Fluxo de Potência Trifásico: Um Estudo Comparativo e Uma Nova Metodologia de Solução

Hivy Queiroz Pereira

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DE JUIZ DE FORA COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Aprovada por:

Prof. Vander Menengoy da Costa, D. Sc. (orientador)

Prof. Dilson Amancio Alves, D. Sc.

Prof. Paulo Augusto Nepomuceno Garcia, D. Sc.

JUIZ DE FORA, MG – BRASIL FEVEREIRO DE 2006

PEREIRA, HIVY QUEIROZ

Fluxo de Potência Trifásico: Um Estudo Comparativo e Uma Nova Metodologia de Solução [Juiz de Fora] 2006 XV, 147 p. 29,7 cm (UFJF, M.Sc., Engenharia Elétrica, 2006)

Tese – Universidade Federal de Juiz de Fora.

- 1. Fluxo de Potência Trifásico
- 2. Convencional Polar
- 3. Convencional Retangular
- 4. Formulação Injeção de Corrente
- 5. Matriz Jacobiana Constante
- 6. Condições Iniciais Desfavoráreis

I. UFJF II. Título (série).

A Deus, A meus pais, verdadeiros companheiros, Heitor e Angélica, A meu amor, Leonardo, Ao grande e dedicado mestre, Vander. Resumo da tese de mestrado apresentada à UFJF como parte dos requisitos necessários à obtenção do grau de Mestre em Ciências (M.Sc).

Fluxo de Potência Trifásico: Um Estudo Comparativo e Uma Nova Metodologia de Solução

Hivy Queiroz Pereira

2006

Orientador: Vander Menengoy da Costa Programa: Engenharia Elétrica

Este trabalho apresenta um estudo comparativo das características de convergência das formulações convencional polar, convencional retangular e injeção de corrente na solução do fluxo de potência trifásico. As metodologias polar e retangular utilizam as equações de potência injetada nas barras expressas em função das coordenadas polares e retangulares da tensão, respectivamente. A formulação de injeção de corrente utiliza as equações de corrente injetada nas barras expressas em termos das coordenadas retangulares da tensão. As equações não lineares referentes a cada um dos métodos são resolvidas através do processo iterativo de Newton-Raphson. Além disto, a manutenção da matriz Jacobiana constante durante o processo iterativo é também investigada.

Por outro lado, este trabalho também propõe uma metodologia para a solução do fluxo de potência trifásico sujeito a condições iniciais desfavoráveis. Este método baseiase numa característica particular inerente à formulação de injeção de corrente. O método é simples e rápido, garantindo a convergência do processo iterativo. Os resultados são bastante satisfatórios, demonstrando a eficácia do método proposto em situações nas quais as formulações convencionais de solução do fluxo de potência falham na convergência do processo iterativo. Abstract of thesis presented to UFJF as partial fulfillment of the requirements for the degree of Master of Science (M.Sc).

Three-phase Power Flow: A Comparative Study and A New Solution Methodology

Hivy Queiroz Pereira

2006

Supervisor: Vander Menengoy da Costa Department: Engenharia Elétrica

This work presents a comparative study on convergence characteristics of some three-phase power flow methods, namely, conventional polar, conventional rectangular and current injection formulations. The polar and rectangular methodologies use the injected power equations written in terms of voltage polar and voltage rectangular coordinates, respectively. The current injection method employs the injected current equations expressed in function of voltage rectangular coordinates. The nonlinear equations associated with each method are solved iteratively through Newton-Raphson approach. Moreover, the strategy of keeping the Jacobian matrix constant throughout the iterative process is also investigated.

On the other hand, this work also proposes a new methodology for solving threephase power flow problems subjected to poor initial conditions. This method is based on a particular convergence feature inherent in the power flow current injection formulation. It is simple and fast, ensuring the convergence of the iterative process. The results are quite satisfactory and demonstrate the effectiveness of the proposed approach on problems where standard three-phase power flow formulations fail to converge.

Simbologia

p.u.	Sistema em por unidade;
n	Número de barras do sistema;
S	Elemento representativo das fases $a, b \in c$ do sistema;
h	Contador de iterações;
r + jx	Impedância do ramo k-m;
P_{G}	Potência ativa gerada;
Q_G	Potência reativa gerada;
P_{L}	Potência ativa demandada;
Q_L	Potência reativa demandada;
S_{calc}	Potência aparente calculada;
$\mathbf{P}_{\mathbf{k}}$	Potência ativa líquida na barra k;
Q_k	Potência reativa líquida na barra k;
ΔP_k	Resíduo de potência ativa líquida na barra k;
ΔQ_k	Resíduo de potência reativa líquida na barra k;
V _{rk}	Componente real da tensão na barra k;
V_{mk}	Componente imaginária da tensão na barra k;
$\Delta V_{ m rk}$	Correção da componente real da tensão na barra k;
ΔV_{mk}	Correção da componente imaginária da tensão na barra k;
Y_{km}	Elemento (<i>k</i> - <i>m</i>) da matriz admitância nodal $Y_{km} = G_{km} + jB_{km}$;
Y	Matriz admitância nodal;
θ_k	Ângulo da tensão na barra k;
$\Delta \theta_k$	Correção do ângulo da tensão na barra k;
Z _{km}	Elemento (k-m) da matriz impedância de barras;
${\rm Y}_{\rm sh}^{\rm abc}$	Matriz de admitância shunt nas fases <i>a</i> , <i>b</i> e <i>c</i> ;
$b_{\scriptscriptstyle km}^{\scriptscriptstyle sh}$	Susceptância shunt total do ramo k-m;
y _{km}	Admitância do ramo <i>k-m</i> ;

- I_k^{abc} Corrente elétrica injetada na barra k;
- I_{rk}^{abc} Componente real da corrente elétrica injetada na barra k, fases a, b e c;
- I_{mk}^{abc} Componente imaginária da corrente elétrica injetada na barra k, fases a, b e c;
- $\Delta I_{mk}^{abc} \qquad Resíduo da componente imaginária da corrente elétrica injetada na barra k, fases a, b e c;$
- P_{calc}^{abc} Potência ativa calculada para a barra k, fases a, b e c;
- Q_{calc}^{abc} Potência reativa calculada para a barra k, fases a, b e c;
- P_{esp}^{abc} Potência ativa especificada na barra k, fases a, b e c;
- Q_{esp}^{abc} Potência reativa especificada na barra k, fases a, b e c;
- α_p Conjunto das fases *a*, *b* e *c*;
- Ω_k Conjunto de barras adjacentes à barra k, incluindo a própria barra k;
- E_k^s Fasor tensão na barra k, fase s;

As matrizes serão apresentadas em negrito itálico e os vetores em negrito itálico sublinhado

Índice

Capítulo 1	1
Introdução	1
1.1 Considerações Iniciais	1
1.2 Motivações e Objetivos	2
1.3 Principais Contribuições do Trabalho	3
1.4 Publicações Decorrentes do Trabalho	3
1.5 Estrutura do Trabalho	3
Capítulo 2	5
Formulações Trifásicas na Solução do Problema de Fluxo de Potência	5
2.1 Introdução	5
2.2 Modelo dos Componentes	6
2.3 Fluxo de Potência Polar Trifásico	8
2.3.1 Equações Polares Básicas	8
2.3.2 Metodologia da Solução	12
2.3.3 Algoritmo de Solução – Polar	15
2.4 Fluxo de Potência Retangular Trifásico	17
2.4.1 Equações Retangulares Básicas	17
2.4.2 Metodologia de Solução	18
2.4.3 Tratamento das Barras PV	21
2.4.3.1 Fluxo de Potência Retangular Trifásico com Correção de Geração	
de Potência Reativa	22
2.4.3.2 Fluxo de Potência Retangular Trifásico Convencional	25
2.4.4 Algoritmo de Solução – Retangular	27
2.5 Aplicação Numérica	27
2.5.1 Solução pelo Método Polar Trifásico	29
2.5.2 Solução pelo Método Retangular Trifásico com Correção de Geração	
de Potência Reativa	39

2.5.2 Solução pelo Método Retangular Trifásico Convencional	45
Capítulo 3	51
Fluxo de Potência Trifásico via Injeção de Corrente	51
3.1 Introdução	51
3.2 Metodologia de Solução	52
3.2.1 Apresentação das Equações	52
3.2.2 Tratamento das Barras V θ e PV	52
3.2.3 Atualização das Tensões	56
3.2.4 Algoritmo de Solução – Injeção de Corrente	56
3.2.5 Aplicação Numérica	60
3.3 Proposta de uma Nova Metodologia para a Solução do Fluxo de Potência	
Trifásico	71
3.3.1 Introdução	71
3.3.2 Fluxo de Potência Injeção de Corrente Robusto às Condições Iniciais -	
RCI	72
3.3.2.1 Equações Básicas	73
3.3.2.2 Algoritmo Proposto – RCI	74
3.3.2.3 Aplicação Numérica	75
Capítulo 4	80
Resultados	80
4.1 Introdução	80
4.2 Comparação entre as Simulações dos Fluxos de Potência Trifásico	
Convencionais – Polar, Retangular e Injeção de Corrente	81
4.3 Simulações de Sistemas com Condições Iniciais Desfavoráveis	90
4.4 Metodologias Convencionais x Métodos com Matriz Jacobiana Constante:	
Comparação de Tempo Computacional e Número de Iterações	94
4.5 Simulações em Sistemas Desequilibrados	98
4.5.1 Comparação entre as Simulações dos Fluxos de Potência Trifásico	
Convencionais – Polar, Retangular e Injeção de Corrente	98
4.5.2 Métodos com Matriz Jacobiana Constante	107
4.5.3 Simulações de Sistemas com Condições Iniciais Desfavoráveis	108

4.6 Outras Simulações	110
Capítulo 5	112
Conclusões	112
5.1 Considerações Iniciais	112
5.2 Sugestões para Estudos Futuros	113
Apêndice I	114
Formulação Injeção de Corrente	114
AI.1 Equações Básicas da Solução via Injeção de Corrente Trifásica	114
Apêndice II	116
Dados dos Sistemas C37 e 215 Barras	116
AII.1 Sistema C37	116
AII.2 Sistema 215barras	122
Referências Bibliográficas	145

Lista de Figuras

Figura 2.1 – Circuito π Equivalente da Linha Trifásica a Parâmetros Concentrados	6
Figura 2.2 – Circuito π Equivalente da Linha Trifásica na Forma Matricial	6
Figura 2.3 – Esquema de Ligação para Carga Ligada em Estrela-Aterrada	8
Figura 2.4 – Diagrama Unifilar do Sistema 3 Barras	28
Figura AII.1 – Topologia do Sistema C37	116

Lista de Tabelas

Tabela 2.1 – Dados de Tensão e Ângulos de Barras – Sistema 3 Barras	28
Tabela 2.2 – Dados de Potências – Sistema 3 Barras	28
Tabela 2.3 – Dados de Linhas – Sistema 3 Barras	28
Tabela 2.4 – Resultados de Tensão e Ângulos de Barras – Sistema 3 Barras	38
Tabela 2.5 – Resultados de Potência Gerada – Sistema 3 Barras	38
Tabela 2.6 – Trajetória de Convergência – Sistema 3 Barras – Polar Convencional	39
Tabela 2.7 – Trajetória de Convergência – Sistema 3 Barras – Polar Constante	39
Tabela 2.8 – Trajetória de Convergência – Retangular com Correção de Potência	
Reativa	45
Tabela 2.9 – Trajetória de Convergência – Retangular Convencional	50
Tabela 3.1 – Trajetória de Convergência em Função dos Resíduos de Potência –	
Injeção de Corrente	65
Tabela 3.2 – Trajetória de Convergência em Função dos Resíduos de Corrente –	
Injeção de Corrente	65
Tabela 3.3 – Trajetória de Convergência em Função dos Resíduos de Potência	66
Tabela 3.4 – Trajetória de Convergência em Função dos Resíduos de Corrente	66
Tabela 3.5 - Trajetória de Convergência em Função dos Resíduos de Potência -	
PCONST	66
Tabela 3.6 - Trajetória de Convergência em Função dos Resíduos de Corrente -	
PCONST	67
Tabela 3.7 – Trajetória de Convergência em Função dos Resíduos de Potência –	
ZCONST	71
Tabela 3.8 - Trajetória de Convergência em Função dos Resíduos de Corrente -	
ZCONST	71
Tabela 3.9 – Dados de Tensão e Ângulo de Barras – Condições Iniciais	
Desfavoráveis	75

Tabela 3.10 – Trajetória de Convergência em Função dos Resíduos de Potência – RCI

Tabela 3.11 – Trajetória de Convergência em Função dos Resíduos de Corrente – RCI

Tabela 4.1 – Variação da Relação R/X – Sistema 11 Barras – Q _{L8} = -101MVAr	82
Tabela 4.2 – Variação da Relação R/X – Sistema 11 Barras – Q _{L8} = -120MVAr	82
Tabela 4.3 – Variação da Relação R/X – Sistema 11 Barras – Q _{L8} = -121MVAr	82
Tabela 4.4 – Variação da Relação R/X – Sistema 11 Barras – Q _{L8} = -122MVAr	83
Tabela 4.5 – Variação da Relação R/X – Sistema 11 Barras – Q _{L8} = -123MVAr	83
Tabela 4.6 – Variação no Carregamento – Sistema 11 Barras – Q _{L8} = -101MVAr	83
Tabela 4.7 – Variação no Carregamento – Sistema 11 Barras – Q _{L8} = -120MVAr	84
Tabela 4.8 – Variação no Carregamento – Sistema 11 Barras – Q _{L8} = -121MVAr	84
Tabela 4.9 – Variação no Carregamento – Sistema 11 Barras – Q _{L8} = -122MVAr	84
Tabela 4.10 – Variação no Carregamento – Sistema 11 Barras – Q _{L8} = -123MVAr	85
Tabela 4.11 – Variação da Relação R/X – Sistema C37	85
Tabela 4.12 – Variação no Carregamento – Sistema C37	85
Tabela 4.13 – Variação da Relação R/X – Sistema C37pv	86
Tabela 4.14 – Variação no Carregamento – Sistema C37pv	86
Tabela 4.15 – Variação da Relação R/X – Sistema 43 Barras	86
Tabela 4.16 – Variação da Relação R/X – Sistema 215 Barras	87
Tabela 4.17 – Variação no Carregamento – Sistema 215 Barras	87
Tabela 4.18 – Soluções Múltiplas do Sistema 11 Barras	88
Tabela 4.19 – Soluções Múltiplas do Sistema 43 Barras	89
Tabela 4.20 – Condições Iniciais – Sistema 11 Barras	90
Tabela 4.21 – Resultados – Sistema 11 Barras	91
Tabela 4.22 – Ponto de Solução – Sistema 11 Barras	91
Tabela 4.23 – Condições Iniciais – Sistema C37	91
Tabela 4.24 – Resultados – Sistema C37	92
Tabela 4.25 – Ponto de Solução – Sistema C37	92
Tabela 4.26 – Condições Iniciais – Sistema C37pv	92

79

79

Tabela 4.27 – Resultados – Sistema C37pv	93
Tabela 4.28 – Ponto de Solução – Sistema C37pv	93
Tabela 4.29 – Número de Iterações e Tempo Computacional – Sistema 11 Barras	95
Tabela 4.30 – Número de Iterações e Tempo Computacional – Sistema C37	95
Tabela 4.31– Número de Iterações e Tempo Computacional – Sistema C37pv	96
Tabela 4.32 – Número de Iterações e Tempo Computacional – Sistema 43 Barras	96
Tabela 4.33 – Número de Iterações e Tempo Computacional – Sistema 215 Barras	97
Tabela 4.34 – Desequilíbrios Propostos no Sistema 11 Barras	98
Tabela 4.35 – Variação da Relação R/X – Sistema 11 Barras Desequilibrado – Q _{L8} =	
-101MVAr	98
Tabela 4.36 – Variação da Relação R/X – Sistema 11 Barras Desequilibrado – Q _{L8} =	
-120MVAr	99
Tabela 4.37 – Variação da Relação R/X – Sistema 11 Barras Desequilibrado – Q _{L8} =	
-121MVAr	99
Tabela 4.38 – Variação da Relação R/X – Sistema 11 Barras Desequilibrado –	
Q_{L8} = -122MVAr	99
Tabela 4.39 – Variação da Relação R/X – Sistema 11 Barras Desequilibrado –	
Q_{L8} = -123MVAr	100
Tabela 4.40 - Variação no Carregamento - Sistema 11 Barras Desequilibrado -	
Q_{L8} = -101MVAr	100
Tabela 4.41 - Variação no Carregamento - Sistema 11 Barras Desequilibrado -	
Q_{L8} = -120MVAr	100
Tabela 4.42 - Variação no Carregamento - Sistema 11 Barras Desequilibrado -	
Q_{L8} = -121MVAr	101
Tabela 4.43 – Variação no Carregamento – Sistema 11 Barras Desequilibrado –	
Q_{L8} = -122MVAr	101
Tabela 4.44 – Variação no Carregamento – Sistema 11 Barras Desequilibrado –	
Q_{L8} = -123MVAr	101
Tabela 4.45 – Desequilíbrios no Sistema C37	102
Tabela 4.46 – Variação da Relação R/X – Sistema C37 Desequilibrado	102
Tabela 4.47 – Variação no Carregamento – Sistema C37 Desequilibrado	102

Tabela 4.48 – Desequilíbrios no Sistema C37pv	103
Tabela 4.49 – Variação da Relação R/X – Sistema C37pv Desequilibrado	103
Tabela 4.50 – Variação no Carregamento – Sistema C37pv Desequilibrado	103
Tabela 4.51 – Desequilíbrios no Sistema 43 Barras	104
Tabela 4.52 – Variação da Relação R/X – Sistema 43 Barras Desequilibrado	104
Tabela 4.53 – Desequilíbrios no Sistema 215 Barras	104
Tabela 4.54 – Variação da Relação R/X – Sistema 215 Barras Desequilibrado	105
Tabela 4.55 – Soluções Múltiplas do Sistema 11 Barras Desequilibrado	106
Tabela 4.56 – Resultados – Sistema 11 Barras Desequilibrado	108
Tabela 4.57 – Ponto de Solução – Sistema 11 Barras Desequilibrado	108
Tabela 4.58 – Resultados – Sistema C37 Desequilibrado	109
Tabela 4.59 – Ponto de Solução – Sistema C37 Desequilibrado	109
Tabela 4.60 – Resultados – Sistema C37pv Desequilibrado	109
Tabela 4.61 – Ponto de Solução – Sistema C37pv Desequilibrado	109
Tabela AII.1 – Dados de Tensão e Ângulo – C37	116
Tabela AII.2 – Dados de Carga – C37	118
Tabela AII.3 – Resistências e Reatâncias de Linhas – C37	119

Tabela AII.4 – Resistências e Reatâncias Mútuas das Linhas – C37	120
Tabela AII.5 – Dados de Tensão e Ângulo – 215 Barras	122
Tabela AII.6 – Dados de Carga – 215 Barras	129

Tabela AII 7 – Resistências e Reatâncias de Linhas – 215 Barras	137
Tabela All. / – Resistencias e Reataneias de Llinas – 215 Darias	137

Capítulo 1

Introdução

1.1 Considerações Iniciais

As sucessivas mudanças no mercado elétrico brasileiro, começando pela mudança do modelo de mercado de energia, fizeram com que se tornassem cada vez mais importantes o estudo e a proposição de novas metodologias capazes de auxiliar a operação e o planejamento do sistema elétrico de geração, transmissão e distribuição.

Neste contexto, ganha importante relevância o estudo de metodologias para o cálculo do fluxo de potência, que, em linhas gerais, consistem no cálculo das tensões nas barras e dos fluxos de potência nas linhas de um sistema elétrico dado um nível de carga especificado e um programa de geração estabelecido. Tradicionalmente, o problema é abordado sob um enfoque estático, considerando-se tanto as equações algébricas de potência, expressas em coordenadas polares ou retangulares das tensões, quanto as inequações referentes aos limites das variáveis envolvidas [1].

A análise em regime permanente dos sistemas de transmissão é simplificada, isto é, como se supõe que o sistema trifásico opera em condições equilibradas, o estudo se resume à análise de um sistema monofásico. Por outro lado, quando o sistema de distribuição é o objeto do estudo, esta simplificação não é mais possível, pois os sistemas de distribuição operam de forma desequilibrada, uma vez que há desequilíbrio entre as cargas das fases, ocorre a assimetria das linhas sem transposição, além da presença de circuito monofásicos e bifásicos, sendo, portanto, indispensável a análise multifásica destes sistemas.

Ao longo dos anos, várias têm sido as contribuições no sentido de solucionar o problema do fluxo de potência em sistemas de distribuição [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Uma revisão ampla e completa destes trabalhos encontra-se na referência [15]. Uma revisão sucinta a respeito das publicações mais recentes é apresentada a seguir.

Geralmente, os efeitos do neutro e do aterramento são desconsiderados, no entanto, em [16] faz-se o estudo de sistemas de distribuição trifásicos a 4 fios, com a explicitação do fio neutro e da terra, com o objetivo de comprovar que a implantação deste tipo de sistema é de baixo custo e que permite melhor detectar faltas do que o sistema a 3 fios.

Em [17] apresenta-se uma metodologia que considera as características topológicas dos sistemas de distribuição, obtendo a solução do fluxo de potência diretamente pela multiplicação de duas matrizes que são desenvolvidas sem a necessidade de fatoração e nem do processo de substituição inversa ou direta. O objetivo é a utilização nos processos de automação da distribuição.

Mais recentemente, foi apresentado em [18] uma nova forma de representação da barra PV no método de solução do fluxo de potência via injeção de corrente. A potência reativa gerada pela barra PV é considerada como uma variável dependente e os resíduos de corrente são calculados em função dos resíduos de potência para cada barra.

A referência [19] descreve uma nova metodologia de cálculo do fluxo de potência baseada na utilização de equações algébrico-diferenciais, de modo a contornar o problema encontrado pelas metodologias convencionais quando as condições iniciais do problema são desfavoráveis.

Em [20] descreve-se uma metodologia robusta para solução do fluxo de potência trifásico com otimização de passo, utilizando as equações de injeção de corrente expressas em coordenadas retangulares.

1.2 Motivações e Objetivos

Frente a esta grande demanda por novas metodologias para solução do fluxo de potência trifásico pelos motivos expostos, considera-se necessário um estudo comparativo entre as formulações existentes e a proposição de novas metodologias.

Neste contexto, este trabalho tem como principais objetivos:

- Apresentação das metodologias convencionais polar, retangular e injeção de corrente;
- Estudo comparativo entre as metodologias convencionais;

 Proposta de nova metodologia derivada da formulação via injeção de corrente, propiciando um método robusto a condições iniciais.

1.3 Principais Contribuições do Trabalho

Como principais contribuições do trabalho destacam-se:

- O desenvolvimento e a implementação de uma nova metodologia para a resolução de sistemas trifásicos com condições iniciais desfavoráveis;
- O estudo comparativo dentre as diversas formulações de solução do fluxo de potência trifásico equilibrado ou não, cuja metodologia básica é a aplicação do método iterativo de Newton-Raphson;
- O registro dos principais métodos utilizados para a solução do fluxo de potência trifásico com a apresentação das equações básicas e algoritmos de solução.

1.4 Publicações Decorrentes do Trabalho

 Uma Avaliação Crítica das Formulações de Fluxo de Potência para Sistemas Trifásicos via Método de Newton-Raphson a ser submetido à revista da Sociedade Brasileira de Automática.

1.5 Estrutura do Trabalho

No Capítulo 2 é mostrada a modelagem dos componentes para sistemas trifásicos e são feitas algumas considerações inicias. Além disso, apresentam-se as expansões dos métodos de solução do fluxo de potência polar e retangular para sistemas de distribuição trifásicos com a descrição das equações básicas e algoritmos de solução. Inclusive para o método de solução retangular são apresentadas duas propostas em função da presença de barras PV, uma delas utilizando a correção de potência reativa gerada nestas barras. No Capítulo 3 apresenta-se a descrição do método de solução via injeção de corrente convencional com suas equações básicas e algoritmo de solução, além da proposição de uma nova metodologia derivada do modelo injeção de corrente, objetivando a solução de sistemas com condições iniciais desfavoráveis.

No Capítulo 4, os resultados obtidos nas diversas metodologias descritas e propostas são apresentados, comparados e discutidos.

No Capítulo 5 faz-se a apresentação das principais conclusões extraídas do estudo proposto neste trabalho.

Capítulo 2

Formulações Trifásicas na Solução do Problema de Fluxo de Potência

2.1 Introdução

Os modelos das formulações polar e retangular trifásicas apresentados neste capítulo partem dos mesmos princípios e equações utilizados para a resolução monofásica convencional, ou seja, o estudo do fluxo de potência trifásico será desenvolvido a partir das equações de potência ativa e reativa injetadas nas barras, expressas em termos de coordenadas polares ou retangulares conforme o caso.

Dessa maneira, o problema básico de fluxo de potência trifásico em um sistema de *n* barras será constituído de *6n* equações, ou seja, cada barra será representada por um conjunto de 3 equações de potência ativa e 3 equações de potência reativa, uma para cada fase. Vale ressaltar que para as barras de referência (V θ) tanto as equações de potência ativa nas três fases quanto as de potência reativa devem ser eliminadas. O tratamento dispensado às barras PV será apresentado nas seções subseqüentes.

A necessidade da apresentação dessas formulações surge em face da carência de suas descrições em outras fontes e também em virtude dos novos desafios impostos pelo crescente interesse em estudos sobre o sistema de distribuição.

Os resultados apresentados neste capítulo para todas as aplicações numéricas são relativos somente à fase *a* do sistema de 3 barras apresentado na seção 2.5 deste capítulo.

2.2 Modelo dos Componentes

Para análise em regime permanente, as linhas trifásicas são representadas por um circuito π a parâmetros concentrados, conforme ilustra a Figura 2.1. O acoplamento entre os shunts de barra pode ocorrer numa linha de potência natural elevada (LPNE). A Figura 2.2 mostra a representação matricial para o circuito em questão.

Figura 2.1– Circuito π Equivalente da Linha Trifásica a Parâmetros Concentrados.

Figura 2.2– Circuito π Equivalente da Linha Trifásica na Forma Matricial.

Os elementos do circuito da Figura 2.2 são matrizes 3x3 dadas por:

$$\begin{bmatrix} Z_{km}^{abc} \end{bmatrix} = \begin{bmatrix} Z_{km}^{aa} & Z_{km}^{ab} & Z_{km}^{ac} \\ Z_{km}^{ba} & Z_{km}^{bb} & Z_{km}^{bc} \\ Z_{km}^{ca} & Z_{km}^{cb} & Z_{km}^{cc} \end{bmatrix} = \begin{bmatrix} r_{km}^{aa} & r_{km}^{ab} & r_{km}^{ac} \\ r_{km}^{ba} & r_{km}^{bb} & r_{km}^{bc} \\ r_{km}^{ca} & r_{km}^{cb} & r_{km}^{cc} \end{bmatrix} + j \begin{bmatrix} x_{km}^{aa} & x_{km}^{ab} & x_{km}^{ac} \\ x_{km}^{ba} & x_{km}^{bb} & x_{km}^{bc} \\ x_{km}^{ca} & x_{km}^{cb} & x_{km}^{cc} \end{bmatrix}$$
(2.1)

$$\begin{bmatrix} Y_{sh_{km}}^{abc} \end{bmatrix} = j \begin{bmatrix} b_{sh_{km}}^{aa} & b_{sh_{km}}^{ab} & b_{sh_{km}}^{ac} \\ b_{sh_{km}}^{ba} & b_{sh_{km}}^{bb} & b_{sh_{km}}^{bc} \\ b_{sh_{km}}^{ca} & b_{sh_{km}}^{cb} & b_{sh_{km}}^{cc} \end{bmatrix}$$
(2.2)

Contudo, é muito comum em sistemas de distribuição a presença de derivações monofásicas e bifásicas. Para representar estes elementos, considera-se que a fase não existente possui impedância série infinita. Matematicamente, adota-se o artifício de substituir a impedância própria da fase inexistente por um número de valor elevado (por exemplo 10^{+15}). Desta forma, para um ramo bifásico constituído pelas fases a e b, tem-se:

$$\begin{bmatrix} Z_{km}^{abc} \end{bmatrix} = \begin{bmatrix} Z_{km}^{aa} & Z_{km}^{ab} & 0 \\ Z_{km}^{ba} & Z_{km}^{bb} & 0 \\ 0 & 0 & 10^{15} \end{bmatrix}$$
(2.3)

Procedimento semelhante é adotado para a matriz admitância do circuito π equivalente. Todavia neste caso substitui-se a susceptância por zero.

Para o desenvolvimento da análise trifásica de sistema de distribuição, deve-se levar em consideração os diferentes tipos de conexões das cargas, além da possibilidade de haver cargas monofásicas ou bifásicas. Neste trabalho, as cargas são matematicamente representadas nas expressões de solução como conectadas em estrela-aterrada e do tipo potência constante. A Figura 2.3 mostra a representação esquemática de cargas monofásicas, bifásicas e trifásicas conectadas em estrela-aterrada.

Figura 2.3 –Esquema de Ligação Para Carga Ligada em Estrela-Aterrada: (a) Monofásica; (b) Bifásica; (c) Trifásica.

Caso o sistema em estudo tenha cargas ligadas em triângulo, deverá ser realizada a transformação para estrela de modo que os modelos apresentados possam ser utilizados.

2.3 Fluxo de Potência Trifásico Polar

2.3.1 Equações Polares Básicas

A formulação do fluxo de potência trifásico polar segue praticamente os mesmos passos da metodologia monofásica convencional. Dessa forma, a potência complexa injetada em uma barra genérica k do sistema é dada por:

$$S_k = V_k \cdot I_k^* \tag{2.4}$$

ou

$$S_k^* = V_k^* \cdot I_k \tag{2.5}$$

A corrente trifásica injetada na barra k, na fase s pode ser escrita da seguinte forma:

$$I_k^s = \sum_{t \in \alpha_p} Y_{kk}^{st} E_k^t + \sum_{\substack{m \in \Omega_k \\ m \neq k}} \sum_{t \in \alpha_p} Y_{km}^{st} E_m^t$$
(2.6)

onde:

$$s, t \in \alpha_p$$
$$\alpha_p = \{a, b, c\}$$

A expressão (2.6) pode ser colocada na seguinte forma matricial:

$$\begin{bmatrix} I_{1}^{abc} \\ I_{2}^{abc} \\ \vdots \\ \vdots \\ I_{n}^{abc} \\ I_{n}^{abc} \end{bmatrix} = \begin{bmatrix} Y_{11}^{abc} & Y_{12}^{abc} & | & \cdots & | & Y_{1n}^{abc} \\ Y_{21}^{abc} & Y_{22}^{abc} & | & \cdots & | & Y_{2n}^{abc} \\ \vdots & \vdots & | & \ddots & | & \vdots \\ \vdots & \vdots & | & \ddots & | & \vdots \\ I_{n}^{abc} & I_{n1}^{abc} & Y_{n2}^{abc} & | & \cdots & | & Y_{nn}^{abc} \end{bmatrix} \bullet \begin{bmatrix} V_{1}^{abc} \\ V_{2}^{abc} \\ \vdots \\ \vdots \\ I_{n-1}^{abc} \\ V_{nn}^{abc} \end{bmatrix}$$
(2.7)

Os termos da matriz admitância nodal na expressão (2.7) podem ser reescritos em função de sua condutância e de sua susceptância. Dessa forma, tem-se:

$$Y_{km}^{abc} = G_{km}^{abc} + jB_{km}^{abc}$$

$$\tag{2.8}$$

Na forma matricial:

$$Y_{km}^{abc} = \begin{bmatrix} G_{km}^{aa} & G_{km}^{ab} & G_{km}^{ac} \\ G_{km}^{ba} & G_{km}^{bb} & G_{km}^{bc} \\ G_{km}^{ca} & G_{km}^{cb} & G_{km}^{cc} \end{bmatrix} + j \begin{bmatrix} B_{km}^{aa} & B_{km}^{ab} & B_{km}^{ac} \\ B_{km}^{ba} & B_{km}^{bb} & B_{km}^{bc} \\ B_{km}^{ca} & B_{km}^{cb} & B_{km}^{cc} \end{bmatrix}$$
(2.9)

A equação (2.6) pode ser reescrita como:

$$I_{k}^{s} = I_{rk}^{s} + jI_{mk}^{s}$$
(2.10)

onde, utilizando-se as componentes real e imaginária tanto de tensão quanto da admitância obtém-se:

$$I_{rk}^{s} = \sum_{t \in \alpha_{p}} (G_{kk}^{st} V_{rk}^{t} - B_{kk}^{st} V_{mk}^{t}) + \sum_{\substack{m \in \Omega_{k} \\ m \neq k}} \sum_{t \in \alpha_{p}} (G_{km}^{st} V_{rm}^{t} - B_{km}^{st} V_{mm}^{t})$$
(2.11)

$$I_{mk}^{s} = \sum_{t \in \alpha_{p}} (B_{kk}^{st} V_{rk}^{t} + G_{kk}^{st} V_{mk}^{t}) + \sum_{\substack{m \in \Omega_{k} \\ m \neq k}} \sum_{t \in \alpha_{p}} (B_{km}^{st} V_{rm}^{t} + G_{km}^{st} V_{mm}^{t})$$
(2.12)

Matricialmente:

$$I_{k}^{abc} = \begin{bmatrix} I_{rk}^{a} \\ I_{rk}^{b} \\ I_{rk}^{c} \end{bmatrix} + j \begin{bmatrix} I_{mk}^{a} \\ I_{mk}^{b} \\ I_{mk}^{c} \end{bmatrix}$$
(2.13)

As tensões podem ser escritas como segue:

$$V_{k}^{abc} = \begin{bmatrix} V_{rk}^{a} \\ V_{rk}^{b} \\ V_{rk}^{c} \end{bmatrix} + j \begin{bmatrix} V_{mk}^{a} \\ V_{mk}^{b} \\ V_{mk}^{c} \end{bmatrix}$$
(2.14)

Considerando-se que $V_k = V_k e^{j\theta_k}$, tem-se para a fase *a*:

$$S_k^{a^*} = V_k^a \ e^{-j\theta_k^a} \cdot I_k^a \tag{2.15}$$

Expressando-se a corrente em termos da matriz admitância nodal trifásica e do vetor de tensões nas barras, conforme descrito pela equação (2.7), a potência complexa dada pela equação (2.15) pode ser reescrita da seguinte forma:

$$S_{k}^{a^{*}} = V_{k}^{a} e^{-j\theta_{k}^{a}} \cdot \left[\sum_{m \in \Omega_{k}} (Y_{km}^{aa} V_{m}^{a}) + \sum_{m \in \Omega_{k}} (Y_{km}^{ab} V_{m}^{b}) + \sum_{m \in \Omega_{k}} (Y_{km}^{ac} V_{m}^{c})\right]$$
(2.16)

Expandindo-se cada admitância em termos de sua condutância e susceptância, obtém-se:

$$S_{k}^{a^{*}} = V_{k}^{a} e^{-j\theta_{k}^{a}} \cdot \left[\sum_{m \in \Omega_{k}} (G_{km}^{aa} + jB_{km}^{aa})V_{m}^{a} + \sum_{m \in \Omega_{k}} (G_{km}^{ab} + jB_{km}^{ab})V_{m}^{b} + \sum_{m \in \Omega_{k}} (G_{km}^{ac} + jB_{km}^{ac})V_{m}^{c})\right]$$

$$(2.17)$$

Desenvolvendo-se a expressão (2.17) e separando-se a potência complexa em suas partes real e imaginária:

$$P_{k}^{a} = \left[\sum_{m \in \Omega_{k}} V_{k}^{a} V_{m}^{a} (G_{km}^{aa} cos \theta_{km}^{aa} + B_{km}^{aa} sen \theta_{km}^{aa})\right] + \left[\sum_{m \in \Omega_{k}} V_{k}^{a} V_{m}^{b} (G_{km}^{ab} cos \theta_{km}^{ab} + B_{km}^{ab} sen \theta_{km}^{ab})\right] + \left[\sum_{m \in \Omega_{k}} V_{k}^{a} V_{m}^{c} (G_{km}^{ac} cos \theta_{km}^{ac} + B_{km}^{ac} sen \theta_{km}^{ac})\right]$$

$$(2.18)$$

$$Q_{k}^{a} = \left[\sum_{m \in \Omega_{k}} V_{k}^{a} V_{m}^{a} (G_{km}^{aa} sen \theta_{km}^{aa} - B_{km}^{aa} cos \theta_{km}^{aa})\right] + \left[\sum_{m \in \Omega_{k}} V_{k}^{a} V_{m}^{b} (G_{km}^{ab} sen \theta_{km}^{ab} - B_{km}^{ab} cos \theta_{km}^{ab})\right] + \left[\sum_{m \in \Omega_{k}} V_{k}^{a} V_{m}^{c} (G_{km}^{ac} sen \theta_{km}^{ac} - B_{km}^{ac} cos \theta_{km}^{ac})\right]$$

$$(2.19)$$

As expressões (2.18) e (2.19) representam as equações básicas de potência ativa e reativa líquida injetada nas barras. Estes valores são previamente conhecidos no problema de fluxo de potência, sendo expressos em função das potências de geração e de carga. Assim, para uma barra genérica k, fase a, tem-se:

$$P_k^a = P_{Gk}^a - P_{Lk}^a$$
 (2.20)

$$Q_k^a = Q_{Gk}^a - Q_{Lk}^a$$
 (2.21)

2.3.2 Metodologia de Solução

A solução das equações não lineares (2.18) e (2.19) é usualmente realizada através do processo iterativo de Newton-Raphson, que por sua vez, requer a montagem da matriz Jacobiana a cada iteração. Esta matriz é composta pelas derivadas parciais de (2.18) e (2.19) em relação às variáveis de estado do problema, consideradas como sendo os módulos e os ângulos das tensões nas barras. Assim sendo, considerando a fase *a*, temse as seguintes derivadas parciais da potência ativa em relação aos ângulos das tensões:

$$\frac{\partial P_k^a}{\partial \theta_k^a} = -Q_k^a - (V_k^a)^2 B_{kk}^{aa}$$
(2.22)

$$\frac{\partial P_k^a}{\partial \theta_k^b} = V_k^a V_k^b \left(G_{kk}^{ab} sen \theta_{kk}^{ab} - B_{kk}^{ab} \cos \theta_{kk}^{ab} \right)$$
(2.23)

$$\frac{\partial P_k^a}{\partial \theta_k^c} = V_k^a V_k^c \left(G_{kk}^{ac} sen \theta_{kk}^{ac} - B_{kk}^{ac} \cos \theta_{kk}^{ac} \right)$$
(2.24)

$$\frac{\partial P_k^a}{\partial \theta_m^a} = V_k^a V_m^a (G_{km}^{aa} sen \theta_{km}^{aa} - B_{km}^{aa} \cos \theta_{km}^{aa})$$
(2.25)

$$\frac{\partial P_k^a}{\partial \theta_m^b} = V_k^a V_m^b (G_{km}^{ab} sen \theta_{km}^{ab} - B_{km}^{ab} \cos \theta_{km}^{ab})$$
(2.26)

$$\frac{\partial P_k^a}{\partial \theta_m^c} = V_k^a V_m^c (G_{km}^{ac} sen \theta_{km}^{ac} - B_{km}^{ac} \cos \theta_{km}^{ac})$$
(2.27)

Da mesma forma, em relação aos módulos das tensões tem-se:

$$\frac{\partial P_k^a}{\partial V_k^a} = \frac{P_k^a}{V_k^a} + V_k^a G_{kk}^{aa}$$
(2.28)

$$\frac{\partial P_k^a}{\partial V_k^b} = V_k^a \left(G_{kk}^{ab} \cos \theta_{kk}^{ab} + B_{kk}^{ab} \sin \theta_{kk}^{ab} \right)$$
(2.29)

$$\frac{\partial P_k^a}{\partial V_k^c} = V_k^a \left(G_{kk}^{ac} \cos \theta_{kk}^{ac} + B_{kk}^{ac} \sin \theta_{kk}^{ac} \right)$$
(2.30)

$$\frac{\partial P_k^a}{\partial V_m^a} = V_k^a \left(G_{km}^{aa} \cos \theta_{km}^{aa} + B_{km}^{aa} \sin \theta_{km}^{aa} \right)$$
(2.31)

$$\frac{\partial P_k^a}{\partial V_m^b} = V_k^a \left(G_{km}^{ab} \cos \theta_{km}^{ab} + B_{km}^{ab} \sin \theta_{km}^{ab} \right)$$
(2.32)

$$\frac{\partial P_k^a}{\partial V_m^c} = V_k^a (G_{km}^{ac} \cos \theta_{km}^{ac} + B_{km}^{ac} \sin \theta_{km}^{ac})$$
(2.33)

Por outro lado, as derivadas parciais de potência reativa em relação aos ângulos das tensões são dadas por:

$$\frac{\partial Q_k^a}{\partial \theta_k^a} = P_k^a - (V_k^a)^2 G_{kk}^{aa}$$
(2.34)

$$\frac{\partial Q_k^a}{\partial \theta_k^b} = V_k^a V_k^b \left(-G_{kk}^{ab} \cos \theta_{kk}^{ab} - B_{kk}^{ab} \sin \theta_{kk}^{ab} \right)$$
(2.35)

$$\frac{\partial Q_k^a}{\partial \theta_k^c} = V_k^a V_k^c \left(-G_{kk}^{ac} \cos \theta_{kk}^{ac} - B_{kk}^{ac} \sin \theta_{kk}^{ac} \right)$$
(2.36)

$$\frac{\partial Q_k^a}{\partial \theta_m^a} = V_k^a V_m^a \left(-G_{km}^{aa} \cos \theta_{km}^{aa} - B_{km}^{aa} \sin \theta_{km}^{aa} \right)$$
(2.37)

$$\frac{\partial Q_k^a}{\partial \theta_m^b} = V_k^a V_m^b \left(-G_{km}^{ab} \cos \theta_{km}^{ab} - B_{km}^{ab} \sin \theta_{km}^{ab} \right)$$
(2.38)

$$\frac{\partial Q_k^a}{\partial \theta_m^c} = V_k^a V_m^c \left(-G_{km}^{ac} \cos \theta_{km}^{ac} - B_{km}^{ac} \sin \theta_{km}^{ac} \right)$$
(2.39)

Da mesma forma, as derivadas parciais de potência reativa em relação aos módulos das tensões são dadas por:

$$\frac{\partial Q_k^a}{\partial V_k^a} = \frac{Q_k^a}{V_k^a} - V_k^a B_{kk}^{aa}$$
(2.40)

$$\frac{\partial Q_k^a}{\partial V_k^b} = V_k^a (G_{kk}^{ab} sen \theta_{kk}^{ab} - B_{kk}^{ab} \cos \theta_{kk}^{ab})$$
(2.41)

$$\frac{\partial Q_k^a}{\partial V_k^c} = V_k^a \left(G_{kk}^{ac} sen \theta_{kk}^{ac} - B_{kk}^{ac} \cos \theta_{kk}^{ac} \right)$$
(2.42)

$$\frac{\partial Q_k^a}{\partial V_m^a} = V_k^a (G_{km}^{aa} sen \theta_{km}^{aa} - B_{km}^{aa} \cos \theta_{km}^{aa})$$
(2.43)

$$\frac{\partial Q_k^a}{\partial V_m^b} = V_k^a (G_{km}^{ab} sen \theta_{km}^{ab} - B_{km}^{ab} \cos \theta_{km}^{ab})$$
(2.44)

$$\frac{\partial Q_k^a}{\partial V_m^c} = V_k^a (G_{km}^{ac} sen \theta_{km}^{ac} - B_{km}^{ac} \cos \theta_{km}^{ac})$$
(2.45)

Por analogia, facilmente são definidas as expressões referentes às fases b e c.

