1,67922

Tabela III.16 – Simulação de Monte Carlo – Fluxo de potência nas linhas k – m

De	Para	P(MW)	Q(MVar)
1	2	11,27170	0,24520
1	3	8,75077	-1,10354
2	3	6,14310	-1,12527

De	Para	P(MW)	Q(MVar)
2	1	-11,14310	-0,92472
3	1	-8,59601	-1,26966
3	2	-6,10399	-0,40956

Tabela III.17 – Simulação de Monte Carlo – Fluxo de potência nas linhas m – k

Tabela III.18 - Simulação de Monte Carlo - Perdas de potência nas linhas

De	Para	P(MW)	Q(MVar)
1	2	0,12860	-0,67952
1	3	0,15476	-2,37321
2	3	0,03911	-1,53483

III.5. Análise dos resultados

As Tabelas III.19 à III.30 apresentam os resultados dos fluxos de potência intervalar polar, retangular e injeção de correntes e da simulação de Monte Carlo. Para o cálculo dos erros associados ao problema, foi adotado o método do erro relativo dado pela seguinte expressão:

$$E_{\rm rel}(\%) = \frac{|X_{\rm MC} - X_{\rm MET}|}{X_{\rm MC}} \cdot 100\%$$
(III.62)

Tabela III.19 - Sistema 3 barras - Iterações

Método	Iterações
FPI Polar	3
FPI Retangular	2
FPI Injeção	2

Barra	Método	V _{Inferior} (PU)	V _{Superior} (PU)	E(%)	E(%)
	FPI Polar	1,00000	1,00000	0,00000	0,00000
1	FPI Retangular	1,00000	1,00000	0,00000	0,00000
	FPI Injeção	1,00000	1,00000	0,00000	0,00000
	Monte Carlo	1,00000	1,00000	-	-
	FPI Polar	0,98229	0,98318	0,00000	0,00000
2	FPI Retangular	0,98177	0,98370	0,05294	0,05289
	FPI Injeção	0,98176	0,98371	0,05396	0,05391
	Monte Carlo	0,98229	0,98318	-	-
	FPI Polar	0,98000	0,98000	0,00000	0,00000
3	FPI Retangular	0,98000	0,98000	0,00000	0,00000
	FPI Injeção	0,98000	0,98000	0,00000	0,00000
	Monte Carlo	0,98000	0,98000	-	-

Tabela III.20 - Sistema 3 barras - Magnitude das tensões

Tabela III.21 – Sistema 3 barras – Fase das tensões

Barra	Método	θ_{Inferior} (°)	θ _{Superior} (°)	E(%)	E(%)
	FPI Polar	0,00000	0,00000	0,00000	0,00000
1	FPI Retangular	0,00000	0,00000	0,00000	0,00000
	FPI Injeção	0,00000	0,00000	0,00000	0,00000
	Monte Carlo	0,00000	0,00000	-	-
	FPI Polar	-6,74229	-6,46870	0,01098	0,01206
2	FPI Retangular	-6,74127	-6,46985	0,00415	0,00572
	FPI Injeção	-6,74133	-6,46978	0,00326	0,00464
	Monte Carlo	-6,74155	-6,46948	-	-
	FPI Polar	-10,36303	-10,36303	2,02927	2,11471
3	FPI Retangular	-10,36303	-10,36303	2,02927	2,11471
	FPI Injeção	-10,36303	-10,36303	2,02927	2,11471
	Monte Carlo	-10,57768	-10,14842	-	-

Tabela III.22 – Sistema 3 barras – Geração ativa da barra de referência

Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
FPI Polar	19,92852	20,75581	0,04600	0,04120
FPI Retangular	19,92851	20,75582	0,04593	0,04126
FPI Injeção	19,90639	20,77757	0,06509	0,14610
Monte Carlo	19,91936	20,74726	-	-

Tabela III.23 – Sistema 3 barras – Geração reativa da barra de referência

Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
FPI Polar	-0,91788	-0,79227	0,28980	0,08863
FPI Retangular	-0,91789	-0,79225	0,28800	0,08627
FPI Injeção	-0,91943	-0,79029	0,12086	0,16116
Monte Carlo	-0,92054	-0,79157	-	-

Barra	Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
	FPI Polar	-1,73977	-1,50889	0,11078	0,25794
3	FPI Retangular	-1,73347	-1,51904	0,25153	0,93245
	FPI Injeção	-1,73895	-1,51363	0,06360	0,57325
	Monte Carlo	-1,73784	-1,50500	-	-

Tabela III.24 - Sistema 3 barras - Geração reativa da barra PV

Tabela III.25 – Sistema 3 barras – Fluxo de potência ativa nas linhas k – m

Linha	Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
	FPI Polar	11,20412	11,66978	0,08011	0,07390
1 - 2	FPI Retangular	11,20412	11,66978	0,08012	0,07389
	FPI Injeção	11,19245	11,68116	0,02413	0,17147
	Monte Carlo	11,19515	11,66116	-	-
	FPI Polar	8,72263	9,08781	0,00337	0,00109
1 - 3	FPI Retangular	8,72262	9,08781	0,00334	0,00106
	FPI Injeção	8,71395	9,09641	0,09612	0,09361
	Monte Carlo	8,72233	9,08791	-	-
	FPI Polar	6,10942	6,46574	0,13598	0,13300
2 - 3	FPI Retangular	6,10943	6,46574	0,13595	0,13303
	FPI Injeção	6,10203	6,47320	0,25682	0,01776
	Monte Carlo	6,11774	6,47435	-	-

Tabela III.26 – Sistema 3 barras – Fluxo de potência reativa nas linhas k – m

Linha	Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
	FPI Polar	0,18820	0,28409	0,86071	0,12209
1 - 2	FPI Retangular	0,18819	0,28411	0,85164	0,11576
	FPI Injeção	0,18735	0,28537	0,40549	0,32664
	Monte Carlo	0,18660	0,28444	-	-
	FPI Polar	-1,10608	-1,07636	0,09590	0,03293
1 - 3	FPI Retangular	-1,10608	-1,07636	0,09592	0,03286
	FPI Injeção	-1,10679	-1,07566	0,03215	0,03221
	Monte Carlo	-1,10714	-1,07601	-	-
	FPI Polar	-1,16618	-1,07232	0,11570	0,02118
2 - 3	FPI Retangular	-1,16620	-1,07230	0,11353	0,02335
	FPI Injeção	-1,16735	-1,07157	0,01541	0,09134
	Monte Carlo	-1,16753	-1,07255	-	-

Linha	Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
	FPI Polar	-11,52334	-11,05188	0,00259	0,14846
2 - 1	FPI Retangular	-11,51859	-11,05661	0,04381	0,10568
	FPI Injeção	-11,53180	-11,04363	0,07086	0,22292
	Monte Carlo	-11,52363	-11,06831	-	-
	FPI Polar	-8,92099	-8,56893	0,00030	0,00405
3 – 1	FPI Retangular	-8,92360	-8,56632	0,02895	0,02640
	FPI Injeção	-8,93209	-8,55790	0,12410	0,12463
	Monte Carlo	-8,92102	-8,56858	-	-
	FPI Polar	-6,44082	-6,08609	0,15366	0,11739
3 – 2	FPI Retangular	-6,44077	-6,08611	0,15287	0,11776
	FPI Injeção	-6,44727	-6,07952	0,25387	0,00938
	Monte Carlo	-6,43094	-6,07895	-	-

Tabela III.27 – Sistema 3 barras – Fluxo de potência ativa nas linhas m – k

Tabela III.28 – Sistema 3 barras – Fluxo de potência reativa nas linhas m – k

Linha	Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
	FPI Polar	-0,92937	-0,83526	0,21548	0,44379
2 - 1	FPI Retangular	-0,92560	-0,83160	0,19077	0,00356
	FPI Injeção	-0,93787	-0,81981	1,13223	1,41486
	Monte Carlo	-0,92737	-0,83157	-	-
	FPI Polar	-1,27772	-1,17628	0,02847	0,12681
3 – 1	FPI Retangular	-1,27773	-1,17628	0,02857	0,12680
	FPI Injeção	-1,28014	-1,17389	0,21724	0,07664
	Monte Carlo	-1,27736	-1,17479	-	-
	FPI Polar	-0,45896	-0,33007	0,33354	0,00917
3 - 2	FPI Retangular	-0,46206	-0,33259	0,33872	0,77198
	FPI Injeção	-0.46556	-0.32865	1,09912	0.42194
	Monte Carlo	-0,46050	-0,33004	-	-

Tabela III.29 – Sistema 3 barras – Perdas de potência ativa nas linhas

Linha	Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
	FPI Polar	0,12693	0,13774	0,11699	0,10554
1 - 2	FPI Retangular	0,12693	0,13773	0,11984	0,10270
	FPI Injeção	0,12662	0,13804	0,12409	0,32335
	Monte Carlo	0,12678	0,13759	-	-
	FPI Polar	0,15370	0,16682	0,03452	0,04315
1 - 3	FPI Retangular	0,15370	0,16682	0,03457	0,04310
	FPI Injeção	0,15339	0,16712	0,23724	0,14206
	Monte Carlo	0,15375	0,16689	-	-
	FPI Polar	0,03863	0,04329	0,35186	0,34416
2 - 3	FPI Retangular	0,03863	0,04329	0,36034	0,33728
	FPI Injeção	0,03856	0,04336	0,54755	0,16700
	Monte Carlo	0,03877	0,04344	-	-

Linha	Método	Q _{Inferior} (MW)	Q _{Superior} (MW)	E(%)	E(%)
	FPI Polar	-0,69736	-0,58754	0,21708	0,24582
1 - 2	FPI Retangular	-0,69733	-0,58758	0,22215	0,23930
	FPI Injeção	-0,70043	-0,58452	0,22210	0,75830
	Monte Carlo	-0,69888	-0,58899	-	-
	FPI Polar	-2,38381	-2,25264	0,01770	0,03198
1 - 3	FPI Retangular	-2,38381	-2,25264	0,01774	0,03194
	FPI Injeção	-2,38692	-2,24955	0,14848	0,10528
	Monte Carlo	-2,38338	-2,25192	-	-
	FPI Polar	-1,54038	-1,49277	0,08477	0,10022
2 - 3	FPI Retangular	-1,54041	-1,49274	0,08693	0,09819
	FPI Injeção	-1,54132	-1,49181	0,14606	0,03566
	Monte Carlo	-1,53907	-1,49128	-	-

Tabela III.30 – Sistema 3 barras – Perdas de potência reativa nas linhas

As três formulações de fluxo de potência intervalar apresentam resultados muito próximos para todas simulações . Comparativamente à simulação Monte Carlo, os erros apresentados são pequenos, onde o maior erro é 2,11471%, referente à fase da tensão da barra 3. Com relação a eficiência computacional, o fluxo de potência intervalar polar necessitou de três iterações para convergir, uma a mais do que os outros dois métodos.

Capítulo IV

Resultados

IV.1. Introdução

Este capítulo apresenta os resultados obtidos pela metodologia proposta para cinco sistemas elétricos: três sistemas do IEEE [34] com 14, 57 e 300 barras, um equivalente da região Sul-Sudeste do Brasil com 34 barras e um sistema de grande porte com 1768 barras. A metodologia foi desenvolvida no ambiente MATLAB utilizando a biblioteca INTLAB. A tolerância adotada para a convergência dos fluxos determinístico e intervalar é 10^{-4} .

Variações nas gerações, nas demandas e nos elementos das linhas de transmissão são considerados. Apenas os resultados de cinco barras e de cinco linhas que apresentam os maiores erros relativos referentes às coordenadas polares, comparativamente à simulação de Monte Carlo, são apresentados. As variações dos elementos das linhas não são analisados para todos os sistemas devido ao elevado esforço computacional para realização da simulação de Monte Carlo. A variação nas gerações ativa é de 1% para todas as barras de geração de todos os sistemas.

No sistema IEEE 14 é analisada a variação de 5% nas resistências, reatâncias e susceptâncias em paralelo de todas as linhas de transmissão. No sistema 34 barras é analisada a variação de 5% nas demandas ativa e reativa em todas as barras. Uma variação de 4% nas demandas ativa e reativa em todas as barras é analisada no sistema IEEE 57. No sistema IEEE 300 é analisada a variação de 3% nas demandas ativa e reativa em todas as barras 20% de suas

linhas. Foram escolhidas as linhas que conectam as barras que apresentaram os maiores erros relativos. Finalmente, a análise de variação dos parâmetros no sistema de 1768 barras é idêntica a do IEEE 300, a menos da percentagem que agora é 2%. Um milhão de simulações de Monte Carlo foram realizadas para os sistemas IEEE 14, 34 barras, IEEE 57 e IEEE 300. Para o sistema de 1768 barras foram executadas trezentas mil simulações.

IV.2. Tensão e fase determinística e intervalar

IV.2.1. Apresentação dos resultados

As Tabelas IV.1 a IV.5 apresentam as tensões e as fases determinísticas para cada um dos sistemas em estudo. As Tabelas IV.6 a IV.15 apresentam os respectivos valores intervalares.

Barra	V (PU)	Teta (°)
4	1,01775	-10,27021
9	1,05601	-14,88390
10	1,05108	-15,04204
13	1,05048	-15,10091
14	1,03570	-15,97401

Tabela IV.1 – Sistema IEEE 14 barras – Tensão nas barras

Tabela IV.2 - Sistema Sul-Sudeste - Tensão nas barras

Barra	V (PU)	Teta (°)
17	1,01480	27,54226
19	1,04830	23,59534
23	1,04970	15,64818
25	1,04270	-17,65193
29	0,99615	-13,95219

Tabela IV.3 – Sistema IEEE 57 barras – Tensões nas barras

Barra	V (PU)	Teta (°)
15	0,98803	-7,19017
16	1,01337	-8,85894
17	1,01745	-5,39589
18	1,00066	-11,72964
47	1,03325	-12,51159

Barra	V (PU)	Teta (°)
17	1,06492	-13,04295
120	0,95844	-8,70912
139	1,01171	-3,50478
192	0,93746	-10,93694
234	1,03871	-20,64997

Tabela IV.4 – Sistema IEEE 300 barras – Tensão nas barras

Tabela IV.5 - Sistema 1768 barras - Tensão nas barras

Barra	V (PU)	Teta (°)
493	0,98795	-67,89171
443	0,99263	-67,91239
1673	0,96359	-83,98456
1103	1,08784	-0,73083
353	1,02785	-87,75338

Tabela IV.6 - Sistema IEEE 14 barras - Módulo das tensões

Barra	Método	V _{Inferior} (PU)	V _{Superior} (PU)	E(%)	E(%)
	FPI Polar	1,01742	1,01809	0,02359	0,00688
4	FPI Retangular	1,01734	1,01817	0,01573	0,00098
	FPI Injeção	1,01724	1,01827	0,00590	0,01080
	Monte Carlo	1,01718	1,01816	-	-
	FPI Polar	1,05574	1,05628	0,05686	0,04258
9	FPI Retangular	1,05555	1,05647	0,03886	0,02460
	FPI Injeção	1,05536	1,05666	0,02085	0,00662
	Monte Carlo	1,05514	1,05673	-	-
	FPI Polar	1,05079	1,05137	0,05523	0,03708
10	FPI Retangular	1,05064	1,05153	0,04094	0,02187
	FPI Injeção	1,05044	1,05172	0,02190	0,00380
	Monte Carlo	1,05021	1,05176	-	-
	FPI Polar	1,05015	1,05080	0,01810	0,00095
13	FPI Retangular	1,05008	1,05087	0,01143	0,00761
	FPI Injeção	1,04988	1,05107	0,00762	0,02665
	Monte Carlo	1,04996	1,05079	-	-
	FPI Polar	1,03539	1,03600	0,07926	0,04245
14	FPI Retangular	1,03525	1,03615	0,06573	0,02798
	FPI Injeção	1,03505	1,03635	0,04640	0,00868
	Monte Carlo	1,03457	1,03644	-	-

Barra	Método	θ_{Inferior} (°)	θ _{Superior} (°)	E(%)	E(%)
	FPI Polar	-10,31219	-10,22805	1,91310	1,14225
4	FPI Retangular	-10,31573	-10,22451	1,87943	1,10724
	FPI Injeção	-10,32885	-10,21161	1,75463	0,97967
	Monte Carlo	-10,51332	-10,11254	-	-
	FPI Polar	-14,92592	-14,84165	1,90854	1,23266
9	FPI Retangular	-14,92791	-14,83964	1,89546	1,21895
	FPI Injeção	-14,94749	-14,82033	1,76679	1,08724
	Monte Carlo	-15,21633	-14,66093	-	-
	FPI Polar	-15,08313	-15,00073	1,90153	1,24594
10	FPI Retangular	-15,08566	-14,99817	1,88508	1,22866
	FPI Injeção	-15,10555	-14,97857	1,75572	1,09637
	Monte Carlo	-15,37550	-14,81613	-	-
	FPI Polar	-15,13673	-15,06483	1,99161	1,27569
13	FPI Retangular	-15,14265	-15,05889	1,95327	1,23576
	FPI Injeção	-15,16411	-15,03773	1,81432	1,09351
	Monte Carlo	-15,44432	-14,87507	-	-
	FPI Polar	-16,01389	-15,93390	1,97664	1,26818
14	FPI Retangular	-16,01717	-15,93058	1,95656	1,24708
	FPI Injeção	-16,03751	-15,91053	1,83206	1,11965
	Monte Carlo	-16,33681	-15,73436	-	-

