TÉCNICAS DE OTIMIZAÇÃO APLICADAS A SISTEMAS ELÉTRICOS DE DISTRIBUIÇÃO

JEFERSON DE SOUZA COSTA

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA DA UNIVERSIDADE FEDERAL DE JUIZ DE FORA COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA ELÉTRICA.

Aprovada por:

Prof. Edimar José de Oliveira, D.Sc. - Orientador - UFJF

Prof. Luiz Antônio da Fonseca Manso, D.Sc. - UFSJ

Prof. Márcio de Pinho Vinagre, D.Sc. - UFJF

Prof. Ivo Chaves da Silva Junior, D.Sc. - UFJF

JUIZ DE FORA, MG – BRASIL. Agosto de 2008

COSTA, JEFERSON DE SOUZA

Técnicas de Otimização Aplicadas a Sistemas Elétricos de Distribuição [Juiz de Fora] 2008

XII, 107 p. 29,7 cm. (UFJF, M.Sc., Engenharia Elétrica, 2008)

Tese – Universidade Federal de Juiz de Fora

1. Heurística

2. Método de Pontos Interiores

I. UFJF II. Título (Série)

A Deus, aos meus pais João Daniel Costa e Maria Lucia de Souza, A minha querida esposa Daniele e meu filho João Gabriel, como prova de minha gratidão carinho e amor.

AGRADECIMENTOS

A Deus, criador do universo, por minha vida, inteligência, saúde, paciência, vontade, fé e esperança em todos os momentos, principalmente nos mais difíceis desta caminhada. A ti senhor, humildemente, dedico o sucesso deste trabalho.

Ao Professor Edimar José de Oliveira pela excelência na orientação e dedicação dispensadas para a realização deste trabalho. Além dos ensinamentos, contribuições e segurança transmitida, fatores fundamentais não só para a realização desta dissertação, mas também para minha formação profissional.

Ao LABSPOT (Laboratório de Sistemas de Potência da Faculdade de Engenharia Elétrica da Universidade Federal de Juiz de Fora), pela disponibilidade de utilização de recursos computacionais.

A todos os professores, funcionários, amigos e colegas do curso de pós-graduação que direta ou indiretamente contribuíram para a realização desta dissertação, em especial aos amigos Leonardo Willer, Ivo Chaves, Marcelo Neves, Eduardo Viana, Filipe Niquini, Rafael Rocha, Rodrigo Fortunato.

Aos professores, alunos e colegas do Colégio Técnico Universitário – CTU, em especial a todos os professores do departamento de eletricidade pelo incentivo e conselhos que nortearam tanto minha formação desde os tempos de aluno nesta tão estimada instituição de ensino.

A minha querida esposa Daniele de Oliveira Rosa Costa e meu querido filho João Gabriel Rosa Costa pelo amor, carinho e compreensão dos momentos de ausência nos quais me dedicava à realização deste trabalho.

Em especial agradeço aos meus pais João Daniel Costa e Maria Lucia de Souza e às minhas irmãs Ingrid, Jacqueline, Camilla, Priscila e Yara de Souza Costa, pelo incentivo e apoio. Resumo da Dissertação apresentada à UFJF como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

TÉCNICAS DE OTIMIZAÇÃO APLICADAS A SISTEMAS ELÉTRICOS DE DISTRIBUIÇÃO

Jeferson de Souza Costa Agosto/2008

Orientador: Edimar José de Oliveira, D.Sc.

Programa: Engenharia Elétrica

Este trabalho apresenta três técnicas para otimização de sistemas de distribuição de energia elétrica (SDE) utilizando-se fluxo de potência ótimo baseado na metodologia primal-dual de pontos interiores. O objetivo consiste em obter o mínimo de perdas de potência ativa nos alimentadores. As técnicas são baseadas em um algoritmo para reconfiguração da rede radial, um modelo para localização ótima de capacitores e ajuste dos tapes dos reguladores de tensão.

Os problemas de otimização obtidos são de natureza não linear inteira mista, as variáveis discretas são representadas por funções continuas e os limites físicos e operativos do sistema são considerados. O tratamento das variáveis discretas é formulado através de um modelo heurístico construtivo baseado nos coeficientes de Lagrange.

As técnicas propostas são aplicadas a diversos sistemas da literatura e também a um sistema real de grande porte.

Abstract of Dissertation presented to UFJF as a partial fulfillment of the requirements for a Master of Science degree (M.Sc.)

APPLIED TECHNIQUES OF OPTIMIZATION ON ELECTRICAL DISTRIBUTION SYSTEMS

Jeferson de Souza Costa August/2008

Advisor: Edimar José de Oliveira, D.Sc.

Department: Electrical Engineering

This work presents three techniques for optimization of systems of distribution of electric energy using optimal power flow based in the primal-dual methodology of interior points. The objective consists of getting the minimum of losses of active power in the feeders. The techniques are based on an algorithm for reconfiguration of the radial distribution feeders, a model for optimal localization of capacitors and taps adjustment of the voltage regulators.

The gotten problems of optimization are of nature not linear mixing entire, the discrete variable are represented by functions continue and the physical and operative limits of the system are considered. The treatment of the discrete variable is formulated through a heuristic model step by step based in the coefficients of Lagrange.

The techniques proposals are applied the diverse systems of the technical literature and also to a real large scale distribution system.

Sumário

Capítulo I	1
Introdução	1
I.1 Considerações Iniciais	1
I.2 Revisão Bibliográfica	3
I.3 Motivação da Dissertação	6
I.4 Objetivo da Dissertação	7
I.5 Publicações Decorrentes da Dissertação	7
I.6 Estrutura da Dissertação	7
Capítulo II	9
Técnicas Heurísticas Utilizadas em Otimização de Sistemas de Distribuição	9
II.1 Introdução	9
II.2 Heurísticas Aplicadas a Solução do Problema de Reconfiguração1	10
II.3 Heurística Aplicada a Solução do Problema de Alocação Ótima de Bancos o	de
Capacitores 1	17
II.4 Considerações sobre discretização de tapes de Reguladores de Tensão em um FP	0
	20
Capítulo III	23
Metodologias Propostas	23
III.1 Introdução	23
III.2 Metodologia Proposta para Reconfiguração de Sistemas de Distribuição2	24
III.2.1 Considerações Iniciais	24
III.2.2 Formulação do Problema de Reconfiguração2	26
III.2.3 Índice de Sensibilidade Heurístico Proposto2	28
III.2.4 Estrutura da Matriz Hessiana2	29
III.2.5 Algoritmo Heurístico Proposto Para Reconfiguração	31
III.2.6 Exemplo de Aplicação do Algoritmo Heurístico Proposto para Reconfiguraçã	йO
(AHR)	35
III.3 Metodologia Heurística Construtiva Proposta para Alocação Ótima de Banco	os
Fixos de Capacitores	39
III.3.1 Considerações Iniciais	39
III.3.2 Formulação do Problema Alocação Ótima de Bancos Fixos de Capacitores 4	1 0