2.3.3 Algoritmo de Solução – Polar

A partir das expressões apresentadas nos itens 2.3.1 e 2.3.2, pode-se caminhar para a elaboração do algoritmo para a solução do fluxo de potência polar trifásico, descrito pelas seguintes etapas:

- Passo 1: Determina-se a matriz admitância nodal trifásica *Y*^{abc};
- Passo 2: Determinam-se os resíduos de potência ativa e reativa de todas as barras do sistema, através de:

$$\underline{I}^{abc} = \underline{Y}^{abc} \cdot \underline{V}^{abc}$$
(2.46)

$$\underline{\boldsymbol{S}}_{calc}^{abc} = \underline{\boldsymbol{V}}^{abc} \cdot (\underline{\boldsymbol{I}}^{abc})^*$$
(2.47)

$$\Delta \underline{\underline{P}}^{abc} = \underline{\underline{P}}^{abc}_{esp} - \underline{\underline{P}}^{abc}_{calc}$$
(2.48)

$$\Delta \underline{\underline{Q}}^{abc} = \underline{\underline{Q}}^{abc}_{esp} - \underline{\underline{Q}}^{abc}_{calc}$$
(2.49)

 Passo 3: Comparam-se os resíduos com uma tolerância pré-fixada. Se o resíduo máximo de potência for menor que esta tolerância, o processo é finalizado. Caso o resíduo máximo de potência seja maior que esta tolerância, então calculam-se as correções dos módulos e dos ângulos das tensões através da solução do sistema de equações (2.50). As equações de potência reativa nas três fases de uma barra PV são eliminadas deste sistema de equações.

$$\begin{bmatrix} \Delta \underline{P}^{abc} \\ \Delta \underline{Q}^{abc} \end{bmatrix} = \begin{bmatrix} \frac{\partial \underline{P}^{abc}}{\partial \underline{\theta}^{abc}} & \frac{\partial \underline{P}^{abc}}{\partial \underline{V}^{abc}} \\ \frac{\partial \underline{Q}^{abc}}{\partial \underline{\theta}^{abc}} & \frac{\partial \underline{Q}^{abc}}{\partial \underline{V}^{abc}} \end{bmatrix} \bullet \begin{bmatrix} \Delta \underline{\theta}^{abc} \\ \Delta \underline{V}^{abc} \end{bmatrix}$$
(2.50)

 Passo 4: A atualização dos módulos e dos ângulos das tensões são feitas através de (2.51) e (2.52):

$$\underline{V}^{(h+1)s} = \underline{V}^{(h)s} + \underline{\Delta V}^{(h)s}$$
(2.51)

$$\underline{\theta}^{(h+1)s} = \underline{\theta}^{(h)s} + \underline{\Delta}\underline{\theta}^{(h)s}$$
(2.52)

 Passo 5: Com os novos valores de tensão, os resíduos de potência são recalculados em todas as barras. Se estes ainda forem maiores que a tolerância, uma nova matriz Jacobiana é calculada a partir dos valores atualizados. Este passo se repete até que os resíduos encontrados sejam menores que a tolerância estipulada.

Seguindo a linha do algoritmo anteriormente apresentado, ainda é possível calcular a matriz Jacobiana, nos moldes da equação (2.50), somente na primeira iteração e mantê-la constante durante todo o processo iterativo. Tal procedimento visa à redução do tempo computacional, uma vez que é necessária a fatoração desta matriz uma única vez. Contudo, tal estratégia pode acarretar em um número maior de iterações na busca da solução. Diferentemente da matriz Jacobiana, os resíduos são calculados a cada iteração através das equações (2.48) e (2.49).

2.4 Fluxo de Potência Retangular Trifásico

2.4.1 Equações Retangulares Básicas

Para o desenvolvimento das expressões para o cálculo do fluxo de potência retangular trifásico, buscam-se as equações de potência ativa e reativa expressas em termos das coordenadas retangulares das tensões. Nestes termos, a equação (2.15) pode ser escrita em função das coordenadas retangulares da tensão e da corrente. Assim sendo, para uma barra genérica k, fase a, tem-se:

$$P_k^a + jQ_k^a = (V_{rk}^a + jV_{mk}^a)(I_{rk}^a - jI_{mk}^a)$$
(2.53)

Desenvolvendo-se a equação (2.53) obtém-se:

$$P_k^a + jQ_k^a = (V_{rk}^a I_{rk}^a + V_{mk}^a I_{mk}^a) + j(V_{mk}^a I_{rk}^a - V_{rk}^a I_{mk}^a)$$
(2.54)

Igualando-se a componente real de ambos os membros de (2.54):

$$P_k^a = V_{rk}^a I_{rk}^a + V_{mk}^a I_{mk}^a$$
(2.55)

Por outro lado, igualando-se a componente imaginária obtém-se:

$$Q_k^a = V_{mk}^a I_{rk}^a - V_{rk}^a I_{mk}^a$$
(2.56)

Expressando-se a corrente em termos da matriz admitância nodal trifásica e do vetor de tensões na equação (2.55) obtém-se:

$$P_{Gk}^{a} - P_{Lk}^{a} = P_{k}^{a} = (V_{rk}^{a})^{2} G_{kk}^{aa} + (V_{mk}^{a})^{2} G_{kk}^{aa} + + \sum_{\substack{m \in \Omega_{k} \\ m \neq k}} [V_{rk}^{a} (G_{km}^{aa} V_{rm}^{a} - B_{km}^{aa} V_{mm}^{a}) + V_{mk}^{a} (G_{km}^{aa} V_{mm}^{a} + B_{km}^{aa} V_{rm}^{a})] + + V_{rk}^{a} V_{rk}^{b} G_{kk}^{ab} + V_{mk}^{a} V_{mk}^{b} G_{kk}^{ab} - V_{rk}^{a} V_{mk}^{b} B_{kk}^{ab} + V_{mk}^{a} V_{rk}^{b} B_{kk}^{ab} + + \sum_{\substack{m \in \Omega_{k} \\ m \neq k}} [V_{rk}^{a} (G_{km}^{ab} V_{rm}^{b} - B_{km}^{ab} V_{mm}^{b}) + V_{mk}^{a} (G_{km}^{ab} V_{mm}^{b} + B_{km}^{ab} V_{rm}^{b})] + + V_{rk}^{a} V_{rk}^{c} G_{kk}^{ac} - V_{rk}^{a} V_{mk}^{c} B_{kk}^{ac} + V_{mk}^{a} V_{mk}^{c} G_{kk}^{ac} + V_{mk}^{a} V_{rk}^{c} B_{kk}^{ac} + + \sum_{\substack{m \in \Omega_{k} \\ m \neq k}} [V_{rk}^{a} (G_{km}^{ac} V_{rm}^{c} - B_{km}^{ac} V_{mm}^{c}) + V_{mk}^{a} (G_{km}^{ac} V_{mm}^{c} + B_{km}^{ac} V_{rm}^{c})]$$

$$(2.57)$$

De forma análoga para a potência reativa dada por (2.56), obtém-se:

$$\begin{aligned} Q_{Gk}^{a} - Q_{Lk}^{a} &= Q_{k}^{a} = -(V_{mk}^{a})^{2} B_{kk}^{aa} - (V_{rk}^{a})^{2} B_{kk}^{aa} + \\ &+ \sum_{\substack{m \in \Omega_{k} \\ m \neq k}} [V_{mk}^{a} (G_{km}^{aa} V_{rm}^{a} - B_{km}^{aa} V_{mm}^{a}) - V_{rk}^{a} (G_{km}^{aa} V_{mm}^{a} + B_{km}^{aa} V_{rm}^{a})] + \\ &+ V_{mk}^{a} V_{rk}^{b} G_{kk}^{ab} - V_{mk}^{a} V_{mk}^{b} B_{kk}^{ab} - V_{rk}^{a} V_{mk}^{b} G_{kk}^{ab} - V_{rk}^{a} V_{rk}^{b} B_{kk}^{ab} + \\ &+ \sum_{\substack{m \in \Omega_{k} \\ m \neq k}} [V_{mk}^{a} (G_{km}^{ab} V_{rm}^{b} - B_{km}^{ab} V_{mm}^{b}) - V_{rk}^{a} (G_{km}^{ab} V_{mm}^{b} + B_{km}^{ab} V_{rm}^{b})] + \\ &+ V_{mk}^{a} V_{rk}^{c} G_{kk}^{ac} - V_{mk}^{a} V_{mk}^{c} B_{kk}^{ac} - V_{rk}^{a} V_{rk}^{c} G_{kk}^{ac} - V_{rk}^{a} V_{rk}^{c} B_{kk}^{ac} + \\ &+ \sum_{\substack{m \in \Omega_{k} \\ m \neq k}} [V_{mk}^{a} (G_{km}^{ac} V_{rm}^{c} - B_{km}^{ac} V_{mm}^{c}) - V_{rk}^{a} (G_{km}^{ac} V_{rm}^{c} + B_{km}^{ac} V_{rm}^{c})] \end{aligned}$$

$$(2.58)$$

As expressões (2.57) e (2.58) representam as equações básicas de potência ativa e reativa líquida injetada nas barras, expressas em coordenadas retangulares das tensões.

2.4.2 Metodologia de Solução

A solução das equações não lineares (2.57) e (2.58) através do processo iterativo de Newton-Raphson requer a montagem da matriz Jacobiana a cada iteração. Tal matriz é composta pelas derivadas parciais de (2.57) e (2.58) em relação às componentes real e imaginária das tensões nas barras. Assim, as derivadas parciais de (2.57) em relação às componentes reais das tensões são dadas por:

$$\frac{\partial P_k^a}{\partial V_{rk}^a} = V_{rk}^a G_{kk}^{aa} + V_{mk}^a B_{kk}^{aa} + I_{rk}^a$$
(2.59)

$$\frac{\partial P_k^a}{\partial V_{rk}^b} = V_{rk}^a G_{kk}^{ab} + V_{mk}^a B_{kk}^{ab}$$
(2.60)

$$\frac{\partial P_k^a}{\partial V_{rk}^c} = V_{rk}^a G_{kk}^{ac} + V_{mk}^a B_{kk}^{ac}$$
(2.61)

$$\frac{\partial P_k^a}{\partial V_{rm}^a} = V_{rk}^a G_{km}^{aa} + V_{mk}^a B_{km}^{aa}$$
(2.62)

$$\frac{\partial P_k^a}{\partial V_{rm}^b} = V_{rk}^a G_{km}^{ab} + V_{mk}^a B_{km}^{ab}$$
(2.63)

$$\frac{\partial P_k^a}{\partial V_{rm}^c} = V_{rk}^a G_{km}^{ac} + V_{mk}^a B_{km}^{ac}$$
(2.64)

Da mesma forma, em relação às componentes imaginárias das tensões tem-se:

$$\frac{\partial P_k^a}{\partial V_{mk}^a} = -V_{rk}^a B_{kk}^{aa} + V_{mk}^a G_{kk}^{aa} + I_{mk}^a$$
(2.65)

$$\frac{\partial P_k^a}{\partial V_{mk}^b} = -V_{rk}^a B_{kk}^{ab} + V_{mk}^a G_{kk}^{ab}$$
(2.66)

$$\frac{\partial P_k^a}{\partial V_{mk}^c} = -V_{rk}^a B_{kk}^{ac} + V_{mk}^a G_{kk}^{ac}$$
(2.67)

$$\frac{\partial P_k^a}{\partial V_{mm}^a} = -V_{rk}^a B_{km}^{aa} + V_{mk}^a G_{km}^{aa}$$
(2.68)

$$\frac{\partial P_k^a}{\partial V_{mm}^b} = -V_{rk}^a B_{km}^{ab} + V_{mk}^a G_{km}^{ab}$$
(2.69)

$$\frac{\partial P_k^a}{\partial V_{mm}^c} = -V_{rk}^a B_{km}^{ac} + V_{mk}^a G_{km}^{ac}$$
(2.70)

Por outro lado, as derivadas parciais de (2.58) em relação às componentes reais das tensões são dadas por:

$$\frac{\partial Q_k^a}{\partial V_{rk}^a} = -V_{rk}^a B_{kk}^{aa} + V_{mk}^a G_{kk}^{aa} - I_{mk}^a$$
(2.71)

$$\frac{\partial Q_k^a}{\partial V_{rk}^b} = V_{mk}^a G_{kk}^{ab} - V_{rk}^a B_{kk}^{ab}$$
(2.72)

$$\frac{\partial Q_k^a}{\partial V_{rk}^c} = V_{mk}^a G_{kk}^{ac} - V_{rk}^a B_{kk}^{ac}$$
(2.73)

$$\frac{\partial Q_k^a}{\partial V_{rm}^a} = V_{mk}^a G_{km}^{aa} - V_{rk}^a B_{km}^{aa}$$
(2.74)

$$\frac{\partial Q_k^a}{\partial V_{rm}^b} = V_{mk}^a G_{km}^{ab} - V_{rk}^a B_{km}^{ab}$$
(2.75)

$$\frac{\partial Q_k^a}{\partial V_{rm}^c} = V_{mk}^a G_{km}^{ac} - V_{rk}^a B_{km}^{ac}$$
(2.76)

Da mesma forma, as derivadas parciais de potência reativa em relação às componentes imaginárias das tensões são dadas por:

$$\frac{\partial Q_k^a}{\partial V_{mk}^a} = -V_{rk}^a G_{kk}^{aa} - V_{mk}^a B_{kk}^{aa} + I_{rk}^a$$
(2.77)

$$\frac{\partial Q_k^a}{\partial V_{mk}^b} = -V_{mk}^a B_{kk}^{ab} - V_{rk}^a G_{kk}^{ab}$$
(2.78)

$$\frac{\partial Q_k^a}{\partial V_{mk}^c} = -V_{mk}^a B_{kk}^{ac} - V_{rk}^a G_{kk}^{ac}$$
(2.79)

$$\frac{\partial Q_k^a}{\partial V_{mm}^a} = -V_{mk}^a B_{km}^{aa} - V_{rk}^a G_{km}^{aa}$$
(2.80)

$$\frac{\partial Q_k^a}{\partial V_{mm}^b} = -V_{mk}^a B_{km}^{ab} - V_{rk}^a G_{km}^{ab}$$
(2.81)

$$\frac{\partial Q_k^a}{\partial V_{mm}^c} = -V_{mk}^a B_{km}^{ac} - V_{rk}^a G_{km}^{ac}$$
(2.82)

Por analogia, facilmente são definidas as expressões para as fases b e c.

2.4.3 Tratamento das Barras PV

Para as barras PV é possível seguir dois caminhos diferentes, mas que levam ao mesmo ponto final de solução, a saber: correção da geração de potência reativa da barra PV e formulação convencional. A equação adotada para a imposição da restrição da tensão numa barra k do tipo PV, fase s, é dada da seguinte forma:
$$(V_k^s)^2 = (V_{rk}^s)^2 + (V_{mk}^s)^2$$
(2.83)

Linearizando a equação (2.83) tem-se:

$$(\Delta V_k^s)^2 = 2V_{rk}^s (\Delta V_{rk}^s) + 2V_{mk}^s (\Delta V_{mk}^s)$$
(2.84)

onde:

$$(\Delta V_k^s)^2 = (V_{kesp}^s)^2 - (V_{kcalc}^s)^2$$
(2.85)

2.4.3.1 Fluxo de Potência Retangular Trifásico com Correção de Geração de Potência Reativa

Neste processo ocorre a inclusão de linhas e colunas na matriz Jacobiana original e de linhas nos vetores de tensão e de resíduos de potência. O número de linhas e/ou colunas adicionais é o triplo do número de barras PV existentes no sistema em estudo. O objetivo dessa inclusão é tratar a potência reativa gerada na barra PV como uma variável de estado. As linhas adicionais são dadas pela equação (2.84), enquanto que as colunas adicionais são obtidas tomando-se as derivadas da equação (2.58) com relação às variáveis Q_{Gk}^a , Q_{Gk}^b e Q_{Gk}^c . Facilmente, observa-se que os valores destas derivadas são iguais a -1.

Assim, num sistema com *n* barras, sendo a barra *k* uma PV, o sistema a ser resolvido possui a estrutura mostrada na equação (2.89). Na realidade, os termos -1, $2V_{rk}^{abc}$ e $2V_{mk}^{abc}$ são matrizes 3x3 cujas estruturas são as seguintes:

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \begin{bmatrix} 2V_{rk}^{a} & 0 & 0 \\ 0 & 2V_{rk}^{b} & 0 \\ 0 & 0 & 2V_{rk}^{c} \end{bmatrix}; \begin{bmatrix} 2V_{mk}^{a} & 0 & 0 \\ 0 & 2V_{mk}^{b} & 0 \\ 0 & 0 & 2V_{mk}^{c} \end{bmatrix};$$

 Q_{Gk}^{abc} e $(\Delta V^{abc})^2$ são vetores 3x1 cujas estruturas são as seguintes:

$\left\lfloor \mathcal{Q}_{Gk} \right\rfloor \left\lfloor \left(\Delta V_k \right) \right\rfloor$	$egin{bmatrix} Q^a_{Gk} \ Q^b_{Gk} \ Q^c_{Gk} \end{bmatrix};$	$\frac{\left(\Delta V_{k}^{a}\right)^{2}}{\left(\Delta V_{k}^{b}\right)^{2}}$ $\left(\Delta V_{k}^{c}\right)^{2}$		
--	---	---	--	--

$$V_{rk}^{(h+1)s} = V_{rk}^{(h)s} + \Delta V_{rk}^{(h)s}$$
(2.86)

$$V_{mk}^{(h+1)s} = V_{mk}^{(h)s} + \Delta V_{mk}^{(h)s}$$
(2.87)

$$Q_{Gk}^{(h+1)s} = Q_{Gk}^{(h)s} + \Delta Q_{Gk}^{(h)s}$$
(2.88)

A partir das correções calculadas por (2.89) os valores das componentes real e imaginária da tensão, bem como os valores de potência reativa gerada na barra k são atualizados de acordo com as equações (2.86) a (2.88). Optou-se neste trabalho em inicializar a variável Q_{Gk}^{abc} como sendo zero. Para calcular os resíduos de potência reativa são utilizados os novos valores de potência reativa gerada atualizados a cada iteração.

$\begin{bmatrix} \Delta \underline{P}_{1}^{abc} \\ \Delta \underline{Q}_{1}^{abc} \\ \dots \\ \dots \\ \dots \end{bmatrix}$	$\begin{bmatrix} \frac{\partial \boldsymbol{P}_{1}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{1}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \\ \frac{\partial \boldsymbol{V}_{r1}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \\ \frac{\partial \boldsymbol{V}_{r1}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \end{bmatrix}$	$\frac{\partial \boldsymbol{P}_{I}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{I}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}}$ $$ \vdots	 	 	$\frac{\partial \boldsymbol{P}_{I}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{I}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}}$ $\frac{\partial \boldsymbol{V}_{rk}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}}$ \vdots	$\frac{\partial \boldsymbol{P}_{1}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{1}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $$ \vdots	 	 - :	 	$\frac{\partial \boldsymbol{P}_{1}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{1}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}}$ $\frac{\partial \boldsymbol{V}_{rn}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}}$ \vdots	$\frac{\partial \boldsymbol{P}_{1}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{1}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}}$ $=$ \vdots	 	0 0 - :	$\begin{bmatrix} \Delta \underline{V}_{r1}^{abc} \\ \Delta \underline{V}_{m1}^{abc} \\ \\ \cdot \end{bmatrix}$
$\begin{array}{c} \vdots \\ \underline{\Delta \underline{P}}_{k}^{abc} \\ \underline{\Delta \underline{Q}}_{k}^{abc} \\ \\ \vdots \end{array} =$	$ \frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{rl}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{rl}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{rl}^{abc}} \\ \\ \vdots $	$\frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}}$ $=$	 	- 	$ \frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}} \\ \frac{\partial \boldsymbol{V}_{k}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}} \\ $	$\frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $===$:	- 	- -	- 	$ \frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} \\ \frac{\partial \boldsymbol{V}_{rn}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} \\ $	$\frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}}$ $=$	- 		$:$ $\Delta \underline{V}_{rk}^{abc}$ $\Delta \underline{V}_{mk}^{abc}$ $:$
$\begin{bmatrix}\\ \Delta \underline{P}_{n}^{abc}\\ \Delta \underline{Q}_{n}^{abc}\\\\ (\Delta \underline{V}_{k}^{abc})^{2} \end{bmatrix}$	$ \frac{\partial \boldsymbol{P}_{n}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{n}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \\ \frac{\partial \boldsymbol{V}_{r1}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \\ \\ \boldsymbol{0} $	$\frac{\partial \boldsymbol{P}_{n}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{n}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}}$ $$ $\boldsymbol{0}$	 	 	$\frac{\partial P_n^{abc}}{\partial V_{rk}^{abc}}$ $\frac{\partial Q_n^{abc}}{\partial V_{rk}^{abc}}$ $\frac{\partial V_{rk}^{abc}}{\partial V_{rk}^{abc}}$ $2V_{rk}^{abc}$	$\frac{\partial \boldsymbol{P}_{n}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{n}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $\frac{\partial \boldsymbol{V}_{mk}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$	 	· 	- 	$\frac{\partial \boldsymbol{P}_{n}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{n}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}}$ $$ $\boldsymbol{\theta}$	$\frac{\partial \boldsymbol{P}_{n}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{n}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}}$ $$ $\boldsymbol{0}$	- 	- 0 0 - 0	$\begin{bmatrix} - & - & - \\ \Delta \underline{V}_{rn}^{abc} \\ \Delta \underline{V}_{mn}^{abc} \\ - & - \\ - & - \\ \Delta \underline{Q}_{Gk}^{abc} \end{bmatrix}$

(2.89)

2.4.3.2 Fluxo de Potência Retangular Trifásico Convencional

Nesta outra metodologia também ocorre a inclusão de linhas e colunas na matriz Jacobiana original e de linhas nos vetores de tensão e de resíduos de potência. O número de linhas e/ou colunas adicionais continua sendo o triplo do número de barras PV existentes no sistema em estudo. Aqui, o objetivo da inclusão é reaver o controle sobre a componente imaginária da tensão na barra PV que foi perdido ao eliminar-se a equação de potência reativa dessa barra. Dessa forma, as colunas adicionais da matriz aumentada são cópias daquelas eliminadas durante o processo de solução. No vetor de resíduos de potência são inseridos nas posições adicionais os resíduos das componentes imaginárias da tensão nas barras PV.

Para exemplificar, num sistema com n barras, sendo a barra k uma PV, o sistema a ser resolvido possui a estrutura mostrada na equação (2.90).

Uma vez que não se conhece a priori o valor da potência reativa gerada para as barras PV, então tem-se que eliminar da matriz Jacobiana as linhas referentes a esta variável. Para isto, inserem-se, nesta matriz, termos diagonais elevados correspondentes às equações de potência reativa. Portanto a variável ΔV_{mk}^{abc} correspondente à equação eliminada fica sem efeito, devendo então ser repetida numa linha adicional e estando relacionada através de (2.84).

Vale ressaltar que os elementos $\frac{\partial P_k^{abc}}{\partial V_{mk}^{abc}}$, $\frac{\partial Q_k^{abc}}{\partial V_{mk}^{abc}}$, $2V_{rk}^{abc}$ e $2V_{mk}^{abc}$ (estes dois últimos

mostrados anteriormente) são matrizes 3x3 com a seguinte estrutura:

$\int \partial P_k^a$	∂P_k^a	∂P_k^a		∂Q_k^a	∂Q_k^a	∂Q_k^a
∂V^a_{mk}	∂V^{b}_{mk}	∂V_{mk}^c		∂V^a_{mk}	∂V^{b}_{mk}	∂V_{mk}^c
∂P_k^b	∂P_k^b	∂P_k^b		∂Q_k^b	∂Q_k^b	∂Q_k^b
∂V_{mk}^{a}	∂V^{b}_{mk}	∂V_{mk}^c	,	∂V^a_{mk}	∂V^{b}_{mk}	∂V_{mk}^c
∂P_k^c	∂P_k^c	∂P_k^c		∂Q_k^c	∂Q_k^c	∂Q_k^c
∂V_{mk}^{a}	∂V^{b}_{mk}	∂V_{mk}^{c}		∂V^{a}_{mk}	∂V^{b}_{mk}	∂V_{mk}^{c}

$\begin{bmatrix} \Delta \underline{P}_{1}^{abc} \\ \Delta \underline{Q}_{1}^{abc} \\ \\ \vdots \\ \\ \Delta \underline{P}_{k}^{abc} \\ \Delta \underline{Q}_{k}^{abc} \\ \end{bmatrix} =$	$\begin{bmatrix} \frac{\partial \boldsymbol{P}_{1}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{1}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \\ \frac{\partial \boldsymbol{P}_{r1}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \\ \frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}} \end{bmatrix}$	$\frac{\partial \boldsymbol{P}_{1}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{1}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}} \\ \vdots \\ \frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}} \\ \frac{\partial \boldsymbol{V}_{m1}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}} \end{cases}$	···· - : - 	$\frac{\partial \boldsymbol{P}_{1}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{1}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}} \\ \frac{\partial \boldsymbol{V}_{rk}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}} \\ \frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}} \\ \frac{\partial \boldsymbol{V}_{rk}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}} $	$\frac{\partial \boldsymbol{P}_{1}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{1}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ \vdots $\frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $\frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ 10^{10}	···· - :: - 	$\frac{\partial \boldsymbol{P}_{1}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{1}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} \\ \vdots \\ \frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} \\ \frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} \\ \frac{\partial \boldsymbol{V}_{rn}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} $	$\frac{\partial \boldsymbol{P}_{1}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{1}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}} \\ \vdots \\ \frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}} \\ \frac{\partial \boldsymbol{V}_{mn}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}} \end{cases}$	$\frac{\partial \boldsymbol{P}_{1}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{1}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ \vdots $\frac{\partial \boldsymbol{P}_{k}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{k}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$	$ \begin{bmatrix} \Delta \underline{V}_{r1}^{abc} \\ \Delta \underline{V}_{m1}^{abc} \\ \vdots \\ \Delta \underline{V}_{rk}^{abc} \\ \Delta \underline{V}_{rk}^{abc} \\ \Delta \underline{V}_{mk}^{abc} \\ $	(2.90
$\begin{bmatrix} \vdots \\ & \\ & \Delta \underline{P}_n^{abc} \\ & \Delta \underline{Q}_n^{abc} \\ & \\ & (\Delta \underline{V}_k^{abc})^2 \end{bmatrix}$	$ \begin{array}{c} \vdots\\ \frac{\partial \boldsymbol{P}_{n}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}}\\ \frac{\partial \boldsymbol{Q}_{n}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}}\\ \frac{\partial \boldsymbol{Q}_{n}^{abc}}{\partial \boldsymbol{V}_{r1}^{abc}}\\ \frac{\partial \boldsymbol{V}_{n}^{abc}}{\partial \boldsymbol{V}_{n}^{abc}}\\ \partial $	$ \frac{\partial \boldsymbol{P}_{n}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{n}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}} \\ \frac{\partial \boldsymbol{V}_{m1}^{abc}}{\partial \boldsymbol{V}_{m1}^{abc}} \\ \boldsymbol{0} $: - - 	\vdots $\frac{\partial \boldsymbol{P}_n^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}}$ $\frac{\partial \boldsymbol{Q}_n^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}}$ $\frac{\partial \boldsymbol{V}_{rk}^{abc}}{\partial \boldsymbol{V}_{rk}^{abc}}$	\vdots $\frac{\partial \boldsymbol{P}_n^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $\frac{\partial \boldsymbol{Q}_n^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $\frac{\partial \boldsymbol{V}_{mk}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$	- - - 	$ \frac{\partial \boldsymbol{P}_{n}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{n}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} \\ \frac{\partial \boldsymbol{V}_{rn}^{abc}}{\partial \boldsymbol{V}_{rn}^{abc}} \\ \\ \boldsymbol{\theta} $	$ \frac{\partial \boldsymbol{P}_{n}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}} \\ \frac{\partial \boldsymbol{Q}_{n}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}} \\ \frac{\partial \boldsymbol{V}_{mn}^{abc}}{\partial \boldsymbol{V}_{mn}^{abc}} \\ \\ \boldsymbol{0} $	$\frac{\partial \boldsymbol{P}_{n}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $\frac{\partial \boldsymbol{Q}_{n}^{abc}}{\partial \boldsymbol{V}_{mk}^{abc}}$ $-2\boldsymbol{V}_{mk}^{abc}$	$: \\ \Delta \underline{V}_{rn}^{abc} \\ \Delta \underline{V}_{mn}^{abc} \\ \\ \Delta \underline{V}_{mk}^{abc} \\ \end{bmatrix}$	

0)

Após o cálculo das correções através da solução do sistema (2.90), as componentes real e imaginária das tensões são atualizadas por (2.86) e (2.87).

2.4.4 Algoritmo de Solução – Retangular

A partir das expressões apresentadas nos itens 2.4.2 e 2.4.3 e utilizando qualquer dos métodos apresentados em 2.4.3, pode-se caminhar para a elaboração do algoritmo para a solução do fluxo de potência retangular trifásico, descrito pelas seguintes etapas:

- Passo 1: Determina-se a matriz admitância nodal trifásica *Y*^{abc};
- Passo 2: Determinam-se os resíduos de potência ativa e reativa de todas as barras através das expressões (2.46) a (2.49);
- Passo 3: Comparam-se os resíduos com uma tolerância pré-fixada. Se o resíduo máximo de potência for menor que esta tolerância, o processo é finalizado. Caso o resíduo máximo de potência seja maior que esta tolerância, então calculam-se as correções das componentes real e imaginária das tensões através das expressões (2.89) ou (2.90) dependendo da metodologia escolhida.
- Passo 4: Com os novos valores de tensão, os resíduos de potência são recalculados em todas as barras. Se estes ainda forem maiores que a tolerância, uma nova matriz Jacobiana é calculada a partir dos valores atualizados. Este passo se repete até que os resíduos encontrados sejam menores que a tolerância estipulada.

2.5 Aplicação Numérica

Para uma melhor compreensão do leitor, a seguir será analisado pelos três métodos descritos neste capítulo, um sistema elétrico de potência constituído de três barras, cujos dados estão apresentados nas Tabelas 2.1, 2.2 e 2.3 e cuja topologia é mostrada na Figura (2.4). Todos os valores apresentados estão em p.u.. A tolerância adotada para a convergência do processo iterativo é 10⁻⁵p.u..