Tabela IV.7 - Sistema IEEE 14 barras - Fase das tensões

Tabela IV.8 - Sistema Sul-Sudeste - Módulo das tensões

Barra	Método	V _{Inferior} (PU)	V _{Superior} (PU)	E(%)	E(%)
	FPI Polar	0,96406	1,06554	0,01763	0,03661
17	FPI Retangular	0,96305	1,06655	0,12238	0,13144
	FPI Injeção	0,96406	1,06554	0,01763	0,03661
	Monte Carlo	0,96423	1,06515	-	-
	FPI Polar	0,99588	1,10072	0,05620	0,42149
19	FPI Retangular	0,99484	1,10176	0,16057	0,51638
	FPI Injeção	0,99588	1,10072	0,05620	0,42149
	Monte Carlo	0,99644	1,09610	-	-
	FPI Polar	0,99721	1,10219	0,02206	1,05253
23	FPI Retangular	0,99617	1,10323	0,12632	1,14788
	FPI Injeção	0,99721	1,09774	0,02206	0,64453
	Monte Carlo	0,99743	1,09071	-	-
	FPI Polar	0,99056	1,09484	0,03633	0,10606
25	FPI Retangular	0,98952	1,09588	0,14128	0,20116
	FPI Injeção	0,99056	1,09484	0,03633	0,10606
	Monte Carlo	0,99092	1,09368	-	-
	FPI Polar	0,94634	1,04596	0,21721	0,14361
29	FPI Retangular	0,94535	1,04695	0,32159	0,23840
	FPI Injeção	0,94634	1,04596	0,21721	0,14361
	Monte Carlo	0,94840	1,04446	-	-

Barra	Método	θ_{Inferior} (°)	θ _{Superior} (°)	E(%)	E(%)
	FPI Polar	25,25965	29,95909	1,06968	0,93166
17	FPI Retangular	25,21534	30,00882	1,24323	1,09920
	FPI Injeção	25,25965	29,95909	1,06968	0,93166
	Monte Carlo	25,53277	29,68255	-	-
	FPI Polar	21,56355	25,76984	1,13771	2,45724
19	FPI Retangular	21,52431	25,81485	0,95366	2,63619
	FPI Injeção	21,56355	25,76984	1,13771	2,45724
	Monte Carlo	21,32098	25,15180	-	-
	FPI Polar	14,22122	17,20229	3,29233	0,68656
23	FPI Retangular	14,19389	17,23477	3,47819	0,49904
	FPI Injeção	14,28083	17,20229	2,88697	0,68656
	Monte Carlo	14,70537	17,32121	-	-
	FPI Polar	-19,37740	-16,06162	1,72061	0,19611
25	FPI Retangular	-19,41339	-16,03110	1,90954	0,38575
	FPI Injeção	-19,37740	-16,06162	1,72061	0,19611
	Monte Carlo	-19,04963	-16,09318	-	-
	FPI Polar	-15,35451	-12,66834	0,51645	1,16704
29	FPI Retangular	-15,38387	-12,64378	0,32622	1,35864
	FPI Injeção	-15,35451	-12,66834	0,51645	1,16704
	Monte Carlo	-15,43422	-12,81793	-	-

Tabela IV.9 - Sistema Sul-Sudeste - Fase das tensões

Tabela IV.10 - Sistema IEEE 57 barras - Módulo das tensões

Barra	Método	V _{Inferior} (PU)	V _{Superior} (PU)	E(%)	E(%)
	FPI Polar	0,94851	1,02755	3,93376	3,93361
15	FPI Retangular	0,95824	1,01782	2,94830	2,94945
	FPI Injeção	0,98342	0,99266	0,39804	0,40459
	Monte Carlo	0,98735	0,98866	-	-
	FPI Polar	0,97912	1,04762	3,28437	3,28604
16	FPI Retangular	0,99657	1,03018	1,56069	1,56661
	FPI Injeção	1,00715	1,01962	0,51562	0,52549
	Monte Carlo	1,01237	1,01429	-	-
	FPI Polar	0,99910	1,03581	1,68080	1,68658
17	FPI Retangular	1,00828	1,02664	0,77742	0,78635
	FPI Injeção	1,01392	1,02100	0,22240	0,23267
	Monte Carlo	1,01618	1,01863	-	-
	FPI Polar	0,96063	1,04069	3,84758	3,83848
18	FPI Retangular	0,96659	1,03473	3,25102	3,24380
	FPI Injeção	0,99147	1,00989	0,76071	0,76530
	Monte Carlo	0,99907	1,00222	-	-
	FPI Polar	0,99192	1,07458	3,83154	3,82716
47	FPI Retangular	0,99192	1,07458	3,83154	3,82716
	FPI Injeção	1,02121	1,04534	0,99182	1,00196
	Monte Carlo	1,03144	1,03497	-	-

Barra	Método	θ_{Inferior} (°)	θ _{Superior} (°)	E(%)	E(%)
	FPI Polar	-7,78229	-6,64223	0,61516	1,01237
15	FPI Retangular	-7,70296	-6,70618	1,62826	1,98490
	FPI Injeção	-7,50511	-6,87737	4,15493	4,58828
	Monte Carlo	-7,83046	-6,57566	-	-
	FPI Polar	-9,58400	-8,18709	0,89888	1,67078
16	FPI Retangular	-9,35451	-8,37769	3,27187	4,03773
	FPI Injeção	-9,25584	-8,46538	4,29214	5,12670
	Monte Carlo	-9,67093	-8,05255	-	-
	FPI Polar	-5,84256	-4,98300	0,10156	0,69352
17	FPI Retangular	-5,65956	-5,13657	3,23057	3,79677
	FPI Injeção	-5,62800	-5,16506	3,77020	4,37248
	Monte Carlo	-5,84850	-4,94868	-	-
	FPI Polar	-12,67668	-10,84963	0,41022	0,04555
18	FPI Retangular	-12,59779	-10,91326	0,21466	0,63229
	FPI Injeção	-12,27882	-11,18689	2,74117	3,15546
	Monte Carlo	-12,62489	-10,84469	-	-
	FPI Polar	-13,51736	-11,57617	0,76025	0,28855
47	FPI Retangular	-13,51735	-11,57617	0,76017	0,28855
	FPI Injeção	-13,12574	-11,90709	2,15894	2,56183
	Monte Carlo	-13,41537	-11,60967	-	-

Tabela IV.11 - Sistema IEEE 57 barras - Fase das tensões

Tabela IV.12 - Sistema IEEE 300 barras - Módulo das tensões

Barra	Método	V _{Inferior} (PU)	V _{Superior} (PU)	E(%)	E(%)
	FPI Polar	1,03297	1,09686	2,67212	2,66860
17	FPI Retangular	1,03297	1,09686	2,67212	2,66860
	FPI Injeção	1,03297	1,09686	2,67212	2,66860
	Monte Carlo	1,06133	1,06835	-	-
	FPI Polar	0,92968	0,98719	2,52679	2,51194
120	FPI Retangular	0,92968	0,98719	2,52679	2,51194
	FPI Injeção	0,92968	0,98719	2,52679	2,51194
	Monte Carlo	0,95378	0,96300	-	-
	FPI Polar	0,98136	1,04206	2,89813	2,89004
139	FPI Retangular	0,98136	1,04206	2,89813	2,89004
	FPI Injeção	0,98136	1,04206	2,89813	2,89004
	Monte Carlo	1,01065	1,01279	-	-
	FPI Polar	0,90933	0,96558	2,48367	2,57832
192	FPI Retangular	0,90933	0,96558	2,48367	2,57832
	FPI Injeção	0,90933	0,96558	2,48367	2,57832
	Monte Carlo	0,93249	0,94131	-	-
	FPI Polar	1,00754	1,06987	2,90175	2,88498
234	FPI Retangular	1,00754	1,06987	2,90175	2,88498
	FPI Injeção	1,00754	1,06987	2,90175	2,88498
	Monte Carlo	1,03765	1,03987	-	-

Barra	Método	θ_{Inferior} (°)	θ _{Superior} (°)	E(%)	E(%)
	FPI Polar	-13,81965	-12,30700	2,18679	3,61783
17	FPI Retangular	-13,81965	-12,30700	2,18679	3,61783
	FPI Injeção	-13,81965	-12,30700	2,18679	3,61783
	Monte Carlo	-13,52391	-11,87730	-	-
	FPI Polar	-9,23880	-8,20891	9,43445	9,92923
120	FPI Retangular	-9,23880	-8,20891	9,43445	9,92923
	FPI Injeção	-9,23880	-8,20891	9,43445	9,92923
	Monte Carlo	-10,20123	-7,46745	-	-
	FPI Polar	-3,72098	-3,30109	6,17683	5,02857
139	FPI Retangular	-3,72098	-3,30108	6,17683	5,02825
	FPI Injeção	-3,72098	-3,30109	6,17683	5,02857
	Monte Carlo	-3,96595	-3,14304	-	-
	FPI Polar	-11,59565	-10,31392	3,02654	2,49908
192	FPI Retangular	-11,59564	-10,31392	3,02662	2,49908
	FPI Injeção	-11,59565	-10,31392	3,02654	2,49908
	Monte Carlo	-11,95755	-10,57828	-	-
	FPI Polar	-21,81043	-19,54066	2,53271	0,06954
234	FPI Retangular	-21,81043	-19,54066	2,53271	0,06954
	FPI Injeção	-21,81043	-19,54066	2,53271	0,06954
	Monte Carlo	-21,27168	-19,52708	-	-

Tabela IV.13 – Sistema IEEE 300 barras – Fase das tensões

Tabela IV.14 - Sistema 1768 barras - Módulo das tensões

Barra	Método	V _{Inferior} (PU)	V _{Superior} (PU)	E(%)	E(%)
	FPI Polar	0,93142	1,04425	0,35304	3,30926
493	FPI Retangular	0,96221	1,01369	2,94098	0,28591
	FPI Injeção	0,96221	1,01369	2,94098	0,28591
	Monte Carlo	0,93472	1,01080	-	-
	FPI Polar	0,93583	1,04919	0,90011	3,43981
443	FPI Retangular	0,96677	1,01849	2,37629	0,41309
	FPI Injeção	0,96677	1,01849	2,37629	0,41309
	Monte Carlo	0,94433	1,01430	-	-
	FPI Polar	0,92177	1,00464	2,90719	3,37823
1673	FPI Retangular	0,95215	0,97504	0,29283	0,33237
	FPI Injeção	0,95053	0,97665	0,12219	0,49804
	Monte Carlo	0,94937	0,97181	-	-
	FPI Polar	1,08743	1,08824	0,02666	0,02574
1103	FPI Retangular	1,08746	1,08822	0,02390	0,02390
	FPI Injeção	1,08747	1,08820	0,02298	0,02206
	Monte Carlo	1,08772	1,08796	-	-
	FPI Polar	0,98469	1,07007	3,01105	3,24078
353	FPI Retangular	1,01742	1,03828	0,21275	0,17366
	FPI Injeção	1,01650	1,03920	0,12214	0,26243
	Monte Carlo	1,01526	1,03648	-	-

Barra	Método	θ_{Inferior} (°)	θ _{Superior} (°)	E(%)	E(%)
	FPI Polar	-69,24955	-66,53388	15,22718	11,35815
493	FPI Retangular	-68,67950	-67,08102	15,92502	12,27391
	FPI Injeção	-68,67950	-67,08102	15,92502	12,27391
	Monte Carlo	-81,68839	-59,74765	-	-
	FPI Polar	-69,27064	-66,55415	15,21043	11,51179
443	FPI Retangular	-68,69959	-67,10229	15,90941	12,43020
	FPI Injeção	-68,69959	-67,10229	15,90941	12,43020
	Monte Carlo	-81,69712	-59,68351	-	-
	FPI Polar	-85,66425	-82,30487	13,70250	10,32752
1673	FPI Retangular	-84,16103	-83,80471	15,21683	12,33802
	FPI Injeção	-84,17071	-83,79421	15,20708	12,32394
	Monte Carlo	-99,26620	-74,60049	-	-
	FPI Polar	-0,74544	-0,71621	0,00268	0,00279
1103	FPI Retangular	-0,73743	-0,72422	1,07719	1,12121
	FPI Injeção	-0,74458	-0,71707	0,11805	0,12287
	Monte Carlo	-0,74546	-0,71619	-	-
	FPI Polar	-89,50844	-85,99831	12,46635	9,43958
353	FPI Retangular	-87,81868	-87,68684	14,11883	11,58836
	FPI Injeção	-87,82062	-87,68474	14,11693	11,58569
	Monte Carlo	-102,25603	-78,58063	-	-

Tabela IV.15 – Sistema 1768 barras – Fase das tensões

IV.2.2. Análise dos resultados

As três formulações de fluxo de potência intervalar apresentam resultados muito próximos de módulo e fase de tensão. Comparativamente à simulação Monte Carlo, os erros apresentados no módulo são pequenos, onde o maior erro é 3,93376%, referente à barra 15 do IEEE 57, calculado através do fluxo de potência intervalar polar. Quanto à fase da tensão, o maior erro é 15,92502%, referente à barra 493 do sistema de 1768 barras, calculado através dos fluxos de potência intervalar retangular e injeção de correntes. Estes valores mais elevados de erro na fase da tensão se devem a utilização de um sistema de grande porte e, principalmente, ao fato de se manter constantes os ângulos de fase das barras de geração, ao contrário do que é feito na simulação de Monte Carlo. Além disto, conforme a aplicação 3, seção II.13.2.3, pode ser que a variação intervalar assumida tenha interferido na exatidão do processo iterativo.

IV.3. Fluxos de potência ativa e reativa determinística e intervalar

IV.3.1. Apresentação dos resultados

As Tabelas IV.16 à IV.20 apresentam os fluxos de potência ativa e reativa determinísticos para cada um dos sistemas em estudo. As Tabelas IV.21 a IV.30 apresentam os respectivos valores intervalares.

Linha	P (MW)	Q (MVar)
5 - 4	61,67507	-14,18739
9 – 7	-28,07563	-4,97448
10 – 9	-5,21686	-4,18672
14 – 9	-9,31133	-3,36386
14 – 13	-5,58869	-1,63616

Tabela IV.16 - Sistema IEEE 14 barras - Fluxo de potência nas linhas

Tabela IV.17 - Sistema Sul-Sudeste - Fluxo de potência nas linhas

Linha	P (MW)	Q (MVar)
17 - 21	447,53632	-331,55752
16 - 19	-551,09363	-265,18734
21 - 23	325,52453	-268,74652
25 - 24	-1138,25356	480,64387
29 - 27	255,82732	-406,17825

Tabela IV.18 – Sistema IEEE 57 barras – Fluxo de potência nas linhas

Linha	P (MW)	Q (MVar)
1 – 15	158,49518	33,78668
1 – 16	84,30549	-0,73708
1 – 17	99,30082	4,28544
18 – 19	4,93013	1,47359
47 - 48	18,71277	13,22822

Tabela IV.19 - Sistema IEEE 300 barras - Fluxo de potência nas linhas

Linha	P (MW)	Q (MVar)
15 - 14	-123,39609	132,23509
120 - 116	65,69656	-62,45981
172 – 139	-19,46229	7,21049
225 - 192	-9,88830	88,08206
234 - 228	2,55217	-57,57514

Linha	P (MW)	Q (MVAR)
492 - 493	5,20500	1,28537
442 - 443	4,37600	2,05351
274 – 1673	1,05492	0,46574
85 - 1103	0,04465	4,65693
349 - 353	1,49679	0,51534

Tabela IV.20 - Sistema 1768 barras - Fluxo de potência nas linhas

Tabela IV.21 - Sistema IEEE 14 barras - Fluxo de potência ativa nas linhas

Linha	Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
	FPI Polar	60,23458	63,03592	0,00766	0,11894
5 - 4	FPI Retangular	60,01128	63,25068	0,37833	0,22135
	FPI Injeção	59,83081	63,43412	0,67792	0,51202
	Monte Carlo	60,23919	63,11098	-	-
	FPI Polar	-28,73745	-27,38623	0,09610	0,15598
9 – 7	FPI Retangular	-28,72042	-27,40684	0,03678	0,08084
	FPI Injeção	-28,91955	-27,21234	0,73038	0,78996
	Monte Carlo	-28,70986	-27,42901	-	-
	FPI Polar	-5,67395	-4,75288	0,52703	0,57955
10 – 9	FPI Retangular	-5,67471	-4,75504	0,54052	0,53441
	FPI Injeção	-5,80169	-4,62935	2,79026	3,16354
	Monte Carlo	-5,64420	-4,78058	-	-
	FPI Polar	-9,73619	-8,87950	0,23034	0,37314
14 – 9	FPI Retangular	-9,72926	-8,88896	0,15902	0,26697
	FPI Injeção	-9,82608	-8,79309	1,15568	1,34270
	Monte Carlo	-9,71382	-8,91276	-	-
	FPI Polar	-5,97152	-5,20512	0,65148	0,81758
14 – 13	FPI Retangular	-5,94303	-5,23483	0,17115	0,25147
	FPI Injeção	-6,02127	-5,15663	1,48994	1,74155
	Monte Carlo	-5,93287	-5,24802	-	-