III.3.3 Algoritmo Heurístico Construtivo Proposto (AHC) para Alocação de Bancos
Fixos de Capacitores
III.3.4 Níveis de Carregamento 49
III.3.5 Estrutura da Matriz Hessiana Para solução do AHC 49
III.3.6 Exemplo de Aplicação do AHC 51
Capítulo IV
Estudo de Casos
IV.1 Introdução
IV.2 Resultados do AHR para Reconfiguração 59
IV.2.1 Sistema Teste de 33 Barras:
IV.2.2 Sistema Teste de 70 Barras [23]:
IV.2.3 Sistema Teste de 83 Barras:
IV.2.4 Sistema de Distribuição Brasileiro de 476 Barras:65
IV.3 Resultados para Alocação Ótima de Bancos de Capacitores – Algoritmo Proposto
(AHC)
IV.3.1 Sistema Teste de 70 Barras
IV.3.2 Sistema Teste de 476 Barras
IV.4 Conclusões
Capítulo V72
Conclusões
V.1 Considerações Finais72
V.2 Propostas de Desenvolvimentos Futuros73
Apêndice A
Modelo Proposto para Discretização de Tapes de Reguladores de Tensão em um FPO 74
A.1 Introdução74
A.2 Representação de Reguladores de Tensão74
A.3 Formulação do Problema de Otimização com Discretização de Tapes de
Reguladores de Tensão76
Apêndice B
Sistemas Utilizados
B.1 Introdução
B.2 Sistema 14 barras
B.3 Sistema de Distribuição de 33 barras
B.4 Sistema de Distribuição de 70 Barras

B.5 Sistema de Distribuição de 84 Barras	
B.6 Sistema de Distribuição Brasileiro de 476 Barras	
Referências Bibliográficas	

Lista de Figuras

Figura II.1 – Método Heurístico de Shirmohammadi – Algoritmo básico 12
Figura II.2 – Método Heurístico de proposto por Gomes13
Figura II.3 – Modelo adotado para representação de um ramo <i>km</i> com chave14
Figura II.4 – Modelo adotado para representação de um ramo <i>km</i> com chave15
Figura II.5 – Modelo adotado para representação de um ramo <i>km</i> com chave19
Figura III.1 – Função Contínua de Chaveamento
Figura III.2 – Sistema exemplo de 2 barras
Figura III.3 – Estrutura da matriz hessiana – exemplo de 2 barras
Figura III.4 – Fluxograma do Algoritmo Heurístico Proposto (AHR)
Figura III.5 – Sistema exemplo de 14 barras
Figura III.6 – Exemplo de chaveamento de bancos de capacitores
Figura III.7 – Fluxograma do AHC 48
Figura III.8 – Curva de Carga Discreta Adotada 49
Figura III.9 – Sistema Hipotético de 2 barras 50
Figura III.10 – Estrutura da Matriz Hessiana do sistema de 2 barras
Figura III.11 – Índice de Sensibilidade $BS_{i,u}$
Figura III.12 – Trajetória de Redução de Perda56
Figura IV.1 – Sistema teste de 33 barras 59
Figura IV.2 – Sistema teste de 70 barras
Figura IV.3 – Sistema teste de 83 barras
Figura IV.4 – Índices $BS_{i,u}$ para seleção de barras candidatas
Figura IV.5 – Trajetória de perdas com a alocação68
Figura A.1 – Circuito equivalente do Regulador de Tensão ou Transformador
Figura A.2 – Circuito π -equivalente de um Regulador de Tensão ou Transformador75
Figura A.3 – Gráfico da função penalidade para discretização dos tapes
Figura A.4 – Gráfico da função penalidade para discretização dos tapes do regulador 79

Lista de Tabelas

Tabela III.1 – Índices de Sensibilidade SS (Equação III.8)	36
Tabela III.2 – Listas de chaves associadas a cada laço (Etapa-2):	37
Tabela III.3 – Índices <i>SS</i> : sistema 14 barras Laço LB	38
Tabela III.4 – Índices <i>SS</i> : sistema 14 barras Laço LA	38
Tabela III.5 – Lista de chaves vizinhas selecionadas	38
Tabela III.6 – Resultados: sistema 14 barras	39
Tabela III.7 – FPO caso base para o sistema 14 barras	52
Tabela III.8 – Ranking das Barras Segundo Índice <i>BS_{i,u}</i>	53
Tabela III.9 – Barras Candidatas – Etapa de Seleção	54
Tabela III.10 – Valores de Posição das Chaves – Etapa Contínua	54
Tabela III.11 – Calculo dos índices $SS_{i,u}$ - Etapa Contínua.	55
Tabela III.12 – Calculo da FOB- etapa discreta	55
Tabela III.13 – Resultados do AHC	56
Tabela IV.1 – Resumo dos resultados obtidos para o sistema de 33 barras	60
Tabela IV.2 – Resultado do AHR com e sem etapa de refinamento	60
Tabela IV.3 – Resumo dos resultados obtidos para o sistema de 70 barras	61
Tabela IV.4 – Resultado do AHR com e sem etapa de refinamento	62
Tabela IV.5 – Comparação de resultados para o sistema de 83 barras	64
Tabela IV.6 – Comparação do resultado com e sem etapa de refinamento	64
Tabela IV.7 – Comparação do resultado com e sem etapa de refinamento	65
Tabela IV.8 – Resultado do caso base- Sistema teste de 70 Barras	66
Tabela IV.9 – Barras candidatas a alocação - Sistema teste de 70 Barras	67
Tabela IV.10 – Resultados do AHC	68
Tabela IV.11 – Comparação da Solução do AHC	69
Tabela IV.12 – AHC Caso Base	69
Tabela IV.13 – Alocações do AHC	70
Tabela IV.14 – Resultado Final do AHC	70
Tabela B.1 – Dados de barra do sistema de 14 barras	81
Tabela B.2 – Dados de linha do sistema de 14 barras	81
Tabela B.3 – Dados do sistema de 33 barra	82

Tabela B.4 – Dados de barra do sistema de 70 barra.	83
Tabela B.5 – Dados de linha do sistema de 70 barra	84
Tabela B.6 – Dados de barras do sistema de 84 barra	85
Tabela B.7 – Dados de linha do sistema de 84 barra	86
Tabela B.8 – Dados de barra do sistema de 476 barra	88
Tabela B.9 – Dados de linha do sistema de 476 barra	93

Capítulo I

Introdução

I.1 Considerações Iniciais

O novo modelo do sistema elétrico brasileiro determina a desvinculação do serviço de distribuição de energia elétrica de qualquer outra atividade no contexto de mercado de energia elétrica (desverticalização) (lei 10.848/2004) Assim, as empresas distribuidoras passam a operar num ambiente cada vez mais competitivo tendo de investir em equipamentos e sistemas de controle cada vez mais caros e sofisticados a fim de garantir confiabilidade, qualidade e segurança na operação de seus sistemas. Entretanto, isso deve ser executado visando um custo operacional baixo para maximizar suas margens de lucro.

O Universo dos consumidores alimentados pelo sistema de distribuição é bastante diversificado e em geral dois níveis de tensão de alimentação podem ser identificados: consumidores industriais e comerciais de médio porte são alimentados pela rede de distribuição primária (normalmente em 13,8kV) e consumidores residenciais, pequenos comércios são alimentados pelas redes de distribuição secundária (normalmente em 127V e 220V) [1]. Por questões fundamentalmente ligadas a custo de investimento e operação, as redes primárias de distribuição operam normalmente em configuração radial [1].