Número da Barra	Тіро	Módulo Tensão Fase a	Módulo Tensão Fase b	Módulo Tensão Fase c	Ângulo Fase a	Ângulo Fase b	Ângulo Fase c
1	Vθ	1	1	1	0	-120°	120°
2	PQ	1	1	1	0	-120°	120°
3	PV	1	1	1	0	-120°	120°

Tabela 2.1 – Dados de Tensão e Ângulo de Barras – Sistema 3 Barras

Tabela 2.2 – Dados de Potências – Sistema 3 Barras

Número da Barra	$\mathbf{P}_{\mathrm{G}}^{\mathrm{abc}}$	Q _G ^{abc}	P _L ^{abc}	$Q_{\rm L}^{\rm abc}$
1	0	0	0	0
2	0	0	0,05	0,10
3	0	0	0,10	0,20

Tabela 2.3 – Dados de Linhas – Sistema 3 Barras

Barra De	Barra Para	r ^{abc}	x ^{abc}	bsh ^{abc} por Barra
1	2	0,02	0,5	0,1
2	3	0,02	0,5	0,1

Figura 2.4 – Diagrama Unifilar do Sistema 3 Barras

2.5.1 Solução pelo Método Polar Trifásico

Em função da topologia apresentada e dos dados de linhas correspondentes, monta-se a matriz admitância de barras trifásica, cuja estrutura é a seguinte:

$$\boldsymbol{Y} = \begin{bmatrix} \boldsymbol{Y}_{11} & \boldsymbol{Y}_{12} & \boldsymbol{Y}_{13} \\ \boldsymbol{Y}_{21} & \boldsymbol{Y}_{22} & \boldsymbol{Y}_{23} \\ \boldsymbol{Y}_{31} & \boldsymbol{Y}_{32} & \boldsymbol{Y}_{33} \end{bmatrix}$$

Cada elemento dessa matriz é na realidade um bloco 3x3, apresentando as seguintes configurações:

$$\boldsymbol{Y}_{11} = \begin{bmatrix} \boldsymbol{Y}_{11}^{aa} & \boldsymbol{Y}_{11}^{ab} & \boldsymbol{Y}_{11}^{ac} \\ \boldsymbol{Y}_{11}^{ba} & \boldsymbol{Y}_{11}^{bb} & \boldsymbol{Y}_{11}^{bc} \\ \boldsymbol{Y}_{11}^{ca} & \boldsymbol{Y}_{11}^{cb} & \boldsymbol{Y}_{11}^{cc} \end{bmatrix}$$

onde:

$$\boldsymbol{Y}_{II} = \begin{bmatrix} 7,9872 \cdot 10^{-2} & -j1,8968 & 0 & 0 \\ 0 & 7,9872 \cdot 10^{-2} & -j1,8968 & 0 \\ 0 & 0 & 7,9872 \cdot 10^{-2} & -j1,8968 \end{bmatrix}$$

$$Y_{12} = \begin{bmatrix} Y_{12}^{aa} & Y_{12}^{ab} & Y_{12}^{ac} \\ Y_{12}^{ba} & Y_{12}^{bb} & Y_{12}^{bc} \\ Y_{12}^{ca} & Y_{12}^{cb} & Y_{12}^{cc} \end{bmatrix}$$

onde:

$$\boldsymbol{Y}_{12} = \begin{bmatrix} -7,9872 \cdot 10^{-2} + j1,9968 & 0 & 0 \\ 0 & -7,9872 \cdot 10^{-2} + j1,9968 & 0 \\ 0 & 0 & -7,9872 \cdot 10^{-2} + j1,9968 \end{bmatrix}$$

$$Y_{13} = \begin{bmatrix} Y_{13}^{aa} & Y_{13}^{ab} & Y_{13}^{ac} \\ Y_{13}^{ba} & Y_{13}^{bb} & Y_{13}^{bc} \\ Y_{13}^{ca} & Y_{13}^{cb} & Y_{13}^{cc} \end{bmatrix}$$

onde:

$$Y_{13} = [0]_{3x3}$$

$$Y_{21} = \begin{bmatrix} Y_{21}^{aa} & Y_{21}^{ab} & Y_{21}^{ac} \\ Y_{21}^{ba} & Y_{21}^{bb} & Y_{21}^{bc} \\ Y_{21}^{ca} & Y_{21}^{cb} & Y_{21}^{cc} \end{bmatrix}$$

onde:

 $Y_{21} = Y_{12}$

$$\boldsymbol{Y}_{22} = \begin{bmatrix} \boldsymbol{Y}_{22}^{aa} & \boldsymbol{Y}_{22}^{ab} & \boldsymbol{Y}_{22}^{ac} \\ \boldsymbol{Y}_{22}^{ba} & \boldsymbol{Y}_{22}^{bb} & \boldsymbol{Y}_{22}^{bc} \\ \boldsymbol{Y}_{22}^{ca} & \boldsymbol{Y}_{22}^{cb} & \boldsymbol{Y}_{22}^{cc} \end{bmatrix}$$

onde:

$$\boldsymbol{Y}_{22} = \begin{bmatrix} 1,5974 \cdot 10^{-1} & -j3,7936 & 0 & 0 \\ 0 & 1,5974 \cdot 10^{-1} & -j3,7936 & 0 \\ 0 & 0 & 1,5974 \cdot 10^{-1} & -j3,7936 \end{bmatrix}$$

$$\boldsymbol{Y}_{23} = \begin{bmatrix} \boldsymbol{Y}_{23}^{aa} & \boldsymbol{Y}_{23}^{ab} & \boldsymbol{Y}_{23}^{ac} \\ \boldsymbol{Y}_{23}^{ba} & \boldsymbol{Y}_{23}^{bb} & \boldsymbol{Y}_{23}^{bc} \\ \boldsymbol{Y}_{23}^{ca} & \boldsymbol{Y}_{23}^{cb} & \boldsymbol{Y}_{23}^{cc} \end{bmatrix}$$

onde:

 $Y_{23} = Y_{12}$

$$\boldsymbol{Y}_{31} = \begin{bmatrix} \boldsymbol{Y}_{31}^{aa} & \boldsymbol{Y}_{31}^{ab} & \boldsymbol{Y}_{31}^{ac} \\ \boldsymbol{Y}_{31}^{ba} & \boldsymbol{Y}_{31}^{bb} & \boldsymbol{Y}_{31}^{bc} \\ \boldsymbol{Y}_{31}^{ca} & \boldsymbol{Y}_{31}^{cb} & \boldsymbol{Y}_{31}^{cc} \end{bmatrix}$$

onde:

 $Y_{31} = [0]_{3x3}$

$$\boldsymbol{Y}_{32} = \begin{bmatrix} \boldsymbol{Y}_{32}^{aa} & \boldsymbol{Y}_{32}^{ab} & \boldsymbol{Y}_{32}^{ac} \\ \boldsymbol{Y}_{32}^{ba} & \boldsymbol{Y}_{32}^{bb} & \boldsymbol{Y}_{32}^{bc} \\ \boldsymbol{Y}_{32}^{ca} & \boldsymbol{Y}_{32}^{cb} & \boldsymbol{Y}_{32}^{cc} \end{bmatrix}$$

onde:

$$Y_{32} = Y_{23}$$

$$Y_{33} = \begin{bmatrix} Y_{33}^{aa} & Y_{33}^{ab} & Y_{33}^{ac} \\ Y_{33}^{ba} & Y_{33}^{bb} & Y_{33}^{bc} \\ Y_{33}^{ca} & Y_{33}^{cb} & Y_{33}^{cc} \end{bmatrix}$$

onde:

$$Y_{33} = Y_{11}$$

As matrizes de condutância e susceptância são:

$$G = \begin{bmatrix} G_{11} & G_{12} & G_{13} \\ G_{21} & G_{22} & G_{23} \\ G_{31} & G_{32} & G_{33} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{bmatrix}$$

Cada elemento das matrizes G e B também são blocos 3x3, semelhantes aos descritos para a matriz admitância nodal. Neste exemplo os blocos são:

$$\boldsymbol{G}_{II} = \begin{bmatrix} 7,9872 \cdot 10^{-2} & 0 & 0 \\ 0 & 7,9872 \cdot 10^{-2} & 0 \\ 0 & 0 & 7,9872 \cdot 10^{-2} \end{bmatrix}$$

$$\boldsymbol{G}_{12} = \begin{bmatrix} -7,9872 \cdot 10^{-2} & 0 & 0 \\ 0 & -7,9872 \cdot 10^{-2} & 0 \\ 0 & 0 & -7,9872 \cdot 10^{-2} \end{bmatrix}$$

 $\boldsymbol{G}_{13} = \begin{bmatrix} 0 \end{bmatrix}_{3 \times 3}$

$$G_{21} = G_{12}$$

$$\boldsymbol{G}_{22} = \begin{bmatrix} 1,5974 \cdot 10^{-1} & 0 & 0 \\ 0 & 1,5974 \cdot 10^{-1} & 0 \\ 0 & 0 & 1,5974 \cdot 10^{-1} \end{bmatrix}$$

 $G_{23} = G_{21}$

 $\boldsymbol{G}_{31} = \begin{bmatrix} 0 \end{bmatrix}_{3 \times 3}$

$$G_{32} = G_{23}$$

$$G_{33} = G_{11}$$

$$\boldsymbol{B}_{11} = \begin{bmatrix} -1,8968 & 0 & 0 \\ 0 & -1,8968 & 0 \\ 0 & 0 & -1,8968 \end{bmatrix}$$

$$\boldsymbol{B}_{12} = \begin{bmatrix} 1,9968 & 0 & 0 \\ 0 & 1,9968 & 0 \\ 0 & 0 & 1,9968 \end{bmatrix}$$

$$\boldsymbol{B}_{13} = \begin{bmatrix} 0 \end{bmatrix}_{3X3}$$

 $B_{21} = B_{12}$

$$\boldsymbol{B}_{22} = \begin{bmatrix} -3,7936 & 0 & 0 \\ 0 & -3,7936 & 0 \\ 0 & 0 & -3,7936 \end{bmatrix}$$

$$B_{23} = B_{12}$$
$$B_{31} = [0]_{3x3}$$
$$B_{32} = B_{23}$$
$$B_{33} = B_{11}$$

O cálculo das correntes é feito através da expressão (2.46):

$$\underline{I} = \mathbf{Y}^{abc} \bullet \begin{bmatrix} 1 \\ -0.5 - j8.6603 \cdot 10^{-1} \\ -0.5 + j8.6603 \cdot 10^{-1} \\ 1 \\ -0.5 - j8.6603 \cdot 10^{-1} \\ -0.5 + j8.6603 \cdot 10^{-1} \\ 1 \\ -0.5 - j8.6603 \cdot 10^{-1} \\ -0.5 + j8.6603 \cdot 10^{-1} \\ -0.5 + j8.6603 \cdot 10^{-1} \end{bmatrix} = \begin{bmatrix} j0.1 \\ 8.6603 \cdot 10^{-2} - j0.05 \\ j0.2 \\ 1.7321 \cdot 10^{-1} - j0.1 \\ -1.7321 \cdot 10^{-1} - j0.1 \\ j0.1 \\ 8.6603 \cdot 10^{-2} - j0.05 \\ -8.6603 \cdot 10^{-2} - j0.05 \end{bmatrix}$$

Para o cálculo das potências e de seus resíduos são utilizadas as expressões (2.47) a (2.49), obtendo-se os seguintes valores:

$$\begin{bmatrix} S_{2}^{a} \\ S_{2}^{b} \\ S_{2}^{c} \\ S_{2}^{c} \\ S_{3}^{a} \\ S_{3}^{b} \\ S_{3}^{c} \\ S_{3}^{c} \end{bmatrix} = \begin{bmatrix} -j0,2 \\ -j0,2 \\ -j0,2 \\ -j0,1 \\ -j0,1 \\ -j0,1 \\ -j0,1 \end{bmatrix} \implies \begin{bmatrix} P_{2}^{a} \\ P_{2}^{b} \\ P_{2}^{c} \\ P_{2}^{c} \\ P_{3}^{a} \\ P_{3}^{c} \\ P_{3}^{c} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} Q_{2}^{a} \\ Q_{2}^{b} \\ Q_{2}^{b} \\ Q_{2}^{c} \end{bmatrix} = \begin{bmatrix} -0,20 \\ -0,20 \\ -0,20 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} \Delta P_{2}^{a} \\ Q_{2}^{b} \\ -0,20 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0,10 \\ 0,10 \\ 0,10 \\ 0,10 \\ 0,10 \end{bmatrix}$$

Como os valores obtidos para os resíduos são maiores que a tolerância de 10^{-5} , deve-se partir para a primeira iteração do processo, que requer a montagem da matriz Jacobiana e a solução de um conjunto de equações lineares. Eliminando as equações referentes à potência ativa para a barra 1 (V θ) e aquelas referentes à potência reativa para as barras 1 e 3 (PV), tem-se o seguinte sistema de equações:

	$\int \partial P_2^a$	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	
	$\partial \theta_2^a$	$\overline{\partial \theta_2^b}$	$\partial \theta_2^c$	∂V_2^a	$\overline{\partial V_2^b}$	∂V_2^c	$\partial \theta_3^a$	$\overline{\partial heta_3^b}$	$\partial \theta_3^c$	
	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	
	$\partial \theta_2^a$	$\overline{\partial \theta_2^b}$	$\partial \theta_2^c$	$\overline{\partial V_2^a}$	$\overline{\partial V_2^b}$	∂V_2^c	$\overline{\partial \theta_3^a}$	$\overline{\partial heta_3^b}$	$\partial \theta_3^c$	
$\left[\Delta P_2^a \right]$	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	$\left[\varDelta \theta_2^a \right]$
ΔP_2^b	$\partial \theta_2^a$	$\overline{\partial heta_2^b}$	$\overline{\partial heta_2^c}$	$\overline{\partial V_2^a}$	$\overline{\partial V_2^b}$	∂V_2^c	$\partial \theta^a_{\scriptscriptstyle 3}$	$\overline{\partial heta_3^b}$	$\overline{\partial \theta_3^c}$	$\int \theta_{2}^{b}$
ΔP^{c}	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	$\int \frac{1}{2} d\theta^{c}$
$\begin{bmatrix} \Delta I_2 \\ A O^a \end{bmatrix}$	$\partial \theta_2^a$	$\overline{\partial heta_2^b}$	$\overline{\partial heta_2^c}$	∂V_2^a	$\overline{\partial V_2^b}$	$\overline{\partial V_2^c}$	$\overline{\partial heta_3^a}$	$\overline{\partial heta_3^b}$	$\partial \theta_3^c$	ΔV_2^a
$\begin{vmatrix} \Delta Q_2 \\ A O^b \end{vmatrix} =$	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	$- \frac{\Delta V_2}{\Delta V^b}$
$ \Delta Q_2 -$	$\partial \theta_2^a$	$\overline{\partial heta_2^b}$	$\partial heta_2^c$	∂V_2^a	$\overline{\partial V_2^b}$	∂V_2^c	$\partial heta_3^a$	$\partial heta_3^b$	$\partial \theta_3^c$	$- \Delta V_2$
ΔQ_2^2	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	ΔV_2^2
ΔP_3^u	$\partial \theta_2^a$	$\overline{\partial heta_2^b}$	$\partial heta_2^c$	$\overline{\partial V_2^a}$	$\overline{\partial V_2^b}$	∂V_2^c	$\partial heta_3^a$	$\partial heta_3^b$	$\partial \theta_3^c$	$\Delta \theta_3^u$
ΔP_3^b	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	$\Delta \theta_3^{b}$
$\left\lfloor \Delta P_3^c \right\rfloor$	$\partial \theta_2^a$	$\partial heta_2^b$	$\partial heta_2^c$	∂V_2^a	∂V_2^b	∂V_2^c	$\partial heta_3^a$	$\overline{\partial heta_3^b}$	$\partial \theta_3^c$	$\left\lfloor \varDelta \theta_{3}^{c} \right\rfloor$
	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	
	$\partial \theta_2^a$	$\partial heta_2^b$	$\partial heta_2^c$	∂V_2^a	∂V_2^b	∂V_2^c	$\partial heta_3^a$	$\overline{\partial heta_3^b}$	$\partial \theta_3^c$	
	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	
	$\partial \theta_2^a$	$\partial heta_2^b$	$\partial heta_2^c$	∂V_2^a	∂V_2^b	∂V_2^c	$\partial heta_{\scriptscriptstyle 3}^{a}$	$\partial heta_{3}^{b}$	$\partial \theta_3^c$	

Substituindo-se os valores numéricos correspondentes obtém-se:

[-0.05]	3,9936	0	0	1,5974·10 ⁻¹	0	0	-1,9968	0	0	$\left[\Delta \theta_2^a \right]$
-0.05	0	3,9936	0	0	1,5974·10 ⁻¹	0	0	-1,9968	0	$\Delta \theta_2^{\rm b}$
-0.05	0	0	3,9936	0	0	1,5974·10 ⁻¹	0	0	-1,9968	$\Delta \theta_2^c$
	$-1,5974 \cdot 10^{-1}$	0	0	3,5936	0	0	7,9872·10 ⁻²	0	0	ΔV_2^a
$\begin{vmatrix} 0, 10 \\ 0, 10 \end{vmatrix} =$	0	$-1,5974 \cdot 10^{-1}$	0	0	3,5936	0	0	7,9872·10 ⁻²	0	• ΔV_2^b
0,10	0	0	$-1,5974 \cdot 10^{-1}$	0	0	3,5936	0	0	7,9872·10 ⁻²	ΔV_2^c
-0,10	-1,9968	0	0	$-7,9872 \cdot 10^{-2}$	0	0	1,9968	0	0	$\Delta \theta_3^a$
-0,10	0	-1,9968	0	0	$-7,9872 \cdot 10^{-2}$	0	0	1,9968	0	$\Delta \theta_3^{\rm b}$
[-0,10]	0	0	-1,9968	0	0	$-7,9872 \cdot 10^{-2}$	0	0	1,9968	$\Delta \theta_3^c$

Portanto, resolvendo o sistema tem-se:

$$\begin{bmatrix} \Delta \theta_2^a \\ \Delta \theta_2^b \\ \Delta \theta_2^c \\ \Delta V_2^c \\ \Delta V_2^a \\ \Delta V_2^c \\ \Delta V_2^c \\ \Delta V_3^a \\ \Delta \theta_3^a \\ \Delta \theta_3^c \end{bmatrix} = \begin{bmatrix} -7.6209 \cdot 10^{-2} \\ -7.6209 \cdot 10^{-2} \\ 2,7222 \cdot 10^{-2} \\ 2,7222 \cdot 10^{-2} \\ 2,7222 \cdot 10^{-2} \\ -1,2520 \cdot 10^{-1} \\ -1,2520 \cdot 10^{-1} \\ -1,2520 \cdot 10^{-1} \end{bmatrix}$$

Os valores de tensão corrigidos são:

$$\begin{bmatrix} V_1^a \\ V_1^b \\ V_1^c \\ V_2^a \\ V_2^a \\ V_2^b \\ V_2^b \\ V_3^a \\ V_3^a \\ V_3^c \\ V_3^c \end{bmatrix} = \begin{bmatrix} 1 \\ -0.5 - j8,6603 \cdot 10^{-1} \\ -0.5 + j8,6603 \cdot 10^{-1} \\ 1,0242 - j7,8208 \cdot 10^{-2} \\ -5,7985.10^{-1} - j8,4791 \cdot 10^{-1} \\ -4,4439.10^{-1} + j9,2612 \cdot 10^{-1} \\ 9,9217.10^{-1} - j1,2487 \cdot 10^{-1} \\ -6,0423.10^{-1} - j7,9681 \cdot 10^{-1} \\ -3,8794.10^{-1} + j9,2168 \cdot 10^{-1} \end{bmatrix}$$

Com os novos valores de tensão e ângulo, os resíduos de potência são calculados pelas expressões (2.46) a (2.49):

$$\underline{I}^{abc} = \underline{Y}^{abc} \bullet \underline{V}^{abc} = \begin{bmatrix} 1,5423 \cdot 10^{-1} + j1,5465 \cdot 10^{-1} \\ 5,6817 \cdot 10^{-2} - j2,1089 \cdot 10^{-1} \\ -2,1105 \cdot 10^{-1} + j5,6241 \cdot 10^{-2} \\ -4,2845 \cdot 10^{-2} + j8,9891 \cdot 10^{-2} \\ 9,9270 \cdot 10^{-2} - j7,8410 \cdot 10^{-3} \\ -5,6426 \cdot 10^{-2} - 8,2050 \cdot 10^{-2} \\ -8,3256 \cdot 10^{-2} + j1,5952 \cdot 10^{-1} \\ 1,7978 \cdot 10^{-1} - j7,6601 \cdot 10^{-3} \\ -9,6524 \cdot 10^{-2} - j1,5186 \cdot 10^{-1} \end{bmatrix}$$

$$\begin{bmatrix} S_2^a \\ S_2^b \\ S_2^c \\ S_3^a \\ S_3^a \\ S_3^c \\ S_3^c \end{bmatrix} = \begin{bmatrix} -0,0509 - j0,0887 \\ -0,0509 - j0,0887 \\ -0,0509 - j0,0887 \\ -0,1025 - j0,1479 \\ -0,1025 - j0,1479 \\ -0,1025 - j0,1479 \end{bmatrix} \Rightarrow \begin{bmatrix} P_2^a \\ P_2^b \\ P_2^c \\ P_3^a \\ P_3^a \\ P_3^c \end{bmatrix} = \begin{bmatrix} -0,0509 \\ -0,0509 \\ -0,0509 \\ -0,0025 \\ -0,1025 \\ -0,1025 \\ -0,1025 \end{bmatrix} = \begin{bmatrix} -0,0887 \\ -0,0887 \\ Q_2^b \\ Q_2^c \\ Q_2^c \end{bmatrix} = \begin{bmatrix} -0,0887 \\ -0,0887 \\ -0,0887 \\ -0,0887 \end{bmatrix}$$

$\left[\Delta P_2^a\right]$		9,1346.10 ⁻⁴	
ΔP_2^b		9,1346.10 ⁻⁴	$\begin{bmatrix} 4\Omega^a \end{bmatrix} \begin{bmatrix} 0.0113 \end{bmatrix}$
ΔP_2^c	_	9,1346.10 ⁻⁴	$\begin{bmatrix} 2Q_2 \\ 4Q^b \end{bmatrix} = \begin{bmatrix} -0,0113 \\ 0.0113 \end{bmatrix}$
ΔP_3^a	_	$2,5244.10^{-3}$	$\begin{bmatrix} 2Q_2 \\ 4Q^c \end{bmatrix} = \begin{bmatrix} -0,0113 \\ 0.0113 \end{bmatrix}$
ΔP_3^b		$2,5244.10^{-3}$	$\begin{bmatrix} 2\mathcal{Q}_2 \end{bmatrix} \begin{bmatrix} -0,0115 \end{bmatrix}$
$\left\lfloor \Delta P_3^c \right\rfloor$		$2,5244.10^{-3}$	

Como o maior dos resíduos de potência ainda é maior que a tolerância de 10^{-5} , o processo iterativo continua. Após 3 iterações, obtém-se os resultados mostrados nas Tabelas (2.4) e (2.5). A trajetória de convergência do processo iterativo, em termos dos resíduos máximos de potência, está mostrada na Tabela (2.6).

Tabela 2.4 - Resultados de Tensão e Ângulo de Barras - Sistema 3 Barras

Número da Barra	Tipo	Módulo Tensão Fase a	Módulo Tensão Fase b	Módulo Tensão Fase c	Ângulo Fase a	Ângulo Fase b	Ângulo Fase c
1	Vθ	1	1	1	0	-120°	120°
2	PQ	1,0244	1,0244	1,0244	-4,28°	-124,34°	115,78°
3	PV	1	1	1	-7,03°	-127,09°	113,03°

Tabela 2.5 - Resultados de Potência Gerada - Sistema 3 Barras

Número da Barra	P_G^{abc}	$Q_{\scriptscriptstyle G}^{\scriptscriptstyle abc}$
1	0,15074	-0,1491
2	0	0
3	0	0,0577

Iteração	Máximo $ \Delta P $	Barra	Máximo $ \Delta Q $	Barra
0	0,1000	3	0,1000	2
1	2,5244.10 ⁻³	3	1,1281.10 ⁻²	2
2	5,5198.10 ⁻⁶	3	3,5649.10 ⁻⁵	2
3	3,4722.10 ⁻¹¹	3	3,4323.10 ⁻¹⁰	2

Tabela 2.6 - Trajetória de Convergência - Sistema 3 Barras - Polar Convencional

Utilizando-se a matriz Jacobiana constante desde a primeira iteração, chega-se a esta mesma solução, levando para tanto 5 iterações e com a trajetória de convergência distinta, conforme mostrada na Tabela 2.7.

Máximo $|\Delta P|$ Máximo $|\Delta Q|$ Iteração Barra Barra 0 0,1000 3 0,1000 2 $2,5244.10^{-3}$ 1 $1,1281.10^{-2}$ 2 3 3.5270.10-4 1,0383.10-3 2 3 2 3,4366.10-5 1,1222.10⁻⁴ 3 3 2 3,6257.10-6 1,1532.10-5 4 3 2 1,2038.10-6 3,7692.10-7 5 2 3

Tabela 2.7 – Trajetória de Convergência – Sistema 3 Barras – Polar Constante

2.5.2 Solução pelo Método Retangular Trifásico com Correção de Geração de Potência Reativa

O processo de solução através do método retangular trifásico segue os mesmos passos do polar trifásico descrito em 2.5.1. Os valores iniciais das potências injetadas nas barras e dos resíduos de potência são idênticos àqueles calculados na seção 2.5.1. Assim, como os resíduos de potência são maiores que a tolerância pré-definida de 10⁻⁵, deve-se iniciar o processo iterativo de solução das equações do fluxo de potência trifásico. Considerando-se a geração de potência reativa na barra PV como variável de estado, temse então o seguinte conjunto de equações a ser resolvido a cada passo do processo

iterativo. Observa-se que são acrescentadas linhas e colunas adicionais devido à presença de uma barra PV e que as equações referentes às potências ativa e reativa da barra de referência são eliminadas.

	$\left[\frac{\partial P_2^a}{\partial V_{r2}^a}\right]$	$rac{\partial P_2^a}{\partial V_{r2}^b}$	$\frac{\partial P_2^a}{\partial V_{r^2}^c}$	$\frac{\partial P_2^a}{\partial V_m^a}$	$rac{\partial P_2^a}{\partial V_m^b}$	$\frac{\partial P_2^a}{\partial V_m^c}$	$rac{\partial P_2^a}{\partial V_{r^3}^a}$	$rac{\partial P_2^a}{\partial V_{r3}^b}$	$rac{\partial P_2^a}{\partial V_{r3}^c}$	$rac{\partial P_2^a}{\partial V_m^a}$	$\frac{\partial P_2^a}{\partial V_m^b}$	$\frac{\partial P_2^a}{\partial V_m^c}$		0	0	
	$\frac{\partial P_2^b}{\partial V_{r2}^a}$	$\frac{\partial P_2^b}{\partial V_{r2}^b}$	$\frac{\partial P_2^b}{\partial V_{r2}^c}$	$\frac{\partial P_2^b}{\partial V_{m2}^a}$	$\frac{\partial P_2^b}{\partial V_{m^2}^b}$	$\frac{\partial P_2^b}{\partial V_{m^2}^c}$	$\frac{\partial P_2^b}{\partial V_{m3}^a}$	$\frac{\partial P_2^b}{\partial V_{r3}^b}$	$\frac{\partial P_2^b}{\partial V_{r3}^c}$	$\frac{\partial P_2^b}{\partial V_{m3}^a}$	$\frac{\partial P_2^b}{\partial V_{m3}^b}$	$\frac{\partial P_2^b}{\partial V_{m3}^c}$		0	0	
	$\frac{\partial P_2^c}{\partial V_{r2}^a}$	$\frac{\partial P_2^c}{\partial V_{r2}^b}$	$\frac{\partial P_2^c}{\partial V_{r2}^c}$	$\frac{\partial P_2^c}{\partial V_{m^2}^a}$	$\frac{\partial P_2^c}{\partial V_{m2}^b}$	$\frac{\partial P_2^c}{\partial V_{m2}^c}$	$\frac{\partial P_2^c}{\partial V_{r3}^a}$	$\frac{\partial P_2^c}{\partial V_{r3}^b}$	$\frac{\partial P_2^c}{\partial V_{r3}^c}$	$\frac{\partial P_2^c}{\partial V_{m3}^a}$	$\frac{\partial P_2^c}{\partial V_{m3}^b}$	$\frac{\partial P_2^c}{\partial V_{m3}^c}$		0	0	
$\frac{\Delta P_2^a}{\Delta P_2^b}$	$\frac{\partial Q_2^a}{\partial V_{r2}^a}$	$rac{\partial Q_2^a}{\partial V_{r2}^b}$	$rac{\partial Q_2^a}{\partial V_{r2}^c}$	$rac{\partial Q_2^a}{\partial V_{m2}^a}$	$rac{\partial Q_2^a}{\partial V_{m2}^b}$	$\frac{\partial Q_2^a}{\partial V_{m2}^c}$	$rac{\partial Q_2^a}{\partial V_{r3}^a}$	$rac{\partial Q_2^a}{\partial V_{r3}^b}$	$rac{\partial Q_2^a}{\partial V_{r3}^c}$	$\frac{\partial Q_2^a}{\partial V_{m3}^a}$	$\frac{\partial Q_2^a}{\partial V_{m3}^b}$	$\frac{\partial Q_2^a}{\partial V_{m3}^c}$	$\begin{vmatrix} & & \\ & & \\ & & \end{vmatrix} = 0$	0	0	$ \Delta V_{r2}^{a} \\ \Delta V_{r2}^{b} $
$\begin{array}{c c} \Delta P_2^c \\ \Delta Q_2^a \end{array}$	$\frac{\partial Q_2^b}{\partial V_{r2}^a}$	$rac{\partial Q_2^b}{\partial V_{r2}^b}$	$\frac{\partial Q_2^b}{\partial V_{r2}^c}$	$rac{\partial Q_2^b}{\partial V_{m2}^a}$	$\frac{\partial Q_2^b}{\partial V_{m2}^b}$	$\frac{\partial Q_2^b}{\partial V_{m2}^c}$	$rac{\partial Q_2^b}{\partial V_{r3}^a}$	$rac{\partial Q_2^b}{\partial V_{r3}^b}$	$rac{\partial Q_2^b}{\partial V_{r3}^c}$	$\frac{\partial Q_2^b}{\partial V_{m3}^a}$	$\frac{\partial Q_2^b}{\partial V_{m3}^b}$	$\frac{\partial Q_2^b}{\partial V_{m3}^c}$		0	0	$ \Delta V_{r2}^{c} \\ \Delta V_{m2}^{a} $
ΔQ_2^b ΔQ_2^c	$\frac{\partial Q_2^c}{\partial V_{r2}^a}$	$rac{\partial Q_2^c}{\partial V_{r2}^b}$	$\frac{\partial Q_2^c}{\partial V_{r2}^c}$	$\frac{\partial Q_2^c}{\partial V_{m2}^a}$	$\frac{\partial Q_2^c}{\partial V_{m2}^b}$	$\frac{\partial Q_2^c}{\partial V_{m2}^c}$	$\frac{\partial Q_2^c}{\partial V_{r3}^a}$	$\frac{\partial Q_2^c}{\partial V_{r3}^b}$	$\frac{\partial Q_2^c}{\partial V_{r3}^c}$	$\frac{\partial Q_2^c}{\partial V_{m3}^a}$	$\frac{\partial Q_2^c}{\partial V_{m3}^b}$	$\frac{\partial Q_2^c}{\partial V_{m3}^c}$	$\begin{vmatrix} & & \\ & & \\ & & \end{vmatrix} = 0$	0	0	$ \Delta V_{m2}^b \\ \Delta V_{m2}^c $
$\left. \begin{array}{c c} \Delta P_3^a \\ \Delta P_3^b \end{array} \right _{-}$	$\frac{\partial P_3^a}{\partial V_{r_2}^a}$	$\frac{\partial P_3^a}{\partial V_{r_2}^b}$	$\frac{\partial P_3^a}{\partial V_{r_2}^c}$	$\frac{\partial P_3^a}{\partial V_{m^2}^a}$	$\frac{\partial P_3^a}{\partial V_{m2}^b}$	$\frac{\partial P_3^a}{\partial V_{m2}^c}$	$\frac{\partial P_3^a}{\partial V_{r_3^a}^a}$	$\frac{\partial P_3^a}{\partial V_{r_3}^b}$	$\frac{\partial P_3^a}{\partial V_{r_3}^c}$	$\frac{\partial P_3^a}{\partial V_{m3}^a}$	$\frac{\partial P_3^a}{\partial V_{m3}^b}$	$\frac{\partial P_3^a}{\partial V_{m3}^c}$		0	0	ΔV_{r3}^a ΔV_{r3}^b
ΔP_3^c ΔQ_3^a	$\frac{\partial P_3^b}{\partial V_{r2}^a}$	$\frac{\partial P_3^b}{\partial V_{r2}^b}$	$\frac{\partial P_3^b}{\partial V_{r2}^c}$	$\frac{\partial P_3^b}{\partial V_{m2}^a}$	$\frac{\partial P_3^b}{\partial V_{m2}^b}$	$\frac{\partial P_3^b}{\partial V_{m2}^c}$	$\frac{\partial P_3^b}{\partial V_{r3}^a}$	$\frac{\partial P_3^b}{\partial V_{r3}^b}$	$\frac{\partial P_3^b}{\partial V_{r3}^c}$	$\frac{\partial P_3^b}{\partial V_{m3}^a}$	$\frac{\partial P_3^b}{\partial V_{m3}^b}$	$\frac{\partial P_3^b}{\partial V_{m3}^c}$		0	0	
ΔQ_3^b ΔQ_2^c	$\left \begin{array}{c} \frac{\partial P_3^c}{\partial V_{r2}^a} \end{array} \right $	$\frac{\partial P_3^c}{\partial V_{r2}^b}$	$\frac{\partial P_3^c}{\partial V_{r2}^c}$	$\frac{\partial P_3^c}{\partial V_{m2}^a}$	$\frac{\partial P_3^c}{\partial V_{m2}^b}$	$\frac{\partial P_3^c}{\partial V_{m2}^c}$	$\frac{\partial P_3^c}{\partial V_{r3}^a}$	$\frac{\partial P_3^c}{\partial V_{r3}^b}$	$\frac{\partial P_3^c}{\partial V_{r3}^c}$	$\frac{\partial P_3^c}{\partial V_{m3}^a}$	$\frac{\partial P_3^c}{\partial V_{m3}^b}$	$\frac{\partial P_3^c}{\partial V_{m3}^c}$		0	0	ΔV_{m3}^b ΔV^c
$\left \begin{array}{c} 23 \\ \\ (\Delta V_3^a)^2 \end{array} \right $	$\left \begin{array}{c} \frac{\partial Q_3^a}{\partial V_{r_2}^a} \right $	$\frac{\partial Q_3^a}{\partial V_{r_2}^b}$	$\frac{\partial Q_3^a}{\partial V_{r_2}^c}$	$\frac{\partial Q_3^a}{\partial V_{m^2}^a}$	$\frac{\partial Q_3^a}{\partial V_{m_2}^b}$	$\frac{\partial Q_3^a}{\partial V_{m_2}^c}$	$rac{\partial Q_3^a}{\partial V_{r_3}^a}$	$\frac{\partial Q_3^a}{\partial V_{r3}^b}$	$\frac{\partial Q_3^a}{\partial V_{r3}^c}$	$\frac{\partial Q_3^a}{\partial V_{m3}^a}$	$\frac{\partial Q_3^a}{\partial V_{m3}^b}$	$\frac{\partial Q_3^a}{\partial V_{m3}^c}$	 -1	0	0	$ \begin{bmatrix} -2 & m_3 \\ \\ A Q_{a_2}^a \end{bmatrix} $
$(\Delta V_3^b)^2$ $(\Delta V_c^c)^2$	$\frac{\partial Q_3^b}{\partial V_{r2}^a}$	$\frac{\partial Q_3^b}{\partial V_{r2}^b}$	$\frac{\partial Q_3^b}{\partial V_{r2}^c}$	$\frac{\partial Q_3^b}{\partial V_{m2}^a}$	$\frac{\partial Q_3^b}{\partial V_{m2}^b}$	$\frac{\partial Q_3^b}{\partial V_{m2}^c}$	$\frac{\partial Q_3^b}{\partial V_{r3}^a}$	$\frac{\partial Q_3^b}{\partial V_{r3}^b}$	$\frac{\partial Q_3^b}{\partial V_{r3}^c}$	$\frac{\partial Q_3^b}{\partial V_{m3}^a}$	$\frac{\partial Q_3^b}{\partial V_{m3}^b}$	$\frac{\partial Q_3^b}{\partial V_{m3}^c}$		-1	0	ΔQ_{G3}^{b} ΔQ_{G3}^{c}
	$\left \begin{array}{c} \frac{\partial Q_3^c}{\partial V_{r2}^a} \end{array} \right $	$\frac{\partial Q_3^c}{\partial V_{r2}^b}$	$\frac{\partial Q_3^c}{\partial V_{r2}^c}$	$\frac{\partial Q_3^c}{\partial V_{m2}^a}$	$\frac{\partial Q_3^c}{\partial V_{m2}^b}$	$\frac{\partial Q_3^c}{\partial V_{m2}^c}$	$\frac{\partial Q_3^c}{\partial V_{r3}^a}$	$\frac{\partial Q_3^c}{\partial V_{r3}^b}$	$\frac{\partial Q_3^c}{\partial V_{r3}^c}$	$\frac{\partial Q_3^c}{\partial V_{m3}^a}$	$\frac{\partial Q_3^c}{\partial V_{m3}^b}$	$\frac{\partial Q_3^c}{\partial V_{m3}^c}$	$\begin{vmatrix} & 0 \\ & \end{vmatrix}$	0	-1	[-2(3]
	0	0	0	0	0	0	$2V_{r3}^{a}$	0	0	$2V_{m3}^a$	0	0	 0	- 0	0	
	0	0	0	0	0	0	0	$2V_{r3}^b$	0	0	$2V^b_{m3}$	0	0	0	0	
	0	0	0	0	0	0	0	0	$2V_{r_{3}}^{c}$	0	0	$2V_{m3}^c$	0	0	0	

onde a matriz Jacobiana é dada por:

0,1597	0	0	3,9936	0	0	- 0,0799	0	0	-1,9968	0	0	0	0	0
0	3,3787	0	0	-2,1351	0	0	-1,6893	0	0	1,0676	0	0	0	0
0	0	-3,5384	0	0	-1,8585	0	0	1,7692	0	0	0,9292	0	0	0
3,5936	0	0	-0,1597	0	0	-1,9968	0	0	0,0799	0	0	0	0	0
0	-1,9351	0	0	-3,0323	0	0	1.0676	0	0	1,6893	0	0	0	0
0	0	-1,6585	0	0	3,1920	0	0	0,9292	0	0	-1,7692	0	0	0
- 0,0799	0	0	-1,9968	0	0	0,0799	0	0	1,9968	0	0	0	0	0
0	-1,6893	0	0	1,0676	0	0	1,6893	0	0	-1,0676	0	0	0	0
0	0	1,7692	0	0	0,9292	0	0	-1,7692	0	0	- 0,9292	0	0	0
-1,9968	0	0	0,0799	0	0	1,7968	0	0	- 0,0799	0	0	-1	0	0
0	1,0676	0	0	1,6893	0	0	-0,9676	0	0	-1,5161	0	0	-1	0
0	0	0,9292	0	0	-1,7692	0	0	- 0,8292	0	0	1,5960	0	0	-1
												_	_	-
0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	-1	0	0	-1,7321	0	0	0	0
0	0	0	0	0	0	0	0	-1	0	0	1,7321	0	0	0

Portanto, resolvendo o sistema obtém-se:

$$\begin{bmatrix} \Delta V_{r2}^{a} \\ \Delta V_{r2}^{b} \\ \Delta V_{r2}^{c} \\ \Delta V_{m2}^{a} \\ \Delta V_{m3}^{c} \\ \Delta V_{r3}^{c} \\ \Delta V_{m3}^{c} \\ \Delta Q_{G3}^{c} \\ \Delta Q_{G3}^{c} \end{bmatrix} = \begin{bmatrix} 2,7222 \cdot 10^{-2} \\ -7,9610 \cdot 10^{-2} \\ 5,2388 \cdot 10^{-2} \\ -7,6209 \cdot 10^{-2} \\ 1,4529 \cdot 10^{-2} \\ 6,1680 \cdot 10^{-2} \\ 6,1680 \cdot 10^{-2} \\ 1,0843 \cdot 10^{-1} \\ 1,0843 \cdot 10^{-1} \\ 1,0843 \cdot 10^{-1} \\ -1,2520 \cdot 10^{-1} \\ 6,2600 \cdot 10^{-2} \\ 4,9556 \cdot 10^{-2} \\ 4,9556 \cdot 10^{-2} \\ 4,9556 \cdot 10^{-2} \end{bmatrix}$$

As tensões e potências reativas corrigidas são:

$$\begin{bmatrix} V_1^a \\ V_1^b \\ V_1^c \\ V_2^a \\ V_2^b \\ V_2^c \\ V_2^c \\ V_3^a \\ V_3^b \\ V_3^c \\ V_3^c \end{bmatrix} = \begin{bmatrix} 1 \\ -0.5 - j8.6603 \cdot 10^{-1} \\ -0.5 + j8.6603 \cdot 10^{-1} \\ 1.0272 - j7.6209 \cdot 10^{-2} \\ -5.7961 \cdot 10^{-1} - j8.5150 \cdot 10^{-1} \\ -4.4761 \cdot 10^{-1} + j9.2770 \cdot 10^{-1} \\ 1 - j1.2520 \cdot 10^{-1} \\ -6.0843 \cdot 10^{-1} - j8.0343 \cdot 10^{-1} \\ -3.9157 \cdot 10^{-1} + j9.2863 \cdot 10^{-1} \end{bmatrix}$$

$$\begin{bmatrix} Q_{G3}^{a} \\ Q_{G3}^{b} \\ Q_{G3}^{c} \end{bmatrix} = \begin{bmatrix} 4,9556 \cdot 10^{-2} \\ 4,9556 \cdot 10^{-2} \\ 4,9556 \cdot 10^{-2} \\ 4,9556 \cdot 10^{-2} \end{bmatrix}$$

Com os novos valores das componentes real e imaginária, os resíduos de potência são calculados pelas expressões (2.46) a (2.49):

$$\underline{I}^{abc} = \underline{Y}^{abc} \bullet \underline{V}^{abc} = \begin{bmatrix} -0.15 + j1.6044 \cdot 10^{-1} \\ 6.3949 \cdot 10^{-2} - j2.1013 \cdot 10^{-1} \\ -2.1395 \cdot 10^{-1} + j4.9682 \cdot 10^{-2} \\ -3.4758 \cdot 10^{-2} + j9.4556 \cdot 10^{-2} \\ 9.9267 \cdot 10^{-2} - j1.7176 \cdot 10^{-2} \\ -6.4508 \cdot 10^{-2} - j7.7379 \cdot 10^{-2} \\ -8.7480 \cdot 10^{-2} + j1.5044 \cdot 10^{-1} \\ 1.7403 \cdot 10^{-1} + j5.3768 \cdot 10^{-4} \\ -8.6549 \cdot 10^{-2} - j1.5098 \cdot 10^{-1} \end{bmatrix}$$

$$\begin{bmatrix} S_{2}^{a} \\ S_{2}^{b} \\ S_{2}^{b} \\ S_{2}^{c} \\ S_{2}^{a} \\ S_{2}^{a} \\ S_{2}^{a} \\ S_{3}^{a} \\ S_{3}^{b} \\ S_{3}^{b} \\ S_{3}^{c} \\ S_{3}^{c} \end{bmatrix} = \begin{bmatrix} -0,0429 - j0,0945 \\ -0,0429 - j0,0945 \\ -0,0429 - j0,0945 \\ -0,1063 - j0,1395 \end{bmatrix} \Rightarrow \begin{bmatrix} P_{2}^{a} \\ P_{2}^{b} \\ P_{2}^{c} \\ P_{3}^{a} \\ P_{3}^{b} \\ P_{3}^{c} \end{bmatrix} = \begin{bmatrix} -0,0429 \\ -0,0429 \\ -0,0429 \\ -0,01063 \\ -0,1063 \\ -0,1063 \\ -0,1063 \\ -0,1063 \end{bmatrix} = \begin{bmatrix} 0,0945 \\ Q_{2}^{c} \\ Q_{3}^{a} \\ Q_{3}^{b} \\ Q_{3}^{c} \\ Q_{3}^{c} \end{bmatrix} = \begin{bmatrix} -0,0945 \\ -0,0945 \\ -0,0945 \\ -0,0945 \\ -0,1395 \\ -0,1395 \\ -0,1395 \\ -0,1395 \\ -0,1395 \\ -0,1395 \\ -0,1395 \\ Q_{3}^{c} \end{bmatrix} = \begin{bmatrix} 0,0942 \\ Q_{3}^{a} \\ Q_{3}^{b} \\ -0,0945 \\ -0,1395$$

Como o maior dos resíduos de potência ainda é maior que a tolerância de 10^{-5} , o processo iterativo continua. Após 3 iterações obtêm-se os mesmos resultados mostrados nas Tabelas (2.4) e (2.5) e uma trajetória de convergência diferente conforme mostrada na Tabela (2.8).