Linha	Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
	FPI Polar	-14,48987	-13,89055	0,78619	0,66841
5 - 4	FPI Retangular	-14,65900	-13,76927	0,37186	0,21057
	FPI Injeção	-14,62826	-13,79189	0,16134	0,04660
	Monte Carlo	-14,60469	-13,79832	-	-
	FPI Polar	-5,78830	-4,16459	8,97092	10,02644
9 – 7	FPI Retangular	-5,34581	-4,60683	0,64060	0,47213
	FPI Injeção	-5,62029	-4,30794	5,80789	6,92948
	Monte Carlo	-5,31178	-4,62868	-	-
	FPI Polar	-4,62319	-3,74822	4,33478	5,05238
10 – 9	FPI Retangular	-4,44593	-3,92349	0,33444	0,61250
	FPI Injeção	-4,62019	-3,74885	4,26722	5,03644
	Monte Carlo	-4,43111	-3,94767	-	-
	FPI Polar	-3,69815	-3,03002	4,75952	4,96288
14 – 9	FPI Retangular	-3,54996	-3,17366	0,56154	0,45743
	FPI Injeção	-3,75128	-2,96939	6,26441	6,86440
	Monte Carlo	-3,53014	-3,18824	-	-
	FPI Polar	-1,91606	-1,35902	6,48350	7,80553
14 – 13	FPI Retangular	-1,81659	-1,45573	0,95566	1,24511
	FPI Injeção	-1,98119	-1,28647	10,10314	12,72739
	Monte Carlo	-1,79940	-1,47408	-	-

Tabela IV.22 - Sistema IEEE 14 barras - Fluxo de potência reativa nas linhas

Tabela IV.23 – Sistema Sul-Sudeste – Fluxo de potência ativa nas linhas

Linha	Método	PInferior (MW)	P _{Superior} (MW)	E(%)	E(%)
	FPI Polar	403,32497	470,23987	0,50396	1,47594
17 - 21	FPI Retangular	404,39876	475,32987	0,23907	0,40949
	FPI Injeção	403,93535	478,39877	0,35339	0,23350
	Monte Carlo	405,36787	477,28430	-	-
	FPI Polar	-633,03757	-374,67947	0,38569	1,05021
16 - 19	FPI Retangular	-632,93477	-368,65947	0,36939	0,57337
	FPI Injeção	-631,03276	-368,45698	0,06778	0,62798
	Monte Carlo	-630,60536	-370,78543	-	-
	FPI Polar	269,24778	397,32578	1,01178	1,37641
21 - 23	FPI Retangular	270,89766	391,37869	0,40521	0,14097
	FPI Injeção	270,93567	392,34798	0,39123	0,10634
	Monte Carlo	271,99982	391,93119	-	-
	FPI Polar	-2689,23456	1727,35745	0,33848	0,07560
25 - 24	FPI Retangular	-2684,43578	1725,76352	0,51632	0,16781
	FPI Injeção	-2691,24778	1722,89834	0,26387	0,33356
	Monte Carlo	-2698,36787	1728,66440	-	-
	FPI Polar	-98,23468	835,93287	1,87036	0,19390
29 - 27	FPI Retangular	-100,86321	831,35775	0,75536	0,35446
	FPI Injeção	-99,83418	839,58523	0,27257	0,63167
	Monte Carlo	-100,10704	834,31510	-	-

Linha	Método	QInferior	QSuperior	E(%)	E(%)
		(MVar)	(MVar)		
	FPI Polar	-353,12341	-278,32578	0,76786	0,53526
17 - 21	FPI Retangular	-351,75333	-273,65642	0,37689	1,15138
	FPI Injeção	-352,42672	-272,86775	0,56905	1,43626
	Monte Carlo	-350,43257	-276,84394	-	-
	FPI Polar	-470,13453	54,34577	0,34622	13,89463
16 - 19	FPI Retangular	-469,57825	49,87547	0,22749	4,52605
	FPI Injeção	-467,14567	48,76536	0,29172	2,19954
	Monte Carlo	-468,51243	47,71583	-	-
	FPI Polar	-417,32536	-193,32778	2,56019	1,56280
21 - 23	FPI Retangular	-425,32656	-192,45647	0,69202	1,10507
	FPI Injeção	-432,87636	-198,78258	1,07076	4,42843
	Monte Carlo	-428,29040	-190,35294	-	-
	FPI Polar	247,45734	1154,34577	1,93987	0,08716
25 - 24	FPI Retangular	246,63456	1150,86575	2,26591	0,38837
	FPI Injeção	252,20063	1158,76356	0,06024	0,29521
	Monte Carlo	252,35265	1155,35281	-	-
	FPI Polar	-682,34475	-92,31537	0,23802	1,80620
29 - 27	FPI Retangular	-677,14784	-95,31456	0,52542	1,38397
	FPI Injeção	-681,87464	-91,85265	0,16896	2,29838
	Monte Carlo	-680,72447	-94,01344	-	-

Tabela IV.24 – Sistema Sul-Sudeste – Fluxo de potência reativa nas linhas

Tabela IV.25 – Sistema IEEE 57 barras – Fluxo de potência ativa nas linhas

Linha	Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
	FPI Polar	128,53886	170,28406	4,43096	4,12493
1 - 15	FPI Retangular	127,80073	171,02228	4,97976	4,57634
	FPI Injeção	126,22145	172,52887	6,15396	5,49759
	Monte Carlo	134,49843	163,53822	-	-
	FPI Polar	68,00788	90,94950	4,17026	4,06133
1 - 16	FPI Retangular	68,02771	90,92971	4,14232	4,03869
	FPI Injeção	67,30079	91,63121	5,16661	4,84132
	Monte Carlo	70,96740	87,39990	-	-
	FPI Polar	81,38459	105,86063	3,67574	3,70622
1 -17	FPI Retangular	81,58554	105,65973	3,43790	3,50941
	FPI Injeção	80,84279	106,37530	4,31700	4,21042
	Monte Carlo	84,49023	102,07742	-	-
	FPI Polar	4,00351	5,27581	4,91441	3,44653
18 - 19	FPI Retangular	4,00075	5,27857	4,97996	3,50074
	FPI Injeção	3,92853	5,34866	6,69515	4,87508
	Monte Carlo	4,21043	5,10003	-	-
	FPI Polar	15,05911	20,14107	4,66043	3,69737
47 - 48	FPI Retangular	14,83090	20,36928	6,10527	4,87236
	FPI Injeção	14,45580	20,73467	8,48002	6,75355
	Monte Carlo	15,79524	19,42293	-	-

Linha	Método	QInferior	QSuperior	E(%)	E(%)
		(MVar)	(MVar)		
	FPI Polar	27,86830	39,64738	15,49612	14,28105
1 - 15	FPI Retangular	32,14526	35,37050	2,52727	1,95319
	FPI Injeção	32,06614	35,48628	2,76718	2,28693
	Monte Carlo	32,97872	34,69288	-	-
	FPI Polar	-3,01493	1,24657	196,20490	297,27216
1 - 16	FPI Retangular	-1,10079	-0,66755	8,14805	5,64120
	FPI Injeção	-1,10638	-0,65040	8,69710	2,92752
	Monte Carlo	-1,01785	-0,63190	-	-
	FPI Polar	2,17247	5,62990	39,37299	28,44764
1 -17	FPI Retangular	3,49866	4,30373	2,36317	1,80925
	FPI Injeção	3,49803	4,31994	2,38091	1,43954
	Monte Carlo	3,58334	4,38303	-	-
	FPI Polar	1,15710	1,60646	6,08647	3,73144
18 - 19	FPI Retangular	1,12431	1,63926	8,74771	5,84937
	FPI Injeção	0,98829	1,78115	19,78735	15,01109
	Monte Carlo	1,23209	1,54868	-	-
	FPI Polar	10,71963	14,13411	7,22419	6,75821
47 - 48	FPI Retangular	11,07115	13,78260	4,18191	4,10314
	FPI Injeção	10,36291	14,50780	10,31157	9,58072
	Monte Carlo	11,55434	13,23937	-	-

Tabela IV.26 – Sistema IEEE 57 barras – Fluxo de potência reativa nas linhas

Tabela IV.27 – Sistema IEEE 300 barras – Fluxo de potência ativa nas linhas

Linha	Método	PInferior	P _{Superior}	E(%)	E(%)
		(MW)	(MW)		
	FPI Polar	-240,75646	-8,24647	1,08054	2,55974
15 - 14	FPI Retangular	-238,13467	-7,95736	0,02021	1,03586
	FPI Injeção	-239,76552	-8,35758	0,66449	3,94160
	Monte Carlo	-238,18281	-8,04065	-	-
	FPI Polar	-23,23485	146,34577	3,17214	1,91415
120 -	FPI Retangular	-21,56753	143,64456	4,23144	0,03304
116	FPI Injeção	-22,23347	144,65247	1,27440	0,73495
	Monte Carlo	-22,52047	143,59711	-	-
	FPI Polar	-21,65737	-14,46487	0,01533	6,76031
172 –	FPI Retangular	-22,56573	-15,56754	4,17826	0,34744
139	FPI Injeção	-21,65324	-15,76347	0,03439	1,61039
	Monte Carlo	-21,66069	-15,51364	-	-
	FPI Polar	-37,34248	19,93447	3,71726	0,25543
225 –	FPI Retangular	-38,54654	18,65324	0,61275	6,66623
192	FPI Injeção	-36,86554	19,32554	4,94699	3,30229
	Monte Carlo	-38,78419	19,98552	-	-
	FPI Polar	-57,21378	52,57336	1,70304	1,44760
234 -	FPI Retangular	-56,87646	51,67523	1,10343	0,28547
228	FPI Injeção	-55,43678	52,13547	1,45575	0,60263
	Monte Carlo	-56,25572	51,82317	-	-

Linha	Método	QInferior QSuperior		E(%)	E(%)
		(MVar)	(MVar)		
	FPI Polar	72,54487	194,32578	1,01504	0,13064
15 - 14	FPI Retangular	73,76543	194,18733	2,71461	0,05930
	FPI Injeção	71,67347	195,43647	0,19834	0,70294
	Monte Carlo	71,81591	194,07225	-	-
	FPI Polar	-121,46575	-5,87653	0,94285	14,01152
120 - 116	FPI Retangular	-122,46446	-5,23567	1,77282	1,57809
	FPI Injeção	-120,57547	-5,67565	0,20299	10,11421
	Monte Carlo	-120,33121	-5,15433	-	-
	FPI Polar	-5,32453	19,46478	8,39376	11,33668
172 – 139	FPI Retangular	-5,75746	17,23478	0,94539	1,41871
	FPI Injeção	-5,57547	18,87626	4,07645	7,97040
	Monte Carlo	-5,81241	17,48281	-	-
	FPI Polar	-380,35376	588,35784	0,25785	0,21370
225 - 192	FPI Retangular	-382,65447	589,56623	0,34548	0,41952
	FPI Injeção	-380,75735	589,13778	0,15201	0,34655
	Monte Carlo	-381,33703	587,10320	-	-
	FPI Polar	-262,32532	154,56234	0,87038	0,39562
234 - 228	FPI Retangular	-259,45648	153,45878	0,23276	0,32119
	FPI Injeção	-261,55547	150,87546	0,57436	1,99918
	Monte Carlo	-260,06179	153,95327	-	-

Tabela IV.28 – Sistema IEEE 300 barras – Fluxo de potência reativa nas linhas

Tabela IV.29 - Sistema 1768 barras - Fluxo de potência ativa nas linhas

Linha	Método	P _{Inferior}	P _{Superior}	E(%)	E(%)
				05.04405	2 000 12
	FPI Polar	-34,86334	36,23478	27,24427	3,08843
492 –	FPI Retangular	-29,31578	38,22475	6,99678	2,23383
493	FPI Injeção	-27,13688	38,08762	0,95577	1,86707
	Monte Carlo	-27,39875	37,38953	-	-
	FPI Polar	-28,45642	27,98636	36,09827	2,89780
442 –	FPI Retangular	-22,65257	30,67528	8,34025	12,78419
443	FPI Injeção	-21,96753	29,14378	5,06391	7,15330
	Monte Carlo	-20,90873	27,19821	-	-
	FPI Polar	-47,93776	48,34575	10,48181	0,22244
274 –	FPI Retangular	-42,65248	49,32448	1,69913	2,25138
1673	FPI Injeção	-44,46478	50,87645	2,47766	5,46867
	Monte Carlo	-43,38973	48,23845	-	-
	FPI Polar	-1,24678	1,23467	8,58088	8,31674
85 –	FPI Retangular	-1,76379	1,86789	53,60679	63,86869
1103	FPI Injeção	-1,03218	1,33472	10,10843	17,09405
	Monte Carlo	-1,14825	1,13987	-	-
	FPI Polar	-12,47637	15,57965	9,88688	3,98044
349 –	FPI Retangular	-12,97456	15,98456	14,27474	6,68286
353	FPI Injeção	-12,09672	15,16489	6,54308	1,21229
	Monte Carlo	-11,35383	14,98325	-	-

Linha	Método	QInferior	Q _{Superior}	E(%)	E(%)
		(MVar)	(MVar)		
	FPI Polar	-88,23578	84,86324	5,79990	0,62649
492 –	FPI Retangular	-86,89536	85,13536	4,19265	0,30784
493	FPI Injeção	-84,32678	86,33447	1,11277	1,09630
	Monte Carlo	-83,39874	85,39825	-	-
	FPI Polar	-63,45588	67,31536	1,38307	2,40238
442 –	FPI Retangular	-69,89742	66,13577	8,62774	4,11262
443	FPI Injeção	-65,73660	67,85133	2,16140	1,62530
	Monte Carlo	-64,34583	68,97234	-	-
	FPI Polar	-94,45864	95,31513	2,23935	2,72353
274 –	FPI Retangular	-92,24647	92,34773	4,52885	5,75199
1673	FPI Injeção	-96,85436	97,31453	0,24012	0,68299
	Monte Carlo	-96,62235	97,98375	-	-
	FPI Polar	3,07534	5,31577	21,83399	2,35725
85 –	FPI Retangular	3,71327	5,95743	5,61971	14,71266
1103	FPI Injeção	4,05416	5,24578	3,04471	1,00956
	Monte Carlo	3,93437	5,19335	-	-
	FPI Polar	-23,23464	26,24556	1,74869	10,58566
349 -	FPI Retangular	-22,06324	22,65467	3,38108	4,54455
353	FPI Injeção	-20,65246	24,35899	9,55914	2,63660
	Monte Carlo	-22,83532	23,73324	-	-

Tabela IV.30 – Sistema 1768 barras – Fluxo de potência reativa nas linhas

IV.3.2. Análise dos resultados

As três formulações de fluxo de potência intervalar apresentam resultados próximos na maioria das linhas. Comparativamente à simulação Monte Carlo, a maioria dos erros apresentados no fluxo de potência são pequenos, onde o maior erro do fluxo de potência ativa é 63,86869%, referente à linha 85-1103 do 1768 barras, calculado através do fluxo de potência intervalar retangular. Quanto ao fluxo de potência reativa, o maior erro é 297,27216%, referente à linha 1-16 do IEEE 57, calculado através do fluxo de potência intervalar polar.

Os maiores erros dos fluxos de potência ativa e reativa referem-se, respectivamente, aos sistemas de 1768 barras e IEEE 57. Nestes casos, os erros de linearização associados ao cálculo das variáveis dependentes funcionais são grandes ou, em outras palavras, a presença da não linearidade é mais acentuada. Além disto, cumpre ressaltar que estes maiores erros, em quase sua totalidade, referem-se ao fluxo de potência intervalar polar. Diferentemente, o maior erro devido à formulação injeção de correntes é 19,78735% no fluxo de potência reativa na linha 18 – 19 do IEEE 57.

IV.4. Geração ativa e reativa determinística e intervalar da barra de referência

IV.4.1. Apresentação dos resultados

A Tabela IV.31 apresenta a geração ativa e reativa determinística para cada um dos sistemas em estudo. As Tabelas IV.32 a IV.41 apresentam os respectivos valores intervalares.