Com o objetivo de reduzir os custos de operação dos sistemas de distribuição de energia elétrica, um dos principais estudos realizados, diz respeito à minimização das perdas técnicas advindas do efeito Joule nos alimentadores do sistema. Vários trabalhos podem ser encontrados na literatura, onde tem grande destaque as metodologias de reconfiguração ótima de sistemas de distribuição de energia elétrica [2] e as metodologias de alocação

ótima de bancos de capacitores [3]. Outro recurso utilizado para manter os níveis desejáveis de tensão é o regulador de tensão [4], tal equipamento é projetado para manter um determinado nível de tensão mesmo com a variação da carga.

A reconfiguração dos alimentadores dos sistemas de distribuição é um problema de programação linear inteira mista (PNLIM) onde a restrição de radialidade representa uma dificuldade adicional, uma vez que:

- O estado das chaves é descrito por variáveis independentes binárias que podem assumir somente os valores discretos 0 (chave aberta) ou 1 (chave fechada).
- O módulo das tensões e ângulos nas barras são variáveis continuas que podem variar dentro de seus limites.

Em condições normais de operação pode-se levar a rede a operar em uma configuração que reduza as perdas por efeito Joule através da manobra das chaves normalmente abertas e normalmente fechadas. Trechos de rede com carregamento crítico podem também serem aliviados realizando-se o balanceamento de cargas [5].

A reconfiguração de sistemas de distribuição também é realizada em casos de contingências, onde é necessário determinar quais chaves devem ser abertas a fim de se isolar um trecho da rede que apresente uma falta sustentada. O retorno da rede após o reparo do trecho defeituoso, restabelecimento do sistema de distribuição, também exige um planejamento cuidadoso da seqüência de operação das chaves [6].

Uma importante aplicação de reconfiguração ocorre no planejamento de sistemas de distribuição, onde é preciso definir a topologia em que a rede irá operar dentro de um determinado horizonte de planejamento, tipicamente de 5 a 10 anos [7].

Outra opção bastante atraente para redução de perdas no sistema de distribuição consiste na diminuição dos fluxos de potência reativa em seus alimentadores. Uma das soluções adotadas é a alocação ótima de bancos de capacitores. Para tanto, devem-se determinar os locais, tamanhos, tipos e o numero de bancos a serem instalados. Este problema também é um problema de programação não linear inteira mista (PNLIM) e a decisão de alocar ou não um banco de capacitores corresponde a variável binária 0 (aloca o banco) ou 1 (não aloca).

Em [8] se relata as vantagens do uso de capacitores em sistemas de potência como sendo:

- Redução da componente reativa da corrente;
- Melhoria da regulação de tensão;
- Aumento do fator de potência da fonte geradora;
- Diminuição da demanda de potência aparente kVAr possibilitando aliviar uma condição de sobrecarga ou aliviar capacidade para um crescimento adicional de carga.
- Redução de investimento em equipamentos por kW de carga fornecida.

A extensão dos benefícios da alocação de bancos depende da configuração elétrica da rede e das variações da carga ao longo do período em estudo. Para a distribuidora, o lucro líquido corresponde a quantidade de energia conservada com a redução das perdas, descontados os investimentos na aquisição e instalação dos bancos.

A legislação em vigor determina que a tensão do sistema de distribuição deve estar dentro de um limite tolerável para evitar danos aos equipamentos dos consumidores ligados à rede. Para isso, um recurso muito importante é o ajuste adequado dos tapes dos reguladores de tensão que possibilitam maior controle dos níveis de tensão do sistema.

I.2 Revisão Bibliográfica

A opção que exige o menor investimento para redução de perdas técnicas do sistema de distribuição é a reconfiguração. Um dos primeiros trabalhos encontrados na literatura [9] utiliza a técnica de otimização discreta conhecida na literatura como *Branch and Bound*. A metodologia parte da rede com todas as chaves fechadas (rede malhada) e utiliza a técnica *Branch and Bound* para alcançar uma configuração final radial com perda total mínima.

Em [10] é utilizada a técnica de troca de ligações conhecida como *branch exchange*, parte-se de uma solução radial inicial e pesquisa-se todas as soluções radiais que podem ser geradas com o fechamento de uma chave e abertura de outra chave, mantendo-se a radialidade do sistema. Neste método, para evitar a análise de um número excessivo de abertura e fechamento de chaves, é proposto uma fórmula que estima a redução das perdas decorrentes da transferência de um bloco de carga de um circuito para outro. Em abril de 1989, as referências [11], [12], [13] e [14] propuseram modificações para melhorar a eficiência e precisão do método proposto em [10]. Em [11] são apresentados dois

algoritmos, um considera as cargas uniformemente distribuídas nas ligações da rede e o outro considera as cargas concentradas nas barras da rede. Já em [12] é realizado a minimização de perdas e o balanceamento de carga. Em [13] e [14], estratégias heurísticas são empregadas para reconfiguração e restauração do sistema.

Seguindo, a referência [15] apresenta um trabalho onde a impedância das linhas são substituídas por suas respectivas resistências, o sistema parte com todas suas chaves fechadas e a chave que deve ser aberta em cada laço é a que possuir o menor fluxo passante, o problema é resolvido laço a laço ate que o ultimo laço seja desfeito e a configuração radial seja obtida.

Em 1993 foi publicado o primeiro trabalho [16] sobre reconfiguração de redes de distribuição com o objetivo de reduzir perdas de energia em um determinado período. Para tanto, a carga foi caracterizada por uma curva de carga diária discretizada em 24 pontos (período de integração de 1 hora).

A referência [2] de 1994 realiza um importante levantamento sobre reconfiguração de sistemas de distribuição desde 1975 até 1993. Em 1995, o trabalho [17] aplica métodos heurísticos aliados a técnica *branch exchang* [10], [12] e [76] para reconfiguração de sistemas de grande porte. No ano de 1997, no trabalho [18] foi desenvolvido um algoritmo que é inicializado com todas as chaves fechadas (sistema malhado), então um índice de sensibilidade é introduzido e laço a laço, a chave que índica maior forma radial com mínimas perdas é aberta.

Nas ultimas duas décadas, foram observados diversos trabalhos onde técnicas de otimização baseadas em sistemas inteligentes, tais como sistemas especialistas [19], [20], *simulated annealing* [21], [22], algoritmos genéticos [23], [24] e [25], redes neurais artificiais [26], [27] e [28], Híbridos [29], [30], tabu search [31] e colônia de formigas [32] são aplicados para resolver o problema de reconfiguração ótima de redes de distribuição.

A utilização do fluxo de potência ótimo (FPO) para solução do problema foi encontrada pela primeira vez em [33] onde o método de pontos interiores foi associado a técnica *branch and bound* para otimizar uma função multi-objetivo, minimizar perdas e número de chaveamentos. O trabalho apresentado em [34] utiliza o método matemático de busca em profundidades e *branch and bound* para resolver a parte de programação inteira, enquanto que parte continua é solucionada por um método de Newton com derivadas segundas. Recentemente, a referência [35] utilizou o método de pontos interiores e um índice heurístico que leva em conta característica físicas da rede. Este índice é utilizado para

identificar dentro de um laço qual a chave deve ser aberta, o procedimento continua até que o ultimo laço seja desfeito. A mesma técnica é utilizada em [36] e [37], sendo diferente a heurística utilizada, ou seja, o algoritmo inicia com todas as chaves fechadas onde o resultado de um FPO aliado a um índice heurístico é utilizado para abrir uma chave de um laço. Durante o processo é formada uma lista contendo um numero de chaves que será utilizado na etapa final do algoritmo. Nesta etapa final é utilizada a técnica de *branch exchang* que permuta as chaves encontradas com as chaves da lista formada durante o processo a fim de melhorar a resposta.