Iteração	Máximo $ \Delta P $	Barra	Máximo $ \Delta Q $	Barra	Erro Máximo
0	0,1000	3	0,1000	2	0,1000
1	7,0896.10 ⁻³	2	1,0952.10 ⁻²	3	1,5675.10 ⁻²
2	3,6673.10 ⁻⁵	2	3,9127.10 ⁻⁵	3	6,4221.10 ⁻⁵
3	9,0226.10 ⁻¹⁰	2	1,1647.10 ⁻⁹	2	1,1647.10 ⁻⁹

Tabela 2.8 – Trajetória de Convergência – Retangular com Correção de Potência Reativa

2.5.3 Solução pelo Método Retangular Trifásico Convencional

Considerando-se agora a abordagem retangular convencional, tem-se o seguinte conjunto de equações a ser resolvido a cada passo do processo iterativo. Observa-se novamente que são acrescentadas linhas e colunas adicionais devido à presença de uma barra PV e que as equações referentes às potências ativa e reativa da barra de referência são eliminadas.

	$\int \partial P_2^a$	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a	∂P_2^a		∂P_2^a	∂P_2^a	∂P_2^a	
	∂V_{r2}^a	∂V_{r2}^b	∂V_{r2}^c	∂V_{m2}^a	∂V_{m2}^{b}	∂V_{m2}^c	∂V_{r3}^a	∂V_{r3}^b	∂V_{r3}^c	∂V_{m3}^a	∂V_{m3}^{b}	∂V_{m3}^c		∂V_{m3}^a	∂V_{m3}^{b}	∂V_{m3}^c	
	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b	∂P_2^b		∂P_2^b	∂P_2^b	∂P_2^b	
	$\overline{\partial V_{r2}^a}$	∂V_{r2}^b	∂V_{r2}^{c}	∂V_{m2}^{a}	∂V_{m2}^{b}	∂V_{m2}^c	∂V_{m3}^{a}	∂V_{r3}^b	$\overline{\partial V_{r3}^c}$	∂V_{m3}^a	$\overline{\partial V^{b}_{m3}}$	∂V_{m3}^c		∂V_{m3}^a	∂V_{m3}^b	∂V_{m3}^c	
	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c	∂P_2^c		∂P_2^c	∂P_2^c	∂P_2^c	
	∂V_{r2}^a	∂V_{r2}^b	∂V_{r2}^{c}	∂V_{m2}^a	∂V_{m2}^{b}	∂V_{m2}^c	∂V_{r3}^a	∂V_{r3}^b	∂V_{r3}^c	∂V_{m3}^a	∂V_{m3}^{b}	∂V_{m3}^c		∂V_{m3}^a	∂V_{m3}^b	∂V_{m3}^c	
ΔP_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a	∂Q_2^a		∂Q_2^a	∂Q_2^a	∂Q_2^a	ΔV_{r2}^a
ΔP_2^b	∂V_{r2}^a	∂V_{r2}^{b}	∂V_{r2}^c	∂V_{m2}^{a}	∂V_{m2}^{b}	∂V_{m2}^c	∂V_{r3}^a	∂V_{r3}^b	∂V_{r3}^c	∂V_{m3}^a	∂V_{m3}^{b}	∂V_{m3}^c		∂V_{m3}^a	∂V_{m3}^b	∂V_{m3}^c	ΔV_{r2}^b
ΔP_2^c	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b	∂Q_2^b		∂Q_2^b	∂Q_2^b	∂Q_2^b	ΔV_{r2}^c
ΔQ_2^a	∂V_{r2}^a	∂V_{r2}^b	∂V_{r2}^c	∂V_{m2}^{a}	∂V_{m2}^{b}	∂V_{m2}^c	∂V_{r3}^a	∂V_{r3}^b	∂V_{r3}^c	∂V_{m3}^a	∂V_{m3}^{b}	∂V_{m3}^c		∂V_{m3}^a	∂V_{m3}^b	∂V_{m3}^c	ΔV_{m2}^a
ΔQ_2^b	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c	∂Q_2^c		∂Q_2^c	∂Q_2^c	∂Q_2^c	ΔV_{m2}^b
ΔQ_2^c	∂V_{r2}^a	∂V_{r2}^b	∂V_{r2}^{c}	∂V_{m2}^{a}	∂V_{m2}^b	∂V_{m2}^c	∂V_{r3}^a	∂V_{r3}^b	∂V_{r3}^c	∂V^a_{m3}	∂V_{m3}^b	∂V_{m3}^c		∂V^a_{m3}	∂V^{b}_{m3}	∂V_{m3}^c	$\Delta V_{m_2}^c$
ΔP_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a	∂P_3^a		∂P_3^a	∂P_3^a	∂P_3^a	ΔV_{r3}^a
ΔP_3^b	∂V_{r2}^a	∂V_{r2}^b	∂V_{r2}^{c}	∂V_{m2}^{a}	∂V_{m2}^b	∂V_{m2}^c	∂V^a_{r3}	∂V_{r3}^b	∂V_{r3}^c	∂V^a_{m3}	∂V^{b}_{m3}	∂V^c_{m3}		∂V^a_{m3}	∂V^{b}_{m3}	∂V^c_{m3}	$\Delta V_{\mu\nu}^{b}$
ΔP_3^c	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b	∂P_3^b		∂P_3^b	∂P_3^b	∂P_3^b	ΔV_{r3}^c
ΔQ_3^a	∂V_{r2}^a	∂V_{r2}^b	∂V_{r2}^c	∂V_{m2}^{a}	∂V_{m2}^b	∂V_{m2}^c	∂V_{r3}^a	∂V_{r3}^b	∂V_{r3}^c	∂V_{m3}^a	∂V_{m3}^b	∂V_{m3}^c		∂V_{m3}^a	∂V_{m3}^b	∂V_{m3}^c	ΔV_{m3}^a
ΔQ_3^b	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c	∂P_3^c		∂P_3^c	∂P_3^c	∂P_3^c	ΔV_{m3}^b
ΔQ_3^c	∂V_{r2}^a	∂V_{r2}^b	∂V_{r2}^c	∂V_{m2}^{a}	∂V_{m2}^b	∂V_{m2}^c	∂V_{r3}^a	∂V_{r3}^b	∂V_{r3}^c	∂V^a_{m3}	∂V_{m3}^b	∂V_{m3}^c		∂V^a_{m3}	∂V^{b}_{m3}	∂V_{m3}^c	ΔV_{m3}^c
	∂Q_3^a	∂Q_3^a	∂Q_3^a	∂Q_3^a	∂Q_3^a	∂Q_3^a	∂Q_3^a	∂Q_3^a	∂Q_3^a	10 ¹⁰	∂Q_3^a	∂Q_3^a		∂Q_3^a	∂Q_3^a	∂Q_3^a	
$(\Delta V_3^a)^2$	$\partial V_{r_2}^a$	$\partial V_{r_2}^b$	$\partial V_{r_2}^c$	∂V_{m2}^a	∂V_{m2}^b	∂V_{m2}^c	$\partial V_{r_3}^a$	$\partial V_{r_3}^b$	$\partial V_{r_3}^c$	10	∂V_{m3}^b	$\partial V_{m_3}^c$		∂V^a_{m3}	∂V^b_{m3}	∂V_{m3}^c	ΔV_{m3}^a
$(\Delta V_3^b)^2$	∂Q_3^b	∂Q_3^b	∂Q_3^b	∂Q_3^b	∂Q_3^b	∂Q_3^b	∂Q_3^b	∂Q_3^b	∂Q_3^b	∂Q_3^b	10^{10}	∂Q_3^b		∂Q_3^b	∂Q_3^b	∂Q_3^b	ΔV_{m3}^{b}
$(\Delta V_3^c)^2$	∂V_{r2}^a	∂V_{r2}^b	∂V_{r2}^c	∂V_{m2}^{a}	∂V_{m2}^b	∂V_{m2}^c	∂V_{r3}^a	∂V_{r3}^b	∂V_{r3}^c	∂V_{m3}^a	- •	∂V_{m3}^c		∂V_{m3}^a	∂V_{m3}^b	∂V_{m3}^c	ΔV_{m3}^{c}
	∂Q_3^c	∂Q_3^c	∂Q_3^c	∂Q_3^c	∂Q_3^c	∂Q_3^c	∂Q_3^c	∂Q_3^c	∂Q_3^c	∂Q_3^c	∂Q_3^c	10^{10}		∂Q_3^c	∂Q_3^c	∂Q_3^c	
	∂V_{r2}^a	∂V_{r2}^b	∂V_{r2}^c	∂V_{m2}^{a}	∂V_{m2}^b	∂V_{m2}^c	∂V_{r3}^a	∂V_{r3}^b	∂V_{r3}^c	∂V_{m3}^a	∂V_{m3}^b	-		∂V_{m3}^a	∂V_{m3}^b	∂V_{m3}^c	
													_	_	_	_	
	0	0	0	0	0	0	$2V_{r_{3}}^{a}$	0	0	$2V_{m3}^a$	0	0		$2V_{m3}^a$	0	0	
	0	0	0	0	0	0	0	$2V_{r3}^{b}$	0	0	$2V_{m3}^b$	0		0	$2V_{m3}^b$	0	
	0	0	0	0	0	0	0	0	$2V_{r3}^c$	0	0	$2V_{m3}^c$		0	0	$2V_{m3}^{c}$	

46

onde a matriz Jacobiana é dada por:

Γ	0,1597	0	0	3,9936	0	0	-0,0799	0	0	-1,9968	0	0	-1,9968	0	0
	0	3,3787	0	0	-2,1351	0	0	-1,6893	0	0	1,0676	0	0	1,0676	0
	0	0	-3,5384	0	0	-1,8585	0	0	1,7692	0	0	0,9292	0	0	0,9292
	3,5936	0	0	-0,1597	0	0	-1,9968	0	0	0,0799	0	0	0,0799	0	0
	0	-1,9351	0	0	-3,0323	0	0	1.0676	0	0	1,6893	0	0	1,6893	0
	0	0	-1,6585	0	0	3,1920	0	0	0,9292	0	0	-1,7692	0	0	-1,7692
-	- 0,0799	0	0	-1,9968	0	0	0,0799	0	0	1,9968	0	0	1,9968	0	0
	0	-1,6893	0	0	1,0676	0	0	1,6893	0	0	-1,0676	0	0	-1,0676	0
	0	0	1,7692	0	0	0,9292	0	0	-1,7692	0	0	-0,9292	0	0	-0,9292
-	1.,9968	0	0	0,0799	0	0	1,7968	0	0	10^{10}	0	0	-0,0799	0	0
	0	1,0676	0	0	1,6893	0	0	-0,9676	0	0	10^{10}	0	0	-1,5161	0
	0	0	0,9292	0	0	-1,7692	0	0	-0,8292	0	0	10^{10}	0	0	1,5960
													–	-	_
	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	-1	0	0	-1,7321	0	0	-1,7321	0
L	0	0	0	0	0	0	0	0	-1	0	0	1,7321	0	0	1,7321

Portanto, resolvendo o sistema tem-se:

$$\begin{bmatrix} \Delta V_{r2}^{a} \\ \Delta V_{r2}^{b} \\ \Delta V_{r2}^{c} \\ \Delta V_{m2}^{c} \\ \Delta V_{m2}^{a} \\ \Delta V_{m2}^{b} \\ \Delta V_{m2}^{c} \\ \Delta V_{m3}^{c} \\ \Delta V_{r3}^{c} \\ \Delta V_{r3}^{c} \\ \Delta V_{m3}^{c} \\ \Delta V_{m3}^{b} \\ \Delta V_{m3}^{b} \\ \Delta V_{m3}^{c} \\ \Delta$$

Observa-se que a décima, a décima primeira e a décima segunda posições do vetor de correções correspondem às variáveis sem efeito, obtidas devido à inclusão do número elevado nas diagonais. Por outro lado, as últimas três posições deste vetor referem-se realmente aos valores das correções da componente imaginária de tensão na barra 3, relativos às três fases.

Os valores corrigidos das tensões são:

$$\begin{bmatrix} V_1^a \\ V_1^b \\ V_1^c \\ V_2^a \\ V_2^a \\ V_2^b \\ V_2^c \\ V_3^c \\ V_3^a \\ V_3^c \\ V_3^c \end{bmatrix} = \begin{bmatrix} 1 \\ -0.5 - j8,6603 \cdot 10^{-1} \\ -0.5 + j8,6603 \cdot 10^{-1} \\ 1,0272 - j7,6209 \cdot 10^{-2} \\ -5,7961 \cdot 10^{-1} - j8,5150 \cdot 10^{-1} \\ -4,4761 \cdot 10^{-1} + j9,2770 \cdot 10^{-1} \\ 1 - j1,2520 \cdot 10^{-1} \\ -6,0843 \cdot 10^{-1} - j8,0343 \cdot 10^{-1} \\ -3,9157 \cdot 10^{-1} + j9,2863 \cdot 10^{-1} \end{bmatrix}$$

Com os novos valores das componentes real e imaginária da tensão, os resíduos de potência são calculados pelas expressões (2.46) a (2.49):

$$\underline{I}^{abc} = Y^{abc} \bullet \underline{V}^{abc} = \begin{bmatrix} -0,15 + j1,6044 \cdot 10^{-1} \\ 6,3949 \cdot 10^{-2} - j2,1013 \cdot 10^{-1} \\ -2,1395 \cdot 10^{-1} + j4,9682 \cdot 10^{-2} \\ -3,4758 \cdot 10^{-2} + j9,4556 \cdot 10^{-2} \\ 9,9267 \cdot 10^{-2} - j1,7176 \cdot 10^{-2} \\ -6,4508 \cdot 10^{-2} - j7,7379 \cdot 10^{-2} \\ -8,7480 \cdot 10^{-2} + j1,5044 \cdot 10^{-1} \\ 1,7403 \cdot 10^{-1} + j5,3768 \cdot 10^{-4} \\ -8,6549 \cdot 10^{-2} - j1,5098 \cdot 10^{-1} \end{bmatrix}$$

$$\begin{bmatrix} S_2^a \\ S_2^b \\ S_2^b \\ S_3^a \\ S_3^a \\ S_3^c \end{bmatrix} = \begin{bmatrix} -0,0429 - j0,0945 \\ -0,0429 - j0,0945 \\ -0,0429 - j0,0945 \\ -0,1063 - j0,1395 \\ -0,1063 - j0,1395 \\ -0,1063 - j0,1395 \end{bmatrix} \Rightarrow \begin{bmatrix} P_2^a \\ P_2^b \\ P_2^c \\ P_3^a \\ P_3^a \\ P_3^b \\ P_3^c \end{bmatrix} = \begin{bmatrix} -0,0429 \\ -0,0429 \\ -0,0429 \\ -0,1063 \\ -0,1063 \\ -0,1063 \\ -0,1063 \end{bmatrix} \begin{bmatrix} Q_2^a \\ Q_2^b \\ Q_2^b \\ Q_2^c \end{bmatrix} = \begin{bmatrix} -0,0945 \\ -0,0945 \\ -0,0945 \\ -0,0945 \end{bmatrix}$$

$$\begin{bmatrix} \Delta P_2^a \\ \Delta P_2^b \\ \Delta P_2^c \\ \Delta P_3^a \\ \Delta P_3^a \\ \Delta P_3^b \\ \Delta P_3^c \end{bmatrix} = \begin{bmatrix} -7,0896 \cdot 10^{-3} \\ -7,0896 \cdot 10^{-3} \\ -7,0896 \cdot 10^{-3} \\ 6,3156 \cdot 10^{-3} \\ 6,3156 \cdot 10^{-3} \\ 6,3156 \cdot 10^{-3} \\ 6,3156 \cdot 10^{-3} \end{bmatrix} \begin{bmatrix} \Delta Q_2^a \\ \Delta Q_2^b \\ \Delta Q_2^c \end{bmatrix} = \begin{bmatrix} -5,5193 \cdot 10^{-3} \\ -5,5193 \cdot 10^{-3} \\ -5,5193 \cdot 10^{-3} \end{bmatrix}$$

Como o maior dos resíduos de potência ainda é maior que a tolerância de 10^{-5} , o processo iterativo continua. Após 3 iterações, obtêm-se os mesmos resultados mostrados nas Tabelas (2.4) e (2.5) e com uma trajetória de convergência diferente conforme mostrada na Tabela (2.9).

Iteração	Máximo $ \Delta P $	Barra	Máximo $ \Delta Q $	Barra	Erro Máximo
0	0,1000	3	0,1000	2	0,1000
1	7,0896.10 ⁻³	2	5,5193.10 ⁻³	3	1,5675.10 ⁻²
2	3,6673.10 ⁻⁵	2	3,7275.10 ⁻⁵	3	6,4221.10 ⁻⁵
3	9,0226.10 ⁻¹⁰	2	1,1647.10 ⁻⁹	2	1,1647.10 ⁻⁹

Tabela 2.9 – Trajetória de Convergência – Retangular Convencional

Os resultados mostrados nas Tabelas (2.4) a (2.9) referentes a este sistema de pequeno porte, evidenciam que os três processos de solução do fluxo de potência apresentados geram o mesmo resultado final de tensões, apresentando um desempenho similar em termos do número de iterações necessário para a convergência. Resultados mais conclusivos serão obtidos no Capítulo 4.

Capítulo 3

Fluxo de Potência Trifásico Via Injeção de Corrente

3.1 Introdução

Os sistemas de distribuição são caracterizados por uma relação alta R/X e operação com cargas desequilibradas. Na busca por melhores métodos de solução do fluxo de potência para esses casos, inúmeras metodologias têm sido apresentadas, destacando-se a formulação via equações injeção de corrente.

O fluxo de potência via injeção de corrente monofásico apresentado em [21] propõe que sejam utilizadas 2n equações de correntes injetadas, escritas em coordenadas retangulares, tanto para barras PQ quanto para PV. Uma nova variável independente (Q) é introduzida para cada barra PV juntamente com uma equação adicional impondo a restrição de variação igual a zero na tensão desta barra. Exceto pelas barras PV, a matriz Jacobiana possui os elementos (2x2) fora dos blocos diagonais iguais àqueles da matriz admitância nodal expandida em coordenadas real e imaginária. Os elementos (2x2) dos blocos diagonais precisam ser atualizados a cada iteração de acordo com o modelo de carga a ser considerado. Novos desenvolvimentos baseados nesta formulação têm sido apresentados [22, 23].

Este modelo apresentado em [21] foi expandido para sistemas trifásicos de potência desequilibrados em [24]. Considerando as metodologias em [21] e [24], o problema básico de fluxo de potência será constituído de 6*n* equações. Vale ressaltar que, diferentemente dos métodos polar e retangular, nenhuma equação referente a barras PV será eliminada.

Diferentemente de [21] e [24], as modificações necessárias na matriz Jacobiana devido à presença de barras PV, serão efetuadas acrescentando-se para cada barra PV

mais 3 linhas e 3 colunas à Jacobiana primitiva, ao invés de inseri-las nas colunas referentes à cada barra PV. Além disso, com os valores obtidos das variáveis independentes, as potências reativas geradas nas barras PV são atualizadas a cada iteração. Apesar da matriz Jacobiana apresentar uma dimensão maior, essa estratégia tem uma implementação mais simples e não influencia negativamente o tempo computacional de solução.

3.2 Metodologia de Solução

3.2.1 Apresentação das Equações

Enquanto as metodologias apresentadas no capítulo 2 utilizam expressões referentes às potências ativa e reativa de cada barra, o método via injeção de corrente utiliza, como a própria nomenclatura indica, expressões relativas a correntes.

As equações de corrente a serem resolvidas no problema de fluxo de potência, separadas em termos de suas componentes real e imaginária, denotadas por $I_{rk}^{'s}$ e $I_{mk}^{'s}$ respectivamente, estão deduzidas no Apêndice I, sendo dadas por:

$$\sum_{m\in\Omega_k}\sum_{t\in\alpha_p} \left(G_{ki}^{st}V_{ri}^t - B_{ki}^{st}V_{mi}^t\right) - \frac{P_k^s V_{rk}^s + Q_k^s V_{mk}^s}{\left(V_{rk}^s\right)^2 + \left(V_{mk}^s\right)^2} = 0$$
(3.1)

$$\sum_{m \in \Omega_k} \sum_{t \in \alpha_p} \left(G_{ki}^{st} V_{mi}^t + B_{ki}^{st} V_{ri}^t \right) - \frac{P_k^s V_{mk}^s - Q_k^s V_{rk}^s}{\left(V_{rk}^s\right)^2 + \left(V_{mk}^s\right)^2} = 0$$
(3.2)

3.2.2 Tratamento das barras V0 e PV

No caso do fluxo de potência trifásico via injeção de corrente, o tratamento de barras V θ é similar ao apresentado nas formulações anteriores. Entretanto, para o tratamento das barras PV serão incluídas no sistema equações adicionais, ou seja, cada

barra PV do sistema resultará na adição de mais 3 linhas e 3 colunas na Jacobiana primitiva. A equação adotada para a imposição da restrição da tensão numa barra k do tipo PV é a mesma (2.84). Para exemplificar, num sistema com n barras, sendo a barra k uma PV, a aplicação do método de Newton-Raphson para solução de (3.1) e (3.2) resulta no seguinte conjunto de equações lineares:

$\Delta \underline{I}_{m1}^{abc}$ $\Delta \overline{I}_{r1}^{abc}$	$\left[(\boldsymbol{Y}_{11}^*)^{\text{abc}} \right]$				$(\boldsymbol{Y}_{1k})^{\mathrm{abc}}$				$(\boldsymbol{Y}_{1n})^{abc}$		0		$\begin{bmatrix} \Delta \underline{V}_{r1}^{abc} \\ \Delta \underline{V}_{m1}^{abc} \end{bmatrix}$
	÷		÷		:		÷		÷		÷		
$\Delta \underline{I}_{mk}^{abc}$ $\Delta \underline{I}_{rk}^{abc}$	$(\boldsymbol{Y}_{k1})^{abc}$	 		 	$(\boldsymbol{Y}_{kk}^*)^{abc}$	 		 	$(\boldsymbol{Y}_{kn})^{abc}$	 	$\frac{V_{rk}^{abc}}{(V_k^{abc})^2} - \frac{V_{mk}^{abc}}{(V_k^{abc})^2}$	•	$\Delta \underline{V}_{rk}^{abc}$ $\Delta \underline{V}_{mk}^{abc}$ \dots
•	:		÷		÷		÷		÷		÷		
$\Delta \underline{I}_{mn}^{abc}$ $\Delta \underline{I}_{m}^{abc}$	$(\boldsymbol{Y}_{n1})^{abc}$		_ 	- -	$(\boldsymbol{Y}_{nk})^{abc}$		_ 		$(\boldsymbol{Y}_{nn}^*)^{abc}$	_ _	0		$\Delta \underline{\underline{V}}_{rn}^{abc}$ $\Delta \underline{\underline{V}}_{mn}^{abc}$
$(\Delta \underline{V}_{k}^{abc})^{2}$	0				$2V_{ m rk}^{ m abc}2V_{ m mk}^{ m abc}$				0		0 _		$\Delta \underline{\boldsymbol{\varrho}}_{Gk}^{abc}$
													(3.3)

Os resíduos de corrente em (3.3) para uma barra k, fase s, são obtidos diretamente das equações (3.4) e (3.5):

$$\Delta I_{mk}^{s} = \frac{(P_{Gk}^{s} - P_{Lk}^{s})(V_{mk}^{s}) - (Q_{Gk}^{s} - Q_{Lk}^{s})(V_{rk}^{s}) - (V_{k}^{s})^{2}(I_{mk}^{s})}{(V_{k}^{s})^{2}}$$
(3.4)

$$\Delta I_{rk}^{s} = \frac{(P_{Gk}^{s} - P_{Lk}^{s})(V_{rk}^{s}) + (Q_{Gk}^{s} - Q_{Lk}^{s})(V_{mk}^{s}) - (V_{k}^{s})^{2}(I_{rk}^{s})}{(V_{k}^{s})^{2}}$$
(3.5)

Vale ressaltar que para as barras PQ, as variáveis P_G e Q_G são iguais a zero.

Os elementos fora da diagonal da matriz Jacobiana são idênticos aos correspondentes elementos da matriz admitância nodal. Obviamente, cada um destes elementos será um bloco de ordem (6x6) tendo a seguinte estrutura:

$$(Y_{km})^{abc} = \begin{bmatrix} B_{km}^{aa} & B_{km}^{ab} & B_{km}^{ac} & | & G_{km}^{aa} & G_{km}^{ab} & G_{km}^{ac} \\ B_{km}^{ba} & B_{km}^{bb} & B_{km}^{bc} & | & G_{km}^{ba} & G_{km}^{bb} & G_{km}^{bc} \\ B_{km}^{ca} & B_{km}^{cb} & B_{km}^{cc} & | & G_{km}^{ca} & G_{km}^{cb} & G_{km}^{cc} \\ -- & -- & -- & -- & -- & -- & -- \\ G_{km}^{aa} & G_{km}^{ab} & G_{km}^{ac} & | & -B_{km}^{aa} & -B_{km}^{ab} & -B_{km}^{ac} \\ G_{km}^{ba} & G_{km}^{bb} & G_{km}^{bc} & | & -B_{km}^{ba} & -B_{km}^{bb} & -B_{km}^{bc} \\ G_{km}^{ca} & G_{km}^{cb} & G_{km}^{cc} & | & -B_{km}^{ca} & -B_{km}^{cb} & -B_{km}^{cc} \end{bmatrix}$$
(3.6)

Os elementos diagonais são dados por:

$$\left(Y_{kk}^{*}\right)^{abc} = \begin{bmatrix} B_{kk}^{'aa} & B_{kk}^{'ab} & B_{kk}^{'ac} \\ B_{kk}^{'ba} & B_{kk}^{'bb} & B_{kk}^{'bc} \\ B_{kk}^{'ca} & B_{kk}^{'cb} & B_{kk}^{'cc} \\ G_{kk}^{'ca} & G_{kk}^{'cb} & G_{kk}^{'cb} \\ G_{kk}^{'ca} & G_{kk}^{'cb} & G_{kk}^{'cc} \\ G_{kk}^{'ca} & G_{kk}^{'bb} & G_{kk}^{'bc} \\ G_{kk}^{'ba} & G_{kk}^{'bb} & G_{kk}^{'bc} \\ G_{kk}^{'ca} & G_{kk}^{'cb} & G_{kk}^{'cc} \\ G_{kk}^{'ca} & G_{kk}^{'cb} & G_{kk}^{'cc} \\ G_{kk}^{'ca} & G_{kk}^{'cb} & G_{kk}^{'cb} \\ G_{kk}^{'ca} & G_{kk}^{'cb} & G_{kk}^{'cb} \\ G_{kk}^{'ca} & G_{kk}^{'cb} & G_{kk}^{'cc} \\ B_{kk}^{'ca} & B_{kk}^{'cb} & B_{kk}^{'cb} \\ B_{kk}^{'cb} & B_{kk}^{'cb} & B_{kk}^{'cc} \\ \end{bmatrix}$$

$$(3.7)$$

Para uma carga conectada em estrela tem-se [24]:

$$\left(B_{kk}^{'}\right)^{abc} = B_{kk}^{abc} - \begin{bmatrix} a_{k}^{aa} & & \\ & a_{k}^{bb} & \\ & & a_{k}^{cc} \end{bmatrix}$$
(3.8)

$$(G_{kk})^{abc} = G_{kk}^{abc} - \begin{bmatrix} b_k^{aa} & & \\ & b_k^{bb} & \\ & & b_k^{cc} \end{bmatrix}$$
 (3.9)

$$(G_{kk}^{"})^{abc} = G_{kk}^{abc} - \begin{bmatrix} c_{k}^{aa} & & \\ & c_{k}^{bb} & \\ & & c_{k}^{cc} \end{bmatrix}$$
 (3.10)

$$(B_{kk}^{"})^{abc} = -B_{kk}^{abc} - \begin{bmatrix} d_k^{aa} & & \\ & d_k^{bb} & \\ & & d_k^{cc} \end{bmatrix}$$
 (3.11)

onde para uma carga do tipo potência constante tem-se [24]:

$$a_{k}^{ss} = \frac{(Q_{Gk}^{s} - Q_{Lk}^{s})[(V_{rk}^{s})^{2} - (V_{mk}^{s})^{2}] - 2(P_{Gk}^{s} - P_{Lk}^{s})V_{rk}^{s}V_{mk}^{s}}{(V_{k}^{s})^{4}}$$
(3.12)

$$b_k^{ss} = \frac{(P_{Gk}^s - P_{Lk}^s)[(V_{rk}^s)^2 - (V_{mk}^s)^2] + 2(Q_{Gk}^s - Q_{Lk}^s)V_{rk}^s V_{mk}^s}{(V_k^s)^4}$$
(3.13)

$$c_k^{ss} = -b_k^{ss} \tag{3.14}$$

$$d_k^{ss} = a_k^{ss} \tag{3.15}$$

As derivadas que surgem nas colunas adicionais são dadas por:

$$\frac{\partial I_{mk}^{'s}}{\partial Q_k^s} = \frac{V_{rk}^s}{\left(V_k^s\right)^2} \tag{3.16}$$

$$\frac{\partial I_{rk}^{\prime s}}{\partial Q_k^s} = -\frac{V_{mk}^s}{(V_k^s)^2}$$
(3.17)

Vale ressaltar que no caso do cálculo dos resíduos de corrente das barras PV a variável Q_{Gk}^s é atualizada a cada iteração.

3.2.3 Atualização das tensões

Após a determinação dos incrementos das tensões das barras através de (3.3), a atualização das tensões em coordenadas retangulares, em uma iteração genérica, h+1, é feita conforme as equações (2.86) a (2.88) mostradas no capítulo anterior e repetidas por conveniência:

$$\underline{V}_{r}^{(h+1)s} = \underline{V}_{r}^{(h)s} + \underline{\Delta V}_{r}^{(h)s}$$
(3.18)

$$\underline{V}_{m}^{(h+1)s} = \underline{V}_{m}^{(h)s} + \underline{\Delta V}_{m}^{(h)s}$$
(3.19)

$$\underline{\underline{\mathcal{Q}}}_{G}^{(h+1)s} = \underline{\underline{\mathcal{Q}}}_{G}^{(h)s} + \Delta \underline{\underline{\mathcal{Q}}}_{G}^{(h)s}$$
(3.20)

3.2.4 Algoritmo de Solução – Injeção de Corrente

A partir das expressões apresentadas nos itens 3.2.1 a 3.2.3, pode-se caminhar para a elaboração do algoritmo de solução do fluxo de potência trifásico via injeção de corrente.

- Passo 1: Determina-se a matriz admitância nodal Y^{abc} na forma descrita em (3.6);
- Passo 2: Determinam-se os resíduos de corrente de todas as barras através de (3.4) e (3.5);
- Passo 3: Comparam-se os resíduos com uma tolerância pré-fixada. Se o resíduo máximo de corrente for menor que esta tolerância, o processo é finalizado. Caso o resíduo máximo de corrente seja maior que esta tolerância, então calculam-se as correções das componentes real e imaginária das tensões através de (3.3);
- Passo 4: Com os novos valores de tensão, os resíduos de corrente são recalculados em todas as barras. Se estes ainda forem maiores que a tolerância, uma nova matriz Jacobiana é calculada a partir dos valores atualizados. Este

passo se repete até que os resíduos encontrados sejam menores que a tolerância estipulada.

Há uma variação proposta para essa metodologia em [24], na qual os resíduos de corrente em cada barra são calculados a partir dos valores de resíduos de potência ativa e reativa destas barras. Este método desenvolve um modelo diferente de representação de barras PV na solução do fluxo via injeção de corrente. Neste caso, a matriz Jacobiana aumentada é descrita em (3.21), com as linhas adicionais dadas por (3.22):

$\Delta \underline{I}_{m1}^{abc}$	[$(Y_{11}^*)^{abc}$				$(Y_{1k})^{abc}$			I	$(Y_{1n})^{abc}$	Ι	0	$\int \Delta \underline{V}_{r1}^{abc}$]
$\Delta \underline{I}_{r1}^{abc}$			_	_	_		_	_	_		—		$\Delta \underline{V}_{m1}^{abc}$	
		÷		÷				:				:		-
$ \frac{\Delta \underline{I}_{mk}^{abc}}{\Delta \underline{I}_{rk}^{abc}} $	=	$(Y_{k1})^{abc}$	 	-	 	$(Y_{kk}^*)^{abc}$	 	-	 	$(Y_{kn})^{abc}$	 	$\frac{V_{rk}^{abc}}{(V_k^{abc})^2} - \frac{V_{mk}^{abc}}{(V_k^{abc})^2}$	$ \begin{array}{c} $	-
:		:		÷		 :		÷		:		:	:	_
$\Delta \underline{I}_{mn}^{abc}$ $\Delta \underline{I}_{rn}^{abc}$		$(Y_{n1})^{abc}$	-	_ 		$(Y_{nk})^{abc}$	-	_ 		$(Y_{nn}^*)^{abc}$	-	0	$ \Delta \underline{V}_{rn}^{abc} \\ \Delta \underline{V}_{mn}^{abc} $	
$\Delta \underline{V}_{k}^{abc}$		0				$\frac{V_{rk}^{abc}}{V_k^s} \frac{V_{mk}^{abc}}{V_k^s}$				0		0	$\left\lfloor \varDelta \underline{Q}_{Gk}^{abc} \right\rfloor$	-
													(3.2	21`

$$\Delta V_k^s = \frac{V_{rk}^s}{V_k^s} \Delta V_{rk}^s + \frac{V_{mk}^s}{V_k^s} \Delta V_{mk}^s$$
(3.22)

As expressões das colunas adicionais são dadas pelas equações (3.16) e (3.17). As mudanças introduzidas por esta metodologia quanto ao cálculo dos coeficientes $a_k^{ss}, b_k^{ss}, c_k^{ss}$ e d_k^{ss} para as barras PV são descritas por (3.23) a (3.26):
$$a_{k}^{ss} = \frac{(Q_{kcalc}^{s})[(V_{rk}^{s})^{2} - (V_{mk}^{s})^{2}] - 2(P_{Gk}^{s} - P_{Da}^{s})V_{rk}^{s}V_{mk}^{s}}{(V_{k}^{s})^{4}}$$
(3.23)

$$b_k^{ss} = \frac{(P_{Gk}^s - P_{Dk}^s)[(V_{rk}^s)^2 - (V_{mk}^s)^2] + 2(Q_{kcalc}^s)V_{rk}^s V_{mk}^s}{(V_k^s)^4}$$
(3.24)

$$c_k^{ss} = -b_k^{ss} \tag{3.25}$$

$$d_k^{ss} = a_k^{ss} \tag{3.26}$$

Os resíduos de corrente são calculados em função dos resíduos de potência, não mais em função de potências geradas e/ou demandadas. Sendo assim, para as barras PQ tem-se:

$$\Delta I_{mk}^{s} = \frac{V_{mk}^{s} \Delta P_{k}^{s} - V_{rk}^{s} \Delta Q_{k}^{s}}{\left(V_{k}^{s}\right)^{2}}$$
(3.27)

$$\Delta I_{rk}^{s} = \frac{V_{rk}^{s} \Delta P_{k}^{s} + V_{mk}^{s} \Delta Q_{k}^{s}}{(V_{k}^{s})^{2}}$$
(3.28)

onde:

$$\Delta P_k^s = P_{kesp}^s - P_{kcalc}^s \tag{3.29}$$

$$\Delta Q_k^s = Q_{kesp}^s - Q_{kcalc}^s \tag{3.30}$$

Para as barras PV, os resíduos são dados por:

$$\Delta I_{mk}^{s} = \frac{V_{mk}^{s} \Delta P_{k}^{s}}{\left(V_{k}^{s}\right)^{2}}$$
(3.31)

$$\Delta I_{rk}^{s} = \frac{V_{rk}^{s} \Delta P_{k}^{s}}{\left(V_{k}^{s}\right)^{2}}$$
(3.32)

Tendo em vista que no problema de fluxo de potência a maior parte do tempo computacional deve-se às atualizações e fatorações da matriz Jacobiana a cada iteração, uma outra metodologia descrita na literatura consiste em considerar a matriz Jacobiana constante, considerando o modelo de carga do tipo potência constante. Busca-se com esta proposição obter a solução do fluxo de potência de uma forma rápida computacionalmente, uma vez que a matriz Jacobiana é agora calculada e fatorada apenas uma vez na primeira iteração, sendo mantida constante até o final do processo iterativo. Esta metodologia de solução utilizando a formulação de injeção de corrente será denominada de PCONST.

Um outro procedimento alternativo, denominado ZCONST, seria manter a matriz Jacobiana constante a partir da primeira iteração, considerando o modelo de carga do tipo impedância constante. Entretanto os resíduos de corrente são calculados através de (3.4) e (3.5). A matriz Jacobiana constante montada na primeira iteração através de (3.6) a (3.11) utiliza os coeficientes a_k^{ss} , b_k^{ss} , c_k^{ss} e d_k^{ss} dados pelas expressões (3.33) a (3.36):

$$a_{k}^{ss} = Q_{Lk}^{s} + \frac{(Q_{Gk}^{s})[(V_{rk}^{s})^{2} - (V_{mk}^{s})^{2}] - 2(P_{Gk}^{s})V_{rk}^{s}V_{mk}^{s}}{(V_{k}^{s})^{4}}$$
(3.33)

$$b_k^{ss} = -P_{Lk}^s + \frac{(P_{Gk}^s)[(V_{rk}^s)^2 - (V_{mk}^s)^2] - 2(Q_{Gk}^s)V_{rk}^s V_{mk}^s}{(V_k^s)^4}$$
(3.34)

$$c_{k}^{ss} = -P_{Lk}^{s} + \frac{(P_{Gk}^{s})[(V_{mk}^{s})^{2} - (V_{rk}^{s})^{2}] - 2(Q_{Gk}^{s})V_{rk}^{s}V_{mk}^{s}}{(V_{k}^{s})^{4}}$$
(3.35)

$$d_{k}^{ss} = -Q_{Lk}^{s} + \frac{(Q_{Gk}^{s})[(V_{rk}^{s})^{2} - (V_{mk}^{s})^{2}] - 2(P_{Gk}^{s})V_{rk}^{s}V_{mk}^{s}}{(V_{k}^{s})^{4}}$$
(3.36)

3.2.5 Aplicação Numérica

Para uma melhor compreensão do leitor, a seguir será estudada a solução do sistema de três barras apresentado no item 2.5 através da metodologia de injeção de corrente em coordenadas retangulares.

O cálculo da matriz admitância de barras e sua separação em partes real e imaginária são exatamente iguais àqueles apresentados no item 2.5.1.