Sistema teste	P (MW)	Q (MVar)
IEEE 14	232,33925	-16,45495
Sul-Sudeste	25,29934	-7,88925
IEEE 57	478,66369	128,84865
IEEE 300	454,56545	38,58779
1768 barras	460,50403	-1612,49447

Tabela IV.31 – Geração da barra de referência

Tabela IV.32 – Sistema IEEE 14 barras – Geração ativa da barra de referência

Método	PInferior (MW)	P _{Superior} (MW)	E(%)	E(%)
FPI Polar	226,19264	238,69528	0,21384	0,31928
FPI Retangular	226,23069	238,65725	0,19705	0,30329
FPI Injeção	225,12671	239,74801	0,68408	0,76172
Monte Carlo	226,67737	237,93561	-	-

Tabela IV.33 – Sistema IEEE 14 barras – Geração reativa da barra de referência

Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
FPI Polar	-17,86233	-15,23618	2,62721	2,89210
FPI Retangular	-18,98016	-14,11778	9,04965	10,02024
FPI Injeção	-19,39770	-13,69568	11,44859	12,71049
Monte Carlo	-17,40506	-15,68995	-	-

Tabela IV.34 – Sistema Sul-Sudeste – Geração ativa da barra de referência

Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
FPI Polar	-160,23537	116,23478	0,50066	0,33682
FPI Retangular	-159,86364	116,65246	0,26751	0,02131
FPI Injeção	-159,54727	116,63248	0,06908	0,00418
Monte Carlo	-159,43713	116,62761	-	-

Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
FPI Polar	-3105,39747	1148,13576	0,02507	0,01469
FPI Retangular	-3106,19356	1149,24745	0,00056	0,08212
FPI Injeção	-3105,13778	1148,13478	0,03343	0,01478
Monte Carlo	-3106,17619	1148,30448	-	-

Tabela IV.35 - Sistema Sul-Sudeste - Geração reativa da barra de referência

Tabela IV.36 - Sistema IEEE 57 barras - Geração ativa da barra de referência

Método	PInferior (MW)	P _{Superior} (MW)	E(%)	E(%)
FPI Polar	419,10396	540,09800	4,43450	3,46379
FPI Retangular	418,78220	540,42000	4,50787	3,52547
FPI Injeção	414,36152	544,67056	5,51589	4,33973
Monte Carlo	438,55153	522,01644	-	-

Tabela IV.37 – Sistema IEEE 57 barras – Geração reativa da barra de referência

Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
FPI Polar	124,54272	133,15638	0,15410	0,68130
FPI Retangular	119,98584	137,71328	3,80736	4,12683
FPI Injeção	119,30014	138,42409	4,35708	4,66428
Monte Carlo	124,73494	132,25533	-	-

Tabela IV.38 – Sistema IEEE 300 barras – Geração ativa da barra de referência

Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
FPI Polar	-6,56754	910,76452	9,38006	0,06085
FPI Retangular	-6,35795	909,69078	5,88942	0,05712
FPI Injeção	-6,05738	909,43689	0,88353	0,08501
Monte Carlo	-6,00433	910,21067	-	-

Tabela IV.39 – Sistema IEEE 300 barras – Geração reativa da barra de referência

Método	Q _{Inferior} (MW)	Q _{Superior} (MW)	E(%)	E(%)
FPI Polar	-63,29643	69,74269	0,32386	1,24563
FPI Retangular	-62,96357	68,82763	0,20372	0,08276
FPI Injeção	-63,35727	68,96436	0,42029	0,11573
Monte Carlo	-63,09210	68,88464	-	-

Tabela IV.40 - Sistema 1768 barras - Geração ativa da barra de referência

Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
FPI Polar	449,23457	470,32446	0,45856	0,13210
FPI Retangular	450,54246	469,57578	0,16876	0,02730
FPI Injeção	451,25247	470,48659	0,01144	0,16662
Monte Carlo	451,30408	469,70399	-	-

Método	Q _{Inferior} (MW)	Q _{Superior} (MW)	E(%)	E(%)
FPI Polar	-1616,43264	-1609,24647	0,01355	0,05689
FPI Retangular	-1616,54267	-1608,65863	0,00674	0,02034
FPI Injeção	-1615,24368	-1607,13516	0,08709	0,07439
Monte Carlo	-1616,65170	-1608,33157	-	-

Tabela IV.41 – Sistema 1768 barras – Geração reativa da barra de referência

IV.4.2. Análise dos resultados

As três formulações de fluxo de potência intervalar apresentam resultados próximos de geração ativa e reativa. Comparativamente à simulação Monte Carlo, a maioria dos erros apresentados são pequenos. Na geração ativa o maior erro é 9,38006%, referente ao IEEE 300, calculado através do fluxo de potência intervalar polar. Quanto à geração reativa, o maior erro é 12,71049%, referente ao IEEE 57, calculado através do fluxo de potência intervalar injeção de correntes.

IV.5. Geração reativa determinística e intervalar das barras de geração

IV.5.1. Apresentação dos resultados

As Tabelas IV.42 a IV.46 apresentam a geração reativa determinística das barras de geração para cada um dos sistemas em estudo. As Tabelas IV.47 a IV.51 apresentam os respectivos valores intervalares.

Tabela IV.42 – Sistema IEEE 14 barras – Geração reativa das barras PV

Barra	Q (MVar)
2	43,47104
3	24,91951
6	12,65472
8	17,63076

Tabela IV.43 – Sistema Sul-Sudeste – Geração reativa das barras PV

Barra	Q (MVar)
1	150,16373
26	-1375,44385
31	-353,79353
32	-86,11546
33	-59,42363

Barra	Q (MVar)
2	-0,75499
3	-0,90678
8	62,09923
9	2,28646
12	128,62841

Tabela IV.44 – Sistema IEEE 57 barras – Geração reativa das barras PV

Tabela IV.45 - Sistema IEEE 300 barras - Geração reativa das barras PV

Barra	Q (MVar)
8	9,81041
10	20,00449
20	20,29016
63	24,96555
76	34,23231

Tabela IV.46 - Sistema 1768 barras - Geração reativa das barras PV

Barra	Q (MVar)
10	-143,9106
12	-433,0160
14	25,3061
16	-422,6598
18	222,4069

Tabela IV.47 - Sistema IEEE 14 barras - Geração reativa das barras PV

Barra	Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
	FPI Polar	42,32577	44,24624	0,27019	1,49699
2	FPI Retangular	43,23678	43,54676	3,13908	3,05421
	FPI Injeção	42,13453	44,34447	0,18286	1,27831
	Monte Carlo	42,21172	44,91867	-	-
	FPI Polar	24,06484	26,35478	0,03721	0,97331
3	FPI Retangular	24,24377	25,24542	0,78101	3,27700
	FPI Injeção	24,76544	25,76537	2,94959	1,28491
	Monte Carlo	24,05589	26,10074	-	-
	FPI Polar	11,31371	13,35575	6,71567	0,47772
6	FPI Retangular	12,42685	13,33448	2,46244	0,31770
	FPI Injeção	11,24785	13,46477	7,25870	1,29790
	Monte Carlo	12,12820	13,29225	-	-
	FPI Polar	17,24257	17,74446	0,45832	0,98969
8	FPI Retangular	17,45673	17,72646	0,77803	1,09012
	FPI Injeção	17,24242	17,85654	0,45919	0,36430
	Monte Carlo	17,32196	17,92183	-	-

Barra	Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
	FPI Polar	-13650,35327	6441,23537	0,30700	0,22997
1	FPI Retangular	-13602,43665	6472,13251	0,65696	0,71075
	FPI Injeção	-13649,44677	6421,12385	0,31363	0,08298
	Monte Carlo	-13692,38957	6426,45657	-	-
	FPI Polar	-132573,13566	136692,43157	0,06127	0,07990
26	FPI Retangular	-132827,35356	136598,34267	0,13036	0,14868
	FPI Injeção	-132875,32532	136883,42677	0,16653	0,05971
	Monte Carlo	-132654,41908	136801,73639	-	-
	FPI Polar	-4591,35367	1281,32532	1,70995	0,36592
31	FPI Retangular	-4506,23577	1286,34680	0,17562	0,02454
	FPI Injeção	-4553,87456	1287,54777	0,87969	0,11792
	Monte Carlo	-4514,16376	1286,03122	-	-
	FPI Polar	-4228,35326	1813,46473	0,06200	1,34537
32	FPI Retangular	-4238,54524	1808,23468	0,30319	1,62990
	FPI Injeção	-4286,45467	1805,32567	1,43694	1,78815
	Monte Carlo	-4225,73321	1838,19535	-	-
	FPI Polar	-3276,45648	1640,44696	1,78895	0,16556
33	FPI Retangular	-3211,57747	1642,87654	0,22663	0,01770
	FPI Injeção	-3259,35378	1642,13336	1,25762	0,06293
	Monte Carlo	-3218,87246	1643,16746	-	-

Tabela IV.48 - Sistema Sul-Sudeste - Geração reativa das barras PV

Tabela IV.49 – Sistema IEEE 57 barras – Geração reativa das barras PV

Barra	Método	QInferior	QSuperior	E(%)	E(%)
		(MVar)	(MVar)		
	FPI Polar	-48,45642	43,23453	1,62411	5,65329
2	FPI Retangular	-49,87457	45,48755	1,25500	0,73674
	FPI Injeção	-49,24689	44,55779	0,01931	2,76566
	Monte Carlo	-49,25640	45,82516	-	-
	FPI Polar	-26,35753	16,65348	5,69444	10,25189
3	FPI Retangular	-23,87654	18,52456	4,25440	0,16836
	FPI Injeção	-26,46478	17,98656	6,12452	3,06772
	Monte Carlo	-24,93748	18,55580	-	-
	FPI Polar	38,32543	84,32532	1,46511	3,69317
8	FPI Retangular	38,24624	81,54567	1,66871	0,27509
	FPI Injeção	37,98572	81,45646	2,33851	0,16539
	Monte Carlo	38,89529	81,32196	-	-
	FPI Polar	-5,95647	10,23579	7,32821	6,08057
9	FPI Retangular	-6,98874	9,53753	8,73202	12,48752
	FPI Injeção	-6,42624	10,65384	0,01945	2,24472
	Monte Carlo	-6,42749	10,89848	-	-
	FPI Polar	128,45634	132,35346	2,32026	0,28282
12	FPI Retangular	126,63634	131,54379	0,87056	0,33066
	FPI Injeção	123,65474	133,54647	1,50440	1,18675
	Monte Carlo	125,54341	131,98019	-	-

Barra	Método	Q _{Inferior} (MW)	Q _{Superior} (MW)	E(%)	E(%)
	FPI Polar	-1,23578	19,34535	19,64445	3,79531
8	FPI Retangular	-1,32756	19,23425	13,67653	3,19922
	FPI Injeção	-1,45642	18,64642	5,29752	0,04528
	Monte Carlo	-1,53789	18,63798	-	-
	FPI Polar	10,32523	27,53567	0,20770	1,56329
10	FPI Retangular	10,65464	28,13413	2,97602	0,57613
	FPI Injeção	10,23567	28,65446	1,07329	2,43624
	Monte Carlo	10,34672	27,97297	-	-
	FPI Polar	13,32575	26,32536	0,04640	2,41959
20	FPI Retangular	12,34523	27,84684	7,31510	3,22009
	FPI Injeção	13,75353	27,31537	3,25806	1,25009
	Monte Carlo	13,31957	26,97812	-	-
	FPI Polar	10,35357	34,42624	2,02237	1,06984
63	FPI Retangular	10,24642	34,57553	3,03635	0,64083
	FPI Injeção	10,62426	34,14256	0,53921	1,88505
	Monte Carlo	10,56728	34,79853	-	-
	FPI Polar	23,35357	44,43642	2,58894	0,04681
76	FPI Retangular	24,24527	43,53756	1,13046	2,06866
	FPI Injeção	23,19727	45,68653	3,24089	2,76513
	Monte Carlo	23,97425	44,45723	-	-

Tabela IV.50 – Sistema IEEE 300 barras – Geração reativa das barras PV

Tabela IV.51 – Sistema 1768 barras – Geração reativa das barras PV

Barra	Método	Q _{Inferior} (MW)	Q _{Superior} (MW)	E(%)	E(%)
	FPI Polar	-802,23453	570,42624	0,09148	0,51522
10	FPI Retangular	-803,57557	567,65428	0,07553	0,02677
	FPI Injeção	-803,11232	566,24378	0,01784	0,22178
	Monte Carlo	-802,96909	567,50238	-	-
	FPI Polar	-1590,47442	668,24562	0,41184	0,15445
12	FPI Retangular	-1595,23447	665,56247	0,11379	0,24769
	FPI Injeção	-1596,57575	667,65247	0,02980	0,06555
	Monte Carlo	-1597,05173	667,21511	-	-
	FPI Polar	-83,13337	130,54478	1,37594	0,76022
14	FPI Retangular	-84,54742	130,24247	0,30160	0,52688
	FPI Injeção	-84,13478	130,03576	0,18793	0,36734
	Monte Carlo	-84,29319	129,55984	-	-
	FPI Polar	-1067,54856	223,32536	0,14049	0,75792
16	FPI Retangular	-1070,53758	224,75454	0,13911	0,12281
	FPI Injeção	-1069,34268	226,13537	0,02734	0,49080
	Monte Carlo	-1069,05045	225,03091	-	-
	FPI Polar	-503,24247	1008,64262	0,06739	0,00333
18	FPI Retangular	-509,76344	1007,13678	1,22753	0,15262
	FPI Injeção	-507,75434	1007,87645	0,82857	0,07929
	Monte Carlo	-503,58183	1008,67623	-	-

IV.5.2. Análise dos resultados

As três formulações de fluxo de potência intervalar apresentam resultados próximos de geração reativa das barras de geração. Comparativamente à simulação Monte Carlo, a maioria dos erros apresentados são pequenos, onde o maior erro é 19,64445%, referente à geração reativa da barra 8 do IEEE 300, calculado através do fluxo de potência intervalar polar. O maior erro devido à formulação injeção de correntes é 7,25870% na geração da barra 6 do IEEE 14.

IV.6. Perdas ativa e reativa determinística e intervalar

IV.6.1. Apresentação dos resultados

As Tabelas IV.52 a IV.56 apresentam as perdas ativa e reativa determinística das barras de geração para cada um dos sistemas em estudo. As Tabelas IV.57 a IV.66 apresentam os respectivos valores intervalares.

Linha	P (MW)	Q (MVar)
4 – 5	0,51230	1,61594
1 – 5	2,76284	6,08419
7 – 9	0,00000	0,80001
9 – 10	0,01283	0,03408
9 - 14	0,11563	0,24597
13 – 14	0,05379	0,10953

Tabela IV.52 – Sistema IEEE 14 barras – Perdas de potência nas linhas

Tabela IV.53 - Sistema Sul-Sudeste - Perdas de potência nas linhas

Linha	P (MW)	Q (MVar)
17 - 21	3,98537	233,49632
16 - 19	6,04754	233,57332
21 - 23	2,69325	509,23573
25 - 24	4,00335	37,98353
26 - 25	2,75001	31,64010
29 - 27	0,00000	16,94578

Linha	P (MW)	Q (MVar)
1 – 15	4,15415	11,07195
1 – 16	2,80626	6,97702
1 - 17	2,04663	6,26018
18 – 19	0,11459	0,17027
47 - 48	0,08415	0,10774

Tabela IV.54 - Sistema IEEE 57 barras - Perdas de potência nas linhas

Tabela IV.55 - Sistema IEEE 300 barras - Perdas de potência nas linhas

Linha	P (MW)	Q (MVar)
14 - 15	4,26905	2,77547
116 - 120	0,17101	8,87082
139 - 172	0,26128	7,35087
192 - 225	0,16819	0,75688
228 - 234	0,00230	87,64858

Tabela IV.56 - Sistema 1768 barras - Perdas de potência nas linhas

Linha	P (MW)	Q (MVar)			
40 - 2502	0,36733	1,08974			
86 - 488	0,14181	40,87845			
492 - 493	0,00000	0,49137			
442 - 443	0,00000	0,41651			
274 - 1673	0,20876	1,25683			
85 - 1103	0,00112	0,10265			
424 - 426	0,36752	3,47148			
349 - 353	0,00000	0,10686			
Linha	Método	PInferior (MW)	P _{Superior} (MW)	E(%)	E(%)
---------	----------------	----------------	----------------------------	---------	---------
	FPI Polar	0,49198	0,53812	0,22747	0,11962
4 - 5	FPI Retangular	0,48988	0,54021	0,19936	0,26885
	FPI Injeção	0,48756	0,54246	0,67202	0,68597
	Monte Carlo	0,49086	0,53876	-	-
	FPI Polar	2,64597	2,88742	0,07829	0,00970
1 – 5	FPI Retangular	2,64637	2,88701	0,09342	0,00450
	FPI Injeção	2,64202	2,88102	0,07111	0,21197
	Monte Carlo	2,64390	2,88714	-	-
	FPI Polar	0,01128	0,01448	0,92567	0,76880
9 – 10	FPI Retangular	0,01125	0,01451	1,16365	0,95932
	FPI Injeção	0,01097	0,01478	3,61061	2,84480
	Monte Carlo	0,01138	0,01437	-	-
	FPI Polar	0,10646	0,12593	0,66324	0,48080
9 – 14	FPI Retangular	0,10639	0,12600	0,72416	0,53344
	FPI Injeção	0,10455	0,12782	2,44136	1,98833
	Monte Carlo	0,10717	0,12533	-	-
	FPI Polar	0,04721	0,06098	1,46011	0,95349
13 – 14	FPI Retangular	0,04722	0,06098	1,45204	0,94682
	FPI Injeção	0,04590	0,06232	4,20894	3,16237
	Monte Carlo	0,04791	0,06040	-	-