Outra opção bastante atraente para redução das perdas em sistemas de distribuição de energia elétrica é a alocação de fontes de potencia reativa (bancos de capacitores) em pontos estratégicos do sistema. Desde a década de 50, metodologias para definir os melhores locais e dimensões dos capacitores vem sendo estudadas. Os primeiros métodos propostos foram métodos analíticos, usando hipóteses muito simplificadoras como em [38] e [39]. Este último trabalho apresenta uma metodologia analítica baseada em curvas de perdas, onde um único banco fixo de capacitores poderia ser alocado em cada alimentador.

Na referência [40] o problema foi abordado por programação dinâmica. Em [41] o problema de alocação de capacitores foi tratado como um problema de programação não linear. Nesta formulação consideraram-se somente alimentadores radiais e o tamanho dos capacitores foi tratado como uma variável contínua. A introdução de capacitores chaveados, assim como de uma modelagem dependente da tensão foram apresentados em [42] e [43]. Em [44] considerou-se a alocação de capacitores fixos e variáveis de tipo ON/OFF e formularam dois subproblemas: o subproblema de alocação de capacitores e o subproblema de alocação de reguladores de tensão.

Os autores em [45] e [46] formularam o problema de instalação de capacitores como um problema de otimização não linear com variáveis reais e inteiras. Nesses artigos, métodos de programação matemática são associados a heurística para determinar a localização, tipo e dimensão dos capacitores, considerando restrições de tensão e variações nas demandas.

Recentemente, os algoritmos combinatoriais estão sendo cada vez mais utilizados para solução do problema, tais algoritmos oferecem respostas ótimas ou bem próximas da ótima, no entanto, apresentam um elevado esforço computacional. Dentre estes métodos destacam-se recozimento simulado (*simulated annealing*) [47] algoritmos genéticos ou evolutivos [48], [49], [50], Lógica fuzzy [51], [52], [53], [54], busca tabu (*tabu search*) [55]. Os

algoritmos mistos, que são aqueles que combinam métodos de otimização com técnicas heurísticas (para acelerar o processo de solução) também são observados em [56].

Metodologias que aplicam técnicas de inteligência artificial "AI" para alocação de bancos de capacitores são encontradas em [57], [58] e [59].

As referências [60] e [61] mostram as principais técnicas adotadas para a solução do problema de alocação de capacitores e apresentam o estado da arte até 2002. Já em [62], a alocação de capacitores e a reconfiguração da rede de distribuição são tratados dentro de um mesmo problema.

O tratamento discreto dos tapes dos reguladores de tensão aplicados nos sistemas de distribuição, pode ser observado nas metodologias adotada em [63] e [64]. Essas metodologias incorporam funções de penalidade às vaiáveis contínuas (tapes dos reguladores de tensão) fazendo com que elas se comportem como discretas dentro de um problema de otimização.

I.3 Motivação da Dissertação

A operação otimizada do SDE é encontrada na literatura através de diversas metodologias, as quais compreendem a reconfiguração, a alocação de bancos de capacitores e o ajuste ótimo de tapes dos reguladores de tensão. Tais metodologias constituem soluções técnicas para minimizar as perdas de potência ativa na rede de distribuição, reduzindo, por conseguinte, o custo operacional do sistema. Entretanto, a solução destes problemas passa através do correto tratamento de diversas variáveis, entre as quais, tapes de reguladores de tensão e chaves (seccionadoras e de interconexão) que possuem comportamento discreto. Conseqüentemente, a explosão combinatória, inerente ao processo de solução, atribui alta complexidade e constitui verdadeiros desafios ao desempenho computacionais dos algoritmos dedicados a solução desses problemas. Estes fatos tornam o tema promissor para pesquisa.

I.4 Objetivo da Dissertação

Esta dissertação tem como objetivo a elaboração de novas metodologias de otimização para alocação ótima de bancos de capacitores, reconfiguração ótima de alimentadores e ajuste ótimo de tapes de reguladores de tensão em sistemas de distribuição de energia elétrica. Para tanto, será utilizada técnicas heurísticas associadas à metodologia Primal-Dual de Pontos Interiores (MPI) para solucionar os problemas de otimização propostos.

I.5 Publicações Decorrentes da Dissertação

- [A] COSTA, J. S., OLIVEIRA, E. J., OLIVEIRA, L. W., CARNEIRO JUNIOR, S., PEREIRA, J. L. R., CHAVES JUNIOR, I., "Reconfiguração Ótima de Sistemas de Distribuição de Energia Elétrica" Congresso Brasileiro de Automática de 2008
- [B] CHAVES JÚNIOR, I.; CARNEIRO JUNIOR, S. ; OLIVEIRA, E. J.; PEREIRA, J. L. R.; GARCIA, P. A. N.; COSTA, J. S., "A Heuristic Constructive Algorithm for Capacitor Placement on Distribution Systems", Manuscript No. TPWRS-00762-2006 accept to IEEE Trans. on PWRS in July, 2008.

I.6 Estrutura da Dissertação

Além desse capítulo, esta dissertação contém quatro capítulos e dois apêndices. O capítulo II discute as principais técnicas heurísticas aplicadas a solução dos problemas de reconfiguração, alocação de capacitores e ajuste discreto de tapes na otimização de sistemas de distribuição.

O capítulo III apresenta as metodologias propostas para solução dos problemas de reconfiguração e de alocação ótima de banco de capacitores em sistemas de distribuição de energia elétrica. Um exemplo será mostrado para cada caso, a fim de descrever e detalhar os passos das metodologias propostas.

No capítulo IV são apresentados e discutidos os resultados obtidos. Para tanto, são utilizados três sistemas testes encontrados na literatura, bem como um sistema de distribuição brasileiro real.

No capítulo V são apresentadas as principais conclusões do trabalho e sugestões para desenvolvimentos futuros.

O Apêndice A apresenta uma proposta de modelagem para discretização de variáveis dentro de um fluxo de potência ótimo (FPO). Tal modelagem é formulada para a discretização dos tapes dos reguladores de tensão.

O Apêndice B mostra os dados complementares dos sistemas elétricos utilizados nesta dissertação.

Capítulo II

Técnicas Heurísticas Utilizadas em Otimização de Sistemas de Distribuição

II.1 Introdução

As técnicas heurísticas encontram grande aplicabilidade nos estudos de otimização em sistemas de distribuição. Na literatura são encontradas diversas aplicações destas técnicas tanto na reconfiguração ótima de sistemas de distribuição quanto na alocação ótima de bancos de capacitores.

A palavra heurística é derivada do grego "heuriskein", que significa descobrir ou encontrar. Em otimização, heurísticas são regras indicativas que são desenvolvidas através da intuição, experiência e bom senso. Regras heurísticas produzem estratégias rápidas e práticas a quais reduzem o exaustivo espaço de busca (redução do esforço computacional) e podem conduzir a soluções ótimas, ou próximas das ótimas. Métodos heurísticos são intuitivos, fáceis de entender, e capazes de resolver problemas de otimização combinatória. Sua implementação é simples quando comparada a outros métodos de otimização. No entanto, os resultados produzidos por algoritmos heurísticos não têm garantia de serem sempre os ótimos globais.