O cálculo dos resíduos de corrente é feito através de (3.4) e (3.5). Como há uma barra PV no sistema, o vetor de resíduos ficou aumentado de 3 posições para a inclusão do resíduo de tensão da barra PV:

$$\begin{bmatrix} \Delta I_{m2}^{a} \\ \Delta I_{m2}^{b} \\ \Delta I_{m2}^{c} \\ \Delta I_{m3}^{c} \\ \Delta$$

Como o maior resíduo deste vetor é maior do que a tolerância de 10⁻⁵, deve-se partir para a primeira iteração do processo, que requer a montagem da matriz Jacobiana e

a solução de um conjunto de equações lineares. Para o cálculo da matriz Jacobiana basta calcular os termos dados por (3.12) a (3.15). Assim:

$\begin{bmatrix} a_2^{aa} \end{bmatrix}$		[-0,1000]	b_2^{aa}		-0,0500	c_2^{aa}		0,0500	d_2^{aa}		-0,1000
a_2^{bb}		0,0933	b_2^{bb}		-0.0616	c_2^{bb}		0,0616	d_2^{bb}		0,0933
a_2^{cc}		0,0067	b_2^{cc}	_	0,1116	c_2^{cc}	_	-0,1116	d_2^{cc}	_	0,0067
a_3^{aa}	-	-0,2000	b_3^{aa}	_	-0,1000	c_3^{aa}	_	0,1000	d_3^{aa}	_	-0,2000
a_3^{bb}		0,1866	b_3^{bb}		-0,1232	c_3^{bb}		0,1232	d_3^{bb}		0,1866
$\left\lfloor a_{3}^{cc}\right\rfloor$		0,0134	b_3^{cc}		0,2232	c_3^{cc}			d_3^{cc}		_ 0,0134 _

Modificando apenas os blocos diagonais da matriz admitância nodal pelas expressões (3.8) a (3.11), utilizando (3.16) e (3.17) para as colunas adicionais e (2.84) para as linhas adicionais, obtém-se a seguinte matriz Jacobiana como em (3.3):

- 3,694	0	0	0,210	0	0	1,997	0	0	- 0,080	0	0		0	0	0 -
0	- 3,887	0	0	0,221	0	0	1,997	0	0	- 0,080	0		0	0	0
0	0	- 3,800	0	0	0,048	0	0	1,997	0	0	- 0,080		0	0	0
0,110	0	0	3,894	0	0	- 0,080	0	0	- 1,9968	0	0		0	0	0
0	0,098	0	0	3,700	0	0	- 0,080	0	0	- 1,9968	0		0	0	0
0	0	0,271	0	0	3,787	0	0	- 0,080	0	0	-1,997		0	0	0
1,997	0	0	- 0,080	0	0	-1,697	0	0	0,180	0	0		1,000	0	0
0	1,997	0	0	- 0,080	0	0	- 2,083	0	0	0,203	0		0	- 0,500	0
0	0	1,997	0	0	- 0,080	0	0	-1,910	0	0	-0,143		0	0	- 0,500
- 0,080	0	0	-1,997	0	0	- 0,020	0	0	2,097	0	0		0	0	0
0	- 0,080	0	0	-1,997	0	0	- 0,043	0	0	1,710	0		0	0,866	0
0	0	- 0,080	0	0	-1,997	0	0	0,303	0	0	1,883		0	0	- 0,866
												_			
0	0	0	0	0	0	2	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	-1	0	0	-1,732	0		0	0	0
0	0	0	0	0	0	0	0	-1	0	0	1,732		0	0	0

Resolvendo o sistema mostrado em (3.3) obtêm-se as seguintes correções:

$$\begin{bmatrix} \Delta V_{r2}^{a} \\ \Delta V_{r2}^{b} \\ \Delta V_{r2}^{c} \\ \Delta V_{m2}^{c} \\ \Delta V_{m2}^{a} \\ \Delta V_{m2}^{a} \\ \Delta V_{m2}^{b} \\ \Delta V_{m3}^{c} \\ \Delta V_{r3}^{c} \\ \Delta V_{m3}^{c} \\ \Delta Q_{G3}^{c} \\ \Delta Q_{G3}^{c} \end{bmatrix} = \begin{bmatrix} 2,5430 \cdot 10^{-2} \\ -7,6226 \cdot 10^{-2} \\ 5,8091 \cdot 10^{-2} \\ 5,8691 \cdot 10^{-2} \\ -1,1656 \cdot 10^{-1} \\ 5,8281 \cdot 10^{-2} \\ 5,8281 \cdot 10^{-2} \\ 5,8281 \cdot 10^{-2} \\ 6,4330 \cdot 10^{-2} \\ 6,4330 \cdot 10^{-2} \\ 6,4330 \cdot 10^{-2} \\ 6,4330 \cdot 10^{-2} \end{bmatrix}$$

Com esses valores, procede-se à atualização das tensões bastando utilizar as equações (3.18) e (3.19) e à atualização da potência reativa por (3.20). Desta forma, obtém-se:

$$\begin{bmatrix} V_1^a \\ V_1^b \\ V_1^c \\ V_2^a \\ V_2^b \\ V_2^b \\ V_3^c \\ V_3^a \\ V_3^c \\ V_3^c \end{bmatrix} = \begin{bmatrix} 1 \\ -0,5-j0,8660 \\ -0,5+j0,8660 \\ 1,0254-j0,0733 \\ -0,5762-j0,8514 \\ -0,4492+j0,9247 \\ 1-j0,1166 \\ -0,6009-j0,8077 \\ -0,3991+j0,9243 \end{bmatrix}$$

$$\begin{bmatrix} Q_{G3}^{a} \\ Q_{G3}^{b} \\ Q_{G3}^{c} \end{bmatrix} = \begin{bmatrix} 6,4330 \cdot 10^{-2} \\ 6,4330 \cdot 10^{-2} \\ 6,4330 \cdot 10^{-2} \\ 6,4330 \cdot 10^{-2} \end{bmatrix}$$

Com as tensões atualizadas, os resíduos são novamente calculados:

$$\begin{bmatrix} \Delta I_{m2}^{a} \\ \Delta I_{m2}^{b} \\ \Delta I_{m2}^{c} \\ \Delta I_{m2}^{c} \\ \Delta I_{m2}^{a} \\ \Delta I_{m3}^{b} \\ \Delta I_{m3}^{b} \\ \Delta I_{m3}^{b} \\ \Delta I_{m3}^{c} \\ \Delta$$

Como o maior resíduo deste vetor é maior do que a tolerância de 10^{-5} , deve-se continuar o processo iterativo. Após 3 iterações, obtêm-se os resultados mostrados nas Tabelas (2.4) e (2.5) e as trajetórias de convergência descritas nas Tabelas (3.1) e (3.2).

Iteração	Máximo $ \Delta P $	Barra	Máximo $ \Delta Q $	Barra
0	0,1000	3	0,1000	2
1	6,1397.10 ⁻³	3	6,5964.10 ⁻⁴	2
2	5,5874.10 ⁻⁵	3	1,3899.10 ⁻⁶	2
3	2,6415.10 ⁻¹⁰	3	9,0479.10 ⁻¹¹	2

Tabela 3.1 – Trajetória de Convergência em Função dos Resíduos de Potência – Injeção de Corrente

Tabela 3.2 – Trajetória de Convergência em Função dos Resíduos de Corrente – Injeção de Corrente

Iteração	Máximo ΔIr	Barra	Máximo ∆ Im	Barra
0	0,1000	3	0,1000	2
1	6,3699.10 ⁻³	3	1,9748. 10 ⁻³	3
2	6,2053. 10 ⁻⁵	3	4,6711.10 ⁻⁵	3
3	1,1281.10 ⁻¹⁰	2	1,3333. 10 ⁻⁹	3

No capítulo 2, as tabelas de convergência mostram resíduos máximos de potência, pois os métodos lá descritos trabalham com equações envolvendo potências ativa e reativa. Agora, o método estudado baseia-se em equações de correntes injetadas, portanto nada mais coerente do que ver a trajetória de convergência também sob a ótica dos resíduos de corrente.

Quanto à metodologia descrita em [24], na qual os resíduos de corrente em cada barra são calculados a partir dos resíduos de potência ativa e reativa destas barras e com um modelo diferente de representação de barras PV na solução do fluxo via injeção de corrente, após 3 iterações, obtêm-se os mesmos resultados mostrados nas Tabelas (2.4) e (2.5) e a trajetórias de convergência descritas nas Tabelas (3.3) e (3.4):

Iteração	Máximo $ \Delta P $	Barra	Máximo $ \Delta Q $	Barra
0	0,1000	3	0,1000	2
1	6,0006.10 ⁻³	3	7,6889.10 ⁻⁴	2
2	5,1879.10 ⁻⁵	3	3,0838.10 ⁻⁷	2
3	5,5317.10 ⁻¹⁰	3	4,1066.10 ⁻¹¹	2

Tabela 3.3 – Trajetória de Convergência em Função dos Resíduos de Potência

Tabela 3.4 - Trajetória de Convergência em Função dos Resíduos de Corrente

Iteração	Máximo ΔIr	Barra	Máximo ∆ Im	Barra
0	0,1000	3	0,1000	2
1	5,9030.10 ⁻³	3	7,5881.10 ⁻⁴	3
2	5,1489.10 ⁻⁵	3	6,3419.10 ⁻⁶	3
3	5,4902.10 ⁻¹⁰	3	6,7653.10 ⁻¹¹	3

Se a matriz Jacobiana for mantida constante a partir da primeira iteração, considerando o modelo de carga do tipo potência constante (PCONST), após 6 iterações, obtêm-se os mesmos resultados mostrados nas Tabelas (2.4) e (2.5) e a trajetórias de convergência descritas nas Tabelas (3.5) e (3.6).

Tabela 3.5 – Trajetória de Convergência em Função dos Resíduos de Potência –

PCONST

Iteração	Máximo $ \Delta P $	Barra	Máximo $ \Delta Q $	Barra
0	0,1000	3	0,1000	2
1	6,1397.10 ⁻³	3	6,5964.10 ⁻⁴	2
2	6,8950.10 ⁻⁴	3	5,1056.10 ⁻⁵	2
3	1,9890.10 ⁻⁴	3	6,2310.10 ⁻⁶	2
4	4,5686.10 ⁻⁶	3	1,6517.10 ⁻⁶	2
5	3,7437.10-6	3	2,5217.10 ⁻⁸	2

Iteração	Máximo ΔIr	Barra	Máximo Δ Im	Barra
0	0,1000	3	0,1000	2
1	6,3699.10 ⁻³	3	1,9748.10 ⁻³	3
2	6,2153.10 ⁻⁴	3	5,8665.10 ⁻⁴	3
3	1,9805.10 ⁻⁴	3	1,9240.10 ⁻⁴	3
4	5,7750.10 ⁻⁶	3	9,5080.10 ⁻⁶	3
5	3,6076.10 ⁻⁶	3	1,3344.10 ⁻⁶	3

Tabela 3.6 – Trajetória de Convergência em Função dos Resíduos de Corrente – PCONST

Entretanto, se a matriz Jacobiana for mantida constante a partir da primeira iteração, considerando o modelo de carga do tipo impedância constante (ZCONST), os coeficientes $a_k^{ss}, b_k^{ss}, c_k^{ss}$ e d_k^{ss} são calculados utilizando-se as expressões (3.33) a (3.36):

$\begin{bmatrix} a_2^{aa} \end{bmatrix}$		0,1000	b_2^{aa}		[-0,0500]	$\begin{bmatrix} c_2^{aa} \end{bmatrix}$		-0,0500	$\begin{bmatrix} d_2^{aa} \end{bmatrix}$		-0,1000
a_2^{bb}		0,1000	b_2^{bb}		-0,0500	c_2^{bb}		-0,0500	d_2^{bb}		-0,1000
a_2^{cc}		0,1000	b_2^{cc}		-0,0500	c_2^{cc}		-0,0500	d_2^{cc}		-0,1000
a_3^{aa}	=	0,2000	b_3^{aa}	=	-0,1000	c_3^{aa}	=	-0,1000	d_3^{aa}	=	-0,2000
a_3^{bb}		0,2000	b_3^{bb}		-0,1000	c_3^{bb}		-0,1000	d_3^{bb}		-0,2000
$\begin{bmatrix} a_3^{cc} \end{bmatrix}$		0,2000	b_3^{cc}			c_3^{cc}			d_3^{cc}		_ 0,2000

Assim, obtém-se a seguinte matriz Jacobiana:

	0	0		<u>_</u>	<u>^</u>		â	0		0	0		0	0	-
- 3,894	0	0	0,210	0	0	1,997	0	0	- 0,080	0	0		0	0	0
0	- 3,894	0	0	0,210	0	0	1,997	0	0	- 0,080	0		0	0	0
0	0	- 3,894	0	0	0,210	0	0	1,997	0	0	- 0,080		0	0	0
0,210	0	0	3,894	0	0	- 0,080	0	0	-1,997	0	0		0	0	0
0	0,210	0	0	3,894	0	0	- 0,080	0	0	-1,997	0		0	0	0
0	0	0,210	0	0	3,894	0	0	- 0,080	0	0	- 1,997		0	0	0
1,997	0	0	- 0,080	0	0	- 2,097	0	0	0,180	0	0		1,000	0	0
0	1,997	0	0	- 0,080	0	0	- 2,097	0	0	0,180	0		0	- 0,500	0
0	0	1,997	0	0	- 0,080	0	0	- 2,097	0	0	0,180		0	0	- 0,500
- 0,080	0	0	-1,997	0	0	0,180	0	0	2,097	0	0		0	0	0
0	- 0,080	0	0	-1,997	0	0	0,180	0	0	2,097	0		0	0,866	0
0	0	- 0,080	0	0	-1,997	0	0	0,180	0	0	2,097		0	0	- 0,866
												_			
0	0	0	0	0	0	2	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	-1	0	0	-1,732	0		0	0	0
0	0	0	0	0	0	0	0	-1	0	0	1,732		0	0	0

As correções obtidas resolvendo o sistema mostrado em (3.3) com os valores numéricos calculados neste item são:

$$\begin{bmatrix} \Delta V_{r2}^{a} \\ \Delta V_{r2}^{b} \\ \Delta V_{r2}^{c} \\ \Delta V_{m2}^{c} \\ \Delta V_{m3}^{c} \\ \Delta V_{r3}^{c} \\ \Delta V_{r3}^{c} \\ \Delta V_{r3}^{c} \\ \Delta V_{r3}^{c} \\ \Delta V_{m3}^{c} \\ \Delta Q_{G3}^{c} \\ \Delta Q_{G3}^{c} \end{bmatrix} = \begin{bmatrix} 2,4084 \cdot 10^{-2} \\ -7,6580 \cdot 10^{-2} \\ 5,2496 \cdot 10^{-2} \\ -7,4522 \cdot 10^{-2} \\ 1,6404 \cdot 10^{-2} \\ 5,8118 \cdot 10^{-2} \\ 0 \\ -1,0197 \cdot 10^{-1} \\ 1,0197 \cdot 10^{-1} \\ 5,8871 \cdot 10^{-2} \\ 5,8871 \cdot 10^{-2} \\ 6,7135 \cdot 10^{-2} \\ 6,7135 \cdot 10^{-2} \\ 6,7135 \cdot 10^{-2} \end{bmatrix}$$

A atualização das tensões e da potência reativa é feita segundo as equações (3.18) a (3.20) resultando:

$$\begin{bmatrix} V_1^a \\ V_1^b \\ V_1^c \\ V_2^a \\ V_2^b \\ V_2^c \\ V_2^c \\ V_3^a \\ V_3^a \\ V_3^c \end{bmatrix} = \begin{bmatrix} 1 \\ -0,5 - j0,8660 \\ -0,5 + j0,8660 \\ 1,0241 - j0,0745 \\ -0,5766 - j0,8496 \\ -0,4475 + j0,9241 \\ 1 - j0,1177 \\ -0,6020 - j0,8072 \\ -0,3980 + j0,9249 \end{bmatrix}$$

$$\begin{bmatrix} Q_{G3}^{a} \\ Q_{G3}^{b} \\ Q_{G3}^{c} \end{bmatrix} = \begin{bmatrix} 6,7135 \cdot 10^{-2} \\ 6,7135 \cdot 10^{-2} \\ 6,7135 \cdot 10^{-2} \\ 6,7135 \cdot 10^{-2} \end{bmatrix}$$

Com as tensões atualizadas, os resíduos são novamente calculados pelas expressões (3.4) e (3.5) resultando:

$$\begin{bmatrix} \Delta I_{m2}^{a} \\ \Delta I_{m2}^{b} \\ \Delta I_{m2}^{c} \\ \Delta I_{m3}^{c} \\ \Delta$$

Como o maior resíduo deste vetor é maior do que a tolerância de 10^{-5} , deve-se continuar o processo iterativo. Após 6 iterações, obtêm-se os mesmos resultados mostrados nas Tabelas (2.4) e (2.5) e a trajetórias de convergência descritas nas Tabelas (3.7) e (3.8).

Iteração	Máximo $ \Delta P $	Barra	Máximo $ \Delta Q $	Barra
0	0,1000	3	0,1000	2
1	6,5183.10 ⁻³	3	5,4302.10-3	2
2	2,1187.10 ⁻⁴	2	4,0013.10 ⁻⁴	2
3	3,3060.10 ⁻⁴	3	7,5539.10 ⁻⁵	2
4	4,5796.10 ⁻⁵	3	1,3768.10-6	2
5	3,6547.10 ⁻⁶	3	3,5367.10 ⁻⁶	2
6	2,1233.10-6	3	6,8867.10 ⁻⁶	2

Tabela 3.7 – Trajetória de Convergência em Função dos Resíduos de Potência – ZCONST

Tabela 3.8 - Trajetória de Convergência em Função dos Resíduos de Corrente -

ZCONST

Iteração	Máximo ΔIr	Barra	Máximo ∆ Im	Barra
0	0,1000	3	0,1000	2
1	6,7512.10 ⁻³	3	5,4664.10 ⁻³	2
2	1,7716.10 ⁻⁴	2	2,1965.10 ⁻³	3
3	3,0724.10 ⁻⁴	3	2,1043.10 ⁻⁴	3
4	4,7361.10 ⁻⁵	3	9,9105.10 ⁻⁶	3
5	2,2636.10 ⁻⁶	3	1,1514.10 ⁻⁵	3
6	1,9130.10 ⁻⁶	3	1,8370.10 ⁻⁶	3

3.3 Proposta de uma Nova Metodologia para a Solução de Fluxo de Potência Trifásico

3.3.1 Introdução

Com o crescente interesse por estudos em sistemas de distribuição, a busca por melhores métodos para a solução do fluxo de potência trifásico torna-se muito relevante.

No capítulo anterior, as metodologias polar e retangular apresentadas nada mais eram que extensões dos modelos monofásicos já conhecidos.

A avaliação de fluxo de potência em regime permanente é certamente um dos mais tradicionais e importantes estudos que são freqüentemente realizados em sistemas de potência. Esse talvez seja um dos problemas para os quais se contabilize o maior número de formulações variantes e contribuições oriundas de pesquisadores, acadêmicos e profissionais de diversos países, empresas, universidades e centros de pesquisas [19].

3.3.2 Fluxo de Potência Injeção de Corrente Robusto às Condições Iniciais - RCI

O desenvolvimento desta nova técnica foi impulsionado pela busca de uma solução para sistemas que tenham condições ruins, isto é, condições iniciais muito afastadas do ponto de convergência e também para aqueles sistemas considerados malcondicionados.

Uma proposta para resolver esta situação é descrita em [19]. Este artigo apresenta uma nova metodologia de cálculo de fluxo de potência, originalmente algébrico, em um problema de natureza algébrico-diferencial. A solução do mesmo é obtida através da integração numérica de equações. O método apresenta excepcional capacidade de convergência, além de importante propriedade de não-convergência para pontos de equilíbrio instáveis. O esforço computacional exigido por esta solução pode ser intenso, se a mesma não for implementada com algoritmos avançados de integração numérica.

Visto isso, a metodologia proposta neste item pretende, utilizando apenas equações algébricas, sem utilizar derivadas e integrais, obter a solução do fluxo de potência [19] com um menor esforço computacional. Além disso, o novo método proposto tem como objetivo a convergência de sistemas inicializados com condições extremamente desvaforáveis não só para os ângulos como mostrado em [19], mas também para as tensões das barras PQ.

Sabe-se que para sistemas contendo apenas barras PQ, o problema de fluxo de potência via injeção de corrente considerando-se a carga como impedância constante, torna-se um sistema de equações lineares atingindo a convergência com apenas uma

iteração [1]. Partindo dessa idéia, esta metodologia proposta faz com que na primeira iteração todas as barras sejam consideradas PQ, exceto a de referência, para que ao final desta iteração, os resultados de tensão sejam condições iniciais melhores do que aquelas oferecidas para a primeira iteração. A partir da segunda iteração, caso existam barras PV no sistema, estas serão novamente consideradas.

Dessa forma, sistemas com condições iniciais ruins, mas com solução, que divergem em programas de fluxo de potência convencionais, nesta nova proposta encontram a solução de operação com um esforço computacional mínimo.

3.3.2.1 Equações Básicas

As equações de corrente a serem resolvidas no problema de fluxo de potência na primeira iteração, para carga tipo impedância constante, separada em suas partes real e imaginária, respectivamente, são dadas por:

$$\sum_{m \in \Omega_k} \sum_{t \in a_p} \left(G_{ki}^{st} V_{ri}^t - B_{ki}^{st} V_{mi}^t \right) - \frac{\left(P_{Gk}^s - P_{Lk}^s (V_k^s)^2 \right) V_{rk}^s + \left(Q_{Gk}^s - Q_{Lk}^s (V_k^s)^2 \right) V_{mk}^s}{\left(V_{rk}^s \right)^2 + \left(V_{mk}^s \right)^2} = 0$$
(3.37)

$$\sum_{m \in \Omega_k} \sum_{t \in \alpha_p} (G_{ki}^{st} V_{mi}^t + B_{ki}^{st} V_{ri}^t) - \frac{(P_{Gk}^s - P_{Lk}^s (V_k^s)^2) V_{mk}^s - (Q_{Gk}^s - Q_{Lk}^s (V_k^s)^2) V_{rk}^s}{(V_{rk}^s)^2 + (V_{mk}^s)^2} = 0$$
(3.38)

O sistema a ser montado é o mesmo descrito em (3.3). Os coeficientes a_k^{ss} , b_k^{ss} , c_k^{ss} e d_k^{ss} e os resíduos de corrente da primeira iteração também são calculados para carga do tipo impedância constante. Os coeficientes são descritos pelas expressões (3.33) a (3.36).

Por outro lado, os resíduos de corrente são dados por:

$$\Delta I_{mk}^{s} = -P_{Lk}^{s} V_{mk}^{s} + Q_{Lk}^{s} V_{rk}^{s} - I_{mk}^{s} + \frac{P_{Gk}^{s} V_{mk}^{s} - Q_{Gk}^{s} V_{rk}^{s}}{(V_{k}^{s})^{2}}$$
(3.39)

$$\Delta I_{rk}^{s} = -P_{Lk}^{s} V_{rk}^{s} - Q_{Lk}^{s} V_{mk}^{s} - I_{rk}^{s} + \frac{P_{Gk}^{s} V_{rk}^{s} - Q_{Gk}^{s} V_{mk}^{s}}{(V_{k}^{s})^{2}}$$
(3.40)

A partir da segunda iteração, o tipo de carga volta a ser considerado como potência constante e as expressões (3.4), (3.5) e (3.12) a (3.15) são então utilizadas. A atualização das tensões é feita de acordo com as equações (3.18) e (3.19).

3.3.2.2 Algoritmo Proposto – RCI

Com condições iniciais desfavoráveis, este método sempre entrará no processo iterativo e seguirá os seguintes passos:

- Passo 1: Todas as barras, exceto a de referência, são transformadas em barras PQ: as informações sobre potência ativa das barras PV são mantidas e as informações sobre potência reativa são consideradas iguais a zero;
- Passo 2: Determinam-se os resíduos de corrente de todas as barras do sistema, através de (3.39) e (3.40) considerando o modelo de carga impedância constante e, então, calculam-se as correções das componentes real e imaginária das tensões através de (3.3);
- Passo 3: Com os novos valores de tensão, o programa entra obrigatoriamente na próxima iteração, com o modelo de carga do tipo potência constante. As barras são convertidas ao seu tipo original, isto é, as barras PV, se existirem, que foram transformadas em PQ, voltam a ser PV até o final do processo iterativo;
- Passo 4: A matriz Jacobiana é novamente calculada, agora com os coeficientes dados por (3.12) a (3.15) e as correções das tensões novamente calculadas por (3.3);
- Passo 5: Com os novos valores de tensão, os resíduos de corrente são recalculados em todas as barras, considerando o modelo potência constante pelas expressões (3.4) e (3.5). Se estes ainda forem maiores que a tolerância, uma nova matriz Jacobiana é calculada a partir dos valores atualizados. Este passo se repete até que os resíduos encontrados sejam menores que a tolerância estipulada.

3.3.2.3 Aplicação Numérica

Para uma melhor compreensão do leitor, a seguir será estudada a solução do sistema de três barras apresentado no item 2.5. Entretanto, as informações sobre a barra PQ foram modificadas conforme a Tabela (3.9), onde todos os valores estão em p.u..

Número da Barra	Тіро	Módulo Tensão Fase a	Módulo Tensão Fase b	Módulo Tensão Fase c	Ângulo Fase a	Ângulo Fase b	Ângulo Fase c
1	Vθ	1	1	1	0	-120°	120°
2	PQ	7	0,5	5	45°	145°	30°
3	PV	1	1	1	0	-120°	120°

Tabela 3.9 - Dados de Tensão e Ângulo de Barras - Condições Iniciais Desfavoráveis

Quanto à solução, a diferença está no cálculo dos resíduos, feitos através de (3.39) e (3.40) para todas as barras. Mesmo havendo uma barra PV no sistema, neste primeiro momento, o vetor de resíduos não será aumentado. Assim sendo, obtém-se:

$$\begin{bmatrix} \Delta I_{m2}^{a} \\ \Delta I_{m2}^{b} \\ \Delta I_{m2}^{c} \\ \Delta I_{m2}^{c} \\ \Delta I_{r2}^{c} \\ \Delta I_{r2}^{c} \\ \Delta I_{r2}^{c} \\ \Delta I_{r2}^{c} \\ \Delta I_{r3}^{c} \\ \Delta I_{m3}^{a} \\ \Delta I_{m3}^{c} \\ \Delta I_{r3}^{c} \\ \Delta I_{r3}^{c} \\ \Delta I_{r3}^{c} \\ \Delta I_{r3}^{c} \end{bmatrix} = \begin{bmatrix} 14,241 \\ 0,204 \\ 18,471 \\ -20,151 \\ -4,569 \\ -7,264 \\ -7,392 \\ -5,188 \cdot 10^{-2} \\ -9,651 \\ 10,099 \\ 2,446 \\ 3,612 \end{bmatrix}$$

A primeira matriz Jacobiana é calculada considerando a carga como do tipo impedância constante. Sendo assim, basta calcular os coeficientes a_k^{ss} , b_k^{ss} , c_k^{ss} e d_k^{ss} utilizando (3.33) a (3.36):

$$\begin{bmatrix} a_{2}^{aa} \\ a_{2}^{bb} \\ a_{2}^{cc} \\ a_{3}^{cc} \\ a_{3}^{aa} \\ a_{3}^{ab} \\ a_{3}^{cc} \\ a$$

Modificando-se apenas os blocos diagonais da matriz admitância nodal pelas expressões (3.8) a (3.11), obtém-se a seguinte matriz Jacobiana:

-3,8936	0	0	0,2097	0	0	1,9968	0	0	-0,0799	0	0
0	-3,8936	0	0	0,2097	0	0	1,9968	0	0	-0,0799	0
0	0	-3,8936	0	0	0,2097	0	0	1,9968	0	0	-0,0799
0,2097	0	0	3,8936	0	0	-0,0799	0	0	-1,9968	0	0
0	0,2097	0	0	3,8936	0	0	-0,0799	0	0	-1,9968	0
0	0	0,2097	0	0	3,8936	0	0	-0,0799	0	0	-1,9968
1,9968	0	0	-0,0799	0	0	-2,0968	0	0	0,1799	0	0
0	1,9968	0	0	-0,0799	0	0	-2,0968	0	0	0,1799	0
0	0	1,9968	0	0	-0,0799	0	0	-2,0968	0	0	0,1799
-0,0799	0	0	-1,9968	0	0	0,1799	0	0	2,0968	0	0
0	-0,0799	0	0	-1,9968	0	0	0,1799	0	0	2,0968	0
0	0	-0,0799	0	0	-1,9968	0	0	0,1799	0	0	2,0968

Repare que apesar do sistema em estudo conter uma barra PV, a Jacobiana da primeira iteração não é aumentada. As correções obtidas resolvendo o sistema mostrado em (3.3) com os valores numéricos calculados neste item são:

$$\begin{bmatrix} \Delta V_{r2}^{a} \\ \Delta V_{r2}^{b} \\ \Delta V_{r2}^{c} \\ \Delta V_{m2}^{a} \\ \Delta V_{m2}^{a} \\ \Delta V_{m2}^{a} \\ \Delta V_{m2}^{b} \\ \Delta V_{m2}^{c} \\ \Delta V_{m3}^{c} \\ \Delta V_{r3}^{c} \\ \Delta V_{m3}^{c} \\ \Delta V_{m3}^{c} \end{bmatrix} = \begin{bmatrix} -3,9570 \\ -1,4706 \cdot 10^{-1} \\ -4,7662 \\ -5,0194 \\ -1,1117 \\ -1,6055 \\ -6,1322 \cdot 10^{-2} \\ -6,3729 \cdot 10^{-2} \\ 1,2505 \cdot 10^{-1} \\ 1,2505 \cdot 10^{-1} \\ -1,0899 \cdot 10^{-1} \\ 1,0760 \cdot 10^{-1} \\ 1,3898 \cdot 10^{-3} \end{bmatrix}$$

A atualização das tensões é feita utilizando as equações (3.18) e (3.19) resultando:

$$\begin{bmatrix} V_1^a \\ V_1^b \\ V_1^c \\ V_2^c \\ V_2^a \\ V_2^c \\ V_2^c \\ V_3^a \\ V_3^a \\ V_3^c \end{bmatrix} = \begin{bmatrix} 1 \\ -0,5 - j0,8660 \\ -0,5 + j0,8660 \\ 0,9927 - j0,0696 \\ -0,5566 - j0,8249 \\ -0,4361 + j0,8945 \\ 0,9387 - j0,1090 \\ -0,5637 - j0,7584 \\ -0,3750 + j0,8674 \end{bmatrix}$$

Observa-se que os valores de tensão obtidos ao final da primeira iteração, especialmente aquele referente à barra 2, estão agora adequadamente inicializados com vistas à continuidade do processo iterativo.

A segunda iteração é obrigatória para que a barra transformada em PQ volte a ser PV e para que o tipo de carga volte a ser potência constante. Após 4 iterações, obtém-se os mesmos resultados mostrados nas Tabelas (2.4) e (2.5) e a trajetórias de convergência conforme mostrado nas Tabelas (3.10) e (3.11).

Iteração	Máximo $ \Delta P $	Barra	Máximo $ \Delta Q $	Barra
0	26,854	2	165,43	2
1	1,0700.10 ⁻²	3	2,1401.10 ⁻²	3
2	1,1328.10 ⁻²	3	1,0957.10 ⁻³	2
3	2,8184.10 ⁻⁴	3	2,2439.10-6	2
4	3,0082.10 ⁻⁸	3	1,1554.10-9	2

Tabela 3.10 - Trajetória de Convergência em Função dos Resíduos de Potência - RCI

	Tabela 3.11 – Trajetć	bria de Convergê	ncia em Função	dos Resíduos de	Corrente – RCI
--	-----------------------	------------------	----------------	-----------------	----------------

Iteração	Máximo ΔIr	Barra	Máximo ∆ Im	Barra
0	20,151	2	14,241	2
1	1,1588.10 ⁻¹⁵	2	2,6229.10 ⁻¹⁵	2
2	8,4342.10 ⁻³	3	2,6424.10 ⁻²	3
3	2,8707.10 ⁻⁴	3	2,5416.10 ⁻⁵	3
4	2,9489.10 ⁻⁸	3	6,6588.10 ⁻⁹	3

É fato que para este sistema tão simples e de pequeno porte, mesmo com condições iniciais extremamente desfavoráveis como as apresentadas, a resolução via injeção de corrente convencional também converge com 4 iterações. Entretanto, partindose das mesmas condições iniciais, observa-se que as formulações polar e retangular trifásicas não convergem. Para sistemas de grande porte, espera-se que somente o RCI convirja para a solução quando as condições iniciais forem desfavoráveis.

Capítulo 4

Resultados

4.1 Introdução

Este capítulo apresenta os resultados obtidos através de todos os métodos de fluxo de potência trifásico apresentados nos capítulos 2 e 3. As simulações realizadas consideram os modelos de carga do tipo potência constante. O critério adotado para a convergência da solução iterativa das equações do fluxo de potência trifásico é obtido quando os resíduos máximos de potência ativa e reativa forem menores que 10⁻⁵ p.u..

As simulações partem sempre do caso base (*flat start*), isto é, o arquivo de dados é mantido como o original, e, conforme o caso, as simulações seguintes apresentam um aumento da potência demandada, tanto ativa quanto reativa na mesma proporção, ou uma variação na relação R/X.

Para os sistemas equilibrados, serão apresentados apenas os resultados da fase a uma vez que os resultados das demais fases apresentam os mesmos módulos somente com as defasagens de -120° e 120° , para as fases *b* e *c*, respectivamente, com relação aos resultados de tensão. Para sistemas desequilibrados, optou-se também por apresentar somente os resultados da fase *a*.

De modo a verificar a eficiência das metodologias propostas neste trabalho, são utilizados os sistemas testes 11 barras [25], C37, C37pv, 43 barras e 215 barras. O sistema 11 barras é originalmente um sistema de transmissão monofásico e, neste trabalho, foi adaptado para se tornar trifásico equilibrado, isto é, os valores de potência ativa e reativa da fase *a* foram repetidos para as fases *b* e *c* e os valores de tensão da fase *a* tiveram seus módulos mantidos e suas fases defasadas em -120° e 120°, para as fases *b* e *c*, respectivamente. O sistema C37 refere-se a um alimentador trifásico localizado na cidade de Belo Horizonte cujas cargas são equilibradas. O sistema C37 só possui barras PQ, mas para que fosse possível validar as propostas em sistemas com barras PV, a barra

25 teve seu tipo alterado para PV com o módulo da tensão especificado em 1 p.u., a potência ativa em 0,37 p.u. para as três fases, tornando-se o sistema C37pv. O sistema de 43 barras descrito em [26, 27] é originalmente um sistema de transmissão monofásico e, neste trabalho, foi adaptado para se tornar trifásico equilibrado, isto é, os valores de potência ativa e reativa da fase *a* foram repetidos para as fases *b* e *c* e os valores de tensão da fase *a* tiveram seus módulos mantidos e suas fases defasadas em -120° e 120°, para as fases *b* e *c*, respectivamente. O sistema 215 barras refere-se à Light, estando localizado na cidade do Rio de Janeiro. Os sistemas C37 e 215 barras estão descritos no Apêndice II.

4.2 Comparação entre as Simulações dos Fluxos de Potência Trifásico Convencionais – Polar, Retangular e Injeção de Corrente

Para fazer uma comparação entre as diversas formulações dos fluxos de potência trifásico convencionais serão utilizados os sistemas 11 barras, C37, C37pv, 43 barras e 215 barras, ocorrendo uma variação gradativa e crescente da relação R/X em todas as barras e, em outros testes, um aumento progressivo do carregamento dos sistemas. Os aumentos gradativos são feitos até que o processo iterativo não mais convirja.

As Tabelas (4.1) a (4.5), (4.11), (4.13), (4.15) e (4.16) mostram o número de iterações referentes a cada um dos sistemas testes sob estudo, quando a relação R/X é aumentada. Da mesma forma, as Tabelas (4.6) a (4.10), (4.12), (4.14) e (4.17) mostram o número de iterações à medida que o carregamento é aumentado. Interessante observar que no caso do sistema 43 barras não foi possível aumentar o carregamento, uma vez que em nenhuma das simulações ocorreu a convergência do processo iterativo. Em todas as metodologias, os resíduos de potência ativa e reativa foram utilizados como parâmetros de convergência.

Relação R/X	1	2	5	6
Método	Número de iterações			
Polar	Não converge	Não converge	10	12
Retangular – Q	6	6	6	8
Retangular	6	6	6	8
Injeção	7	7	7	8

Tabela 4.1 – Variação da Relação R/X – Sistema 11 Barras – Q_{L8} = -101 MVAr

Tabela 4.2 – Variação da Relação R/X - Sistema 11 Barras – Q_{L8} = -120 MVAr

Relação R/X	1	2	5	6,9
Método	Nún	nero d	e itera	ições
Polar	10	10	10	12
Retangular – Q	6	6	6	9
Retangular	6	6	6	9
Injeção	6	6	6	9

Tabela 4.3 – Variação da Relação R/X - Sistema 11 Barras – Q_{L8} = -121 MVAr

Relação R/X	1	2	5	6,9
Método	Número c	le itera	ações	
Polar	Não converge	10	10	12
Retangular – Q	6	6	6	8
Retangular	6	6	6	8
Injeção	6	6	6	8

Relação R/X	1	2	5	7
Método	Nún	nero de iterações		
Polar	15	Não converge	10	13
Retangular – Q	6	6	6	9
Retangular	6	6	6	9
Injeção	6	6	6	9

Tabela 4.4 – Variação da Relação R/X – Sistema 11 Barras – Q_{L8} = -122 MVAr

Tabela 4.5 – Variação da Relação R/X $\,$ – Sistema 11 Barras – Q_{L8} = -123 MVAr $\,$

Relação R/X	1 2		5	7
Método		Número de itera	ações	
Polar	11	Não converge	10	12
Retangular – Q	6	6	6	8
Retangular	6	6	6	8
Injeção	6	6	6	8

Tabela 4.6 – Variação no Carregamento – Sistema 11 Barras – Q_{L8} = -101 MVAr

Carregamento	100%	110%
Método	Número d	e iterações
Polar	Não converge	Não converge
Retangular – Q	6	6
Retangular	6	6
Injeção	7	8

Carregamento	100%	120%
Método	Número de	e iterações
Polar	10	9
Retangular – Q	6	8
Retangular	6	8
Injeção	6	8

Tabela 4.7 – Variação no Carregamento – Sistema 11 Barras – Q_{L8} = -120 MVAr

Tabela 4.8 – Variação no Carregamento – Sistema 11 Barras – Q_{L8} = -121 MVAr

Carregamento	100%	120%
Método	Número de it	erações
Polar	Não converge	8
Retangular – Q	6	8
Retangular	6	8
Injeção	6	8

Tabela 4.9 – Variação no Carregamento – Sistema 11 Barras – Q_{L8} = -122 MVAr

Carregamento	100%	120%
Método	Número de it	erações
Polar	15	8
Retangular – Q	6	8
Retangular	6	8
Injeção	6	8

Carregamento	100% 120%				
Método	Número de it	erações			
Polar	11	8			
Retangular – Q	6	7			
Retangular	6	7			
Injeção	6	7			

Tabela 4.10 – Variação no Carregamento – Sistema 11 Barras – Q_{L8} = -123 MVAr

Tabela 4.11 - Variação da Relação R/X - Sistema C37

Relação R/X	1	3	5	6,9
Método	Núm	ero de	e itera	ções
Polar	3	3	4	6
Retangular – Q	3	3	4	6
Retangular	3	3	4	6
Injeção	2	3	3	5

Tabela 4.12 - Variação no Carregamento - Sistema C37

Carregamento	100%	200%	500%	640%
Método	Ν	Número d	e iteraçõe	S
Polar	3	3	4	7
Retangular – Q	3	3	4	6
Retangular	3	3	4	6
Injeção	2	2	3	5

Relação R/X	1	2	2,7
Método	Númei	ro de ite	erações
Polar	3	3	5
Retangular – Q	3	4	6
Retangular	3	4	6
Injeção	2	3	6

Tabela 4.13 – Variação da Relação R/X – Sistema C37pv

Tabela 4.14 - Variação no Carregamento - Sistema C37pv

Carregamento	100%	500%	800%	1300%	1340%
Método	Número de iterações				
Polar	3	4	4	6	8
Retangular – Q	3	4	4	6	8
Retangular	3	4	4	6	8
Injeção	2	4	4	6	8

Tabela 4.15 – Variação da Relação R/X – Sistema 43 Barras

Variação R/X	1	2	2,5
Método	Númer	o de ite	rações
Polar	7	8	10
Retangular – Q	7	8	9
Retangular	7	8	9
Injeção	11	10	11

Variação R/X	1	3	4,9
Método	Númer	o de ite	rações
Polar	3	4	5
Retangular – Q	3	3	5
Retangular	3	3	5
Injeção	2	2	4

Tabela 4.16 - Variação da Relação R/X - Sistema 215 Barras

Tabela 4.17 – Variação no Carregamento Sistema 215 Barras

Carregamento	100%	200%	290%	
Método	Número de iterações			
Polar	3	4	6	
Retangular – Q	3	3	5	
Retangular – V	3	3	5	
Injeção	2	3	4	

Das Tabelas (4.1) a (4.17), observa-se que, para sistemas mal-condicionados, a saber, os sistemas 11 barras e 43 barras, o método polar não convergiu em muitos casos, enquanto as metodologias retangulares e a formulação via injeção de corrente convergiram. Além disso, vale notar que nem sempre as metodologias de solução aplicadas a um mesmo caso convergiram para o mesmo ponto de solução. Esta situação peculiar foi comprovada fazendo a solução encontrada pelos métodos retangulares e injeção de corrente como dados de entrada para a formulação polar e também os resultados da formulação polar como dados de entrada para as outras três metodologias. Nestes casos, observa-se que os algoritmos não entram no processo iterativo, ou em outras palavras, os dados de entrada correspondem a uma solução do sistema. O sistema 11 barras com as diversas variações de Q_{L8} , do carregamento e da relação R/X apresentou resultados muito interessantes, conforme a Tabela (4.18).