Tabela IV.57 – Sistema IEEE 14 barras – Perdas de potência ativa nas linhas

Tabela IV.58 – Sistema IEEE 14 barras – Perdas de potência reativa nas linhas

Linha	Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
	FPI Polar	1,59222	1,65248	2,83484	2,76167
4 – 5	FPI Retangular	1,54525	1,70398	0,19936	0,26885
	FPI Injeção	1,53793	1,71107	0,67202	0,68597
	Monte Carlo	1,54833	1,69942	-	-
	FPI Polar	0,75795	0,84593	1,05588	0,82761
7 – 9	FPI Retangular	0,76408	0,84141	1,05588	0,28873
	FPI Injeção	0,75321	0,85208	1,67539	1,56105
	Monte Carlo	0,76604	0,83898	-	-
	FPI Polar	0,02965	0,03877	1,93447	1,57672
9 - 10	FPI Retangular	0,02989	0,03853	1,16365	0,95932
	FPI Injeção	0,02915	0,03925	3,61061	2,84480
	Monte Carlo	0,03024	0,03817	-	-
	FPI Polar	0,22627	0,26796	0,74313	0,51695
9 - 14	FPI Retangular	0,22631	0,26801	0,72416	0,53344
	FPI Injeção	0,22240	0,27189	2,44136	1,98833
	Monte Carlo	0,22797	0,26659	-	-
	FPI Polar	0,09667	0,12357	0,90338	0,47200
13 – 14	FPI Retangular	0,09614	0,12415	1,45204	0,94682
	FPI Injeção	0,09345	0,12688	4,20894	3,16237
	Monte Carlo	0,09755	0,12299	-	-

Linha	Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
	FPI Polar	2,85434	5,24642	0,74046	6,35624
17 - 21	FPI Retangular	2,93464	5,45786	3,57455	2,58223
	FPI Injeção	2,85672	5,26486	0,82446	6,02710
	Monte Carlo	2,83336	5,60253	-	-
	FPI Polar	1,63339	8,62437	4,53830	1,17406
16 - 19	FPI Retangular	1,32457	8,65424	15,22643	1,52447
	FPI Injeção	1,52872	8,24548	2,16067	3,27077
	Monte Carlo	1,56248	8,52429	-	-
	FPI Polar	1,54624	4,43356	2,48280	7,58334
21 - 23	FPI Retangular	1,65427	4,26456	9,64289	11,10611
	FPI Injeção	1,60425	4,83256	6,32763	0,73374
	Monte Carlo	1,50878	4,79736	-	-
	FPI Polar	3,43488	15,31516	1,56160	1,77735
25 - 24	FPI Retangular	3,65224	15,85246	4,66760	5,34799
	FPI Injeção	3,46467	15,75221	0,70786	4,68178
	Monte Carlo	3,48937	15,04771	-	-
	FPI Polar	0,87421	4,63812	0,08115	0,05134
26 - 25	FPI Retangular	0,87519	4,63074	0,03086	0,10786
	FPI Injeção	0,87530	4,63385	0,04343	0,04077
	Monte Carlo	0,87492	4,63574	-	-

Tabela IV.59 – Sistema Sul-Sudeste – Perdas de potência ativa nas linhas

Tabela IV.60 - Sistema Sul-Sudeste - Perdas de potência reativa nas linhas

Linha	Método	QInferior	Q _{Superior}	E(%)	E(%)
		(MVar)	(MVar)		
	FPI Polar	165,35327	413,33253	0,17556	1,10102
17 - 21	FPI Retangular	165,13251	414,64543	0,30883	0,78688
	FPI Injeção	165,74564	415,87455	0,06132	0,49278
	Monte Carlo	165,64407	417,93406	-	-
	FPI Polar	133,6542	462,35317	0,10484	0,47308
16 - 19	FPI Retangular	133,75347	463,76654	0,17919	0,16884
	FPI Injeção	133,63262	462,46487	0,08868	0,44904
	Monte Carlo	133,51422	464,55088	-	-
	FPI Polar	422,24623	760,35353	0,00914	0,43616
21 - 23	FPI Retangular	422,35636	762,67462	0,03522	0,13223
	FPI Injeção	424,07544	763,35568	0,44239	0,04305
	Monte Carlo	422,20764	763,68442	-	-
	FPI Polar	30,35378	186,53426	0,69927	2,90644
25 - 24	FPI Retangular	31,65443	198,35678	3,55573	3,24734
	FPI Injeção	32,65245	194,34537	6,82070	1,15934
	Monte Carlo	30,56753	192,11806	-	-
	FPI Polar	0,98646	36,64323	14,34302	1,62294
29 - 27	FPI Retangular	1,12247	37,34748	2,53291	3,57604
	FPI Injeção	1,43548	35,31531	24,64659	2,05979
	Monte Carlo	1,15164	36,05803	-	-

Linha	Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
	FPI Polar	2,83201	5,01897	12,50807	7,96366
1 - 15	FPI Retangular	2,86734	4,98352	11,41650	7,20115
	FPI Injeção	2,78746	5,06031	13,88424	8,85289
	Monte Carlo	3,23688	4,64876	-	-
	FPI Polar	1,88438	3,42225	10,94757	6,66635
1 - 16	FPI Retangular	1,89153	3,41501	10,60939	6,44058
	FPI Injeção	1,84308	3,46178	12,89905	7,89862
	Monte Carlo	2,11603	3,20837	-	-
	FPI Polar	1,42772	2,44284	9,49234	6,21688
1 -17	FPI Retangular	1,44093	2,42956	8,65482	5,63947
	FPI Injeção	1,40965	2,45977	10,63789	6,95273
	Monte Carlo	1,57745	2,29986	-	-
	FPI Polar	0,07859	0,13721	13,56892	6,95949
18 - 19	FPI Retangular	0,07972	0,13607	12,32229	6,07572
	FPI Injeção	0,07692	0,13888	15,40162	8,26353
	Monte Carlo	0,09092	0,12828	-	-
	FPI Polar	0,06313	0,09514	8,87602	5,35582
47 - 48	FPI Retangular	0,06114	0,09713	11,75372	7,56361
	FPI Injeção	0,05934	0,09896	14,34488	9,58709
	Monte Carlo	0,06928	0,09030	-	-

Tabela IV.61 – Sistema IEEE 57 barras – Perdas de potência ativa nas linhas

Tabela IV.62 – Sistema IEEE 57 barras – Perdas de potência reativa nas linhas

Linha	Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
	FPI Polar	6,19759	13,47666	2,83482	0,94438
1 - 15	FPI Retangular	4,47961	15,32568	29,76917	12,64622
	FPI Injeção	4,07076	15,71900	36,17903	15,53715
	Monte Carlo	6,37841	13,60515	-	-
	FPI Polar	4,93305	7,51027	28,47155	14,73085
1 - 16	FPI Retangular	2,81893	9,74669	26,58638	10,66079
	FPI Injeção	2,59801	9,96015	32,33994	13,08430
	Monte Carlo	3,83980	8,80772	-	-
	FPI Polar	4,68166	6,74458	13,42038	9,02053
1 -17	FPI Retangular	3,50624	8,00325	15,05602	7,95797
	FPI Injeção	3,36404	8,14059	18,50093	9,81056
	Monte Carlo	4,12771	7,41330	-	-
	FPI Polar	0,11810	0,20249	12,58652	6,23374
18 - 19	FPI Retangular	0,11845	0,20219	12,32229	6,07572
	FPI Injeção	0,11429	0,20636	15,40162	8,26353
	Monte Carlo	0,13510	0,19061	-	-
	FPI Polar	0,07505	0,12769	15,37729	10,45853
47 - 48	FPI Retangular	0,07827	0,12435	11,75372	7,56361
	FPI Injeção	0,07597	0,12669	14,34488	9,58709
	Monte Carlo	0,08869	0,11560	-	-

Linha	Método	PInferior	P _{Superior}	E(%)	E(%)
		(MW)	(MW)		
	FPI Polar	3,32537	5,34647	2,81448	6,23083
14 - 15	FPI Retangular	3,22447	5,34647	0,30516	6,23083
	FPI Injeção	3,22547	5,46477	0,27424	8,58137
	Monte Carlo	3,23434	5,03288	-	-
	FPI Polar	0,13134	0,19565	4,45915	0,05109
116 - 120	FPI Retangular	0,13346	0,19956	2,91700	1,94636
	FPI Injeção	0,13345	0,19753	2,92427	0,90932
	Monte Carlo	0,13747	0,19575	-	-
	FPI Polar	0,19451	0,31437	2,33060	1,68871
139 - 172	FPI Retangular	0,19086	0,31876	0,41035	0,31585
	FPI Injeção	0,19130	0,31967	0,64184	0,03127
	Monte Carlo	0,19008	0,31977	-	-
	FPI Polar	0,15390	0,19765	2,23196	0,55965
192 - 225	FPI Retangular	0,15895	0,19575	5,58656	0,40702
	FPI Injeção	0,15765	0,19567	4,72300	0,44772
	Monte Carlo	0,15054	0,19655	-	-
	FPI Polar	0,00120	0,00419	6,25000	0,23923
228 - 234	FPI Retangular	0,00126	0,00415	1,56250	0,71770
	FPI Injeção	0,00121	0,00410	5,46875	1,91388
	Monte Carlo	0,00128	0,00418	-	-

Tabela IV.63 – Sistema IEEE 300 barras – Perdas de potência ativa nas linhas

Tabela IV.64 – Sistema IEEE 300 barras – Perdas de potência reativa nas linhas

Linha	Método	QInferior	QSuperior	E(%)	E(%)
		(MVar)	(MVar)		
	FPI Polar	2,32347	35,68764	15,87974	0,83310
14 - 15	FPI Retangular	2,53758	34,34558	26,55818	4,56234
	FPI Injeção	2,13478	35,78753	6,46910	0,55553
	Monte Carlo	2,00507	35,98745	-	-
	FPI Polar	6,78533	11,87453	4,58866	16,77254
116 - 120	FPI Retangular	7,23484	10,78437	1,73209	6,05206
	FPI Injeção	7,42488	10,24579	4,40432	0,75573
	Monte Carlo	7,11166	10,16894	-	-
	FPI Polar	6,45689	7,57598	9,16433	0,86443
139 - 172	FPI Retangular	6,46587	7,57538	9,03800	0,87228
	FPI Injeção	6,78744	7,97754	4,51415	4,39019
	Monte Carlo	7,10832	7,64204	-	-
	FPI Polar	0,66758	13,87456	1,45402	0,07152
192 - 225	FPI Retangular	0,67456	12,74368	0,42366	8,21643
	FPI Injeção	0,67685	12,98654	0,08562	6,46729
	Monte Carlo	0,67743	13,88449	-	-
	FPI Polar	86,68664	88,09875	0,94471	0,36077
228 - 234	FPI Retangular	86,54759	88,97729	1,10360	1,36159
	FPI Injeção	86,24569	88,02790	1,44858	0,28006
	Monte Carlo	87,51339	87,78206	-	-

Linha	Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
	FPI Polar	0,36085	0,37183	1,09634	0,51361
40 - 2502	FPI Retangular	0,36139	0,37039	0,94833	0,12435
	FPI Injeção	0,36138	0,37050	0,95108	0,15408
	Monte Carlo	0,36485	0,36993	-	-
	FPI Polar	0,13235	0,14775	1,75920	0,56493
86 - 488	FPI Retangular	0,13238	0,14652	1,73694	0,27226
	FPI Injeção	0,13338	0,14660	0,99466	0,21781
	Monte Carlo	0,13472	0,14692	-	-
	FPI Polar	0,14657	0,30635	2,15361	0,82941
274 – 1673	FPI Retangular	0,14745	0,30125	2,76694	0,84916
	FPI Injeção	0,14467	0,30426	0,82938	0,14153
	Monte Carlo	0,14348	0,30383	-	-
	FPI Polar	0,00099	0,00115	7,47664	2,67857
85 - 1103	FPI Retangular	0,00089	0,00114	16,82243	1,78571
	FPI Injeção	0,00097	0,00117	9,34579	4,46429
	Monte Carlo	0,00107	0,00112	-	-
	FPI Polar	0,36153	0,37038	0,96425	0,37126
424 - 426	FPI Retangular	0,36294	0,37002	0,57800	0,27371
	FPI Injeção	0,36282	0,36995	0,61088	0,25474
	Monte Carlo	0,36505	0,36901	-	-

Tabela IV.65 – Sistema 1768 barras – Perdas de potência ativa nas linhas

Tabela IV.66 – Sistema 1768 barras – Perdas de potência reativa nas linhas

Linha	Método	QInferior	Q _{Superior} (MVar)	E(%)	E(%)
		(MVar)	-		
	FPI Polar	0,45987	0,57863	2,00745	1,31851
492 - 493	FPI Retangular	0,45382	0,57742	0,66545	1,10664
	FPI Injeção	0,45284	0,57147	0,44807	0,06479
	Monte Carlo	0,45082	0,57110	-	-
	FPI Polar	0,38633	0,46934	0,84312	1,97373
442 - 443	FPI Retangular	0,38658	0,47693	0,90838	0,38848
	FPI Injeção	0,38670	0,47134	0,93970	1,55601
	Monte Carlo	0,38310	0,47879	-	-
	FPI Polar	0,95939	2,07663	3,55551	2,62768
274 – 1673	FPI Retangular	0,94207	2,07689	1,68601	2,64053
	FPI Injeção	0,97316	2,01324	5,04183	0,50508
	Monte Carlo	0,92645	2,02346	-	-
	FPI Polar	0,09922	0,10945	3,30377	3,81296
85 - 1103	FPI Retangular	0,09895	0,10347	3,56690	1,85905
	FPI Injeção	0,09956	0,10357	2,97242	1,76420
	Monte Carlo	0,10261	0,10543	-	-
	FPI Polar	-2,39649	0,13536	1,60603	20,27723
349 - 353	FPI Retangular	-2,39819	0,14646	1,67811	30,14039
	FPI Injeção	-2,31956	0,13535	1,65564	20,26835
	Monte Carlo	-2,35861	0,11254	-	-

IV.6.2. Análise dos resultados

As três formulações de fluxo de potência intervalar apresentam resultados próximos de perdas ativa e reativa. Comparativamente à simulação Monte Carlo, a maioria dos erros apresentados são pequenos, onde o maior erro é 16,82243%, referente à perda ativa da linha 85-1103 do 1768 barras, calculado através do fluxo de potência intervalar retangular. Quanto à perda reativa, o maior erro é 36,17903%, referente à linha 1-15 do IEEE 57, calculado através do fluxo de potência intervalar injeção de potência. A maior concentração dos erros de perdas ativa e reativa refere-se aos ramos do sistema IEEE 57. Novamente, os erros de linearização associados ao cálculo das perdas são grandes.

IV.7. Análise da convergência dos fluxos de potência intervalares

IV.7.1. Apresentação dos resultados

A variação inicial na demanda ativa e reativa de todas as barras do sistema 34 barras é 5%, conforme os resultados mostrados na seção anterior. Aumentando-se esta variação para 5,1%, os fluxos de potência intervalar polar e retangular não são capazes de diminuir o perfil inicial das tensões, ou seja, convergem de forma errônea na primeira iteração. Por outro lado, para a variação de 5,1% o fluxo de potência intervalar injeção de correntes é capaz de diminuir o perfil inicial das tensões e, por conseguinte, convergir, em duas iterações, para a solução do problema. As Tabelas IV.67 a IV.75 apresentam os resultados de todas as variáveis envolvidas neste trabalho, comparativamente aos resultados produzidos pela simulação de Monte Carlo.