No presente capitulo será abordado, de forma resumida, alguns trabalhos encontrados na literatura técnica que utilizam técnicas heurísticas para solução dos problemas de alocação ótima de capacitores e de reconfiguração ótima de redes de distribuição de energia elétrica, ao final também será apresentado um resumo das técnicas observadas na literatura para discretização dos tapes dos reguladores de tensão. Os trabalhos apresentados foram motivadores dos métodos adotados nas metodologias ora propostas.

II.2 Heurísticas Aplicadas a Solução do Problema de Reconfiguração

Encontrar a configuração de mínima perda resistiva é um problema de natureza combinatória, onde o esforço computacional requerido para enumerar todas as combinações possíveis, afim de se obter a que apresente a menor perda global torna-se inviável para redes de médio e grande porte. Isso justifica a utilização de técnicas heurísticas.

Algoritmo Heurístico de Merlin e Back

A heurística utilizada por Merlin e Back [9], pioneiros na solução do problema em questão, consistia em modelar as redes como um grafo em arvore, onde arcos e nós eram representados por ramos (circuito entre duas barras) e barras, respectivamente. Partindo-se da rede com todas as chaves manobráveis fechadas, determina-se as perdas através de um fluxo de carga CC, em seguida abria-se a chave cujo ramo era percorrido pelo menor fluxo de potência e nova execução do fluxo de carga era realizada até que uma rede radial fosse obtida. A consideração de chave aberta é realizada considerando-se a impedância do ramo, onde a chave é considerada, tendendo a infinito, e para a chave ser considerada fechada admite-se que a impedância do ramo que possui a chave igual ao seu valor natural.

Algoritmo Heurístico de Shirmohammadi

Shirmohammadi e Hong [13] acrescentaram ao algoritmo de Merlin e Back as restrições de níveis de tensão nas barras e limite de fluxo de corrente pelos ramos da rede. O algoritmo também se inicia com todas as chaves fechadas e em seguida as chaves são abertas de acordo com o padrão de fluxo de potência ótimo (PFO) previamente calculados. O processo para o calculo do PFO pode ser descrito da seguinte forma:

- Resolver o Fluxo de carga CA para rede malhada e determinar as correntes nodais, utilizando para tanto as tensões nodais calculadas. Em seguida cada chave fechada é considerada uma fonte de corrente variável independente, todos os geradores assim definidos são utilizados para determinar a distribuição de corrente que minimiza a perda total.
- 2. A chave a ser aberta é aquela que apresenta a menor corrente entre todas as chaves, a chave selecionada é a que implica no menor distúrbio do fluxo de potência ótimo calculado para a rede.
- 3. O processo inteiro se inicia com o fluxo CA mantendo-se as chaves abertas, abrindo sucessivamente as chaves indicadas, até que a rede se torne radial.

Na figura II.1 é ilustrado o fluxograma do algoritmo básico de Shirmohammadi.

Figura II.1 - Método Heurístico de Shirmohammadi - Algoritmo básico

Um inconveniente dessa abordagem é que a discretização de uma solução ótima de um problema contínuo (por arredondamento) pode conduzir a uma solução não ótima, ou pior ainda, não viável.

Algoritmo Heurístico Proposto por Gomes

O trabalho apresentado por Gomes [36] apresenta um algoritmo de reconfiguração que utiliza uma estratégia heurística que inicia a rede com todas as suas chaves fechadas (rede malhada), neste método, a exemplo do apresentado por Shirmohammadi, é considerado que cada ramo da rede possui uma chave manobrável. O método é baseado em uma abertura seqüencial de chaves utilizando-se informações vindas das posições das chaves, modeladas como variáveis contínuas, vindas de um fluxo de potência ótimo. A cada passo do algoritmo a chave que produzir o menor crescimento das perdas é escolhida para ser aberta. O algoritmo se encerra quando todos os laços foram desfeitos.

O algoritmo do método proposto por Gomes é basicamente dividido em seis passos que se encontram sequencialmente numerados, conforme pode ser observado no fluxograma da figura II.2.

Figura II.2 – Método Heurístico de proposto por Gomes.

A seguir serão descritos os seis passos numerados no fluxograma da figura II.2.

1) Primeiro passo:

Inicialmente é construído uma lista de chaves manobráveis (LCM) que corresponde a todas as chaves do sistema que serão utilizadas no processo de otimização. Neste primeiro passo, todas as chaves da lista são fechadas constituindo dessa maneira, um sistema malhado.

A representação da chave é realizada conforme a figura II.3.

Figura II.3 – Modelo adotado para representação de um ramo km com chave

2) Segundo passo

Neste passo é utilizado o fluxo de potência ótimo (FPO) para resolver o seguinte problema:

$$\min\left\{C_{total} = \sum_{i=1}^{nc} c_{km}^{ch} CH(x_{km}) + g_{km}(V_k^2 + V_m^2 - 2V_k V_m \cos(\theta_k - \theta_m)) CH(x_{km})\right\}$$
(II.1)

Sujeito a:

$$g(V,\theta) = 0 \tag{II.2}$$

$$h(V,\theta) \le 0 \tag{II.3}$$

$$0 \le CH(x_{km}) \le 1 \tag{II.4}$$

Onde:

nc	Número de chaves manobráveis a serem consideradas
	na otimização (dimensão de LCM);
c_{km}^{ch}	Custo de utilização da linha entre as barras k e m associado a sua chave;

$CH\big(x_{_{km}}\big)$	Posição da chave associada à linha entre as barras k e m;
X _{km}	Argumento da função chave pertencente à linha entre as barras k e m;
$\mathbf{V}_{\mathbf{k}}$	Módulo da tensão na barra k;
V _m	Módulo da tensão na barra m;
$\theta_k - \theta_m$	Defasagem angular entre as barras terminais $k \in m$ da linha;
g_{km}	Condutância série da linha entre as barras k e m;
C _{total}	Custo total de reconfiguração que corresponde à soma das parcelas do
	custo de utilização das linhas com o custo das perdas nas linhas;

As equações correspondentes ao balanço do fluxo de potência (restrições de igualdade) são expressas em (II.2), os limites operacionais em (II.3) e as restrições de canalização em (II.4).

Para a solução do FPO, Gomes utilizou o método primal-dual de pontos interiores [67]. Em seu trabalho, a representação contínua da chave foi realizada através da equação da reta $CH(x_{km}) = a.x_{km}$ com a=1, conforme ilustra a figura II.4:

Figura II.4 - Modelo adotado para representação de um ramo km com chave

A chave é modelada utilizando uma variável contínua para a representação de sua posição, sendo possível assumir valores intermediários entre totalmente fechada $(CH(x_{km})=1)$ e totalmente aberta $(CH(x_{km})=0)$.

Após o cálculo do FPO descrito pelas equações de (II.1) a (II.4), é fornecido para próxima fase do algoritmo um subconjunto de chaves que possuem o Menor Valor de Posição (MVP), ou seja, as que possuem maior sensibilidade a serem abertas. O número de chaves do subconjunto foi dado pela seguinte expressão:

$$NCH_{suconjunto} = 2 \times N_{Laços}$$
Linearmente independentes
(II.5)

Onde:

NCH_{subconiunto} Número de chaves do subconjunto (MVP);

N^{Laços} Linearmente independentes Número de laços linearmente independentes no sistema original.