Q _{L8}	D/V	Corragomanta	Mátada	do $\mathbf{P}^{a}(\mathbf{p},\mathbf{u}) = \mathbf{Q}^{a}(\mathbf{p},\mathbf{u})$	$O^{a}(\mathbf{p},\mathbf{u})$	Intervalo de
(MVAr)	К/Л	Carregamento	Metodo	$P_{G}(\text{p.u.})$	$\mathcal{Q}_{G}^{\circ}(\mathrm{p.u.})$	Tensões (p.u.)
			Polar		Não conve	erge
-101	1	110%	Retangulares	4,56	-1,66	1,04-1,35
			Injeção	4,63	0,99	1,02-1,07
			Polar	4,25	2,13	0,87-1,04
	1	100%	Retangulares	4,13	-2,61	1,04-1,43
			Injeção	4,13	-2,61	1,04-1,43
			Polar	4,48	2,05	0,89-1,04
-120	2	100%	Retangulares	4,27	-2,44	1,04-1,42
			Injeção	4,27	-2,44	1,04-1,42
			Polar	5,02	-0,32	1,04-1,23
	1	120%	Retangulares	5,01	-0,69	1,04-1,27
		Injeção	5,01	-0,69	1,04-1,27	
			Polar	4,49	2,06	0,89-1,04
	2	100%	Retangulares	4,27	-2,46	1,04-1,42
_121			Injeção	4,27	-2,46	1,04-1,42
-121			Polar	5,02	-0,18	1,04-1,22
	1	120%	Retangulares	5,00	0,82	1,04-1,29
			Injeção	5,00	0,82	1,04-1,29
			Polar	4,25	2,14	0,87-1,04
	1	100%	Retangulares	4,13	-2,64	1,04-1,44
-122			Injeção	4,13	-2,64	1,04-1,44
122			Polar	5,02	-0,91	1,04-1,21
	1	120%	Retangulares	5,00	-0,92	1,04-1,30
			Injeção	5,00	-0,92	1,04-1,30
			Polar	5,02	-1,64.10 ⁻²	1,04-1,20
-123	1	120%	Retangulares	5,00	-1,00	1,04-1,31
			Injeção	5,00	-1,00	1,04-1,31

Tabela 4.18 – Soluções Múltiplas do Sistema 11 Barras

A coluna intervalo de tensões indica os valores mínimo e máximo de tensão no ponto de solução. Os dados de potência ativa e reativa gerada são da barra de referência. Os diversos resultados descritos em [25], correspondentes ao caso base, estão reproduzidos na Tabela (4.18).

O sistema 43 barras com as variações da relação R/X tem seus resultados apresentados na Tabela (4.19). Os demais casos não citados, quando houve a convergência, caminharam para o mesmo ponto de solução.

D/V	Corregemente	Mátada	$\mathbf{D}^{q}(\mathbf{p},\mathbf{u})$	$O^{q}(\mathbf{n},\mathbf{u})$	Intervalo de
K/A	Carregamento	Metodo	$P_{G}(\mathbf{p}.\mathbf{u}.)$	$\mathcal{Q}_{G}^{-}(\mathbf{p}.\mathbf{u}.)$	Tensões (p.u.)
		Polar	7,00	2,52	1,05-1,21
1	100%	Retangulares	7,00	2,52	1,05-1,21
		Injeção	7,00	3,29	0,92-1,14

Tabela 4.19 - Soluções Múltiplas do Sistema 43 Barras

Por outro lado, para sistemas bem-condicionados, a saber, os sistemas C37, C37pv e 215 barras, as metodologias polar, retangulares e injeção de corrente apresentaram desempenho semelhante, ou seja, convergem basicamente no mesmo número de iteração e caminham para o mesmo ponto de solução em todos os níveis de carregamento e variações da relação R/X.

Outro ponto importante a ser ressaltado é o fato de que o método descrito em [24] apresenta diferenças nas trajetórias de convergência quando comparado com a solução via injeção de corrente apresentada neste trabalho. Essas diferenças já eram esperadas, pois a forma dos cálculos dos resíduos de corrente é diferente. Entretanto, foi possível constatar que o método descrito em [24] converge no mesmo número de iterações e para o mesmo ponto de solução que a metodologia via injeção de corrente para todos os sistemas apresentados.

Os métodos retangulares convencional e com correção de geração de potência reativa apresentaram convergência com o mesmo número de iterações em todos os casos apresentados, mas vale ressaltar que quando há presença de barras PV as trajetórias de convergência são diferentes.

4.3 Simulações de Sistemas com Condições Iniciais Desfavoráveis

Dar-se-á aqui especial atenção à proposta para resolução de fluxos de potência trifásico com condições iniciais desfavoráveis – RCI. Estas condições iniciais mostradas nos testes a seguir foram escolhidas arbitrariamente, enquanto que os demais dados continuam como nos arquivos originais.

A Tabela (4.20) apresenta os valores iniciais das tensões e dos ângulos para o sistema teste de 11 barras. Além disso, a relação R/X é 5,5 vezes maior que no caso base e $Q_{L8} = -120$ MVAr. A Tabela (4.21) apresenta as convergências e a Tabela (4.22) apresenta o ponto de solução para a barra de referência.

Barra	V ^{abc} (p.u.)	θ^{a}
1	1,05	0°
2	1,03	80°
3	1,02	-66°
4	1,01	180°
5	1,00	-145°
6	0,99	-170°
7	0,98	45°
8	0,97	0°
9	0,96	175°
10	0,95	-45°
11	1,04	0°

Tabela 4.20 - Condições Iniciais - Sistema 11 Barras

$\theta_p =$	$\theta^a -$	120°
$\theta^{c} =$	$\theta^a +$	120°

Método	Iterações	
Polar	Não converge	
Injeção	10	
Retangular – Q	Não converge	
Retangular	Não converge	
RCI	8	

Tabela 4.21 - Resultados - Sistema 11 Barras

Tabela 4.22 – Ponto de Solução – Sistema 11 Barras

Método	Barra	Tensão (p.u.)	Ângulo (°)	P_G^a (p.u.)	$Q_G^a(p.u.)$
Injeção	11	1,04	1,4872.10 ⁻⁸	5,1858	1,1555
RCI	11	1,04	1,4880.10 ⁻⁸	5,1858	1,1555

A Tabela (4.23) apresenta os valores iniciais das tensões e dos ângulos para o sistema teste C37. Além disso, o carregamento é 6,4 vezes o caso base. A Tabela (4.24) apresenta os resultados obtidos e a Tabela (4.25) apresenta o ponto de solução na barra de referência.

Barra	V ^{abc} (p.u.)	θ^{a}	θ^{b}	θ^{c}
4	1	0°	-120°	120°
11	1	0°	-120°	120°
12	1	0°	-120°	120°
15	1	0°	-120°	0°
17	1	0°	10°	0°
19	1	0°	-120°	10°
25	1	0°	-90°	120°
29	1	0°	-120°	90°
30	1	0°	-120°	0°
32	1	0°	0°	120°
34	1	0°	-120°	0°
35	1	0°	50°	120°

Tabela 4.23 - Condições Iniciais - Sistema C37

Método	Iterações
Polar	Não converge
Injeção	10
Retangular – Q	Não converge
Retangular	Não converge
RCI	7

Tabela 4.24 – Resultados – Sistema C37

Tabela 4.25 – Ponto de Solução – Sistema C37

Método	Barra	Tensão (p.u.)	Ângulo (°)	$P_G^a(p.u.)$	$Q_G^a(p.u.)$
Injeção	37	1,00	-1,4266.10 ⁻⁶	248,85	224,28
RCI	37	1,00	-1,4266.10 ⁻⁶	248,85	224,28

A Tabela (4.26) apresenta os valores iniciais das tensões e dos ângulos para o sistema teste C37pv. Além disso, o carregamento é 13 vezes o caso base. A Tabela (4.27) apresenta os resultados obtidos e a Tabela (4.28) apresenta o ponto de solução na barra de referência.

Barra	V ^{abc} (p.u.)	θ^{a}	θ^{b}	θ^{c}
4	1	0°	-120°	120°
11	1	0°	-120°	120°
12	1	0°	-120°	120°
15	1	0°	-120°	0°
17	1	0°	10°	0°
19	1	0°	-120°	10°
29	1	0°	-120°	90°
30	1	0°	-120°	0°
32	1	0°	0°	120°
34	1	0°	-120°	0°
35	1	0°	50°	120°

Tabela 4.26 - Condições Iniciais - Sistema C37pv

Método	Iterações
Polar	Não converge
Injeção	Não converge
Retangular – Q	Não converge
Retangular	Não converge
RCI	8

Tabela 4.27 - Resultados - Sistema C37pv

Tabela 4.28 - Ponto de Solução - Sistema C37pv

Método	Barra	Tensão (p.u.)	Ângulo (°)	P_G^a (p.u.)	$\boldsymbol{Q}_{G}^{a}\left(\mathrm{p.u.} ight)$
RCI	37	1,00	-3,3702.10 ⁻⁶	587,90	44,09

De forma geral, analisando-se os resultados obtidos nas Tabelas (4.21), (4.24) e (4.27), observa-se que, para um sistema com condições iniciais desfavoráveis, o método proposto – RCI – quando comparado às soluções pelos fluxos de potência trifásico polar convencional e retangulares com correção da geração de potência reativa e convencional consegue encontrar a solução em casos que estes não convergem. Por outro lado, ao compararmos o método RCI com a solução via injeção de corrente convencional, tem-se que o RCI converge em todas as situações assim como a solução via injeção de corrente, consumindo, em geral, menos iterações. Na presença de barras PV o RCI foi capaz de convergir onde o método via injeção de corrente não encontrou solução, conforme mostrado na Tabela (4.27).

Com isso, comprovamos a possibilidade de obter a solução do fluxo de potência em sistemas com condições iniciais desfavoráveis, utilizando-se apenas equações lineares sem a necessidade de equações diferenciais como proposto em [19].
4.4 Metodologias Convencionais x Métodos com Matriz Jacobiana Constante: Comparação de Tempo Computacional e Número de Iterações

O objetivo principal da apresentação neste trabalho de metodologias que utilizam a matriz Jacobiana constante é a economia de tempo computacional, quando estes são comparados às metodologias convencionais. Sabe-se que este tipo de simplificação traz um acréscimo no número de iterações acarretando, à primeira vista, um aumento no tempo computacional. Entretanto, este aumento no número de iterações é compensado mais que proporcionalmente pela redução do tempo alcançada com a desnecessidade de atualizações e fatorações da matriz Jacobiana a cada iteração.

Uma desvantagem comum a estes métodos simplificados é o fato de sua utilização ser somente vantajosa nos casos base, ou seja, se houver aumentos gradativos na relação R/X e/ou no carregamento chega-se a um ponto onde o tempo adicionado pelo aumento no número de iterações não é mais compensado por aquela redução obtida pela manutenção da matriz Jacobiana constante.

As Tabelas (4.29) a (4.33) mostram os desempenhos dos modelos convencionais quanto ao número de iterações e tempo computacional frente aos modelos que mantém a matriz Jacobiana constante para os quatro sistemas de distribuição apresentados neste trabalho. Para o sistema de 11 barras foi considerado que $Q_{L8} = -120$ MVAr. O tempo computacional referente à metodologia polar foi considerado como a referência temporal.

Mátodo	Número	Relação
Metodo	de Iterações	de Tempo
Polar	10	1
Retangular – Q	6	0,415
Retangular	6	0,415
Injeção	6	0,080
Polar - cte	Não converge	-
ZCONST	42	0,250
PCONST	Não converge	-

Tabela 4.29 – Número de Iterações e Tempo Computacional para os Modelos Convencionais – Sistema 11 Barras

Tabela 4.30 – Número de Iterações e Tempo Computacional para os Modelos Convencionais – Sistema C37

Mátada	Número	Relação	
Metodo	de Iterações	de Tempo	
Polar	3	1	
Retangular – Q	3	0,749	
Retangular	3	0,749	
Injeção	2	0,166	
Polar - cte	6	0,668	
ZCONST	5	0,417	
PCONST	3	0,417	

Método	Número	Relação	
Metodo	de Iterações	de Tempo	
Polar	3	1	
Retangular – Q	3	0,915	
Retangular	3	0,915	
Injeção	2	0,251	
Polar - cte	5	0,580	
ZCONST	6	0,500	
PCONST	5	0,500	

Tabela 4.31– Número de Iterações e Tempo Computacional para os Modelos Convencionais – Sistema C37pv

Tabela 4.32 – Número de Iterações e Tempo Computacional para os Modelos Convencionais – Sistema 43 Barras

Mátada	Número	Relação	
Metodo	de Iterações	de Tempo	
Polar	7	1	
Retangular – Q	7	0,750	
Retangular	7	0,750	
Injeção	11	0,500	
Polar - cte	Não converge	-	
ZCONST	58	0,750	
PCONST	Não converge	-	

Mátodo	Número	Relação	
Metodo	de Iterações	de Tempo	
Polar	3	1	
Retangular – Q	3	0,788	
Retangular	3	0,788	
Injeção	2	0,612	
Polar - cte	6	0,950	
ZCONST	5	1,062	
PCONST	3	0,900	

Tabela 4.33 – Número de Iterações e Tempo Computacional para os Modelos

Convencionais - Sistema 215 Barras

De posse dos resultados das Tabelas (4.29) a (4.33) é possível constatar que, em linhas gerais, os métodos com matriz Jacobiana constante apresentaram tempos computacionais de convergência menores que na metodologia polar convencional. O sistema 215 barras converge com um número muito pequeno de iterações nas metodologias convencionais, em razão disto, não foi possível observar grandes vantagens na utilização de processos com a matriz Jacobiana constante que só se torna mais interessante em sistemas de grande porte que demandem um número maior de iterações. Neste caso, a opção por um método simplificado acarretará um aumento no número de iterações que será compensado mais que proporcionalmente pela redução do tempo alcançada com a desnecessidade de atualizações e inversões da matriz Jacobiana a cada iteração.

Vale ressaltar que, no caso de sistemas mal-condicionados, a solução através de ZCONST na Tabela (4.29) convergiu para o mesmo ponto que as soluções pelos métodos retangulares e injeção de corrente, mostradas na Tabela (4.19). Entretanto, na solução do sistema de 43 barras, a utilização de ZCONST caminhou para o mesmo ponto de solução dos métodos polar e retangulares. Nos demais casos não comentados, todas as metodologias convergiram para um único ponto de solução. Por outro lado, para sistemas bem-condicionados, as diversas metodologias, quando houve convergência, caminharam para o mesmo ponto de solução.

4.5 – Simulações em Sistemas Desequilibrados

Para validar as metodologias frente a sistemas desequilibrados, foram efetuadas modificações aleatórias na potência demandada em algumas barras dos sistemas 11 barras, C37, C37pv, 43 barras e 215 barras.

4.5.1 - Comparação entre as Simulações do Fluxo de Potência Trifásico Convencionais – Polar, Retangular e Injeção de Corrente

Agora com os sistemas desequilibrados, novamente, as diversas formulações do fluxo de potência trifásico convencionais – polar, retangular e injeção de corrente – serão comparadas. Haverá uma variação gradativa e crescente da relação R/X e em outros testes haverá um aumento progressivo do carregamento dos sistemas. Os aumentos gradativos são feitos até que o sistema se torne sem solução.

Os desequilíbrios propostos no sistema 11 barras são apresentados na Tabela (4.34). As convergências do processo iterativo para as variações da relação R/X estão mostradas nas Tabelas (4.35) a (4.39) e para as variações do carregamento nas Tabelas (4.40) a (4.44).

Barra	P_{La}	P_{Lb}	P_{Lc}	Q_{La}	$Q_{\scriptscriptstyle Lb}$	$Q_{\scriptscriptstyle Lc}$
3	0,75	0	0,75	-0,42	0	-0,42
11	2	3	1	0	0,5	0

Tabela 4.34 – Desequilíbrios Propostos no Sistema 11 Barras – valores em p.u.

Tabela 4.35 – Variação da Relação R/X – Sistema 11 Barras Desequilibrado – $Q_{L8} =$ -101 MVAr

Relação R/X	1	2	5	6
Método	Nún	nero de iterações		
Polar	Não converge	Não converge	10	12
Retangular – Q	6	6	6	8
Retangular	6	6	6	8
Injeção	7	7	7	8

				-
Relação R/X	1	2	5	6,9
Método	Núr	nero d	e itera	ições
Polar	10	10	10	12
Retangular – Q	6	6	6	9
Retangular	6	6	6	9
Injeção	10	11	7	9

Tabela 4.36 – Variação da Relação R/X – Sistema 11 Barras Desequilibrado – $Q_{L8} = -120 \text{ MVAr}$

Tabela 4.37 – Variação da Relação R/X – Sistema 11 Barras Desequilibrado – $Q_{L8} =$ -121 MVAr

Relação R/X	1	2	5	6,9
Método	Número c	le itera	ações	
Polar	Não converge	10	10	12
Retangular – Q	6	6	6	8
Retangular	6	6	6	8
Injeção	10	15	7	8

radera 4.36 – Variação da Relação R/A – Sistema 11 Darras Desequindrado – Q_{L8} –
--

-122 MVAr

Relação R/X	1	2	5	7
Método		Número de itera	ações	
Polar	15	Não converge	10	13
Retangular – Q	6	6	6	9
Retangular	6	6	6	9
Injeção	12	15	8	9

Relação R/X	1	2	5	7
Método		Número de itera	ıções	
Polar	11	Não converge	10	12
Retangular – Q	6	6	6	8
Retangular	6	6	6	8
Injeção	10	19	8	8

Tabela 4.39 – Variação da Relação R/X – Sistema 11 Barras Desequilibrado – $Q_{L8} =$ -123 MVAr

Tabela 4.40 – Variação no Carregamento – Sistema 11 Barras Desequilibrado – Q_{L8} =

-101 MVAr

Carregamento	100%	110%
Método	Número de	e iterações
Polar	Não converge	Não converge
Retangular – Q	6	6
Retangular	6	6
Injeção	7	8

Tabela 4.41 – Variação no Carregamento – Sistema 11 Barras Desequilibrado – Q_{L8} =

-120	MVAr
------	------

Carregamento	100%	120%
Método	Número de	e iterações
Polar	10	9
Retangular – Q	6	8
Retangular	6	8
Injeção	10	9

Carregamento	100%	120%
Método	Número de it	erações
Polar	Não converge	8
Retangular – Q	6	8
Retangular	6	8
Injeção	10	9

Tabela 4.42 – Variação no Carregamento – Sistema 11 Barras Desequilibrado – $Q_{L8} = -121 \text{ MVAr}$

Tabela 4.43 – Variação no Carregamento – Sist	tema 11 Barras Desequilibrado – Q _{L8} =
---	---

-122 MVAr

Carregamento	100%	120%
Método	Número de it	erações
Polar	15	8
Retangular – Q	6	8
Retangular	6	8
Injeção	12	8

Tabela 4.44 – Variação no Carregamento – Sistema 11 Barras Desequilibrado – Q_{L8} =

-123 MVAr

Carregamento	100%	120%
Método	Número de it	erações
Polar	11	8
Retangular – Q	6	7
Retangular	6	7
Injeção	10	8

Os desequilíbrios propostos no sistema C37 são apresentados na Tabela (4.45). As convergências do processo iterativo para as variações da relação R/X e do carregamento estão mostradas nas Tabelas (4.46) e (4.47), respectivamente.

Barra	P_{La}	P_{Lb}	P_{Lc}	Q_{La}	$Q_{\scriptscriptstyle Lb}$	Q_{Lc}
5	0,30	0,20	0,30	0,17	0	0,17
15	0,80	0,75	0,90	0,43	0,43	0,43
36	1,81	1,81	1,81	0	0	0

Tabela 4.45 – Desequilíbrios no Sistema C37 – valores em p.u.

Tabela 4.46 - Variação da Relação R/X - Sistema C37 Desequilibrado

Relação R/X	1	3	5	7
Método	Núm	ero de	itera	ções
Polar	3	3	4	6
Retangular – Q	3	3	4	6
Retangular	3	3	4	6
Injeção	2	3	3	5

Tabela 4.47 - Variação no Carregamento - Sistema C37 Desequilibrado

Carregamento	100%	200%	500%	660%
Método	Número de iterações			
Polar	3	3	4	7
Retangular – Q	3	3	4	6
Retangular	3	3	4	6
Injeção	2	2	3	6

Os desequilíbrios propostos no sistema C37pv são apresentados na Tabela (4.48). As convergências do processo iterativo para as variações da relação R/X e do carregamento estão mostradas nas Tabelas (4.49) e (4.50), respectivamente.

Barra	P_{La}	P_{Lb}	P_{Lc}	$Q_{\scriptscriptstyle La}$	$Q_{\scriptscriptstyle Lb}$	Q_{Lc}
5	0,30	0,20	0,30	0,17	0	0,17
15	0,80	0,75	0,90	0,43	0,43	0,43
36	1,81	1,81	1,81	0	0	0

Tabela 4.48 – Desequilíbrios no Sistema C37pv – valores em p.u.

Tabela 4.49 – Variação da Relação R/X – Sistema C37pv Desequilibrado

Relação R/X	1	2	2,7
Método	Núme	ero de it	erações
Polar	3	3	5
Retangular – Q	3	4	6
Retangular	3	4	6
Injeção	3	3	6

Tabela 4.50 - Variação no Carregamento - Sistema C37pv Desequilibrado

Carregamento	100%	500%	900%	1300%	1340%
Método		Núm	nero de ite	erações	
Polar	3	4	4	6	7
Retangular – Q	3	4	5	6	8
Retangular	3	4	5	6	8
Injeção	3	4	4	6	8

Os desequilíbrios propostos no sistema 43 barras são mostrados na Tabela (4.51). As convergências do processo iterativo para as variações da relação R/X estão mostradas na Tabela (4.52). A variação no carregamento não foi possível, pois qualquer valor acima proposto faz com que o sistema não convirja em nenhum dos métodos.

Barra	P_{La}	P_{Lb}	P_{Lc}	Q_{La}	Q_{Lb}	Q_{Lc}
3	0,50	0	0,50	0	0	0
16	0	0	0	0,23	0,23	0,23
41	0,80	0,30	0,10	0	0	0

Tabela 4.51 – Desequilíbrios no Sistema 43 Barras – valores em p.u.

Tabela 4.52 - Variação da Relação R/X - Sistema 43 Barras Desequilibrado

Variação R/X	1	2.5	7	8,3
Método	Núi	mero de	iteraçõ	es
Polar	6	6	7	9
Retangular – Q	6	6	7	9
Retangular – V	6	6	7	9
Injeção	7	7	11	11

Os desequilíbrios propostos no sistema 215 barras são mostrados na Tabela (4.53). As convergências do processo iterativo para as variações da relação R/X estão mostradas na Tabela (4.54). A variação no carregamento não foi possível, pois qualquer valor acima proposto faz com que o sistema não convirja em nenhum dos métodos.

Barra	P_{La}	P_{Lb}	P_{Lc}	$Q_{\scriptscriptstyle La}$	$Q_{\scriptscriptstyle Lb}$	$Q_{\scriptscriptstyle Lc}$
3	0,1	0	0,05	1	0	1
9	0	0	0	0	0	0
111	0,04	0,02	0,03	0	0	0
130	0,02	0	0,03	0	0	0
190	0,04	0,07	0	0	0	0
211	0,01	1	0,05	0	0,03	0

Tabela 4.53 – Desequilíbrios no Sistema 215 Barras – valores em p.u.

Variação R/X	1	1,1
Método	Número d	e iterações
Polar	5	5
Retangular – Q	4	5
Retangular	4	5
Injeção	3	4

Tabela 4.54 – Variação da Relação R/X – Sistema 215 Barras Desequilibrado

Das Tabelas (4.35) a (4.44), (4,46), (4.47), (4.49), (4.50), (4.52) e (4.54) observase que, para sistemas mal-condicionados, assim como ocorrera para sistemas equilibrados, o método polar não convergiu em muitos casos, enquanto as metodologias retangulares e a formulação via injeção de corrente convergiram. Além disso, novamente, nem sempre as metodologias de solução aplicadas a um mesmo caso convergiram para o mesmo ponto de solução. Os dados de potência ativa e reativa gerada são da barra de referência. O sistema 11 barras com as diversas variações de Q_{L8} , do carregamento e da relação R/X apresentou mais uma vez resultados muito interessantes, conforme a Tabela (4.55). Os demais casos não citados, quando houve a convergência, caminharam para o mesmo ponto de solução.

Q _{L8}	D/V	Corragomente	Mátada	$\mathbf{D}^{a}(\mathbf{p},\mathbf{u})$	$O^{a}(\mathbf{p},\mathbf{u})$	Intervalo de
(MVAr)	ΝΛ	Carregamento	Wielouo	$P_{G}(p.u.)$	$\mathcal{Q}_{G}(\mathbf{p}.\mathbf{u}.)$	Tensões (p.u.)
			Polar		Não conve	erge
-101	1	110%	Retangulares	6,76	-1,66	1,04-1,35
			Injeção	6,83	0,99	1,02-1,07
			Polar	6,25	2,13	0,87-1,04
	1	100%	Retangulares	6,13	-2,61	1,04-1,43
			Injeção	6,13	-2,61	1,04-1,43
			Polar	6,48	2,04	0,89-1,04
-120	2	100%	Retangulares	6,27	-2,44	1,04-1,42
		Injeção	6,27	-2,44	1,04-1,42	
		1 120%	Polar	7,42	-0,32	1,04-1,23
	1		Retangulares	7,41	-0,69	1,04-1,27
			Injeção	7,41	-0,69	1,04-1,27
			Polar	6,49	2,06	0,89-1,04
	2	100%	Retangulares	6,27	-2,46	1,04-1,42
-121			Injeção	6,27	-2,46	1,04-1,42
121			Polar	7,42	-0,18	1,04-1,22
	1	120%	Retangulares	7,40	-0,82	1,04-1,29
			Injeção	7,40	-0,82	1,04-1,29
			Polar	6,25	2,14	0,87-1,04
	1	100%	Retangulares	6,13	2,14	1,04-1,44
-122			Injeção	6,13	2,14	1,04-1,44
122			Polar	7,42	-9,05.10 ⁻²	1,04-1,21
	1	120%	Retangulares	7,40	-0,92	1,04-1,30
			Injeção	7,40	-0,92	1,04-1,30
			Polar	7,42	-1,64.10 ⁻²	1,04-1,20
-123	1	120%	Retangulares	7,40	-1,00	1,04-1,31
			Injeção	7,40	-1,00	1,04-1,31

Tabela 4.55 – Soluções Múltiplas do Sistema 11 Barras Desequilibrado

Por outro lado, para sistemas bem-condicionados, assim como ocorrera para sistemas equilibrados, as metodologias polar, retangulares e injeção de corrente apresentaram desempenho semelhante, ou seja, convergiram basicamente no mesmo número de iteração e caminharam para o mesmo ponto de solução em todos os níveis de carregamento e variações da relação R/X.

Assim como ocorreu para os sistemas equilibrados, o método descrito em [24] apresentou diferenças nas trajetórias de convergência quando comparado com a solução via injeção de corrente apresentada neste trabalho. Essas diferenças novamente eram esperadas, pois a forma dos cálculos dos resíduos de corrente é diferente. Entretanto, foi possível constatar que o método descrito em [24] convergiu no mesmo número de iterações que a solução via injeção de corrente para todos os sistemas apresentados.

Os métodos retangulares convencional e com correção de geração de potência reativa apresentaram convergência com o mesmo número de iterações em todos os casos apresentados, mas vale ressaltar que quando há presença de barras PV as trajetórias de convergência são diferentes.

4.5.2 Métodos com Matriz Jacobiana Constante

Os métodos mostrados neste trabalho que utilizam a matriz Jacobiana constante não mostraram um bom desempenho frente a sistema desequilibrados.

A metodologia polar constante não convergiu para os casos bases dos sistemas 11 barras e 43 barras; somente convergiu para os sistemas C37, C37pv e 215 barras, com 6, 5 e 46 iterações, respectivamente.

O método ZCONST convergiu para os casos bases dos sistemas 11barras, C37, C37pv, 43 barras e 215 barras, com 46, 5, 6, 82 e 23 iterações, respectivamente.

Por outro lado, a metodologia PCONST convergiu somente para os casos base dos sistemas C37, C37pv e 215 barras, com 3, 5 e 13 iterações, respectivamente, não obtendo sucesso nos demais casos.

4.5.3 Simulações de Sistemas com Condições Iniciais Desfavoráveis

A metodologia apresentada no capítulo 3 desenvolvida para solucionar problemas com condições iniciais desfavoráveis será testada agora frente a sistemas desequilibrados. Serão utilizados os sistemas 11 barras, C37, C37pv e 43 barras para a realização de testes.

O sistema de 11 barras com as modificações descritas nas Tabelas (4.20) e (4.34), um carregamento 10% acima dos valores originais e Q_{L8} = -120 MVAr apresenta os resultados de convergência mostrados na Tabela (4.56). A Tabela (4.57) apresenta o ponto de solução para a barra de referência.

Tabela 4.56 - Resultados - Sistema 11 Barras Desequilibrado

Método	Iterações
Polar	Não converge
Injeção	10
Retangular – Q	Não converge
Retangular	Não converge
RCI	8

Tabela 4.57 - Ponto de Solução - Sistema 11 Barras Desequilibrado

Método	Barra	Tensão (p.u.)	Ângulo (°)	P_G^a (p.u.)	$Q_G^a(p.u.)$
Injeção	1	1,04	-1,4872.10 ⁻⁸	7,1878	1,1555
RCI	1	1,04	-1,4880.10 ⁻⁸	7,1878	1,1555

O sistema C37 com as modificações propostas nas Tabelas (4.23) e (4.45) e com a relação R/X 5,5 vezes maior que o original apresenta os resultados mostrados na Tabela (4.58). A Tabela (4.59) apresenta o ponto de solução para a barra de referência.

Método	Iterações
Polar	Não converge
Injeção	68
Retangular – Q	Não converge
Retangular	Não converge
RCI	7

Tabela 4.58 - Resultados - Sistema C37 Desequilibrado

Tabela 4.59 - Ponto de Solução - Sistema C37 Desequilibrado

Método	Barra	Tensão (p.u.)	Ângulo (°)	P_G^a (p.u.)	$Q_G^a(p.u.)$
Injeção	37	1,00	-1,3521.10 ⁻⁶	235,87	193,51
RCI	37	1,00	-1,3521.10 ⁻⁶	235,87	193,51

O sistema C37pv com as modificações propostas nas Tabelas (4.26) e (4.48) e com carregamento 13 vezes maior que o original apresenta os resultados mostrados na Tabela (4.60) e a Tabela (4.61) apresenta o ponto de solução na barra de referência.

Tabela 4.60 - Resultados - Sistema C37pv Desequilibrado

Método	Iterações
Polar	Não converge
Iniecão	Não converge
Retangular – O	Não converge
Retangular	Não converge
RCI	8

Tabela 4.61 - Ponto de Solução - Sistema C37pv Desequilibrado

Método	Barra	Tensão (p.u.)	Ângulo (°)	$\boldsymbol{P}_{G}^{a}(\mathrm{p.u.})$	$\boldsymbol{Q}_{G}^{a}(\mathrm{p.u.})$
RCI	37	1,00	-3,3468.10 ⁻⁶	583,83	40,65

Assim como ocorrera em sistemas equilibrados, o método RCI foi capaz de encontrar a solução para sistemas trifásicos desequilibrados em que a metodologia polar convencional e as metodologias retangulares com correção da geração de potência reativa e convencional não convergiram, como nas Tabelas (4.56) a (4.61). Por outro lado, ao compararmos o método RCI com a solução via injeção de corrente convencional, tem-se que o RCI converge em todas as situações assim como a solução via injeção de corrente, consumindo, em geral, menos iterações. Na presença de barras PV o RCI foi capaz de convergir onde o método via injeção de corrente não encontrou solução, conforme a Tabela (4.60). Nos casos apresentados, estes dois métodos convergiram para o mesmo ponto de solução.

Com isso, comprovamos a possibilidade de obter a solução do fluxo de potência em sistemas com condições iniciais desfavoráveis desequilibrados, utilizando-se apenas equações lineares sem a necessidade de equações diferenciais como proposto em [19].

4.6 Outras Simulações

Outro teste realizado no intuito de complementar a avaliação crítica das metodologias tradicionais consiste em aumentar a relação R/X apenas em algumas regiões do sistema em estudo. Para isto, foram utilizados os sistemas C37 e C37pv, cujas linhas 28-31, 31-32, 31-33, 31-34, 34-35, 35-36 tiveram suas relações R/X aumentadas gradativamente até que o processo iterativo não mais convergisse. Observa-se que os métodos apresentaram um desempenho semelhante, convergindo com um número pequeno de iterações.

Capítulo 5

Conclusões

5.1 Considerações Gerais

Este trabalho propõe uma avaliação crítica a respeito do desempenho das formulações de fluxo de potência na solução de sistemas trifásicos via método iterativo de Newton-Raphson. A metodologia convencional polar, os métodos retangulares convencional e com correção da geração de potência reativa e a metodologia via equações de injeção de corrente são convenientemente analisados.

Para sistemas bem-condicionados, equilibrados ou não, todas as metodologias descritas apresentam desempenho semelhante, isto é, convergem basicamente no mesmo número de iterações e atingem o mesmo ponto de solução nos diversos níveis de carregamento e variação da relação R/X. Por outro lado, para sistemas mal-condicionados, equilibrados ou não, a metodologia polar não converge em vários dos casos estudados, enquanto que os métodos retangulares e injeção de corrente convergem em todos os casos. Importante ressaltar que as metodologias quando convergem, nem sempre atingem a mesma solução.

Na maioria dos casos analisados, as formulações retangulares e injeção de corrente convergem para a mesma solução. Tal situação pode talvez ser explicada pelo fato de que ambas utilizam as coordenadas retangulares da tensão como variáveis de estado. Apesar de usarem equações básicas de potência e de corrente, respectivamente, tais equações estão matematicamente inter-relacionadas, o que corrobora a obtenção da mesma solução final. Além disso, as formulações retangulares convencional e com correção de geração de potência reativa convergem de forma idêntica, quando não há a presença de barras PV.

Tendo em vista toda a gama de resultados simulados, conclui-se que para a solução geral do problema do fluxo de potência trifásico, todas as metodologias

apresentadas devem ser convenientemente testadas e avaliadas, principalmente frente a sistemas mal-condicionados, sem que haja a princípio, qualquer tipo de preferência sobre uma determinada metodologia. Tal afirmativa vem do fato que a convergência do processo iterativo depende de vários fatores, dentre eles, as condições iniciais, as equações básicas de definição de cada metodologia e, finalmente, de determinadas características inerentes a cada um dos sistemas, que podem em conjunto deteriorar a aplicabilidade de qualquer um dos métodos de solução do fluxo de potência trifásico naquela situação específica.

De fato, uma importante contribuição deste trabalho foi a reunião em um só texto das diversas formulações baseadas em Newton-Raphson, mostrando em detalhes as deduções das equações básicas de cada uma dos métodos expandidos para a formulação trifásica, todas as derivadas parciais, a estrutura e montagem das matrizes Jacobianas e a descrição dos algoritmos de solução.

Além deste estudo das metodologias convencionais, houve também a análise dos métodos em que a matriz Jacobiana é mantida constante. O emprego destes mostrou-se, em geral, eficaz quanto ao tempo computacional demandado, mesmo com o acréscimo do número de iterações. Vale ressaltar que estes somente devem ser utilizados para sistemas equilibrados e não sobrecarregados, se não for assim, em muitos casos não há convergência e quando há, demanda-se um número de iterações muito maior que nos métodos convencionais, demonstrando que as metodologias com matriz Jacobiana constante, nestes casos, não apresentam grande utilidade.

No mais, a maior contribuição deste trabalho é, sem dúvida, a formulação proposta para a solução do fluxo de potência para sistemas com condições iniciais desfavoráveis – metodologia RCI. Esta nova metodologia é capaz de encontrar o ponto de solução, desde que este exista, em situações nas quais os demais métodos apresentados neste trabalho mostraram-se totalmente ineficazes. O RCI alcança o resultado do fluxo de potência com menor número de iterações que a solução via equações de injeção de corrente, além de mais robusto sendo capaz de convergir onde esta não o faz.

5.2 Sugestões para Estudos Futuros

Apresentam-se aqui algumas sugestões para futuras pesquisas:

- Acrescentar um fator de passo de otimização nos métodos em que a matriz Jacobiana é mantida constante para analisar o desempenho destes métodos em sistemas equilibrados carregados;
- Estender a metodologia RCI para sistemas de transmissão de grande porte, inclusive com maior número de barras PV;
- Desenvolver um estudo para determinar quais as características do sistema são capazes de influenciar a eficácia do método de solução escolhido.

Apêndice I

Formulação Injeção de Corrente

AI.1 Equações Básicas da Solução via Injeção de Corrente Trifásica

A formulação do fluxo de potência trifásico injeção de corrente segue praticamente os mesmos passos da metodologia monofásica convencional. Dessa forma, a potência complexa injetada em uma barra genérica k do sistema é dada por:

$$S_k = V_k \cdot I_k^* \tag{AI.1}$$

ou

$$S_k^* = V_k^* \cdot I_k \tag{AI.2}$$

A corrente trifásica injetada na barra k, na fase s pode ser escrita da seguinte forma:

$$I_{k}^{s} = \frac{P_{k}^{s} - jQ_{k}^{s}}{V_{rk}^{s} - jV_{mk}^{s}}$$
(AI.3)

A expressão (AI.3) pode ser trabalhada, multiplicando-se o lado direito desta expressão pelo termo $\frac{V_{rk}^s + jV_{mk}^s}{V_{rk}^s + jV_{mk}^s}$, obtendo-se:

$$I_{k}^{s} = \frac{P_{k}^{s} V_{rk}^{s} + j P_{k}^{s} V_{mk}^{s} - j Q_{k}^{s} V_{rk}^{s} + Q_{k}^{s} V_{mk}^{s}}{(V_{rk}^{s})^{2} + (V_{mk}^{s})^{2}}$$
(AI.4)

Mas $I_k^s = I_{rk}^s + jI_{mk}^s$, então separando a expressão (AI.4) em suas partes real e imaginária, tem-se:

$$I_{rk}^{s} = \frac{P_{k}^{s} V_{rk}^{s} + Q_{k}^{s} V_{mk}^{s}}{(V_{rk}^{s})^{2} + (V_{mk}^{s})^{2}}$$
(AI.5)

$$I_{mk}^{s} = \frac{P_{k}^{s} V_{mk}^{s} - Q_{k}^{s} V_{rk}^{s}}{(V_{rk}^{s})^{2} + (V_{mk}^{s})^{2}}$$
(AI.6)

Então, as equações de corrente a serem resolvidas no problema de fluxo de potência são dadas por:

$$I_{rk}^{s} - \frac{P_{k}^{s}V_{rk}^{s} + Q_{k}^{s}V_{mk}^{s}}{(V_{rk}^{s})^{2} + (V_{mk}^{s})^{2}} = 0$$
(AI.7)

$$I_{mk}^{s} - \frac{P_{k}^{s}V_{mk}^{s} - Q_{k}^{s}V_{rk}^{s}}{(V_{rk}^{s})^{2} + (V_{mk}^{s})^{2}} = 0$$
(AI.8)

As componentes real e imaginária da corrente também podem ser escritas como:

$$I_{rk}^{s} = \sum_{t \in \alpha_{p}} (G_{kk}^{st} V_{rk}^{t} - B_{kk}^{st} V_{mk}^{t}) + \sum_{\substack{m \in \Omega_{k} \\ m \neq k}} \sum_{t \in \alpha_{p}} (G_{km}^{st} V_{rm}^{t} - B_{km}^{st} V_{mm}^{t})$$
(AI.9)

$$I_{mk}^{s} = \sum_{t \in \alpha_{p}} (B_{kk}^{st} V_{rk}^{t} + G_{kk}^{st} V_{mk}^{t}) + \sum_{\substack{m \in \Omega_{k} \\ m \neq k}} \sum_{t \in \alpha_{p}} (B_{km}^{st} V_{rm}^{t} + G_{km}^{st} V_{mm}^{t})$$
(AI.10)

Substituindo as expressões (AI.9) e (AI.10) em (AI.7) e (AI.8), respectivamente, obtêm-se as equações (3.1) e (3.2).