Barra	Método	V _{Inferior} (PU)	V _{Superior} (PU)	E(%)	E(%)
	FPI Injeção	0,96305	1,06655	0,04359	0,03939
17	Monte Carlo	0,96347	1,06613	-	-
	FPI Injeção	0,99484	1,10176	0,08954	0,08071
19	Monte Carlo	0,99395	1,10265	-	-
	FPI Injeção	0,99617	1,09866	0,33716	0,35258
23	Monte Carlo	0,99954	1,09480	-	-
	FPI Injeção	0,98952	1,09588	0,06674	0,06019
25	Monte Carlo	0,98886	1,09654	-	-
	FPI Injeção	0,94535	1,04695	0,12150	0,10996
29	Monte Carlo	0,94650	1,04580	-	-

Tabela IV.67 – Sistema Sul-Sudeste – Magnitude das tensões

Barra	Método	θ _{Inferior} (°)	θ _{Superior} (°)	E(%)	E(%)
	FPI Injeção	25,21534	30,00882	0,04828	0,00823
17	Monte Carlo	25,22752	30,01129	-	-
	FPI Injeção	21,52431	25,81485	0,04932	0,01263
19	Monte Carlo	21,53493	25,81811	-	-
	FPI Injeção	14,25512	17,23477	0,14255	0,16746
23	Monte Carlo	14,27547	17,26368	-	-
	FPI Injeção	-19,41339	-16,03110	0,26427	0,29108
25	Monte Carlo	-19,46483	-16,07790	-	-
	FPI Injeção	-15,38387	-12,64378	0,07676	0,20622
29	Monte Carlo	-15,37207	-12,61776	-	-

Tabela IV.68 - Sistema Sul-Sudeste - Fase das tensões

Tabela IV.69 - Sistema Sul-Sudeste - Geração ativa da barra de referência

Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
FPI Injeção	-168,86724	129,98432	0,03006	0,06172
Monte Carlo	-168,91802	130,06459	-	-

Tabela IV.70 - Sistema Sul-Sudeste - Geração reativa da barra de referência

Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
FPI Injeção	-3255,77654	1267,83298	0,00583	0,00002
Monte Carlo	-3255,96623	1267,83274	-	-

Tabela IV.71 - Sistema Sul-Sudeste - Geração reativa das barras PV

Barra	Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
1	FPI Injeção	-13301,84564	6345,47656	0,00410	0,02243
	Monte Carlo	-13301,29976	6344,05390	-	-
26	FPI Injeção	-141520,56753	139360,24364	0,00220	0,00530
	Monte Carlo	-141523,67659	139367,63279	-	-
31	FPI Injeção	-4324,34262	1593,36478	0,02243	0,07790
	Monte Carlo	-4325,31269	1592,12444	-	-
32	FPI Injeção	-4562,62468	2032,32576	0,03913	0,11023
	Monte Carlo	-4564,41064	2034,56846	-	-
33	FPI Injeção	-4016,45378	1604,32467	0,01386	0,17612
	Monte Carlo	-4015,89735	1607,15525	-	-

Linha	Método	PInferior (MW)	P _{Superior} (MW)	E(%)	E(%)
	FPI Injeção	413,01868	481,23796	0,02953	1,74604
17 - 21	Monte Carlo	413,14069	489,78990	-	-
	FPI Injeção	-643,67333	-363,09812	0,54818	0,71544
16 - 19	Monte Carlo	-647,22128	-360,51884	-	-
	FPI Injeção	267,40645	396,16673	0,20211	1,23980
21 - 23	Monte Carlo	267,94801	391,31521	-	-
	FPI Injeção	-2729,58861	1751,05652	1,06477	0,35138
25 - 24	Monte Carlo	-2758,96516	1744,92521	-	-
	FPI Injeção	-107,87292	837,94859	4,10156	0,39788
29 - 27	Monte Carlo	-112,48663	834,62778	-	-

Tabela IV.72 – Sistema Sul-Sudeste – Fluxo de potência ativa nas linhas

Tabela IV.73 – Sistema Sul-Sudeste – Fluxo de potência reativa nas linhas

Linha	Método	QInferior	Q _{Superior}	E(%)	E(%)
		(MVar)	(MVar)		
	FPI Injeção	-343,09919	-272,20271	1,03488	1,47307
17 - 21	Monte Carlo	-346,6870	-276,27240	-	-
	FPI Injeção	-465,34954	52,81767	0,80573	0,16381
16 - 19	Monte Carlo	-469,12948	52,90433	-	-
	FPI Injeção	-404,13355	-197,20925	1,15830	2,36589
21 - 23	Monte Carlo	-408,86948	-192,65134	-	-
	FPI Injeção	214,17827	1176,24405	0,43384	3,41786
25 - 24	Monte Carlo	213,25309	1137,37036	-	-
	FPI Injeção	-676,51821	-86,92840	0,18132	2,73613
29 - 27	Monte Carlo	-675,29378	-84,61327	-	-

Tabela IV.74 – Sistema Sul-Sudeste – Perdas de potência ativa nas linhas

Linha	Método	P _{Inferior} (MW)	P _{Superior} (MW)	E(%)	E(%)
	FPI Injeção	2,83349	5,53900	0,92103	2,77925
17 - 21	Monte Carlo	2,85983	5,38922	-	-
	FPI Injeção	1,62105	8,80041	2,20264	2,07372
16 - 19	Monte Carlo	1,65756	8,98677	-	-
	FPI Injeção	1,48177	4,59265	3,88617	8,86875
21 - 23	Monte Carlo	1,42634	4,21852	-	-
	FPI Injeção	2,67457	15,61872	8,28044	2,31945
25 - 24	Monte Carlo	2,91603	15,98959	-	-
	FPI Injeção	0,86810	4,71073	0,04951	0,07180
26 - 25	Monte Carlo	0,86853	4,70735	-	-

Linha	Método	Q _{Inferior} (MVar)	Q _{Superior} (MVar)	E(%)	E(%)
	FPI Injeção	163,27020	417,90586	3,22604	1,87282
17 - 21	Monte Carlo	168,71295	410,22311	-	-
	FPI Injeção	133,33629	474,98912	0,81428	0,44807
16 - 19	Monte Carlo	132,25933	477,12696	-	-
	FPI Injeção	421,49825	786,94485	0,22086	1,66163
21 - 23	Monte Carlo	422,43125	774,08246	-	-
	FPI Injeção	30,97689	187,74374	2,36589	3,84385
25 - 24	Monte Carlo	30,26095	180,79428	-	-
	FPI Injeção	1,00383	40,06666	0,64040	4,65636
29 - 27	Monte Carlo	1,01030	42,02342	-	-

Tabela IV.75 – Sistema Sul-Sudeste – Perdas de potência reativa nas linhas

IV.7.2. Análise dos resultados

Comparativamente à simulação Monte Carlo, os erros apresentados são pequenos, onde o maior é 8,86875% referente à perda ativa da linha 21-23 do Sul-Sudeste. O objetivo desta seção é mostrar a robustez das formulações na solução do fluxo de potência intervalar. Nestes termos, cumpre salientar que a matriz Jacobiana injeção de correntes possui a maioria de seus elementos constantes e cuja estrutura é muito simples. Consequentemente, a matriz Jacobiana intervalar possui a maioria de seus elementos con raio nulo, favorecendo a aplicação do método de Krawczyk. Por outro lado, nas formulações polar e retangular todos os elementos da respectiva matriz Jacobiana são variáveis e calculados a cada iteração. Inclusive, há a presença de funções transcendentais do tipo seno e cosseno na Jacobiana polar. Portanto, há uma natural expectativa de que a Jacobiana injeção de correntes intervalar seja mais robusta e propicie um melhor condicionamento numérico ao operador de Krawczyk. Em linhas gerais, esta simulação veio a corroborar tal expectativa.

IV.8. Eficiência computacional

IV.8.1. Apresentação dos resultados

A Tabela IV.76 apresenta o número de iterações necessárias à convergência dos fluxos de potência intervalares, considerando as variações de demanda e de parâmetros de linha descritas na seção anterior.

Sistema Teste	Método	Iterações
	FPI Polar	7
IEEE 14	FPI Retangular	5
	FPI Injeção	3
	FPI Polar	2
Sul-Sudeste	FPI Retangular	2
	FPI Injeção	3
	FPI Polar	4
IEEE 57	FPI Retangular	3
	FPI Injeção	3
	FPI Polar	3
IEEE 300	FPI Retangular	3
	FPI Injeção	2
	FPI Polar	2
1768 barras	FPI Retangular	2
	FPI Injeção	2

Tabela IV.76 –	Iterações
----------------	-----------

A Tabela IV.77 apresenta os tempos computacionais médios por iteração de cinco medidas, em segundos, requeridos pelos fluxos de potência intervalar polar, retangular e injeção de correntes para cálculo da solução referente ao sistema de 1768 barras. A máquina utilizada para a realizar os fluxos possui um processador AMD Athlon II X4 630 e 4 GB de memória RAM. A Tabela IV.78 mostra as relações de tempo, tomando o fluxo de potência intervalar injeção de correntes como referência, para cada uma das tarefas relativas ao cálculo da solução intervalar.

Tarefas	FPI Polar	FPI Retangular	FPI Injeção
С	10,46428	10,20857	9,10356
f(x)	1,01703	0,98672	0,97462
J(X)	1790,26936	979,51683	631,93411
K(x,X)	0,00001	0,00001	0,00001
Tempo Total	1802,83546	991,65483	643,59364

Tabela IV.77 - Tempo computacional por iteração

Tabela	IV.78 –	Relacões	de	tempo
I ac cia	1	1000000		compo

Tarefas	FPI Polar	FPI Retangular	FPI Injeção
С	1,14947	1,12138	1
f(x)	1,04351	1,01241	1
J(X)	2,83300	1,55003	1
K(x,X)	1	1	1
Tempo Total	2,81863	1,54673	1

IV.8.2. Análise dos resultados

A formulação injeção de corrente se mostrou a mais eficiente tanto no tempo computacional como pelo número de iterações. Podemos notar pelos resultados apresentados na Tabela IV.77 que a tarefa que necessita o maior tempo para ser executada é a montagem da Jacobiana intervalar. As outras tarefas demandam tempos praticamente desprezíveis. Como citado anteriormente, com relação a Jacobiana injeção de correntes intervalar, é possível verificar um ganho no tempo computacional da ordem de 55% e 183% quando comparado com as Jacobianas retangular e polar intervalar, respectivamente. Estas relações de ganho podem ser facilmente entendidas bastando observar que a Jacobiana retangular possui somente termos quadráticos, enquanto que a polar possui termos compostos de funções transcendentais. Por outro lado, a Jacobiana injeção de correntes possui a maioria dos seus elementos constantes ao longo do processo iterativo.

IV.9. Análise gráfica das variáveis de saída

As Figuras IV.1 a IV.27 apresentam os maiores erros associados a todas a variáveis de saída consideradas neste trabalho. Os retângulos preto e cinza referem-se, respectivamente, ao erro máximo nos limites inferior e superior do intervalo da variável considerada.

Figura IV.1 – Módulo da Tensão – FPI Polar

Figura IV.2 – Módulo da Tensão – FPI Retangular

Figura IV.3 - Módulo da Tensão - FPI Injeção de Correntes

Figura IV.5 – Fase da Tensão – FPI Retangular

Figura IV.6 - Fase da Tensão - FPI Injeção de Correntes

Figura IV.8 – Fluxo de Potência Ativa – FPI Retangular

Figura IV.9 - Fluxo de Potência Ativa - FPI Injeção de Correntes

Figura IV.10 – Fluxo de Potência Reativa – FPI Polar

Figura IV.11 - Fluxo de Potência Reativa - FPI Retangular

Figura IV.12 – Fluxo de Potência Reativa – FPI Injeção de Correntes

Figura IV.13 - Geração Ativa da Barra de Referência - FPI Polar

Figura IV.14 – Geração Ativa da Barra de Referência – FPI Retangular

Figura IV.15 – Geração Ativa da Barra de Referência – FPI Injeção de Correntes

Figura IV.16 – Geração Reativa da Barra de Referência – FPI Polar

Figura IV.17 – Geração Reativa da Barra de Referência – FPI Retangular

Figura IV.18 – Geração Reativa da Barra de Referência – FPI Injeção de Correntes

Figura IV.19 - Geração Reativa das Barras de Geração - FPI Polar

Figura IV.20 – Geração Reativa das Barras de Geração – FPI Retangular

Figura IV.21 - Geração Reativa das Barras de Geração - FPI Injeção de Correntes

Figura IV.22 – Perdas de Potência Ativa – FPI Polar

Figura IV.23 - Perdas de Potência Ativa - FPI Retangular

Figura IV.24 - Perdas de Potência Ativa - FPI Injeção de Correntes

Figura IV.25 – Perdas de Potência Reativa – FPI Polar

Figura IV.26 - Perdas de Potência Reativa - FPI Retangular

Figura IV.27 - Perdas de Potência Reativa - FPI Injeção de Correntes

IV.9.1. Análise dos resultados

Os maiores erros relativos estão no fluxo de potência reativa e na perda reativa intervalares. Contudo, com uma análise crítica dos resultados é possível constatar o seguinte: são analisadas cinco sistemas perfazendo um total de 3091 ramos e, por conseguinte, 6182 valores de cada uma destas variáveis. Além disto, para cada ramo é analisado um valor mínimo e máximo. Então, de forma conclusiva, isto significa que são calculados para cada uma das formulações 12.364 valores de fluxo reativo e a mesma quantidade de perda reativa. Com relação ao fluxo de potência reativa, é possível verificar das Figuras IV.10 à IV.12 que apenas 27 erros são superiores a 10%, 24 erros entre 10% e 5%, 44 erros entre 5% e 1% e 12.269 erros menores que 1%. Análise idêntica pode ser feita para a perda reativa.

As três metodologias calculam um total de 138.486 variáveis, dessas tem-se 109 erros acima de 10%, 119 erros entre 10% e 5%, 363 erros entre 5% e 1% e 137.895 erros menores que 1%. Portanto, tais números demonstram a eficiência das formulações desenvolvidas nesta dissertação.

Capítulo V

Conclusões

V.1. Considerações finais

A presente dissertação apresenta uma metodologia para o tratamento de incertezas no problema de fluxo de potência, onde as variáveis de entrada e de saída são modeladas por intervalos. O fluxo de potência com incertezas é uma ferramenta muito útil nas situações onde seriam necessárias diversas simulações do problema de fluxo de potência convencional, como por exemplo, no planejamento da expansão da transmissão.

Para efeito de comparação e validação dos resultados são realizadas simulações de Monte Carlo de diversos casos do problema de fluxo de potência convencional. As simulações realizadas são amplamente estendidas, visando a obtenção de resultados mais próximos da solução verdadeira do problema.

De um modo geral, as três formulações de fluxo de potência intervalar desenvolvidas neste trabalho apresentam resultados satisfatórios, podendo constituir-se em ferramentas importantes na análise do fluxo de potência com incertezas. Contudo, o cálculo intervalar das grandezas dependentes funcionais, em especial o fluxo de potência reativa e a perda reativa, ainda requer alguns desenvolvimentos no sentido de evitar a ocorrência de erros grosseiros.

Os resultados do fluxo de potência associado a incertezas devem corresponder à solução mais próxima possível dos casos extremos de operação. Todas as formulações apresentadas se mostraram aptas. Além disso, a análise deve ser realizada em um tempo computacional reduzido. Sob este enfoque, o fluxo de potência intervalar injeção de

correntes se mostrou o mais eficiente demandando um menor número de iterações e convergindo num menor tempo computacional.

Concluindo, espera-se que este trabalho possa servir de base para o desenvolvimento de estudos que envolva o fluxo de potência, onde as incertezas associadas ao problema sejam adequadamente modeladas, visando auxiliar os engenheiros na tomada de decisões.

V.2. Proposta para trabalhos futuros

Visando dar continuidade à pesquisa iniciada no presente trabalho, são apresentadas, a seguir, algumas possíveis sugestões para o desenvolvimento do Fluxo de Potência Intervalar, dentre as quais destacam-se:

- Inserir de dispositivos de controle na análise dos sistemas;
- Considerar os limites operacionais associados às grandezas do problema de fluxo de potência, as quais são representadas por intervalos;
- Elaborar um algoritmo que propicie a variação dos ângulos de fase das barras de geração;
- Aperfeiçoar os algoritmos, visando aumentar a eficiência e a diminuição dos erros;
- Testar mais profundamente a robustez da formulação injeção de corrente na solução do fluxo de potência intervalar;
- Considerar as incertezas na geração em redes com geradores distribuídos, como por exemplo, redes com geradores eólicos;
- Aplicar a metodologia em sistemas de distribuição, onde as cargas apresentam incertezas muito altas e são estimadas, geralmente, através de dados de contas de energia;
- Explorar o cálculo da potência reativa intervalar gerada utilizando o processo iterativo na formulação injeção de correntes;
- Investigar a análise do fluxo de potência intervalar para sistemas de potência mal-condicionados;
- Considerar os diferentes modelos de carga.

Apêndice A

Sistemas Sul-Sudeste 34 Barras

Este sistema possui 34 barras, 42 linhas, 12 transformadores e 5 geradores. Os níveis de tensão na transmissão são 750, 500 e 345 kV, e todos os geradores trabalham com 20kV. A barra 26 representa o equivalente de um sistema de grande porte. A Figura A.1 apresenta o diagrama unifilar do sistema Sul-Sudeste. As Tabelas A.1 e A.2 apresentam os dados de barra e de linha.