3) Terceiro passo

Neste passo são geradas NCH_{subconjunto} topologias, sendo que cada uma das topologias é obtida através da abertura de uma das chaves do subconjunto (MVP) mantendo-se fechadas todas as demais chaves presentes na rede. Então, calcula-se um fluxo de potência não-linear convencional para cada topologia conexa e obtêm-se as perdas totais do sistema para cada configuração. Os valores são classificados em ordem crescente das perdas.

4) Quarto passo

Após o término da etapa anterior, a chave que produzir o menor crescimento da função objetivo é escolhida para ser aberta definitivamente.

5) Quinto passo

Logo após a abertura definitiva da chave indicada na etapa anterior, a Lista de Chaves Manobráveis (LCM) deve ser atualizada, pois sempre que um laço é desfeito, a chave aberta e todas as outras chaves que pertencem exclusivamente ao laço desfeito devem ser retiradas do conjunto de chaves manobráveis uma vez que sua abertura conduziria a um sistema desconexo.

6) Sexto passo

O processo se repete a partir do segundo passo, sendo que desta vez considera-se a chave aberta no quarto passo e a LCM atualizada. O processo se encerra quando for aberto o número de chaves que conduzir a uma situação onde todos os laços forem desfeitos, ou seja, a sistema for radial.

Cabe ressaltar que o algoritmo proposto por Gomes realiza um número elevado de FPO's e FPC's para solução do problema. Assim como, a formulação proposta não utiliza diretamente nenhuma informação do FPO para realizar a abertura da chave.

II.3 Heurística Aplicada a Solução do Problema de Alocação Ótima de Bancos de Capacitores

O objetivo da aplicação de capacitores em sistemas de distribuição é a compensação de energias reativas produzidas por cargas indutivas. O problema de alocação de capacitores corresponde a definir o número de capacitores a serem instaladas, suas localizações, tamanhos e controle (fixos ou chaveados). Observa-se na literatura que as técnicas heurísticas mais comumente encontradas referem-se à limitação da região de solução dos algoritmos, ou seja, a maior parte dos algoritmos heurísticos realiza uma pré-escolha de barras mais sensíveis a alocação dos bancos limitando a solução final a estas barras [55].

Outro importante aspecto diz respeito a modelagem da curva de carga do sistema, por vezes a curva de carga é discretizada em diferentes "steps" relacionados a níveis de carregamento dentro de um horizonte que se deseja estudar o sistema.

A seguir será apresentado duas metodologias heurísticas que motivaram a abordagem proposta para solução do problema no presente trabalho.

Algoritmo Heurístico Proposto por Cris e Salama

Neste trabalho [73] um método é heurístico apresentado no qual somente um determinado número de nós (barras) críticos, chamados de nós sensitivos, são candidatos a alocação. Os nós sensitivos são selecionados baseados nas perdas causadas no sistema pelas componentes reativas das correntes de carga. A aproximação proposta determina o nível de compensação na condição de maximização das economias da rede, em oposição apenas a

minimização das perdas, como em outros métodos publicados. Esse método tem as seguintes vantagens:

- Desde que o número de nós sensitivos é relativamente pequeno comparado com o número total de nós no sistema de distribuição, o tamanho do problema é consideravelmente reduzido. Isso faz o método ser atrativo quando lidando com grandes sistemas de distribuição.
- 2. Tamanhos e localizações realistas para capacitores *shunt* são considerados nesse algoritmo. Ao contrário da aproximação analítica, a aproximação baseada em regras heurísticas leva em consideração a diferença entre o ótimo teórico e localizações e tamanhos atuais dos capacitores *shunt*. Devido à natureza iterativa da aproximação heurística, a solução é atualizada (da base de conhecimento) e melhorada (baseado nas regras) em cada iteração.
- Violação de tensão, devido à adição de capacitores, não é permitida pelo algoritmo.
- Esse método requer pouco tempo computacional comparado a outros métodos analíticos. Essa característica o faz apropriado para compensação volt/VA*r on-line*.

A função objetivo a ser minimizado no trabalho de Cris e Salama é:

$$S = K_{p}.LP + K_{e}.LE - \sum_{i=1}^{nc} K_{e}.Q_{ci}$$
 (II.6)

Onde:

- Q_{ci} É o tamanho do capacitor em (kVAr)
- K_{c} É o custo do capacitor em US\$/kVAr);
- LP Representa a redução na perda de potência no nível de maior carregamento (kW) devido a compensação.
- LE Representa a redução na perda de energia devido a compensação (kWh)
- K_e Custo da energia (US\$/kWh)
- K_p Converte a redução na perda de potência no nível de maior carregamento em valor financeiro, sua unidade é (US\$/kW);

Um fluxograma do método proposto é apresentado na figura II.5.

Figura II.5 – Modelo adotado para representação de um ramo km com chave

A idéia de se limitar o espaço de busca sugerida por Cris e Salama foi aproveitada na metodologia proposta para alocação de capacitores do presente trabalho.

Algoritmo Heurístico Proposto por Goswami e Basu

Neste trabalho [75] é utilizado regras heurísticas para se determinar as barras mais sensíveis a alocação de capacitores. Para selecionar o tamanho do banco a ser instalado na barra selecionada os autores laçam mão de uma estratégia de busca nomeada de "greedy search technique".

A formulação proposta para solução do problema consistia basicamente em se minimizar a seguinte função objetivo:

min imizar

$$C = \sum_{k=1}^{NC} x_k C_k Q C_j + \sum_{i=1}^{NL} P k. T_i \sum_{m=1}^{NF} [P L_i I_m]^2 R_m$$
(II.7)

Onde:

NC	Número de prováveis locações de capacitores;
X _k	Valor de posição da chave ligada a barra onde será inserido o banco de
	capacitores;
C _k	Custo do banco de capacitores (US\$/kVAr);
QC _j	Tamanho do banco de capacitores (kVAr);
NL	Número de Níveis de Carregamento do sistema;
Pk	Custo da energia (US\$/kWh);
T _i	Duração dos diferentes níveis de carregamento (horas);
$PL_{i}I_{m}$	Percentagem PL da corrente através do circuito m;
R _m	Resistência do circuito m;
NF	Número total de circuitos (ramos) da rede;

Aqui a modelagem de uma chave é incorporada ao problema, onde $x_k = 1$ representa a chave fechada e conseqüentemente a alocação do banco na barra candidata previamente escolhida, do contrario se $x_k = 0$ o banco não é alocado.

II.4 Considerações sobre discretização de tapes de Reguladores de Tensão em um FPO

Outro dispositivo que é utilizado em sistema de distribuição é o regulador de tensão, cuja escolha adequada do tape a ser utilizado traz como benefícios a melhoria no perfil de tensão da rede e conseqüentemente, minimização das perdas do sistema. Entretanto, muitos processos de solução de FPO todas as variáveis, incluindo aquelas que

podem ser ajustadas somente em passos discretos, são tratadas como variáveis contínuas até que uma primeira solução seja alcançada. Então, cada variável discreta (como os tapes dos reguladores de tensão, por exemplo) é arredondada para seu valor discreto mais próximo, então simula-se um novo FPO fixando-se as variáveis discretas (valores arredondados), obtendo-se novos valores para as demais variáveis continuas. Este procedimento é válido para fluxos de potência porque a única exigência é que a solução seja factível, mas esta será sub-ótima para a função objetivo a ser minimizada. Em geral, esses arredondamentos não minimizam a função objetivo e podem até mesmo tornar impossível obter uma solução factível. Como exemplo, suponha que o arredondamento de uma variável discreta após a solução de um FPO (considerando todas as variáveis discretas contínuas) cause a violação de restrições de desigualdade que não possam ser corrigidos pelo ajuste das variáveis contínuas. A única maneira de corrigir a violação seria através de ajustes discretos. Sem uma técnica para fazer este procedimento, o problema pode parecer sem solução mesmo que ela seja possível.