Apêndice II

Dados dos Sistemas C37 e 215 Barras

AII.1 Sistema C37

As Tabelas AII.1, AII.2, AII.3 e AII.4 mostram os dados referentes ao sistema C37, enquanto que a Figura AII.1 mostra a sua topologia.

Figura AII.1 – Topologia do Sistema C37

Barra	Tipo	Tensão(pu)	Ângulo(°)	Tensão(pu)	Ângulo(°)	Tensão(pu)	Ângulo(°)
1	1	1,0000	0	1,0000	-120	1,0000	120
2	1	1,0000	0	1,0000	-120	1,0000	120
3	1	1,0000	0	1,0000	-120	1,0000	120
4	1	1,0000	0	1,0000	-120	1,0000	120
5	1	1,0000	0	1,0000	-120	1,0000	120

Tabela AII.1 – Dados de Tensão e Ângulo – C37

Barra	Tipo	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)
6	1	1,0000	0	1,0000	-120	1,0000	120
7	1	1,0000	0	1,0000	-120	1,0000	120
8	1	1,0000	0	1,0000	-120	1,0000	120
9	1	1,0000	0	1,0000	-120	1,0000	120
10	1	1,0000	0	1,0000	-120	1,0000	120
11	1	1,0000	0	1,0000	-120	1,0000	120
12	1	1,0000	0	1,0000	-120	1,0000	120
13	1	1,0000	0	1,0000	-120	1,0000	120
14	1	1,0000	0	1,0000	-120	1,0000	120
15	1	1,0000	0	1,0000	-120	1,0000	120
16	1	1,0000	0	1,0000	-120	1,0000	120
17	1	1,0000	0	1,0000	-120	1,0000	120
18	1	1,0000	0	1,0000	-120	1,0000	120
19	1	1,0000	0	1,0000	-120	1,0000	120
20	1	1,0000	0	1,0000	-120	1,0000	120
21	1	1,0000	0	1,0000	-120	1,0000	120
22	1	1,0000	0	1,0000	-120	1,0000	120
23	1	1,0000	0	1,0000	-120	1,0000	120
24	1	1,0000	0	1,0000	-120	1,0000	120
25	1	1,0000	0	1,0000	-120	1,0000	120
26	1	1,0000	0	1,0000	-120	1,0000	120
27	1	1,0000	0	1,0000	-120	1,0000	120
28	1	1,0000	0	1,0000	-120	1,0000	120
29	1	1,0000	0	1,0000	-120	1,0000	120
30	1	1,0000	0	1,0000	-120	1,0000	120
31	1	1,0000	0	1,0000	-120	1,0000	120
32	1	1,0000	0	1,0000	-120	1,0000	120
33	1	1,0000	0	1,0000	-120	1,0000	120
34	1	1,0000	0	1,0000	-120	1,0000	120

35	1	1,0000	0	1,0000	-120	1,0000	120
36	1	1,0000	0	1,0000	-120	1,0000	120
37	0	1,0000	0	1,0000	-120	1,0000	120

Tabela AII.2 – Dados de Carga – C37

Barra	$P_D^{a}(pu)$	$Q_{D}^{a}(pu)$	$P_D^{b}(pu)$	$Q_D^b(pu)$	P_D^{c} (pu)	Q_D^c (pu)
1	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
2	0,1500	0,0900	0,1500	0,0900	0,1500	0,0900
3	0,1500	0,0900	0,1500	0,0900	0,1500	0,0900
4	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
5	0,3000	0,1700	0,3000	0,1700	0,3000	0,1700
6	0,3000	0,1700	0,3000	0,1700	0,3000	0,1700
7	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
8	0,4500	0,2600	0,4500	0,2600	0,4500	0,2600
9	0,4500	0,2600	0,4500	0,2600	0,4500	0,2600
10	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
11	0,6000	0,3400	0,6000	0,3400	0,6000	0,3400
12	0,6000	0,3400	0,6000	0,3400	0,6000	0,3400
13	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
14	0,7500	0,4300	0,7500	0,4300	0,7500	0,4300
15	0,7500	0,4300	0,7500	0,4300	0,7500	0,4300
16	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
17	0,9000	0,5100	0,9000	0,5100	0,9000	0,5100
18	0,9000	0,5100	0,9000	0,5100	0,9000	0,5100
19	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
20	1,0600	0,6000	1,0600	0,6000	1,0600	0,6000
21	1,0600	0,6000	1,0600	0,6000	1,0600	0,6000
22	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
23	1,2100	0,6800	1,2100	0,6800	1,2100	0,6800
24	1,2100	0,6800	1,2100	0,6800	1,2100	0,6800

Barra	P_D^a (pu)	$Q_{D}^{a}(pu)$	$P_{D}^{b}(pu)$	$Q_D^b(pu)$	$P_D^{c}(pu)$	Q_D^c (pu)
25	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
26	1,3600	0,7700	1,3600	0,7700	1,3600	0,7700
27	1,3600	0,7700	1,3600	0,7700	1,3600	0,7700
28	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
29	1,5100	0,8500	1,5100	0,8500	1,5100	0,8500
30	1,5100	0,8500	1,5100	0,8500	1,5100	0,8500
31	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
32	1,6600	0,9400	1,6600	0,9400	1,6600	0,9400
33	1,6600	0,9400	1,6600	0,9400	1,6600	0,9400
34	0,3700	0,2100	0,3700	0,2100	0,3700	0,2100
35	1,8100	1,0200	1,8100	1,0200	1,8100	1,0200
36	1,8100	1,0200	1,8100	1,0200	1,8100	1,0200
37	0	0	0	0	0	0

Tabela AII.3 – Resistências e Reatâncias de Linhas – C37

De	Para	r _a (pu)	x _a (pu)	r _b (pu)	x _b (pu)	r _c (pu)	x _c (pu)
37	1	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3
1	2	0,1934e-3	0,1611e-3	0,1934e-3	0,1611e-3	0,1934e-3	0,1611e-3
1	3	0,1934e-3	0,1611e-3	0,1934e-3	0,1611e-3	0,1934e-3	0,1611e-3
1	4	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3
4	5	0,3869e-3	0,3222e-3	0,3869e-3	0,3222e-3	0,3869e-3	0,3222e-3
4	6	0,3869e-3	0,3222e-3	0,3869e-3	0,3222e-3	0,3869e-3	0,3222e-3
4	7	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3
7	8	0,5803e-3	0,4833e-3	0,5803e-3	0,4833e-3	0,5803e-3	0,4833e-3
7	9	0,5803e-3	0,4833e-3	0,5803e-3	0,4833e-3	0,5803e-3	0,4833e-3
7	10	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3
10	11	0,7737e-3	0,6444e-3	0,7737e-3	0,6444e-3	0,7737e-3	0,6444e-3
10	12	0,7737e-3	0,6444e-3	0,7737e-3	0,6444e-3	0,7737e-3	0,6444e-3
10	13	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3

De	Para	r _a (pu)	x _a (pu)	r _b (pu)	x _b (pu)	r _c (pu)	x _c (pu)
13	14	0,9672e-3	0,8055e-3	0,9672e-3	0,8055e-3	0,9672e-3	0,8055e-3
13	15	0,9672e-3	0,8055e-3	0,9672e-3	0,8055e-3	0,9672e-3	0,8055e-3
13	16	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3
16	17	1,1606e-3	0,9666e-3	1,1606e-3	0,9666e-3	1,1606e-3	0,9666e-3
16	18	1,1606e-3	0,9666e-3	1,1606e-3	0,9666e-3	1,1606e-3	0,9666e-3
16	19	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3
19	20	1,3540e-3	1,1277e-3	1,3540e-3	1,1277e-3	1,3540e-3	1,1277e-3
19	21	1,3540e-3	1,1277e-3	1,3540e-3	1,1277e-3	1,3540e-3	1,1277e-3
19	22	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3
22	23	1,5474e-3	1,2888e-3	1,5474e-3	1,2888e-3	1,5474e-3	1,2888e-3
22	24	1,5474e-3	1,2888e-3	1,5474e-3	1,2888e-3	1,5474e-3	1,2888e-3
22	25	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3
25	26	1,7409e-3	1,4499e-3	1,7409e-3	1,4499e-3	1,7409e-3	1,4499e-3
25	27	1,7409e-3	1,4499e-3	1,7409e-3	1,4499e-3	1,7409e-3	1,4499e-3
25	28	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3
28	29	1,9343e-3	1,6110e-3	1,9343e-3	1,6110e-3	1,9343e-3	1,6110e-3
28	30	1,9343e-3	1,6110e-3	1,9343e-3	1,6110e-3	1,9343e-3	1,6110e-3
28	31	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3
31	32	2,1277e-3	1,7721e-3	2,1277e-3	1,7721e-3	2,1277e-3	1,7721e-3
31	33	2,1277e-3	1,7721e-3	2,1277e-3	1,7721e-3	2,1277e-3	1,7721e-3
31	34	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3	0,1583e-3	0,3029e-3
34	35	2,3212e-3	1,9332e-3	2,3212e-3	1,9332e-3	2,3212e-3	1,9332e-3
34	36	2,3212e-3	1,9332e-3	2,3212e-3	1,9332e-3	2,3212e-3	1,9332e-3

Tabela AII.4 – Resistências e Reatâncias Mútuas das Linhas – C37
--

De	Para	r _{ab} (pu)	x _{ab} (pu)	r _{bc} (pu)	x_{bc} (pu)	r _{ca} (pu)	x _{ca} (pu)
37	1	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
1	2	0,0308e-3	0,0785e-3	0,0308e-3	0,0785e-3	0,0308e-3	0,0785e-3
1	3	0,0308e-3	0,0785e-3	0,0308e-3	0,0785e-3	0,0308e-3	0,0785e-3

De	Para	r _{ab} (pu)	x _{ab} (pu)	r _{bc} (pu)	x _{bc} (pu)	r _{ca} (pu)	x _{ca} (pu)
1	4	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
4	5	0,0616e-3	0,1570e-3	0,0616e-3	0,1570e-3	0,0616e-3	0,1570e-3
4	6	0,0616e-3	0,1570e-3	0,0616e-3	0,1570e-3	0,0616e-3	0,1570e-3
4	7	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
7	8	0,0924e-3	0,2355e-3	0,0924e-3	0,2355e-3	0,0924e-3	0,2355e-3
7	9	0,0924e-3	0,2355e-3	0,0924e-3	0,2355e-3	0,0924e-3	0,2355e-3
7	10	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
10	11	0,1233e-3	0,3140e-3	0,1233e-3	0,3140e-3	0,1233e-3	0,3140e-3
10	12	0,1233e-3	0,3140e-3	0,1233e-3	0,3140e-3	0,1233e-3	0,3140e-3
10	13	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
13	14	0,1541e-3	0,3925e-3	0,1541e-3	0,3925e-3	0,1541e-3	0,3925e-3
13	15	0,1541e-3	0,3925e-3	0,1541e-3	0,3925e-3	0,1541e-3	0,3925e-3
13	16	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
16	17	0,1849e-3	0,4709e-3	0,1849e-3	0,4709e-3	0,1849e-3	0,4709e-3
16	18	0,1849e-3	0,4709e-3	0,1849e-3	0,4709e-3	0,1849e-3	0,4709e-3
16	19	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
19	20	0,2157e-3	0,5494e-3	0,2157e-3	0,5494e-3	0,2157e-3	0,5494e-3
19	21	0,2157e-3	0,5494e-3	0,2157e-3	0,5494e-3	0,2157e-3	0,5494e-3
19	22	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
22	23	0,2465e-3	0,6279e-3	0,2465e-3	0,6279e-3	0,2465e-3	0,6279e-3
22	24	0,2465e-3	0,6279e-3	0,2465e-3	0,6279e-3	0,2465e-3	0,6279e-3
22	25	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
25	26	0,2773e-3	0,7064e-3	0,2773e-3	0,7064e-3	0,2773e-3	0,7064e-3
25	27	0,2773e-3	0,7064e-3	0,2773e-3	0,7064e-3	0,2773e-3	0,7064e-3
25	28	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
28	29	0,3081e-3	0,7849e-3	0,3081e-3	0,7849e-3	0,3081e-3	0,7849e-3
28	30	0,3081e-3	0,7849e-3	0,3081e-3	0,7849e-3	0,3081e-3	0,7849e-3
28	31	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
31	32	0,3389e-3	0,8634e-3	0,3389e-3	0,8634e-3	0,3389e-3	0,8634e-3

De	Para	r _{ab} (pu)	x _{ab} (pu)	r _{bc} (pu)	x_{bc} (pu)	r _{ca} (pu)	x_{ca} (pu)
31	33	0,3389e-3	0,8634e-3	0,3389e-3	0,8634e-3	0,3389e-3	0,8634e-3
31	34	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3	0,0792e-3	0,1508e-3
34	35	0,3697e-3	0,9419e-3	0,3697e-3	0,9419e-3	0,3697e-3	0,9419e-3
34	36	0,3697e-3	0,9419e-3	0,3697e-3	0,9419e-3	0,3697e-3	0,9419e-3

AII.2 Sistema 215barras

As Tabelas AII.5, AII.6 e AII.7 mostram os dados referentes ao sistema 215 barras.

		-					
Barra	Tipo	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)
1	1	1,0000	0	1,0000	-120	1,0000	120
2	1	1,0000	0	1,0000	-120	1,0000	120
3	1	1,0000	0	1,0000	-120	1,0000	120
4	1	1,0000	0	1,0000	-120	1,0000	120
5	1	1,0000	0	1,0000	-120	1,0000	120
6	1	1,0000	0	1,0000	-120	1,0000	120
7	1	1,0000	0	1,0000	-120	1,0000	120
8	1	1,0000	0	1,0000	-120	1,0000	120
9	1	1,0000	0	1,0000	-120	1,0000	120
10	1	1,0000	0	1,0000	-120	1,0000	120
11	1	1,0000	0	1,0000	-120	1,0000	120
12	1	1,0000	0	1,0000	-120	1,0000	120
13	1	1,0000	0	1,0000	-120	1,0000	120
14	1	1,0000	0	1,0000	-120	1,0000	120
15	1	1,0000	0	1,0000	-120	1,0000	120
16	1	1,0000	0	1,0000	-120	1,0000	120

Tabela AII.5 – Dados de Tensão e Ângulo – 215 Barras

Barra	Tipo	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)
17	1	1,0000	0	1,0000	-120	1,0000	120
18	1	1,0000	0	1,0000	-120	1,0000	120
19	1	1,0000	0	1,0000	-120	1,0000	120
20	1	1,0000	0	1,0000	-120	1,0000	120
21	1	1,0000	0	1,0000	-120	1,0000	120
22	1	1,0000	0	1,0000	-120	1,0000	120
23	1	1,0000	0	1,0000	-120	1,0000	120
24	1	1,0000	0	1,0000	-120	1,0000	120
25	1	1,0000	0	1,0000	-120	1,0000	120
26	1	1,0000	0	1,0000	-120	1,0000	120
27	1	1,0000	0	1,0000	-120	1,0000	120
28	1	1,0000	0	1,0000	-120	1,0000	120
29	1	1,0000	0	1,0000	-120	1,0000	120
30	1	1,0000	0	1,0000	-120	1,0000	120
31	1	1,0000	0	1,0000	-120	1,0000	120
32	1	1,0000	0	1,0000	-120	1,0000	120
33	1	1,0000	0	1,0000	-120	1,0000	120
34	1	1,0000	0	1,0000	-120	1,0000	120
35	1	1,0000	0	1,0000	-120	1,0000	120
36	1	1,0000	0	1,0000	-120	1,0000	120
37	1	1,0000	0	1,0000	-120	1,0000	120
38	1	1,0000	0	1,0000	-120	1,0000	120
39	1	1,0000	0	1,0000	-120	1,0000	120
40	1	1,0000	0	1,0000	-120	1,0000	120
41	1	1,0000	0	1,0000	-120	1,0000	120
42	1	1,0000	0	1,0000	-120	1,0000	120
43	1	1,0000	0	1,0000	-120	1,0000	120
44	1	1,0000	0	1,0000	-120	1,0000	120
45	1	1,0000	0	1,0000	-120	1,0000	120

46	1	1 0000					
		1,0000	0	1,0000	-120	1,0000	120
47	1	1,0000	0	1,0000	-120	1,0000	120
48	1	1,0000	0	1,0000	-120	1,0000	120
49	1	1,0000	0	1,0000	-120	1,0000	120
50	1	1,0000	0	1,0000	-120	1,0000	120
51	1	1,0000	0	1,0000	-120	1,0000	120
52	1	1,0000	0	1,0000	-120	1,0000	120
53	1	1,0000	0	1,0000	-120	1,0000	120
54	1	1,0000	0	1,0000	-120	1,0000	120
55	1	1,0000	0	1,0000	-120	1,0000	120
56	1	1,0000	0	1,0000	-120	1,0000	120
57	1	1,0000	0	1,0000	-120	1,0000	120
58	1	1,0000	0	1,0000	-120	1,0000	120
59	1	1,0000	0	1,0000	-120	1,0000	120
60	1	1,0000	0	1,0000	-120	1,0000	120
61	1	1,0000	0	1,0000	-120	1,0000	120
62	1	1,0000	0	1,0000	-120	1,0000	120
63	1	1,0000	0	1,0000	-120	1,0000	120
64	1	1,0000	0	1,0000	-120	1,0000	120
65	1	1,0000	0	1,0000	-120	1,0000	120
66	1	1,0000	0	1,0000	-120	1,0000	120
67	1	1,0000	0	1,0000	-120	1,0000	120
68	1	1,0000	0	1,0000	-120	1,0000	120
69	1	1,0000	0	1,0000	-120	1,0000	120
70	1	1,0000	0	1,0000	-120	1,0000	120
71	1	1,0000	0	1,0000	-120	1,0000	120
72	1	1,0000	0	1,0000	-120	1,0000	120
73	1	1,0000	0	1,0000	-120	1,0000	120
74	1	1,0000	0	1,0000	-120	1,0000	120

75 76	1	1,0000	0	1 0000	120	1 0000	100
76	1	1 0000		1,0000	-120	1,0000	120
	1	1,0000	0	1,0000	-120	1,0000	120
77	1	1,0000	0	1,0000	-120	1,0000	120
78	1	1,0000	0	1,0000	-120	1,0000	120
79	1	1,0000	0	1,0000	-120	1,0000	120
80	1	1,0000	0	1,0000	-120	1,0000	120
81	1	1,0000	0	1,0000	-120	1,0000	120
82	1	1,0000	0	1,0000	-120	1,0000	120
83	1	1,0000	0	1,0000	-120	1,0000	120
84	1	1,0000	0	1,0000	-120	1,0000	120
85	1	1,0000	0	1,0000	-120	1,0000	120
86	1	1,0000	0	1,0000	-120	1,0000	120
87	1	1,0000	0	1,0000	-120	1,0000	120
88	1	1,0000	0	1,0000	-120	1,0000	120
89	1	1,0000	0	1,0000	-120	1,0000	120
90	1	1,0000	0	1,0000	-120	1,0000	120
91	1	1,0000	0	1,0000	-120	1,0000	120
92	1	1,0000	0	1,0000	-120	1,0000	120
93	1	1,0000	0	1,0000	-120	1,0000	120
94	1	1,0000	0	1,0000	-120	1,0000	120
95	1	1,0000	0	1,0000	-120	1,0000	120
96	1	1,0000	0	1,0000	-120	1,0000	120
97	1	1,0000	0	1,0000	-120	1,0000	120
98	1	1,0000	0	1,0000	-120	1,0000	120
99	1	1,0000	0	1,0000	-120	1,0000	120
100	1	1,0000	0	1,0000	-120	1,0000	120
101	1	1,0000	0	1,0000	-120	1,0000	120
102	1	1,0000	0	1,0000	-120	1,0000	120
103	1	1,0000	0	1,0000	-120	1,0000	120

Barra	Tipo	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)
104	1	1,0000	0	1,0000	-120	1,0000	120
105	1	1,0000	0	1,0000	-120	1,0000	120
106	1	1,0000	0	1,0000	-120	1,0000	120
107	1	1,0000	0	1,0000	-120	1,0000	120
108	1	1,0000	0	1,0000	-120	1,0000	120
109	1	1,0000	0	1,0000	-120	1,0000	120
110	1	1,0000	0	1,0000	-120	1,0000	120
111	1	1,0000	0	1,0000	-120	1,0000	120
112	1	1,0000	0	1,0000	-120	1,0000	120
113	1	1,0000	0	1,0000	-120	1,0000	120
114	1	1,0000	0	1,0000	-120	1,0000	120
115	1	1,0000	0	1,0000	-120	1,0000	120
116	1	1,0000	0	1,0000	-120	1,0000	120
117	1	1,0000	0	1,0000	-120	1,0000	120
118	1	1,0000	0	1,0000	-120	1,0000	120
119	1	1,0000	0	1,0000	-120	1,0000	120
120	1	1,0000	0	1,0000	-120	1,0000	120
121	1	1,0000	0	1,0000	-120	1,0000	120
122	1	1,0000	0	1,0000	-120	1,0000	120
123	1	1,0000	0	1,0000	-120	1,0000	120
124	1	1,0000	0	1,0000	-120	1,0000	120
125	1	1,0000	0	1,0000	-120	1,0000	120
126	1	1,0000	0	1,0000	-120	1,0000	120
127	1	1,0000	0	1,0000	-120	1,0000	120
128	1	1,0000	0	1,0000	-120	1,0000	120
129	1	1,0000	0	1,0000	-120	1,0000	120
130	1	1,0000	0	1,0000	-120	1,0000	120
131	1	1,0000	0	1,0000	-120	1,0000	120
132	1	1,0000	0	1,0000	-120	1,0000	120

Barra	Tipo	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)
133	1	1,0000	0	1,0000	-120	1,0000	120
134	1	1,0000	0	1,0000	-120	1,0000	120
135	1	1,0000	0	1,0000	-120	1,0000	120
136	1	1,0000	0	1,0000	-120	1,0000	120
137	1	1,0000	0	1,0000	-120	1,0000	120
138	1	1,0000	0	1,0000	-120	1,0000	120
139	1	1,0000	0	1,0000	-120	1,0000	120
140	1	1,0000	0	1,0000	-120	1,0000	120
141	1	1,0000	0	1,0000	-120	1,0000	120
142	1	1,0000	0	1,0000	-120	1,0000	120
143	1	1,0000	0	1,0000	-120	1,0000	120
144	1	1,0000	0	1,0000	-120	1,0000	120
145	1	1,0000	0	1,0000	-120	1,0000	120
146	1	1,0000	0	1,0000	-120	1,0000	120
147	1	1,0000	0	1,0000	-120	1,0000	120
148	1	1,0000	0	1,0000	-120	1,0000	120
149	1	1,0000	0	1,0000	-120	1,0000	120
150	1	1,0000	0	1,0000	-120	1,0000	120
151	1	1,0000	0	1,0000	-120	1,0000	120
152	1	1,0000	0	1,0000	-120	1,0000	120
153	1	1,0000	0	1,0000	-120	1,0000	120
154	1	1,0000	0	1,0000	-120	1,0000	120
155	1	1,0000	0	1,0000	-120	1,0000	120
156	1	1,0000	0	1,0000	-120	1,0000	120
157	1	1,0000	0	1,0000	-120	1,0000	120
158	1	1,0000	0	1,0000	-120	1,0000	120
159	1	1,0000	0	1,0000	-120	1,0000	120
160	1	1,0000	0	1,0000	-120	1,0000	120
161	1	1,0000	0	1,0000	-120	1,0000	120

Barra	Tipo	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)
162	1	1,0000	0	1,0000	-120	1,0000	120
163	1	1,0000	0	1,0000	-120	1,0000	120
164	1	1,0000	0	1,0000	-120	1,0000	120
165	1	1,0000	0	1,0000	-120	1,0000	120
166	1	1,0000	0	1,0000	-120	1,0000	120
167	1	1,0000	0	1,0000	-120	1,0000	120
168	1	1,0000	0	1,0000	-120	1,0000	120
169	1	1,0000	0	1,0000	-120	1,0000	120
170	1	1,0000	0	1,0000	-120	1,0000	120
171	1	1,0000	0	1,0000	-120	1,0000	120
172	1	1,0000	0	1,0000	-120	1,0000	120
173	1	1,0000	0	1,0000	-120	1,0000	120
174	1	1,0000	0	1,0000	-120	1,0000	120
175	1	1,0000	0	1,0000	-120	1,0000	120
176	1	1,0000	0	1,0000	-120	1,0000	120
177	1	1,0000	0	1,0000	-120	1,0000	120
178	1	1,0000	0	1,0000	-120	1,0000	120
179	1	1,0000	0	1,0000	-120	1,0000	120
180	1	1,0000	0	1,0000	-120	1,0000	120
181	1	1,0000	0	1,0000	-120	1,0000	120
182	1	1,0000	0	1,0000	-120	1,0000	120
183	1	1,0000	0	1,0000	-120	1,0000	120
184	1	1,0000	0	1,0000	-120	1,0000	120
185	1	1,0000	0	1,0000	-120	1,0000	120
186	1	1,0000	0	1,0000	-120	1,0000	120
187	1	1,0000	0	1,0000	-120	1,0000	120
188	1	1,0000	0	1,0000	-120	1,0000	120
189	1	1,0000	0	1,0000	-120	1,0000	120
190	1	1,0000	0	1,0000	-120	1,0000	120

Barra	Tipo	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)	Tensão(pu)	Ângulo (°)
191	1	1,0000	0	1,0000	-120	1,0000	120
192	1	1,0000	0	1,0000	-120	1,0000	120
193	1	1,0000	0	1,0000	-120	1,0000	120
194	1	1,0000	0	1,0000	-120	1,0000	120
195	1	1,0000	0	1,0000	-120	1,0000	120
196	1	1,0000	0	1,0000	-120	1,0000	120
197	1	1,0000	0	1,0000	-120	1,0000	120
198	1	1,0000	0	1,0000	-120	1,0000	120
199	1	1,0000	0	1,0000	-120	1,0000	120
200	1	1,0000	0	1,0000	-120	1,0000	120
201	1	1,0000	0	1,0000	-120	1,0000	120
202	1	1,0000	0	1,0000	-120	1,0000	120
203	1	1,0000	0	1,0000	-120	1,0000	120
204	1	1,0000	0	1,0000	-120	1,0000	120
205	1	1,0000	0	1,0000	-120	1,0000	120
206	1	1,0000	0	1,0000	-120	1,0000	120
207	1	1,0000	0	1,0000	-120	1,0000	120
208	1	1,0000	0	1,0000	-120	1,0000	120
209	1	1,0000	0	1,0000	-120	1,0000	120
210	1	1,0000	0	1,0000	-120	1,0000	120
211	1	1,0000	0	1,0000	-120	1,0000	120
212	1	1,0000	0	1,0000	-120	1,0000	120
213	1	1,0000	0	1,0000	-120	1,0000	120
214	1	1,0000	0	1,0000	-120	1,0000	120
215	0	1,0000	0	1,0000	-120	1,0000	120

Tabela AII.6 – Dados de Carga – 215 Barras

Barra	$P_{D}^{a}(pu)$	$Q_{D}^{a}(pu)$	$P_D^{b}(pu)$	Q_D^{b} (pu)	$P_D^{c}(pu)$	Q_D^c (pu)
1	0	0	0	0	0	0
Barra	$P_{D}^{a}(pu)$	Q_{D}^{a} (pu)	$P_{D}^{b}(pu)$	$Q_D^{b}(pu)$	P_D^c (pu)	Q_D^c (pu)
-------	-----------------	------------------	-----------------	---------------	--------------	--------------
2	0	0	0	0	0	0
3	1,1685e-3	3,8407e-4	1,1685e-3	3,8407e-4	1,1685e-3	3,8407e-4
4	1,6450e-4	-1,0600e-4	1,6450e-4	-1,0600e-4	1,6450e-4	-1,0600e-4
5	2,7799e-3	2,8077e-4	2,7799e-3	2,8077e-4	2,7799e-3	2,8077e-4
6	0	0	0	0	0	0
7	-2,7400e-6	3,2991e-5	-2,7400e-6	3,2991e-5	-2,7400e-6	3,2991e-5
8	-7,9530e-5	1,1407e-4	-7,9530e-5	1,1407e-4	-7,9530e-5	1,1407e-4
9	1,7260e-5	-7,2256e-5	1,7260e-5	-7,2256e-5	1,7260e-5	-7,2256e-5
10	2,8059e-3	2,8165e-4	2,8059e-3	2,8165e-4	2,8059e-3	2,8165e-4
11	2,1094e-3	2,1174e-4	2,1094e-3	2,1174e-4	2,1094e-3	2,1174e-4
12	-8,4150e-5	1,0766e-4	-8,4150e-5	1,0766e-4	-8,4150e-5	1,0766e-4
13	2,0995e-3	2,1074e-4	2,0995e-3	2,1074e-4	2,0995e-3	2,1074e-4
14	-6,3820e-5	2,2191e-4	-6,3820e-5	2,2191e-4	-6,3820e-5	2,2191e-4
15	-1,4570e-5	1,0449e-5	-1,4570e-5	1,0449e-5	-1,4570e-5	1,0449e-5
16	8,2585e-4	8,2896e-5	8,2585e-4	8,2896e-5	8,2585e-4	8,2896e-5
17	8,8555e-4	8,8889e-5	8,8555e-4	8,8889e-5	8,8555e-4	8,8889e-5
18	1,1917e-3	-1,1302e-4	1,1917e-3	-1,1302e-4	1,1917e-3	-1,1302e-4
19	0	0	0	0	0	0
20	0	0	0	0	0	0
21	8,8555e-4	8,8889e-5	8,8555e-4	8,8889e-5	8,8555e-4	8,8889e-5
22	1,9735e-3	5,9074e-4	1,9735e-3	5,9074e-4	1,9735e-3	5,9074e-4
23	0	0	0	0	0	0
24	7,5606e-3	9,3444e-3	7,5606e-3	9,3444e-3	7,5606e-3	9,3444e-3
25	0	0	0	0	0	0
26	4,3780e-4	4,3945e-5	4,3780e-4	4,3945e-5	4,3780e-4	4,3945e-5
27	0	0	0	0	0	0
28	7,9600e-4	7,9900e-5	7,9600e-4	7,9900e-5	7,9600e-4	7,9900e-5
29	-1,2479e-4	3,7835e-4	-1,2479e-4	3,7835e-4	-1,2479e-4	3,7835e-4
30	0	0	0	0	0	0

Barra	$P_{D}^{a}(pu)$	$Q_{D}^{a}(pu)$	$P_{D}^{b}(pu)$	$Q_D^{b}(pu)$	$P_D^{c}(pu)$	Q_D^c (pu)
31	3,0348e-3	3,0462e-4	3,0348e-3	3,0462e-4	3,0348e-3	3,0462e-4
32	0	0	0	0	0	0
33	1,2537e-3	1,2584e-4	1,2537e-3	1,2584e-4	1,2537e-3	1,2584e-4
34	1,1771e-3	3,5681e-4	1,1771e-3	3,5681e-4	1,1771e-3	3,5681e-4
35	0	0	0	0	0	0
36	0	0	0	0	0	0
37	0	0	0	0	0	0
38	0	0	0	0	0	0
39	0	0	0	0	0	0
40	0	0	0	0	0	0
41	0	0	0	0	0	0
42	0	0	0	0	0	0
43	0	0	0	0	0	0
44	0	0	0	0	0	0
45	0	0	0	0	0	0
46	1,2764e-3	-3,7394e-5	1,2764e-3	-3,7394e-5	1,2764e-3	-3,7394e-5
47	1,6252e-4	4,9872e-5	1,6252e-4	4,9872e-5	1,6252e-4	4,9872e-5
48	3,5372e-4	1,0855e-4	3,5372e-4	1,0855e-4	3,5372e-4	1,0855e-4
49	0	0	0	0	0	0
50	2,6972e-3	1,4103e-5	2,6972e-3	1,4103e-5	2,6972e-3	1,4103e-5
51	9,1584e-4	2,8781e-4	9,1584e-4	2,8781e-4	9,1584e-4	2,8781e-4
52	0	0	0	0	0	0
53	0	0	0	0	0	0
54	-1,9790e-5	4,1365e-5	-1,9790e-5	4,1365e-5	-1,9790e-5	4,1365e-5
55	2,0497e-3	2,0574e-4	2,0497e-3	2,0574e-4	2,0497e-3	2,0574e-4
56	0	0	0	0	0	0
57	0	0	0	0	0	0
58	0	0	0	0	0	0
59	0	0	0	0	0	0

Barra	$P_{D}^{a}(pu)$	Q_D^a (pu)	$P_D^{b}(pu)$	Q_D^b (pu)	$P_D^{c}(pu)$	Q_D^c (pu)
60	0	0	0	0	0	0
61	3,0977e-3	2,9161e-3	3,0977e-3	2,9161e-3	3,0977e-3	2,9161e-3
62	0	0	0	0	0	0
63	0	0	0	0	0	0
64	0	0	0	0	0	0
65	0	0	0	0	0	0
66	6,3228e-4	1,8927e-4	6,3228e-4	1,8927e-4	6,3228e-4	1,8927e-4
67	1,2061e-4	-2,4715e-4	1,2061e-4	-2,4715e-4	1,2061e-4	-2,4715e-4
68	0	0	0	0	0	0
69	7,7230e-5	-2,7171e-4	7,7230e-5	-2,7171e-4	7,7230e-5	-2,7171e-4
70	0	0	0	0	0	0
71	0	0	0	0	0	0
72	0	0	0	0	0	0
73	2,5350e-5	-7,1141e-5	2,5350e-5	-7,1141e-5	2,5350e-5	-7,1141e-5
74	0	0	0	0	0	0
75	0	0	0	0	0	0
76	0	0	0	0	0	0
77	0	0	0	0	0	0
78	0	0	0	0	0	0
79	0	0	0	0	0	0
80	3,7314e-3	5,8159e-3	3,7314e-3	5,8159e-3	3,7314e-3	5,8159e-3
81	5,3003e-4	-5,3167e-6	5,3003e-4	-5,3167e-6	5,3003e-4	-5,3167e-6
82	-3,5760e-5	2,8790e-5	-3,5760e-5	2,8790e-5	-3,5760e-5	2,8790e-5
83	0	0	0	0	0	0
84	0	0	0	0	0	0
85	0	0	0	0	0	0
86	4,4775e-4	4,4944e-5	4,4775e-4	4,4944e-5	4,4775e-4	4,4944e-5
87	0	0	0	0	0	0
88	-9,4400e-6	1,3591e-5	-9,4400e-6	1,3591e-5	-9,4400e-6	1,3591e-5

Barra	P_D^a (pu)	Q_{D}^{a} (pu)	$P_{D}^{b}(pu)$	Q_D^b (pu)	P_D^c (pu)	Q_D^c (pu)
89	9,3765e-4	1,5268e-4	9,3765e-4	1,5268e-4	9,3765e-4	1,5268e-4
90	0	0	0	0	0	0
91	1,9683e-3	2,3820e-3	1,9683e-3	2,3820e-3	1,9683e-3	2,3820e-3
92	-9,0000e-6	5,1563e-5	-9,0000e-6	5,1563e-5	-9,0000e-6	5,1563e-5
93	0	0	0	0	0	0
94	-3,2000e-6	2,4338e-5	-3,2000e-6	2,4338e-5	-3,2000e-6	2,4338e-5
95	2,1994e-3	2,6059e-3	2,1994e-3	2,6059e-3	2,1994e-3	2,6059e-3
96	1,9980e-3	2,9761e-4	1,9980e-3	2,9761e-4	1,9980e-3	2,9761e-4
97	0	0	0	0	0	0
98	5,8710e-3	1,9297e-3	5,8710e-3	1,9297e-3	5,8710e-3	1,9297e-3
99	-5,4000e-7	2,5976e-5	-5,4000e-7	2,5976e-5	-5,4000e-7	2,5976e-5
100	3,9800e-4	3,9950e-5	3,9800e-4	3,9950e-5	3,9800e-4	3,9950e-5
101	4,0660e-5	-1,3951e-4	4,0660e-5	-1,3951e-4	4,0660e-5	-1,3951e-4
102	3,5820e-4	3,5955e-5	3,5820e-4	3,5955e-5	3,5820e-4	3,5955e-5
103	0	0	0	0	0	0
104	4,3780e-4	4,3945e-5	4,3780e-4	4,3945e-5	4,3780e-4	4,3945e-5
105	0	0	0	0	0	0
106	1,9380e-5	4,9412e-6	1,9380e-5	4,9412e-6	1,9380e-5	4,9412e-6
107	0	0	0	0	0	0
108	0	0	0	0	0	0
109	0	0	0	0	0	0
110	-1,1880e-5	2,5887e-5	-1,1880e-5	2,5887e-5	-1,1880e-5	2,5887e-5
111	2,0330e-3	6,6822e-4	2,0330e-3	6,6822e-4	2,0330e-3	6,6822e-4
112	-6,9900e-6	4,0709e-6	-6,9900e-6	4,0709e-6	-6,9900e-6	4,0709e-6
113	-4,9000e-7	-6,9618e-5	-4,9000e-7	-6,9618e-5	-4,9000e-7	-6,9618e-5
114	-1,7347e-18	-1,0842e-19	-1,7347e-18	-1,0842e-19	-1,7347e-18	-1,0842e-19
115	0	0	0	0	0	0
116	4,8440e-4	2,6521e-5	4,8440e-4	2,6521e-5	4,8440e-4	2,6521e-5
117	0	0	0	0	0	0