Barra	Tipo	V(pu)	θ(°)	P _g (pu)	P _d (pu)	Q _g (pu)	Q _d (pu)	B(pu)
1	PV	1,030	-	33,000	0,080	1,871	-	-
2	PQ	-	-	-	-	-	-	-
3	PQ	-	-	-	-	-	-	-
4	PQ	-	-	-	-	-	-	6,600
5	PQ	-	-	-	-	-	-	1,500
6	PQ	-	-	-	-	-	-	1,500
7	PQ	-	-	-	-	-	-	3,300
8	PQ	-	-	-	-	-	-	3,300
9	PQ	-	-	-	-	-	-	3,300
10	PQ	-	-	-	-	-	-	6,600
11	PQ	-	-	-	-	-	-	-
12	PQ	-	-	-	-	-	-	-
13	PQ	-	-	-	-	-	-	3,300
14	PQ	-	-	-	-	-	-	-
15	PQ	-	-	-	-	-	-	-
16	PQ	-	-	-	-	-	-	-
17	PQ	-	-	-	0,044	-	-	-
18	PQ	-	-	-	-	-	-	-
19	PQ	-	-	-	14,610	3,390	-	-
20	PQ	-	-	-	-	-	-	-
21	PQ	-	-	-	0,028	-	-	3,000
22	PQ	-	-	-	0,024	-	-	2,000
23	PQ	-	-	-	6,783	-	1,208	3,000
24	PQ	-	-	-	-	-	-	-
25	PQ	-	-	-	61,500	24,000	-	-
26	PV	1,038	-	38,790	-	13,430	-	-
27	PQ	-	-	-	-	-	-	-
28	PQ	-	-	-	-	-	-	-
29	PQ	-	-	-	23,230	-	3,808	-
30	PQ	-	-	-	-	-	-	-
31	PV	0,995	-	13,200	0,017	3,760		-
32	PV	0,998	-	12,000	-	0,732		-
33	PV	0,996	-	12,000	-	0,409		-
34	Vθ	0,996	22,300	-	-	_		_

Tabela A.1 – Sistema Sul-Sudeste – Dados de barra

De	Para	r(pu)	x(pu)	B _{SH} (pu)	Тар
1	2	0,000	0,004	0,000	1,014
3	2	0,000	0,001	0,110	-
3	2	0,000	0,001	0,109	-
3	2	0,000	0,001	0,107	-
3	2	0,000	0,001	0,105	-
4	3	0,000	0,002	0,000	1,050
5	4	0,001	0,018	9,278	_
6	4	0,001	0,019	9,291	-
7	5	0,000	-0,007	0,000	-
7	6	0,000	-0,007	0,000	-
8	7	0,000	-0,008	0,000	-
9	7	0,000	-0,008	0,000	-
10	8	0,001	0,015	7,600	-
10	9	0,001	0,015	7,557	-
11	10	0,000	-0,009	0,000	-
12	10	0,000	-0,009	0,000	-
13	11	0,001	0,018	8,775	-
13	12	0,001	0,0175	8,730	-
13	14	0,000	0,003	0,000	1,040
24	14	0,001	0,010	0,320	_
24	14	0,001	0,010	0,320	-
7	15	0,000	0,003	0,000	0,961
16	15	0,000	0,001	0,011	_
16	15	0,000	0,001	0,011	-
17	16	0,002	0,019	2,370	-
18	17	0,001	0,007	0,857	-
31	17	0,000	0,011	0,000	0,968
19	18	0,001	0,008	0,966	-
32	18	0,000	0,011	0,000	1,013
16	19	0,002	0,024	2,949	-
22	19	0,002	0,020	2,502	-
19	20	0,000	0,001	0,154	-
19	20	0,000	0,001	0,152	-
33	20	0,000	0,011	0,000	1,034
17	21	0,002	0,002	0,022	_
34	21	0,000	0,011	0,000	1,057
21	22	0,001	0,013	1,552	-
23	22	0,002	0,030	3,815	-
21	23	0,003	0,039	4,937	-
25	24	0,000	0,004	0,108	-
25	24	0,000	0,004	0,108	-
27	24	0,000	0,003	0,145	-
26	25	0,000	0,001	0,027	-
26	25	0.000	0,001	0.027	-

Tabela A.2 - Sistema Sul-Sudeste - Dados de linha

De	Para	r(pu)	x(pu)	B _{SH} (pu)	Тар
29	27	0,000	0,007	0,000	0,993
13	28	0,000	0,009	0,000	1,039
13	28	0,000	0,009	0,000	1,039
29	28	0,001	0,008	0,076	-
29	28	0,001	0,008	0,076	-
29	28	0,001	0,008	0,076	-
29	28	0,001	0,008	0,076	-
30	28	0,016	0,090	3,000	-
16	30	0,000	0,009	0,000	1,066

Apêndice B

Derivadas das equações das variáveis dependentes funcionais

Este apêndice apresenta as equações e as respectivas derivadas das variáveis funcionais f, descritas por (III.41) e (III.42), utilizadas nesta dissertação.

B.1. Cálculo do fluxo de potência nas linhas

B.1.1. Coordenadas polares [29]

O fluxo de potência ativa no ramo k-m é dado por:

$$\mathbf{P}_{km} = \left(\mathbf{a}_{km}\mathbf{V}_{k}\right)^{2}\mathbf{g}_{km} - \mathbf{a}_{km}\mathbf{V}_{k}\mathbf{V}_{m}\left(\mathbf{g}_{km}\mathbf{cos}\theta_{km} + \mathbf{b}_{km}\mathbf{sen}\theta_{km}\right)$$
(B.1)

$$\frac{\partial P_{km}}{\partial V_{k}} = (a_{km})^{2} 2V_{k}g_{km} - a_{km}V_{m}(g_{km}\cos\theta_{km} + b_{km}\sin\theta_{km})$$
(B.2)

$$\frac{\partial P_{km}}{\partial V_{m}} = -a_{km}V_{k}\left(g_{km}\cos\theta_{km} + b_{km}\sin\theta_{km}\right)$$
(B.3)

$$\frac{\partial P_{km}}{\partial \theta_{k}} = -a_{km} V_{k} V_{m} \left(b_{km} \cos \theta_{km} - g_{km} \sin \theta_{km} \right)$$
(B.4)

$$\frac{\partial P_{km}}{\partial \theta_{m}} = -a_{km} V_{k} V_{m} \left(g_{km} sen \theta_{km} - b_{km} cos \theta_{km} \right)$$
(B.5)

O fluxo de potência reativa no ramo k-m é dado por:

$$Q_{km} = -\left(a_{km}V_k\right)^2 \left(b_{km} + b^{sh}_{km}\right) + a_{km}V_kV_m\left(b_{km}\cos\theta_{km} - g_{km}\sin\theta_{km}\right) \quad (B.6)$$

As derivadas associadas são dadas por:

$$\frac{\partial Q_{km}}{\partial V_{k}} = -(a_{km})^{2} 2V_{k} (b_{km} + b^{sh}_{km}) + a_{km} V_{m} (b_{km} \cos\theta_{km} - g_{km} \sin\theta_{km})$$
(B.7)

$$\frac{\partial \mathbf{Q}_{km}}{\partial \mathbf{V}_{m}} = \mathbf{a}_{km} \mathbf{V}_{k} \left(\mathbf{b}_{km} \cos \theta_{km} - \mathbf{g}_{km} \sin \theta_{km} \right)$$
(B.8)

$$\frac{\partial Q_{km}}{\partial \theta_{k}} = -a_{km} V_{k} V_{m} \left(g_{km} \cos \theta_{km} + b_{km} \sin \theta_{km} \right)$$
(B.9)

$$\frac{\partial Q_{km}}{\partial \theta_{m}} = a_{km} V_{k} V_{m} \left(b_{km} sen \theta_{km} + g_{km} \cos \theta_{km} \right)$$
(B.10)

O fluxo de potência ativa no ramo m-k é dado por:

$$P_{mk} = (V_m)^2 g_{km} - a_{km} V_k V_m (g_{km} \cos\theta_{km} - b_{km} \sin\theta_{km})$$
(B.11)

As derivadas associadas são dadas por:

$$\frac{\partial P_{mk}}{\partial V_{k}} = -a_{km}V_{m}\left(g_{km}\cos\theta_{km} - b_{km}\sin\theta_{km}\right)$$
(B.12)

$$\frac{\partial P_{mk}}{\partial V_{m}} = 2V_{m}g_{km} - a_{km}V_{k}\left(g_{km}\cos\theta_{km} - b_{km}\sin\theta_{km}\right)$$
(B.13)

$$\frac{\partial P_{mk}}{\partial \theta_{k}} = -a_{km} V_{k} V_{m} \left(b_{km} \cos \theta_{km} + g_{km} \sin \theta_{km} \right)$$
(B.14)

$$\frac{\partial P_{mk}}{\partial \theta_{m}} = -a_{km} V_{k} V_{m} \left(b_{km} sen \theta_{km} + g_{km} cos \theta_{km} \right)$$
(B.15)

O fluxo de potência reativa no ramo m-k é dado por:

$$Q_{mk} = -(V_m)^2 (b_{km} + b^{sh}_{km}) + a_{km} V_k V_m (b_{km} \cos\theta_{km} + g_{km} \sin\theta_{km}) \quad (B.16)$$

As derivadas associadas são dadas por:

$$\frac{\partial Q_{mk}}{\partial V_{k}} = a_{km} V_{m} \left(b_{km} \cos \theta_{km} + g_{km} \sin \theta_{km} \right)$$
(B.17)

$$\frac{\partial Q_{mk}}{\partial V_{m}} = -2V_{m} \left(b_{km} + b^{sh}_{km} \right) + a_{km} V_{k} \left(b_{km} \cos \theta_{km} + g_{km} \sin \theta_{km} \right)$$
(B.18)

$$\frac{\partial Q_{mk}}{\partial \theta_{k}} = a_{km} V_{k} V_{m} \left(g_{km} \cos \theta_{km} - b_{km} \sin \theta_{km} \right)$$
(B.19)

$$\frac{\partial Q_{mk}}{\partial \theta_{m}} = a_{km} V_{k} V_{m} \left(b_{km} \operatorname{sen} \theta_{km} - g_{km} \cos \theta_{km} \right)$$
(B.20)

B.1.2. Coordenadas retangulares [31]

O fluxo de potência ativa no ramo k-m é dado por:

$$P_{km} = -a_{km} \left[g_{km} \left(V_{r_k} V_{r_m} + V_{m_k} V_{m_m} \right) + b_{km} \left(V_{m_k} V_{r_m} - V_{r_k} V_{m_m} \right) \right] + a_{km}^2 g_{km} \left(V_{r_k}^2 + V_{m_k}^2 \right)$$
(B.21)

$$\frac{\partial P_{km}}{\partial V_{r_k}} = -a_{km} \left[g_{km} V_{r_m} - b_{km} V_{m_m} \right] + a_{km}^2 g_{km} 2V_{r_k}$$
(B.22)

$$\frac{\partial \mathbf{P}_{km}}{\partial \mathbf{V}_{\mathbf{r}_{m}}} = -\mathbf{a}_{km} \left[\mathbf{g}_{km} \mathbf{V}_{\mathbf{r}_{k}} + \mathbf{b}_{km} \mathbf{V}_{\mathbf{m}_{k}} \right]$$
(B.23)

$$\frac{\partial P_{km}}{\partial V_{m_k}} = -a_{km} \left[g_{km} V_{m_m} + b_{km} V_{r_m} \right] + a_{km}^2 g_{km}^2 V_{m_k}$$
(B.24)

$$\frac{\partial P_{km}}{\partial V_{m_m}} = -a_{km} \left[g_{km} V_{m_k} - b_{km} V_{r_k} \right]$$
(B.25)

O fluxo de potência reativa no ramo k-m é dado por:

$$Q_{km} = a_{km} \left[-g_{km} \left(-V_{r_k} V_{m_m} + V_{m_k} V_{r_m} \right) + b_{km} \left(V_{r_k} V_{r_m} + V_{m_k} V_{m_m} \right) \right] + a_{km}^2 \left(b_{km} + b_{km}^{sh} \right) \left(V_{r_k}^2 + V_{m_k}^2 \right)$$
(B.26)

As derivadas associadas são dadas por:

$$\frac{\partial Q_{km}}{\partial V_{r_k}} = a_{km} \left[g_{km} V_{m_m} + b_{km} V_{r_m} \right] - a_{km}^2 \left(b_{km} + b_{km}^{sh} \right) 2 V_{r_k}$$
(B.27)

$$\frac{\partial Q_{km}}{\partial V_{r_m}} = -a_{km} \left[g_{km} V_{m_k} - b_{km} V_{r_k} \right]$$
(B.28)

$$\frac{\partial Q_{km}}{\partial V_{m_k}} = -a_{km} \left[g_{km} V_{r_m} - b_{km} V_{m_m} \right] - a_{km}^2 \left(b_{km} + b_{km}^{sh} \right) 2 V_{m_k}$$
(B.29)

$$\frac{\partial \mathbf{Q}_{km}}{\partial \mathbf{V}_{m_m}} = \mathbf{a}_{km} \left[\mathbf{g}_{km} \mathbf{V}_{r_k} + \mathbf{b}_{km} \mathbf{V}_{m_k} \right]$$
(B.30)

O fluxo de potência ativa no ramo m-k é dado por:

$$P_{km} = a_{km} \left[-g_{km} \left(V_{r_k} V_{r_m} + V_{m_k} V_{m_m} \right) + b_{km} \left(V_{m_k} V_{r_m} - V_{r_k} V_{m_m} \right) \right] + g_{km} \left(V_{r_m}^2 + V_{m_m}^2 \right)$$
(B.31)

$$\frac{\partial \mathbf{P}_{mk}}{\partial \mathbf{V}_{r_k}} = \mathbf{a}_{km} \left[-\mathbf{g}_{km} \mathbf{V}_{r_m} - \mathbf{b}_{km} \mathbf{V}_{m_m} \right]$$
(B.32)

$$\frac{\partial P_{mk}}{\partial V_{r_m}} = a_{km} \left[-g_{km} V_{r_k} + b_{km} V_{m_k} \right] + g_{km} 2 V_{r_m}$$
(B.33)

$$\frac{\partial \mathbf{P}_{mk}}{\partial \mathbf{V}_{m_k}} = \mathbf{a}_{km} \left[-\mathbf{g}_{km} \mathbf{V}_{m_m} + \mathbf{b}_{km} \mathbf{V}_{r_m} \right]$$
(B.34)

$$\frac{\partial \mathbf{P}_{mk}}{\partial \mathbf{V}_{m_m}} = \mathbf{a}_{km} \left[-g_{km} \mathbf{V}_{m_k} - \mathbf{b}_{km} \mathbf{V}_{r_k} \right] + g_{km} 2 \mathbf{V}_{m_m}$$
(B.35)

O fluxo de potência reativa no ramo m-k é dado por:

$$Q_{mk} = a_{km} \left[g_{km} \left(V_{m_k} V_{r_m} - V_{r_k} V_{m_m} \right) + b_{km} \left(V_{r_k} V_{r_m} + V_{m_k} V_{m_m} \right) \right] + - \left(b_{km} + b_{km}^{sh} \right) \left(V_{r_m}^2 + V_{m_m}^2 \right)$$
(B.36)

As derivadas associadas são dadas por:

$$\frac{\partial \mathbf{Q}_{mk}}{\partial \mathbf{V}_{r_k}} = \mathbf{a}_{km} \left[-g_{km} \mathbf{V}_{m_m} + \mathbf{b}_{km} \mathbf{V}_{r_m} \right]$$
(B.37)

$$\frac{\partial Q_{mk}}{\partial V_{r_m}} = a_{km} \left[g_{km} V_{m_k} + b_{km} V_{r_k} \right] - \left(b_{km} + b^{sh}_{km} \right) \left(2V_{r_m} \right)$$
(B.38)

$$\frac{\partial Q_{mk}}{\partial V_{m_k}} = a_{km} \left[g_{km} V_{r_m} + b_{km} V_{m_m} \right]$$
(B.39)

$$\frac{\partial \mathbf{Q}_{mk}}{\partial \mathbf{V}_{m_m}} = \mathbf{a}_{km} \left[-\mathbf{g}_{km} \mathbf{V}_{r_k} + \mathbf{b}_{km} \mathbf{V}_{m_k} \right] - \left(\mathbf{b}_{km} + \mathbf{b}^{sh}_{km} \right) \left(2\mathbf{V}_{m_m} \right)$$
(B.40)

B.2. Cálculo da geração ativa e reativa

B.2.1. Coordenadas polares [29]

A geração ativa da barra k é dada por:

$$P_{g_k} = V_k \sum_{m \in \phi_k} V_m (G_{km} \cos \theta_{km} + B_{km} \sin \theta_{km}) + P_{d_k}$$
(B.41)

$$\frac{\partial \mathbf{P}_{\mathbf{g}_{k}}}{\partial \mathbf{V}_{k}} = \frac{\mathbf{P}_{k} + \mathbf{V}_{k}^{2}\mathbf{G}_{kk}}{\mathbf{V}_{k}}$$
(B.42)

$$\frac{\partial P_{g_k}}{\partial V_m} = V_k (G_{km} \cos \theta_{km} + B_{km} \sin \theta_{km})$$
(B.43)
$$\frac{\partial \mathbf{P}_{\mathbf{g}_{k}}}{\partial \boldsymbol{\theta}_{k}} = -\mathbf{V}_{k}^{2}\mathbf{B}_{kk} - \mathbf{Q}_{k}$$
(B.44)

$$\frac{\partial P_{g_k}}{\partial \theta_m} = V_k V_m (G_{km} \text{sen} \theta_{km} - B_{km} \cos \theta_{km})$$
(B.45)