Para o caso dos tapes do regulador de tensão, não existem muitos trabalhos dedicados ao estudo e modelagem desses equipamentos que incluam seu ajuste discreto dentro de um FPO, o que torna o tema um campo fértil para pesquisa e investigação. Contudo, alguns trabalhos [63], [64] utilizam funções adicionais que adicionam penalidade a variáveis contínuas com intuito de fazer com que elas se comportem como discretas. A técnica utilizada nesses trabalhos pode ser genericamente resumida na seguinte seqüência de passos.

- 1. Resolver o FPO considerando todas as variáveis como contínuas
- Impor uma penalidade em cada variável discreta durante o processo de solução do FPO. Essa penalidade tem elevada magnitude na região entre dois valores discretos da variável.
- 3. Continuar o processo iterativo do FPO com as penalidade impostas, ajustando periodicamente cada penalidade.
- O problema é resolvido quando todas as variáveis se encontram em seus passos discretos e as condições de otimalidade são satisfeitas.

E observado que essas técnicas são aceitáveis somente para controles tais como tapes de reguladores, pois os passos são pequenos e uniformes. Porém se tornam inaceitáveis para variáveis cujos passos são grandes e não uniformes, tais como as representações das chaves utilizadas no presente trabalho.

No apêndice A será apresentado uma proposta de formulação para o tratamento dos tapes de reguladores de tensão em um problema de FPO.

Capítulo III

Metodologias Propostas

III.1 Introdução

Este capítulo apresenta os métodos matemáticos que foram utilizados na resolução dos problemas de reconfiguração e de alocação ótima de bancos de capacitores em sistemas de distribuição de energia elétrica. Estes problemas de otimização são de difícil solução e apresentam algumas particularidades, tais como: (i) A região de solução é não convexa, apresentando vários pontos de mínimos locais, levando grande parte dos algoritmos a convergirem em direção a uma solução ótima local; (ii) a natureza combinatória das variáveis inteiras presentes nesses problemas conduz ao fenômeno de explosão combinatória que pode inviabilizar a solução do problema em um tempo factível, devido ao elevado esforço computacional e, conseqüentemente, elevado tempo de processamento requerido. As técnicas de resolução, aplicadas a tais problemas, são bastante complexas por se tratarem de um problema de programação não linear inteira mista (PNLIM). Diante do quadro descrito, surgiu a motivação para o desenvolvimento das metodologias que serão baseadas em técnicas heurísticas de solução.

Para melhor compreensão dos métodos será apresentado, para cada caso, um exemplo tutorial ao final de cada uma das metodologias desenvolvidas.

III.2 Metodologia Proposta para Reconfiguração de Sistemas de Distribuição

III.2.1 Considerações Iniciais

Embora a rede tenha uma estrutura de operação radial, os alimentadores são conectados a seus vizinhos através de chaves de manobras ("tie switch" – normalmente abertas) e também existem as chamadas chaves seccionadoras ("sectionalizing switch" – normalmente fechadas) que são dispostas ao longo de um alimentados. Essas chaves permitem o gerenciamento das redes possibilitando isolamento de trechos da rede seja por motivo de defeito ou para manutenção, restabelecimento da rede após decorrência de defeitos, redistribuição do fluxo de carga nos alimentadores melhorando os níveis de tensão e redução de perdas (por reconfiguração).

O presente trabalho adota um método heurístico para reconfiguração ótima de sistemas radiais de distribuição. As chaves manobráveis são modeladas por funções continuas e incorporadas a um fluxo de potência ótimo (FPO) que será resolvido pelo método primal-dual de pontos interiores [65], [66], [67] e [68]. Os coeficientes de Lagrange associados as restrições de balanço de potência ativa e reativa serão utilizados para determinar as sensibilidades das variáveis discretas. O comportamento discreto das chaves manobráveis pode ser descrito por uma função degrau unitário, na qual o valor 0 indica chave aberta e o valor 1 indica chave fechada. Entretanto, a função degrau unitário não pode ser modelada no FPO por não se tratar de uma função contínua. Entretanto, em [81] a natureza discreta inerente ao problema de planejamento da expansão de sistemas de transmissão, foi abordado com sucesso através do tratamento de variáveis discretas, com base na sensibilidade fornecida por uma função sigmóide, com isso, no presente trabalho também será adotada essa representação. Assim, as chaves manobráveis serão modeladas pela função sigmóide, dada pela equação III.1, e ilustrada na Figura III.1.

Figura III.1 - Função Contínua de Chaveamento

$$CH_{km}\left(x_{km}\right) = \frac{-1 + e^{\alpha \cdot x_{km}}}{1 + e^{\alpha \cdot x_{km}}} \tag{III.1}$$

Onde

$$x_{km}$$
 Representa a variável de otimização associada à chave manobrável
acoplada ao circuito *km*;

 $CH_{km}(x_{km})$ Representa o valor de posição da chave manobrável do circuito km.

Neste trabalho, testou-se uma variedade de funções sigmóide através da variação do parâmetro α , e concluiu-se que o valor $\alpha = 1$ atende satisfatoriamente aos requisitos de convergência e qualidade dos resultados. Se o valor de α é muito grande, então o FPO pode não convergir, pois neste caso, a derivada da função sigmóide assume valores elevados. Por outro lado, se α é muito pequeno, a função sigmóide diverge das características da função degrau unitário, e então a qualidade dos resultados do FPO pode ser afetada.

O argumento da função sigmóide (x_{km}) varia em uma faixa de zero a 20, como mostrado na Figura. III.1. O limite superior desta variável pode ser definido como qualquer valor que torna $CH_{km}(x_{km})$ o mais próximo possível de 1. Funções sigmóides são comumente aplicadas em algoritmos que utilizam redes neurais artificiais [69].