Barra	P_D^a (pu)	$Q_{D}^{a}(pu)$	$P_D^{b}(pu)$	$Q_D^{b}(pu)$	$P_D^{c}(pu)$	Q_D^c (pu)
118	-4,3368e-19	0	-4,3368e-19	0	-4,3368e-19	0
119	7,7894e-4	1,3173e-4	7,7894e-4	1,3173e-4	7,7894e-4	1,3173e-4
120	0	0	0	0	0	0
121	0	0	0	0	0	0
122	0	0	0	0	0	0
123	0	0	0	0	0	0
124	-1,6350e-5	-2,8338e-5	-1,6350e-5	-2,8338e-5	-1,6350e-5	-2,8338e-5
125	9,6515e-4	9,6879e-5	9,6515e-4	9,6879e-5	9,6515e-4	9,6879e-5
126	0	0	0	0	0	0
127	1,3930e-3	1,3983e-4	1,3930e-3	1,3983e-4	1,3930e-3	1,3983e-4
128	0	0	0	0	0	0
129	1,4925e-3	1,4981e-4	1,4925e-3	1,4981e-4	1,4925e-3	1,4981e-4
130	0	0	0	0	0	0
131	5,8804e-3	5,9026e-4	5,8804e-3	5,9026e-4	5,8804e-3	5,9026e-4
132	5,1870e-5	-1,6246e-4	5,1870e-5	-1,6246e-4	5,1870e-5	-1,6246e-4
133	1,7564e-3	9,0738e-5	1,7564e-3	9,0738e-5	1,7564e-3	9,0738e-5
134	5,9700e-4	5,9925e-5	5,9700e-4	5,9925e-5	5,9700e-4	5,9925e-5
135	7,2635e-4	7,2909e-5	7,2635e-4	7,2909e-5	7,2635e-4	7,2909e-5
136	1,2338e-3	1,2385e-4	1,2338e-3	1,2385e-4	1,2338e-3	1,2385e-4
137	0	0	0	0	0	0
138	0	0	0	0	0	0
139	1,3134e-3	1,3183e-4	1,3134e-3	1,3183e-4	1,3134e-3	1,3183e-4
140	0	0	0	0	0	0
141	0	0	0	0	0	0
142	0	0	0	0	0	0
143	0	5,4210e-20	0	5,4210e-20	0	5,4210e-20
144	0	0	0	0	0	0
145	0	0	0	0	0	0
146	-9,1600e-6	-3,6011e-5	-9,1600e-6	-3,6011e-5	-9,1600e-6	-3,6011e-5

Barra	$P_{D}^{a}(pu)$	Q_D^a (pu)	$P_{D}^{b}(pu)$	$Q_D^{b}(pu)$	$P_D^{c}(pu)$	Q_D^c (pu)
147	0	0	0	0	0	0
148	0	0	0	0	0	0
149	0	0	0	0	0	0
150	2,0895e-3	2,0974e-4	2,0895e-3	2,0974e-4	2,0895e-3	2,0974e-4
151	5,9700e-4	5,9925e-5	5,9700e-4	5,9925e-5	5,9700e-4	5,9925e-5
152	3,4825e-4	3,4956e-5	3,4825e-4	3,4956e-5	3,4825e-4	3,4956e-5
153	0	0	0	0	0	0
154	0	0	0	0	0	0
155	0	0	0	0	0	0
156	5,0546e-3	5,0736e-4	5,0546e-3	5,0736e-4	5,0546e-3	5,0736e-4
157	0	0	0	0	0	0
158	8,6814e-4	9,1320e-4	8,6814e-4	9,1320e-4	8,6814e-4	9,1320e-4
159	0	0	0	0	0	0
160	0	0	0	0	0	0
161	0	0	0	0	0	0
162	0	0	0	0	0	0
163	0	0	0	0	0	0
164	1,9530e-5	-7,0117e-5	1,9530e-5	-7,0117e-5	1,9530e-5	-7,0117e-5
165	0	0	0	0	0	0
166	8,3607e-4	1,0780e-4	8,3607e-4	1,0780e-4	8,3607e-4	1,0780e-4
167	1,1940e-3	1,1985e-4	1,1940e-3	1,1985e-4	1,1940e-3	1,1985e-4
168	0	0	0	0	0	0
169	6,7660e-4	6,7915e-5	6,7660e-4	6,7915e-5	6,7660e-4	6,7915e-5
170	-8,1700e-6	-3,0961e-6	-8,1700e-6	-3,0961e-6	-8,1700e-6	-3,0961e-6
171	0	0	0	0	0	0
172	3,1198e-2	1,0254e-2	3,1198e-2	1,0254e-2	3,1198e-2	1,0254e-2
173	0	0	0	0	0	0
174	0	0	0	0	0	0
175	9,7300e-6	-3,5831e-5	9,7300e-6	-3,5831e-5	9,7300e-6	-3,5831e-5

Barra	P_D^a (pu)	Q_{D}^{a} (pu)	$P_{D}^{b}(pu)$	Q_D^b (pu)	$P_D^{c}(pu)$	Q_D^c (pu)
176	0	0	0	0	0	0
177	0	0	0	0	0	0
178	1,5323e-3	1,5381e-4	1,5323e-3	1,5381e-4	1,5323e-3	1,5381e-4
179	-1,2160e-5	-1,1047e-6	-1,2160e-5	-1,1047e-6	-1,2160e-5	-1,1047e-6
180	1,4925e-4	1,4981e-5	1,4925e-4	1,4981e-5	1,4925e-4	1,4981e-5
181	7,5720e-3	7,6005e-4	7,5720e-3	7,6005e-4	7,5720e-3	7,6005e-4
182	9,2535e-4	9,2884e-5	9,2535e-4	9,2884e-5	9,2535e-4	9,2884e-5
183	1,5300e-6	-1,5760e-4	1,5300e-6	-1,5760e-4	1,5300e-6	-1,5760e-4
184	0	0	0	0	0	0
185	3,8805e-4	3,8951e-5	3,8805e-4	3,8951e-5	3,8805e-4	3,8951e-5
186	0	0	0	0	0	0
187	0	0	0	0	0	0
188	0	0	0	0	0	0
189	0	0	0	0	0	0
190	0	0	0	0	0	0
191	0	0	0	0	0	0
192	4,6765e-4	4,6941e-5	4,6765e-4	4,6941e-5	4,6765e-4	4,6941e-5
193	3,8170e-5	-5,8585e-5	3,8170e-5	-5,8585e-5	3,8170e-5	-5,8585e-5
194	0	-1,0842e-19	0	-1,0842e-19	0	-1,0842e-19
195	8,9550e-4	8,9887e-5	8,9550e-4	8,9887e-5	8,9550e-4	8,9887e-5
196	9,0545e-4	9,0886e-5	9,0545e-4	9,0886e-5	9,0545e-4	9,0886e-5
197	2,8950e-5	-2,6457e-5	2,8950e-5	-2,6457e-5	2,8950e-5	-2,6457e-5
198	0	0	0	0	0	0
199	8,6736e-19	-5,4210e-20	8,6736e-19	-5,4210e-20	8,6736e-19	-5,4210e-20
200	0	0	0	0	0	0
201	3,3830e-4	3,3958e-5	3,3830e-4	3,3958e-5	3,3830e-4	3,3958e-5
202	0	0	0	0	0	0
203	0	0	0	0	0	0
204	1,0547e-3	1,0587e-4	1,0547e-3	1,0587e-4	1,0547e-3	1,0587e-4

Barra	$P_{D}^{a}(pu)$	$Q_{D}^{a}(pu)$	$P_{D}^{b}(pu)$	$Q_D^{b}(pu)$	$P_{D}^{c}(pu)$	Q_D^c (pu)
205	1,4328e-3	1,4382e-4	1,4328e-3	1,4382e-4	1,4328e-3	1,4382e-4
206	0	0	0	0	0	0
207	0	0	0	0	0	0
208	0	0	0	0	0	0
209	9,0545e-4	9,0886e-5	9,0545e-4	9,0886e-5	9,0545e-4	9,0886e-5
210	1,1841e-3	1,1885e-4	1,1841e-3	1,1885e-4	1,1841e-3	1,1885e-4
211	1,6020e-3	1,6080e-4	1,6020e-3	1,6080e-4	1,6020e-3	1,6080e-4
212	1,7298e-3	2,1379e-3	1,7298e-3	2,1379e-3	1,7298e-3	2,1379e-3
213	8,8555e-4	8,8889e-5	8,8555e-4	8,8889e-5	8,8555e-4	8,8889e-5
214	6,8655e-4	6,8914e-5	6,8655e-4	6,8914e-5	6,8655e-4	6,8914e-5
215	0	0	0	0	0	0

Tabela AII.7 – Resistências e Reatâncias de Linhas – 215 Barras

De	Para	r _a (pu)	x _a (pu)	r _b (pu)	x _b (pu)	r _c (pu)	x _c (pu)
215	1	0,0050	0,0100	0,0050	0,0100	0,0050	0,0100
1	2	1e-10	0	1e-10	0	1e-10	0
2	3	0,0440	0,0880	0,0440	0,0880	0,0440	0,0880
3	4	0,0040	0,0080	0,0040	0,0080	0,0040	0,0080
4	5	0,0280	0,0570	0,0280	0,0570	0,0280	0,0570
4	6	1e-10	0	1e-10	0	1e-10	0
5	7	0,0140	0,0290	0,0140	0,0290	0,0140	0,0290
6	8	0,0340	0,0160	0,0340	0,0160	0,0340	0,0160
7	9	0,0150	0,0300	0,0150	0,0300	0,0150	0,0300
7	10	0,0190	0,0090	0,0190	0,0090	0,0190	0,0090
8	11	0,0360	0,0160	0,0360	0,0160	0,0360	0,0160
8	12	0,0160	0,0070	0,0160	0,0070	0,0160	0,0070
9	13	0,0110	0,0150	0,0110	0,0150	0,0110	0,0150
9	14	0,0040	0,0090	0,0040	0,0090	0,0040	0,0090
12	15	0,0130	0,0060	0,0130	0,0060	0,0130	0,0060

De	Para	r _a (pu)	x _a (pu)	r _b (pu)	x _b (pu)	r _c (pu)	x _c (pu)
12	16	0,0100	0,0050	0,0100	0,0050	0,0100	0,0050
12	17	0,0570	0,0260	0,0570	0,0260	0,0570	0,0260
14	18	0,0070	0,0140	0,0070	0,0140	0,0070	0,0140
14	19	0,0060	0,0030	0,0060	0,0030	0,0060	0,0030
15	20	1e-10	0	1e-10	0	1e-10	0
15	21	0,0710	0,0330	0,0710	0,0330	0,0710	0,0330
18	22	0,0200	0,0400	0,0200	0,0400	0,0200	0,0400
19	23	1e-10	0	1e-10	0	1e-10	0
20	24	0,0110	0,0050	0,0110	0,0050	0,0110	0,0050
22	25	0,0060	0,0130	0,0060	0,0130	0,0060	0,0130
23	26	0,0260	0,0120	0,0260	0,0120	0,0260	0,0120
25	27	1e-10	0	1e-10	0	1e-10	0
26	28	0,0310	0,0140	0,0310	0,0140	0,0310	0,0140
27	29	0,0060	0,0120	0,0060	0,0120	0,0060	0,0120
29	30	0,0080	0,0050	0,0080	0,0050	0,0080	0,0050
29	31	0,0060	0,0130	0,0060	0,0130	0,0060	0,0130
30	32	1e-10	0	1e-10	0	1e-10	0
31	33	0,0130	0,0260	0,0130	0,0260	0,0130	0,0260
32	34	0,0090	0,0060	0,0090	0,0060	0,0090	0,0060
33	35	0,0030	0,0060	0,0030	0,0060	0,0030	0,0060
34	36	0,0140	0,0090	0,0140	0,0090	0,0140	0,0090
36	37	0,0010	0,0020	0,0010	0,0020	0,0010	0,0020
37	38	0,0030	0,0060	0,0030	0,0060	0,0030	0,0060
37	39	0,0010	0,0020	0,0010	0,0020	0,0010	0,0020
38	40	1e-10	0	1e-10	0	1e-10	0
39	41	0,0060	0,0040	0,0060	0,0040	0,0060	0,0040
40	42	0,0080	0,0160	0,0080	0,0160	0,0080	0,0160
40	43	0,0140	0,0290	0,0140	0,0290	0,0140	0,0290
41	44	0,0060	0,0110	0,0060	0,0110	0,0060	0,0110

De	Para	r _a (pu)	x _a (pu)	r _b (pu)	x _b (pu)	r _c (pu)	x _c (pu)
43	45	1e-10	0	1e-10	0	1e-10	0
45	46	0,0060	0,0120	0,0060	0,0120	0,0060	0,0120
46	47	0,0060	0,0120	0,0060	0,0120	0,0060	0,0120
47	48	0,0080	0,0160	0,0080	0,0160	0,0080	0,0160
48	49	0,0080	0,0160	0,0080	0,0160	0,0080	0,0160
49	50	0,0050	0,0110	0,0050	0,0110	0,0050	0,0110
50	51	0,0100	0,0210	0,0100	0,0210	0,0100	0,0210
51	52	0,0050	0,0100	0,0050	0,0100	0,0050	0,0100
52	53	1e-10	0	1e-10	0	1e-10	0
53	54	0,0120	0,0250	0,0120	0,0250	0,0120	0,0250
54	55	0,0040	0,0070	0,0040	0,0070	0,0040	0,0070
54	56	0,0030	0,0060	0,0030	0,0060	0,0030	0,0060
54	57	0,0100	0,0210	0,0100	0,0210	0,0100	0,0210
55	58	0,0070	0,0130	0,0070	0,0130	0,0070	0,0130
57	59	1e-10	0	1e-10	0	1e-10	0
59	60	0,0220	0,0440	0,0220	0,0440	0,0220	0,0440
60	61	0,0050	0,0090	0,0050	0,0090	0,0050	0,0090
61	62	0,0150	0,0300	0,0150	0,0300	0,0150	0,0300
62	63	0,0020	0,0030	0,0020	0,0030	0,0020	0,0030
63	64	0,0060	0,0120	0,0060	0,0120	0,0060	0,0120
64	65	1e-10	0	1e-10	0	1e-10	0
65	66	0,0070	0,0130	0,0070	0,0130	0,0070	0,0130
66	67	0,0070	0,0130	0,0070	0,0130	0,0070	0,0130
67	68	1e-10	0	1e-10	0	1e-10	0
67	69	0,0270	0,0540	0,0270	0,0540	0,0270	0,0540
68	70	0,0210	0,0090	0,0210	0,0090	0,0210	0,0090
69	71	0,0010	0,0020	0,0010	0,0020	0,0010	0,0020
69	72	0,0010	0,0030	0,0010	0,0030	0,0010	0,0030
69	73	0,0050	0,0110	0,0050	0,0110	0,0050	0,0110

D	D	()	()	()	()	()	()
De	Para	r _a (pu)	x _a (pu)	r _b (pu)	x _b (pu)	r _c (pu)	x _c (pu)
70	74	1e-10	0	1e-10	0	1e-10	0
71	75	1e-10	0	1e-10	0	1e-10	0
72	76	1e-10	0	1e-10	0	1e-10	0
73	77	0,0090	0,0180	0,0090	0,0180	0,0090	0,0180
73	78	0,0110	0,0230	0,0110	0,0230	0,0110	0,0230
73	79	0,0010	0,0020	0,0010	0,0020	0,0010	0,0020
74	80	0,0190	0,0090	0,0190	0,0090	0,0190	0,0090
75	81	0,0060	0,0120	0,0060	0,0120	0,0060	0,0120
76	82	0,0240	0,0100	0,0240	0,0100	0,0240	0,0100
77	83	1e-10	0	1e-10	0	1e-10	0
78	84	1e-10	0	1e-10	0	1e-10	0
81	85	0,0180	0,0080	0,0180	0,0080	0,0180	0,0080
82	86	0,0240	0,0100	0,0240	0,0100	0,0240	0,0100
82	87	1e-10	0	1e-10	0	1e-10	0
83	88	0,0050	0,0100	0,0050	0,0100	0,0050	0,0100
84	89	0,0050	0,0110	0,0050	0,0110	0,0050	0,0110
85	90	1e-10	0	1e-10	0	1e-10	0
87	91	0,0220	0,0100	0,0220	0,0100	0,0220	0,0100
88	92	0,0210	0,0420	0,0210	0,0420	0,0210	0,0420
88	93	1e-10	0	1e-10	0	1e-10	0
89	94	0,0060	0,0110	0,0060	0,0110	0,0060	0,0110
90	95	0,0120	0,0050	0,0120	0,0050	0,0120	0,0050
92	96	0,0070	0,0130	0,0070	0,0130	0,0070	0,0130
92	97	1e-10	0	1e-10	0	1e-10	0
93	98	0,0180	0,0080	0,0180	0,0080	0,0180	0,0080
94	99	0,0030	0,0070	0,0030	0,0070	0,0030	0,0070
94	100	0,0400	0,0180	0,0400	0,0180	0,0400	0,0180
96	101	0,0140	0,0100	0,0140	0,0100	0,0140	0,0100
97	102	0,0080	0,0040	0,0080	0,0040	0,0080	0,0040

De	Para	r _a (pu)	x _a (pu)	r _b (pu)	x _b (pu)	r _c (pu)	x _c (pu)
99	103	0,0050	0,0020	0,0050	0,0020	0,0050	0,0020
99	104	0,1040	0,0480	0,1040	0,0480	0,1040	0,0480
99	105	0,0060	0,0120	0,0060	0,0120	0,0060	0,0120
101	106	0,0070	0,0050	0,0070	0,0050	0,0070	0,0050
101	107	1e-10	0	1e-10	0	1e-10	0
103	108	1e-10	0	1e-10	0	1e-10	0
105	109	1e-10	0	1e-10	0	1e-10	0
106	110	0,0070	0,0050	0,0070	0,0050	0,0070	0,0050
107	111	0,0380	0,0170	0,0380	0,0170	0,0380	0,0170
108	112	0,0150	0,0070	0,0150	0,0070	0,0150	0,0070
109	113	0,0050	0,0110	0,0050	0,0110	0,0050	0,0110
110	114	0,0200	0,0090	0,0200	0,0090	0,0200	0,0090
110	115	0,0040	0,0020	0,0040	0,0020	0,0040	0,0020
112	116	0,0290	0,0140	0,0290	0,0140	0,0290	0,0140
112	117	1e-10	0	1e-10	0	1e-10	0
113	118	0,0170	0,0340	0,0170	0,0340	0,0170	0,0340
113	119	0,0080	0,0160	0,0080	0,0160	0,0080	0,0160
113	120	0,0010	0,0020	0,0010	0,0020	0,0010	0,0020
114	121	0,0110	0,0050	0,0110	0,0050	0,0110	0,0050
114	122	1e-10	0	1e-10	0	1e-10	0
115	123	1e-10	0	1e-10	0	1e-10	0
116	124	0,0790	0,0360	0,0790	0,0360	0,0790	0,0360
117	125	0,0160	0,0070	0,0160	0,0070	0,0160	0,0070
118	126	1e-10	0	1e-10	0	1e-10	0
118	127	0,0070	0,0140	0,0070	0,0140	0,0070	0,0140
119	128	0,0040	0,0080	0,0040	0,0080	0,0040	0,0080
120	129	0,0330	0,0150	0,0330	0,0150	0,0330	0,0150
	12)	ŕ					
120	130	1e-10	0	1e-10	0	1e-10	0

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
123 132 $0,0090$ $0,0060$ $0,0090$ $0,0060$ $0,0090$ $0,0090$ 0 124 133 $0,0870$ $0,0400$ $0,0870$ $0,0400$ $0,0870$ 0 124 135 $0,0470$ $0,0210$ $0,0470$ $0,0210$ $0,0470$ 0 124 135 $0,0470$ $0,0210$ $0,0470$ $0,0210$ $0,0470$ 0 124 135 $0,0470$ $0,0210$ $0,0470$ $0,0210$ $0,0470$ 0 124 135 $0,0470$ $0,0210$ $0,0470$ $0,0210$ $0,0470$ 0 126 136 $0,0220$ $0,0100$ $0,0220$ $0,0100$ $0,0220$ 0 127 137 $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ 0 138 $18-10$ 0 $1e-10$ 0 $1e-10$ 0 133 142 $0,0260$ $0,0160$ $0,0160$ $0,0160$ $0,0360$ 0 134 143 $0,0360$ $0,0160$ $0,0160$ $0,0360$ 0 0 137 144 $1e-10$ 0 $1e-10$ $1e-10$ $1e-10$ 138 146 $0,0050$ $0,0090$ $0,0050$ $0,0090$ $0,0050$ 0 140 147 $1e-10$ 0 $1e-10$ $1e-10$ $1e-10$ 141 148 $1e-10$ 0 $1e-10$ $1e-10$ $1e-10$ 144 152 $0,0200$ $0,0090$ $0,0220$ $0,0100$	De	Para	r _a (pu)	x _a (pu)	r _b (pu)	x _b (pu)	r _c (pu)	x _c (pu)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	123	132	0,0090	0,0060	0,0090	0,0060	0,0090	0,0060
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	124	133	0,0870	0,0400	0,0870	0,0400	0,0870	0,0400
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	124	134	0,0170	0,0080	0,0170	0,0080	0,0170	0,0080
126 136 $0,0220$ $0,0100$ $0,0220$ $0,0100$ $0,0220$ 0 127 137 $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ 0 128 138 $1e-10$ 0 $1e-10$ 0 $1e-10$ 0 130 139 $0,0090$ $0,0040$ $0,0090$ $0,0040$ $0,0090$ 0 132 140 $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ 0 132 141 $0,0140$ $0,0100$ $0,0140$ $0,0100$ $0,0140$ 0 133 142 $0,0260$ $0,0120$ $0,0260$ $0,0120$ $0,0260$ 0 134 143 $0,0360$ $0,0160$ $0,0360$ $0,0160$ $0,0360$ 0 137 144 $1e-10$ 0 $1e-10$ 0 $1e-10$ 138 146 $0,0050$ $0,0090$ $0,0050$ $0,0090$ $0,0050$ 140 147 $1e-10$ 0 $1e-10$ $1e-10$ 141 148 $1e-10$ 0 $1e-10$ 0 143 151 $0,0330$ $0,0150$ $0,0330$ $0,0150$ 144 152 $0,0200$ $0,0090$ $0,0200$ $0,0100$ $0,0050$ 146 153 $0,0100$ $0,0200$ $0,0100$ $0,0080$ 0 144 157 $0,0170$ $0,0110$ $0,0170$ 0 148 157 $0,0170$ $0,0110$ $0,0250$ $0,0110$	124	135	0,0470	0,0210	0,0470	0,0210	0,0470	0,0210
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	126	136	0,0220	0,0100	0,0220	0,0100	0,0220	0,0100
128 138 $1e-10$ 0 $1e-10$ 0 $1e-10$ 130 139 $0,0090$ $0,0040$ $0,0090$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0030$ $0,0040$ $0,0010$ $0,0140$ $0,0010$ $0,0140$ $0,0010$ $0,0140$ $0,00260$ $0,0120$ $0,0260$ $0,0120$ $0,0260$ $0,0130$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0140$ $0,0070$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0050$ $0,0150$ $0,0150$ $0,0150$ $0,0150$ $0,0150$ $0,0150$ $0,0150$ $0,0150$ $0,0150$ $0,0$	127	137	0,0070	0,0140	0,0070	0,0140	0,0070	0,0140
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	128	138	1e-10	0	1e-10	0	1e-10	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	130	139	0,0090	0,0040	0,0090	0,0040	0,0090	0,0040
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	132	140	0,0040	0,0030	0,0040	0,0030	0,0040	0,0030
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	132	141	0,0140	0,0100	0,0140	0,0100	0,0140	0,0100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	133	142	0,0260	0,0120	0,0260	0,0120	0,0260	0,0120
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	134	143	0,0360	0,0160	0,0360	0,0160	0,0360	0,0160
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	137	144	1e-10	0	1e-10	0	1e-10	0
138 146 $0,0050$ $0,0090$ $0,0050$ $0,0090$ $0,0050$ 0 140 147 $1e-10$ 0 $1e-10$ 0 $1e-10$ 141 148 $1e-10$ 0 $1e-10$ 0 $1e-10$ 142 149 $1e-10$ 0 $1e-10$ 0 $1e-10$ 143 150 $0,0470$ $0,0210$ $0,0470$ $0,0210$ $0,0470$ 143 151 $0,0330$ $0,0150$ $0,0330$ $0,0150$ $0,0330$ 0 144 152 $0,0200$ $0,0090$ $0,0200$ $0,0090$ $0,0200$ $0,0100$ 0 146 153 $0,0100$ $0,0200$ $0,0100$ $0,0050$ $0,0100$ $0,0080$ $0,0140$ 146 155 $0,0080$ $0,0160$ $0,0080$ $0,0160$ $0,0080$ $0,0180$ $0,0180$ 146 155 $0,0170$ $0,0110$ $0,0170$ $0,0110$ $0,0170$ $0,0180$ $0,0180$ 148 157 $0,0170$ $0,0110$ $0,0170$ $0,0110$ $0,0230$ $0,0120$ $0,0230$ $0,0120$ 149 158 $0,0230$ $0,0110$ $0,0250$ $0,0120$ $0,0420$ $0,0120$ $0,0420$ $0,0120$	137	145	0,0070	0,0140	0,0070	0,0140	0,0070	0,0140
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	138	146	0,0050	0,0090	0,0050	0,0090	0,0050	0,0090
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	140	147	1e-10	0	1e-10	0	1e-10	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	141	148	1e-10	0	1e-10	0	1e-10	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	142	149	1e-10	0	1e-10	0	1e-10	0
143 151 0,0330 0,0150 0,0330 0,0150 0,0330 0 144 152 0,0200 0,0090 0,0200 0,0090 0,0200 0 146 153 0,0100 0,0200 0,0100 0,0200 0,0100 0,0200 0,0100 0 146 154 0,0050 0,0100 0,0050 0,0100 0,0050 0 0 146 155 0,0080 0,0160 0,0080 0,0160 0,0080 0 0 146 155 0,0180 0,0160 0,0080 0,0160 0,0080 0 147 156 0,0180 0,0080 0,0180 0 0 148 157 0,0170 0,0110 0,0170 0 0 149 158 0,0230 0,0110 0,0250 0,0120 0 0 153 159 0,0120 0,0250 0,0120 0,0420 0 0 0 <td>143</td> <td>150</td> <td>0,0470</td> <td>0,0210</td> <td>0,0470</td> <td>0,0210</td> <td>0,0470</td> <td>0,0210</td>	143	150	0,0470	0,0210	0,0470	0,0210	0,0470	0,0210
144 152 0,0200 0,0090 0,0200 0,0090 0,0200 0 146 153 0,0100 0,0200 0,0100 0,0200 0,0100 0 146 153 0,0100 0,0200 0,0100 0,0200 0,0100 0 146 154 0,0050 0,0100 0,0050 0,0100 0,0050 0 146 155 0,0080 0,0160 0,0080 0,0160 0,0080 0 147 156 0,0180 0,0080 0,0180 0,0080 0,0180 0 148 157 0,0170 0,0110 0,0170 0,0110 0,0170 0 149 158 0,0230 0,0110 0,0230 0,0120 0 0 153 159 0,0120 0,0250 0,0120 0,0250 0,0120 0 153 160 0,0420 0,0190 0,0420 0,0190 0,0420 0	143	151	0,0330	0,0150	0,0330	0,0150	0,0330	0,0150
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	144	152	0,0200	0,0090	0,0200	0,0090	0,0200	0,0090
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	146	153	0,0100	0,0200	0,0100	0,0200	0,0100	0,0200
146 155 0,0080 0,0160 0,0080 0,0160 0,0080 0,0160 0,0080 0 147 156 0,0180 0,0080 0,0180 0,0080 0,0180 0,0180 0 148 157 0,0170 0,0110 0,0170 0,0110 0,0170 0 149 158 0,0230 0,0110 0,0230 0,0110 0,0230 0 153 159 0,0120 0,0250 0,0120 0,0250 0,0120 0 153 160 0,0420 0,0190 0,0420 0,0190 0,0420 0	146	154	0,0050	0,0100	0,0050	0,0100	0,0050	0,0100
147 156 0,0180 0,0080 0,0180 0,0080 0,0180 0,0180 0 148 157 0,0170 0,0110 0,0170 0,0110 0,0170 0 149 158 0,0230 0,0110 0,0230 0,0110 0,0230 0 153 159 0,0120 0,0250 0,0120 0,0250 0,0120 0 153 160 0,0420 0,0190 0,0420 0,0190 0,0420 0	146	155	0,0080	0,0160	0,0080	0,0160	0,0080	0,0160
148 157 0,0170 0,0110 0,0170 0,0110 0,0170 0 149 158 0,0230 0,0110 0,0230 0,0110 0,0230 0 153 159 0,0120 0,0250 0,0120 0,0250 0,0120 0 153 160 0,0420 0,0190 0,0420 0,0190 0,0420 0	147	156	0,0180	0,0080	0,0180	0,0080	0,0180	0,0080
1491580,02300,01100,02300,01100,023001531590,01200,02500,01200,02500,012001531600,04200,01900,04200,01900,04200	148	157	0,0170	0,0110	0,0170	0,0110	0,0170	0,0110
153 159 0,0120 0,0250 0,0120 0,0250 0,0120 0 153 160 0,0420 0,0190 0,0420 0,0190 0,0420 0	149	158	0,0230	0,0110	0,0230	0,0110	0,0230	0,0110
153 160 0,0420 0,0190 0,0420 0,0190 0,0420 0	153	159	0,0120	0,0250	0,0120	0,0250	0,0120	0,0250
	153	160	0,0420	0,0190	0,0420	0,0190	0,0420	0,0190

De	Para	r (pu)	\mathbf{x} (pu)	\mathbf{r}_{i} (pu)	\mathbf{x}_{1} (pu)	$r(\mathbf{pu})$	\mathbf{x} (pu)
155	1 414	$I_a(pu)$	Λ_a (pu)	1 _b (pu)	Λ_b (pu)	$I_c(pu)$	Λ_c (pu)
155	161	1e-10	0	1e-10	0	1e-10	0
157	162	0,0100	0,0060	0,0100	0,0060	0,0100	0,0060
157	163	0,0260	0,0170	0,0260	0,0170	0,0260	0,0170
157	164	0,0160	0,0310	0,0160	0,0310	0,0160	0,0310
160	165	1e-10	0	1e-10	0	1e-10	0
161	166	0,0040	0,0070	0,0040	0,0070	0,0040	0,0070
164	167	0,0150	0,0310	0,0150	0,0310	0,0150	0,0310
164	168	1e-10	0	1e-10	0	1e-10	0
165	169	0,0270	0,0130	0,0270	0,0130	0,0270	0,0130
166	170	0,0030	0,0060	0,0030	0,0060	0,0030	0,0060
167	171	0,0100	0,0200	0,0100	0,0200	0,0100	0,0200
168	172	0,0190	0,0090	0,0190	0,0090	0,0190	0,0090
169	173	0,1300	0,0600	0,1300	0,0600	0,1300	0,0600
170	174	1e-10	0	1e-10	0	1e-10	0
170	175	0,0100	0,0190	0,0100	0,0190	0,0100	0,0190
173	176	1e-10	0	1e-10	0	1e-10	0
173	177	0,0300	0,0140	0,0300	0,0140	0,0300	0,0140
174	178	0,0240	0,0110	0,0240	0,0110	0,0240	0,0110
175	179	0,0010	0,0020	0,0010	0,0020	0,0010	0,0020
175	180	0,0170	0,0080	0,0170	0,0080	0,0170	0,0080
176	181	0,0190	0,0090	0,0190	0,0090	0,0190	0,0090
177	182	0,0660	0,0300	0,0660	0,0300	0,0660	0,0300
179	183	0,0030	0,0050	0,0030	0,0050	0,0030	0,0050
179	184	0,0070	0,0030	0,0070	0,0030	0,0070	0,0030
179	185	0,0520	0,0240	0,0520	0,0240	0,0520	0,0240
183	186	0,0200	0,0090	0,0200	0,0090	0,0200	0,0090
183	187	0,0160	0,0320	0,0160	0,0320	0,0160	0,0320
183	188	0,0190	0,0090	0,0190	0,0090	0,0190	0,0090
184	189	1e-10	0	1e-10	0	1e-10	0

De	Para	r _a (pu)	x _a (pu)	r _b (pu)	x _b (pu)	r _c (pu)	x _c (pu)
186	190	1e-10	0	1e-10	0	1e-10	0
188	191	1e-10	0	1e-10	0	1e-10	0
189	192	0,0300	0,0140	0,0300	0,0140	0,0300	0,0140
190	193	0,1120	0,0510	0,1120	0,0510	0,1120	0,0510
191	194	0,1080	0,0500	0,1080	0,0500	0,1080	0,0500
192	195	0,0280	0,0130	0,0280	0,0130	0,0280	0,0130
193	196	0,0940	0,0430	0,0940	0,0430	0,0940	0,0430
193	197	0,0060	0,0030	0,0060	0,0030	0,0060	0,0030
194	198	0,0190	0,0090	0,0190	0,0090	0,0190	0,0090
194	199	0,0180	0,0080	0,0180	0,0080	0,0180	0,0080
194	200	0,0200	0,0090	0,0200	0,0090	0,0200	0,0090
197	201	0,0900	0,0420	0,0900	0,0420	0,0900	0,0420
197	202	0,02800	0,0130	0,02800	0,0130	0,02800	0,0130
198	203	1e-10	0	1e-10	0	1e-10	0
199	204	0,0270	0,0130	0,0270	0,0130	0,0270	0,0130
199	205	0,0310	0,0140	0,0310	0,0140	0,0310	0,0140
200	206	0,0210	0,0090	0,0210	0,0090	0,0210	0,0090
202	207	1e-10	0	1e-10	0	1e-10	0
203	208	0,0230	0,0110	0,0230	0,0110	0,0230	0,0110
204	209	0,0260	0,0120	0,0260	0,0120	0,0260	0,0120
205	210	0,0320	0,0160	0,0320	0,0160	0,0320	0,0160
206	211	0,0310	0,0140	0,0310	0,0140	0,0310	0,0140
207	212	0,0090	0,0040	0,0090	0,0040	0,0090	0,0040
208	213	0,0160	0,0070	0,0160	0,0070	0,0160	0,0070
213	214	0,0190	0,0090	0,0190	0,0090	0,0190	0,0090
			-	-		-	

Onde, tipo 1 representa barra de carga e tipo 0 representa barra de referência.

Referências Bibliográficas

- [1] Marina Lavorato de Oliveira. Novas Metodologias de Solução do Fluxo de Potência Trifásico em Sistemas de Distribuição de Energia Elétrica. Faculdade de Engenharia UFJF, Dissertação de Mestrado, Junho 2004.
- [2] Shimohammadi D., Hong H.W., Semlyen A., Luo G. X. A Compensation Based Power Flow Method for Weakly Meshed Distribution and Transmission Networks, *IEEE Transactions on Power Systems*, pp. 753-762, May 1988.
- [3] Céspedes G. New Method for the Analysis of Distribution Networks. *IEEE Transactions on Power Delivery*, vol. 5, n^o. 1, pp 391-396, January 1990.
- [4] Luo G. X., Semlyen A. Efficient Load Flow for Large Weakly Meshed Networks. *IEEE Transactions on Power Systems*, vol. 5, n°.4, pp 1309-1316, November 1990.
- [5] Chiang H. D. A Decoupled Load Flow Method for Distribution Power Networks. *Electrical Power and Energy Systems*, vol. 13, n^o. 3, pp 130-138, June 1991.
- [6] Chen T.H., Chem M. S., Hwang K. J., Kotas P. and Chebli E. A. Distribution System Power Flow Analysis – A Rigid Approach. *IEEE Transactions on Power Delivery*, vol. 6, n°. 3, pp 1146-1152, July 1991.
- [7] Das D., Nagi H. S., Kothari D. P. Novel Method for Solving Radial Distribution Networks. *IEE Proceedings Generation, Transmission and Distribution Systems*, vol. 141, n°. 4, pp 291-298, July 1994.
- [8] Das D., Kothari D. P and Kalam A. Simple and Efficient Method for Load Flow Solution of Radial Distribuion Networks. *Electrical Power and Energy Systems*, vol. 17, n°. 5, pp 335-346, 1995.
- [9] Cheng C. S. and Shimohammadi D. A Three-Phase Power Flow Method for Real-Time Distribution System Analysis. *IEEE Transactions on Power Systems*, vol 10, n^o. 2, pp 671-679, May 1995.
- [10] Zimmerman R. D. Fast Decoupled Power Flow for Unbalanced Radial Distribution Systems. *IEEE Transactions on Power Systems*, vol 10, n°. 2, pp 2045-2052, November 1995.
- [11] Zhang F., Cheng C. S. A Modified Newton Method for Radial Distribution System Power Flow Analysis. *IEEE Transactions on Power Systems*, vol 12, n°. 1, pp 389-397, February 1995.

- [12] Garcia A. V. e Zago M. G. T. Three-phase Fast Decoupled Power Flow for Distribution Networks. *Proceedings of IEE – Generating, Transmission and Distribution*. Vol. 143 (2), pp. 188-192. 1996.
- [13] Expósito A. G., Ramos E. R. Reliable Load Flow Technique for Radial Distribution Networks. *IEEE Transactions on Power Systems*, vol 14, n°. 3, pp 1063-1069, August 1999.
- [14] Mon Y. H., Kim S. H., Ha B. N. E Lee H. J. Fast and Reliable Distribution Systems Load Flow Algorithms Based on the Ybus Formulation. *Proceedings of IEEE PES Summer Meeting*, pp 238-242, Edmonton, Canada 1999.
- [15] Paulo Augusto Nepomuceno Garcia. Cálculo de Fluxo de Potência Trifásico em Sistemas de Distribuição Incluindo a Representação de Dispositivos de Controle. Programa de Engenharia Elétrica – COPPE/UFRJ, Tese de Doutorado, Fevereiro 2001
- [16] Chen T., Yang W. Analysis of Multi-Grounded Four-Wire Distribution Systems Considering the Neutral Grounding. *IEEE Transactions on Power Delivery*, vol 16, n°. 4, pp 710-717, October 2001.
- [17] Teng J. H. A Direct Approach for Distribution System Load Flow Solutions. *IEEE Transactions on Power Delivery*, vol 18, n°. 2, pp 882-887, July 2003.
- [18] Garcia P. A. N., Pereira J. L. R., Carneiro S., Vinagre M. P., Gomes F. V. Improvements in Representation of PV buses on Three-Phase Distribution Power Flow. *IEEE Transactions on Power Delivery*, vol 19, n°. 2, pp 894-896, April 2004.
- [19] Jardim J. L. A., Takahata A. Y., Taranto G. N., Schilling M. Th. Fluxo de Potência Robusto: Formulação Dinâmica Sintética. SNPTEE – Seminário Nacional de Produção e Transmissão de Energia Elétrica, Outubro 2005.
- [20] De Oliveira M. L., Da Costa V. M. Solução do Fluxo de Potência de Segunda Ordem para Sistemas de Distribuição, Congresso Brasileiro de Automática, Gramado, Brasil. 2004
- [21] Da Costa V. M., Martins N., Pereira J. L. R. Developments in the Newton Raphson Power Flow Formulation Based on Current Injections. *IEEE Transactions on Power Systems*, vol 14, n^o. 4, pp 1320-1326, November 1999.
- [22] Leite L. C. G., Da Costa V. M. Fluxo de Potência Continuado via Equações de Injeção de Corrente. *Controle & Automação - Revista da Sociedade Brasileira de Automática*, vol. 14, nº. 4, pp430-438, Outubro/Dezembro 2003.

- [23] Ferreira C. A., Da Costa V. M. A Second Order Power Flow Based on Current Injection Equations. *Electrical Power and Energy Systems*, vol. 27, pp 254-263, 2005
- [24] Garcia P. A. N., Pereira J. L. R., Carneiro Jr. S, da Costa V. M. e Martins N. Three-Phase Power Flow Calculations Using the Current Injection Method, *IEEE Transactions on Power Systems*, vol.15, pp 508-514, May 2000.
- [25] Castro C. A., Braz L. M. C. Uma Nova Abordagem para a Solução do Problema de Fluxo de Carga pelo Método de Newton com Otimização do Fator de Passo. *Controle & Automação - Revista da Sociedade Brasileira de Automática*, vol.8, nº.
 3, Setembro a Dezembro 1997.
- [26] Iwamoto S., Tamura Y. A Load Flow Calculation Method for Ill-Conditioned Power Systems. *IEEE Transactions on Power Apparatus and Systems*, vol. PAS-100, n°. 4, April 1981.
- [27] Tripathy S. C., Prasad G. D., Malik O. P., Hope G. S. Load Flow Solution for Ill-Conditioned Power Systems by a Newton-like Method. *IEEE Transactions on Power Apparatus and Systems*, vol. PAS-101, n^o. 10, October 1982.