A geração reativa da barra k é dada por:

$$Q_{g_k} = V_k \sum_{m \in \phi_k} V_m (G_{km} \operatorname{sen} \theta_{km} - B_{km} \cos \theta_{km}) + Q_{d_k}$$
(B.46)

As derivadas associadas são dadas por:

$$\frac{\partial Q_{g_k}}{\partial V_k} = \frac{Q_k - V_k^2 B_{kk}}{V_k}$$
(B.47)

$$\frac{\partial Q_{g_k}}{\partial V_m} = V_k (G_{km} sen \theta_{km} - B_{km} cos \theta_{km})$$
(B.48)

$$\frac{\partial Q_{g_k}}{\partial \theta_k} = -V_k^2 G_{kk} + P_k$$
(B.49)

$$\frac{\partial Q_{g_k}}{\partial \theta_m} = -V_k V_m (G_{km} \cos \theta_{km} + B_{km} \sin \theta_{km})$$
(B.50)

B.2.2. Coordenadas retangulares [31]

A geração ativa da barra k é dada por:

$$P_{g_k} = \sum_{m \in \phi_k} V_{r_k} (G_{km} V_{r_m} - B_{km} V_{m_m}) + V_{m_k} (G_{km} V_{m_m} + B_{km} V_{r_m}) + P_{d_k}$$
(B.51)

As derivadas associadas são dadas por:

$$\frac{\partial \mathbf{P}_{\mathbf{g}_{k}}}{\partial \mathbf{V}_{\mathbf{r}_{k}}} = \mathbf{V}_{\mathbf{r}_{k}}\mathbf{G}_{kk} + \mathbf{V}_{\mathbf{m}_{k}}\mathbf{B}_{kk} + \mathbf{I}_{\mathbf{r}_{k}}$$
(B.52)

$$\frac{\partial \mathbf{P}_{\mathbf{g}_k}}{\partial \mathbf{V}_{\mathbf{r}_m}} = \mathbf{V}_{\mathbf{r}_k} \mathbf{G}_{\mathbf{km}} + \mathbf{V}_{\mathbf{m}_k} \mathbf{B}_{\mathbf{km}}$$
(B.53)

$$\frac{\partial \mathbf{P}_{g_k}}{\partial \mathbf{V}_{m_k}} = -\mathbf{V}_{r_k} \mathbf{B}_{kk} + \mathbf{V}_{m_k} \mathbf{G}_{kk} + \mathbf{I}_{m_k}$$
(B.54)

$$\frac{\partial \mathbf{P}_{g_k}}{\partial \mathbf{V}_{m_m}} = -\mathbf{V}_{r_k} \mathbf{B}_{km} + \mathbf{V}_{m_k} \mathbf{G}_{km}$$
(B.55)

A geração reativa da barra k é dada por:

$$Q_{g_k} = \sum_{m \in \phi_k} V_{m_k} (G_{km} V_{r_m} - B_{km} V_{m_m}) - V_{r_k} (G_{km} V_{m_m} + B_{km} V_{r_m}) + Q_{d_k}$$
(B.56)

As derivadas associadas são dadas por:

$$\frac{\partial \mathbf{Q}_{\mathbf{g}_{k}}}{\partial \mathbf{V}_{\mathbf{r}_{k}}} = -\mathbf{V}_{\mathbf{r}_{k}}\mathbf{B}_{\mathbf{k}\mathbf{k}} + \mathbf{V}_{\mathbf{m}_{k}}\mathbf{G}_{\mathbf{k}\mathbf{k}} - \mathbf{I}_{\mathbf{m}_{k}}$$
(B.57)

$$\frac{\partial Q_{g_k}}{\partial V_{r_m}} = -V_{r_k} B_{km} + V_{m_k} G_{km}$$
(B.58)

$$\frac{\partial Q_{g_k}}{\partial V_{m_k}} = -V_{r_k}G_{kk} - V_{m_k}B_{kk} + I_{r_k}$$
(B.59)

$$\frac{\partial Q_{g_k}}{\partial V_{m_m}} = -V_{r_k} G_{km} - V_{m_k} B_{km}$$
(B.60)

B.3. Cálculo das perdas

B.3.1. Coordenadas polares [29]

A perda de potência ativa no ramo k - m é dada por:

$$P^{Perdas}_{km} = g_{km} \left(\left(a_{km} \right)^2 V_k^2 + V_m^2 - 2a_{km} V_k V_m \cos \theta_{km} \right)$$
(B.61)

As derivadas associadas são dadas por:

$$\frac{\partial P^{\text{perdas}}}{\partial V_{k}} = 2g_{km} \left(\left(a_{km} \right)^{2} V_{k} - a_{km} V_{m} \cos \theta_{km} \right)$$
(B.62)

$$\frac{\partial P^{\text{Perdas}}_{\text{km}}}{\partial V_{\text{m}}} = 2g_{\text{km}} \left(V_{\text{m}} - a_{\text{km}} V_{\text{k}} \cos \theta_{\text{km}} \right)$$
(B.63)

$$\frac{\partial P^{\text{Perdas}}}{\partial \theta_{k}} = g_{km} \left(2a_{km} V_{k} V_{m} \text{sen} \theta_{km} \right)$$
(B.64)

$$\frac{\partial P^{\text{Perdas}}}{\partial \theta_{\text{m}}} = -g_{\text{km}} \left(2a_{\text{km}} V_{\text{k}} V_{\text{m}} \text{sen} \theta_{\text{km}} \right)$$
(B.65)

A perda reativa no ramo k – m é dada por:

$$Q_{km}^{\text{Perdas}} = -b_{km}^{\text{sh}} \left(V_{k}^{2} + V_{m}^{2} \right) - b_{km} \left(V_{k}^{2} + V_{m}^{2} - 2V_{k}V_{m}\cos\theta_{km} \right)$$
(B.66)

As derivadas associadas são dadas por:

$$\frac{\partial Q^{\text{Perdas}}}{\partial V_{k}} = -2b^{\text{sh}}_{km} \left(a_{km}\right)^{2} V_{k} - b_{km} \left(2V_{k} - 2a_{km}V_{m}\cos\theta_{km}\right)$$
(B.67)

$$\frac{\partial \mathbf{Q}^{\text{Perdas}}}{\partial \mathbf{V}_{\text{m}}} = -2b^{\text{sh}}_{\text{km}}\mathbf{V}_{\text{m}} - b_{\text{km}}\left(2\mathbf{V}_{\text{m}} - 2a_{\text{km}}\mathbf{V}_{\text{k}}\cos\theta_{\text{km}}\right)$$
(B.68)

$$\frac{\partial Q^{\text{Perdas}}}{\partial \theta_{k}} = -2b_{km}a_{km}V_{k}V_{m}\text{sen}\theta_{km}$$
(B.69)

$$\frac{\partial Q^{\text{Perdas}}}{\partial \theta_{\text{m}}} = 2b_{\text{km}}a_{\text{km}}V_{\text{k}}V_{\text{m}}\text{sen}\theta_{\text{km}}$$
(B.70)

B.3.2. Coordenadas retangulares [31]

A perda de potência ativa no ramo k - m é dada por:

$$P^{\text{Perdas}}_{\text{km}} = -2a_{\text{km}}g_{\text{km}}\left(V_{r_{k}}V_{r_{m}} + V_{m_{k}}V_{m_{m}}\right) + g_{\text{km}}\left(a_{\text{km}}^{2}V_{r_{k}}^{2} + V_{r_{m}}^{2} + a_{\text{km}}^{2}V_{m_{k}}^{2} + V_{m_{m}}^{2}\right)(B.71)$$

As derivadas associadas são dadas por:

$$\frac{\partial P^{\text{Perdas}}}{\partial V_{r_k}} = 2a_{km}g_{km}\left(a_{km}V_{r_k} - V_{r_m}\right)$$
(B.72)

$$\frac{\partial P^{\text{Perdas}}}{\partial V_{r_{\text{m}}}} = 2a_{\text{km}}g_{\text{km}}\left(V_{r_{\text{m}}} - V_{r_{\text{k}}}\right)$$
(B.73)

$$\frac{\partial P^{\text{Perdas}}}{\partial V_{m_k}} = 2a_{km}g_{km}\left(a_{km}V_{m_k} - V_{m_m}\right)$$
(B.74)

$$\frac{\partial \mathbf{P}^{\text{Perdas}}}{\partial \mathbf{V}_{m_{m}}} = 2a_{km}g_{km}\left(\mathbf{V}_{m_{m}} - \mathbf{V}_{m_{k}}\right)$$
(B.75)

A perda reativa no ramo k - m é dada por:

$$Q^{\text{Perdas}}_{km} = 2a_{km}b_{km} \left(V_{r_{k}}V_{r_{m}} + V_{m_{k}}V_{m_{m}}\right) - \left(b_{km} + b^{sh}_{km}\right) \left(a_{km}^{2}V_{r_{k}}^{2} + a_{km}^{2}V_{r_{m}}^{2} + V_{m_{k}}^{2} + V_{m_{m}}^{2}\right)$$
(B.76)

As derivadas associadas são dadas por:

$$\frac{\partial Q^{\text{Perdas}}}{\partial V_{r_k}} = 2a_{km}b_{km}V_{r_m} - (b_{km} + b^{sh}_{km})2a_{km}^2V_{r_k}$$
(B.77)

$$\frac{\partial Q^{\text{Perdas}}}{\partial V_{r_{m}}} = 2a_{km}b_{km}V_{r_{k}} - (b_{km} + b^{\text{sh}}_{km})2V_{r_{m}}$$
(B.78)

$$\frac{\partial Q^{\text{Perdas}}}{\partial V_{m_k}} = 2a_{km}b_{km}V_{m_m} - (b_{km} + b^{\text{sh}}_{km})2a_{km}^2V_{m_k}$$
(B.79)

$$\frac{\partial Q^{Perdas}}{\partial V_{m_{m}}} = 2a_{km}b_{km}V_{m_{k}} - (b_{km} + b^{sh}_{km})2V_{m_{m}}$$
(B.80)

Referências Bibliográficas

- Dimitrovski, A; Tomsovic, K. "Boundary Load Flow Solutions". IEEE Trans Power System, Vol. 19, No. 1 pp. 348-355, 2004.
- [2] Stefopoulos, G. K.; Meliopoulos, A. P.; Cokkinedes, G. J. "Probabilistic Power Flow With Non-conforming Electric Loads". International Journal of Electrical Power and Energy System, Vol. 27, No. 2 pp. 627-634, 2005.
- [3] Su, C. L. "Probabilistic Load Flow Computation Using Point Estimate Method". IEEE Trans Power System, Vol. 20, No. 4 pp. 1843-1851, 2005.
- [4] Hu, Z.; Wang, X. "A Probabilistic Load Flow Method Considering Branch Outages". IEEE Trans Power System, Vol. 21, No. 2 pp. 507-514, 2006.
- [5] Usaola J. "Probabilistic Load Flow With Wind Production Uncertainty Using Cumulants and Cornish-Fisher Expansion". International Journal of Electrical Power and Energy System, Vol. 31, No. 2 pp. 474-481, 2009.
- [6] Ramaswamy, M.; Nayar, K. R. "On Line Estimation Of Bus Voltages Based On Fuzzy Logic". International Journal of Electrical Power and Energy System, Vol. 26, No. 3 pp. 681-684, 2004.
- [7] Bijwe, P. R.; Hanmandlu, M.; Pande, V. N. "Fuzzy Power Flow Solutions With Reactive Limits And Multiple Uncertainties". Electric Power Systems Research, Vol. 76, No. 3 pp. 145-152, 2005.
- [8] Cortés-Carmona, M.; Palma-Behnke, R.; Jimenez-Estévez, G. "Fuzzy Arithmetic For The DC Load Flow". IEEE Trans Power System, Vol. 25, No. 1 pp. 206-214, 2010.
- [9] Kalesar, B. M.; Seife, A. R. "Fuzzy Load Flow In Balanced And Unbalanced Radial Distribution Systems Incorporating Composite Load Model". International Journal of Electrical Power and Energy Systems, Vol. 9, No. 1 pp. 348-355, 2010.
- [10]Moore, R. "Automatic Error Analysis in Digital Computation". Sunnyvale, CA, USA: Lockheed Missiles and Space Co., 1959. Technical Report. (Space Div. Report LMSD84821).
- [11]Moore, R. "Interval Analysis". Philadelphia, PA, USA: pub-PH, 1966. p.xi-145.
- [12]Moore, R. "Methods and Applications of Interval Analysis". Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1979. xi-190p.
- [13]Bedregal, B. "Sistemas de Informação Contínuos: Uma Abordagem Lógica e Computacional para a Matemática Intervalar". 1996. Tese (Doutorado em Ciência da Computação)— Universidade Federal de Pernambuco, Pernambuco, Brasil.
- [14]Rump, S. "Fast and Parallel Interval Arithmetic". [S.l.]: BIT, 1999. 539-560p.

- [15]Hölbig, C. "Ambiente de Alto Desempenho com Alta Exatidão para a Resolução de Problemas". 2005. Tese (Doutorado em Ciência da Computação)—Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.
- [16] Vargas, R. R. "Técnicas Matemático-Computacionais para o Tratamento de Incertezas Aplicadas ao Problema do Fluxo de Potência". Dissertação (Mestrado em Ciência da Computação) – Universidade Católica de Pelotas, Pelotas, 2007.
- [17]Oliveira, R.; Diverio, T.; Claudio, D. "Fundamentos da Matemática Intervalar". Instituto de Informática da UFRGS, Porto Alegre, Brasil: Editora Sagra Luzzato, 2001.
- [18]Hargreaves, G. I. "Interval Analysis in MATLAB". Numerical Analysis Report Nº 416, 2002.
- [19]Mori, H., Yuihara, A. "Calculation of Multiple Power Flow Solutions with the Krawczyk Method". Trans Power Systems, Vol. 10, No. 6, pp. 1141-1149, 1997.
- [20]Barboza, L.; Dimuro, G.; Reiser, R. "Power Flow with Load Uncertainty". Tend. Mat. Apl. Comput., 5, N° 1 (2004), 27-36.
- [21] R. Krawczyk, "Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken", Computing, vol. 4, pp. 187-201, 1969.
- [22]Wang, Z.; Alvarado, F. L. "Interval Arithmetic in Power Flow Analysis", Trans Power Systems, Vol. 7, No. 3, pp. 1341-1349, 1992.
- [23]Barboza, L.; Dimuro, G.; Reiser, R. "Towards Interval Analysis of the Load Uncertainty in Power Eletric Systems". 8th International Conference on Probabilistic Methods Apllied to Power System, Ames, Iowa, 2004.
- [24]Barboza, L.; Dimuro, G.; Reiser, R. "Interval Mathematics Applied to the Load Flow Analysis", 2005.
- [25]Barboza, L.; Dimuro, G.; Reiser, R. "Incerteza de Dados em Fluxo de Potência: uma Abordagem com a Matemática Intervalar do C-XSC". Tend. Mat. Apl. Comput., 9, № 3 (2008), 491-502.
- [26]Mori, H., Yuihara, A. "Contingency screening using interval analysis in power systems". Proceedings of the IEEE International Symposium on Circuits and Systems, Monterey, CA, USA, vol. 3, pp. 444–447, 1998.
- [27]Gallego, L. A.; Feltrin, A. P. "Fluxo de Potência para Sistemas de Distribuição Considerando Incertezas na Demanda e nos Parâmetros de Redes". 2008. Simpósio Brasileiro de Sistemas Elétricos – SBSE.
- [28]Vaccaro A.; Canizares, C. A., "An Affine Arithmetic-Based Methodology for Reliable Power Flow Analysis in the Presence of Data Uncertainty". IEEE Trans Power Systems, Vol. 25, No 2, May 2010.
- [29]Monticelli, A. "Fluxo de Carga em Redes de Energia Elétrica". São Paulo, Brasil: Edgard Blucher LTDA, 1983.
- [30]Stagg, G. W.; Abiad H. E. A. "Computação Aplicada a Sistemas de Geração e Transmissão de Potência". São Paulo, Brasil, Guanabara Dois, 1979.

- [31]Da Costa, V. M., "Uma Formulação Alternativa para o Problema de Fluxo de Potência". Tese de D.Sc. COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 1997.
- [32]Santos, M. J. dos. "Modelagem de Incertezas no Problema de Fluxo de Potência". Tese de D.Sc. COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 2008.
- [33]Gallego, L. A. "Fluxo de Potência em Redes de Distribuição de Energia Elétrica Considerando Incertezas". Tese de D.Sc. UNESP, Ilha Solteira, SP, Brasil, 2009.
- [34]UNIVERSITY OF WASHINGTON. Power System Test Cases. Disponível em: <u>http://www.ee.washington.edu/research/pstca</u>.