III.2.2 Formulação do Problema de Reconfiguração

O problema é apresentado através do conjunto de equações a seguir, onde é utilizado o FPO na determinação da solução. Tensão, ângulo e potência gerada (ativa e reativa) são variáveis contínuas e o status da chave (aberto "0" ou fechado "1") é uma variável discreta. O status das chaves será decidido com base em um índice heurístico que será explorado posteriormente.

$$Min \ FOB = c_{L} \cdot \sum_{km=1}^{NC} CH_{km}(x_{km}) L_{km}$$
(III.2)

Sujeito a:

$$Pg_{k} - Pl_{k} + \sum_{m \in \Omega k} CH_{km}(x_{km}) P_{km} = 0 \qquad (\lambda p_{k})$$
(III.3)

$$Qg_{k} - Ql_{k} + \sum_{m \in \Omega k} CH_{km}(x_{km}) Q_{km} = 0 \qquad (\lambda q_{k})$$
(III.4)

$$L_{km} = g_{km} \cdot [V_k^2 + V_m^2 - 2.V_k \cdot V_m \cdot \cos(\theta_{km})]$$
(III.5)

$$0 \le x_{km} \le 20 \tag{III.6}$$

$$\overline{Z}^{\min} \leq \overline{Z} \leq \overline{Z}^{\max}$$
 (III.7)

$$p_{km}^{\min} \le p_{km} \le p_{km}^{\max} \tag{III.8}$$

Onde:

FOB	Representa a função objetivo;
NC	Representa o número de circuitos do sistema;
c_L	Representa o custo associado às perdas de potência ativa no sistema (US\$/kW);
L_{km}	Representa a perda de potência ativa no circuito k-m;
Pg_k	Representa a potência ativa gerada na barra k;
Pl_k	Representa a carga ativa conectada à barra k;
P_{km}	Representa o fluxo de potência ativa no circuito k-m;
Ωk	Representa o conjunto de barras conectadas à barra k;

λp_k	Representa o multiplicador de Lagrange associado à restrição (III.3);
Qg_k	Representa a potência reativa gerada na barra k;
Ql_k	Representa a carga reativa conectada à barra k;
Q_{km}	Representa o fluxo de potência reativa no circuito k-m;
λq_k	Representa o multiplicador de Lagrange associado à restrição (III.4);
g_{km}	Representa a condutância do circuito k-m;
V_k, V_m	Representa a magnitude de tensão das barras k e m, respectivamente;
$\theta_{_{km}}$	Representa a defasagem angular entre as barras k e m;
\overline{Z}	Representa o conjunto de variáveis do FPO que possuem limites físicos
	e/ou operacionais;
$\frac{-\min}{Z}$ $\frac{-\max}{Z}$	Representam os limites inferiores e superiores das variáveis do conjunto
_ ,_	\overline{Z} , respectivamente.
$p_{_{km}}$	Representa Fluxo de potência ativa no circuito k-m;

A Equação (III.2) define a função objetivo do FPO, e está associada à minimização do custo da perda total de potência ativa nos NC circuitos do SDE. Caso o circuito *k-m* não possua chave manobrável, $CH_{km}(x_{km})$ é fixada no valor 1.

As restrições de balanço de potência ativa e reativa encontram-se formuladas em (III.3) e (III.4), respectivamente. O valor de posição da chave manobrável $CH_{km}(x_{km})$ é multiplicado pelo valor dos fluxos de potência ativa P_{km} e reativa Q_{km} .

A Equação (III.5) descreve a perda de potência ativa no circuito *k-m*. A Equação (III.6) define os limites do argumento da função sigmóide adotada para representação das chaves manobráveis. As restrições de limites das variáveis de otimização estão representadas em (III.7). Neste conjunto de restrições, incluem-se os limites de tensão nodal e geração ativa. A equação (III.8) representa o limite da capacidade de transmissão de fluxo de potência ativa pelos condutores dos circuitos.

O problema de FPO em (III.2) é solucionado utilizando-se o método primal-dual de pontos interiores [65]. Na solução deste problema, os valores de posição das chaves manobráveis (CH_{km}) estão dentro do intervalo contínuo [0,1]. Entretanto, para a

configuração final, as chaves devem ser definidas como abertas ou fechadas, ou seja, CH_{km} deve assumir um dos valores discretos zero ou 1. Para tanto, uma etapa adicional é necessária para definir quais chaves assumem os valores zero ou 1. Esta etapa utiliza um índice de decisão baseado nos multiplicadores de Lagrange associados as restrições de balanço de potência ativa e reativa obtidos na solução do FPO.

III.2.3 Índice de Sensibilidade Heurístico Proposto

Tendo em vista as abordagens descritas no capitulo II, no presente trabalho, todas as chaves manobráveis existentes no sistema são consideradas inicialmente fechadas (sistema malhado), conseqüentemente, as perdas apresentadas nessa configuração são mínimas. Entretanto, esta configuração não é permitida para sistemas de distribuição tendo em vista a necessidade de manter-se a radialidade. Portanto, a reconfiguração proposta neste trabalho consiste em determinar, a partir da configuração em malha, o número mínimo de chaves manobráveis cuja abertura resulta em uma operação radial e com o mínimo acréscimo de perdas do sistema.

A determinação de quais chaves serão abertas realizar-se-á através de um índice heurístico de sensibilidade apresentado a seguir:

$$SS_{km} = \left| CH_{km}(x_{km}) \cdot \left(\lambda p_k - \lambda p_m \right) \cdot \frac{N_{km}}{\left(V_k - V_m \right)} \right|$$
(III.9)

Onde:

 SS_{km} Representa o índice de sensibilidade para definição do status da chave *k-m*;

 N_{km} Representa o fluxo de potência aparente no circuito *k-m*.

Na Equação (III.9), o índice SS_{km} proposto é proporcional ao valor de posição da chave do circuito *k-m*, $CH_{km}(x_{km})$. Quanto menor o valor de $CH_{km}(x_{km})$, maior é a tendência de abertura do circuito *k-m* visando à minimização de perdas no sistema.

A diferença $(\lambda p_k - \lambda p_m)$ corresponde ao impacto na função objetivo (III.2), devido a uma variação de fluxo no circuito k-m. Em outras palavras, quanto menor $(\lambda p_k - \lambda p_m)$, menor é o aumento das perdas no SDE devido à abertura do circuito *k-m*.

O índice de decisão SS_{km} também é função do fluxo de potência aparente N_{km} , pois a abertura de uma determinada chave resulta em uma redistribuição de fluxos por toda a rede de distribuição. A abertura do circuito com menor N_{km} causa menos alterações na rede, em conseqüência, mínimo afastamento do ponto de operação obtido com a rede em malha.

Adicionalmente, o índice SS_{km} é inversamente proporcional $(V_k - V_m)$. Isto retrata a condição de que o circuito que apresenta grande valor de queda de tensão deve ser evitado para transmitir potência por apresentar elevada perda, portanto, terá preferência para abertura de sua chave. A diferença $(V_k - V_m)$ também foi utilizada para compor o índice de sensibilidade para abertura de chave proposto por [6].

Portanto, conclui-se que as chaves associadas aos menores índices SS_{km} são aquelas cuja abertura resulta nos menores acréscimos de perdas no sistema a partir da rede em malha.

III.2.4 Estrutura da Matriz Hessiana

Apresenta-se neste item a estrutura da matriz Hessiana de solução do problema formulado no item (III.2.2). Com esse propósito, considere o sistema de 2 barras mostrado a seguir:

Figura III.2 – Sistema exemplo de 2 barras

A figura III.2 mostra um gerador $P_{Gi} + jQ_{Gi}$ alimentando uma carga $P_{Lj} + jQ_{Lj}$ através de uma das linhas i-j.

As variáveis do problema são classificadas em:

- Variáveis primais: P_G ; Q_G ; V_i ; V_j ; θ_i ; θ_j ; CH_1 ; CH_2
- Variáveis Duais: λ_{pi} ; λ_{pj} ; λ_{qi} ; λ_{qi}

	PG_1	QG_1	CH_1	CH_2	θ_1	λp_1	\mathbf{V}_1	λq_1	θ_2	λp_2	V_2	λq_2
PG_1	Н					-1						
QG_1		Н						-1				
CH_1			Н									
CH_2				Н								
Θ_1					Н	J	Н	J	Н	J	Н	J
λp_1	-1				J		J		J		J	
V_1					Н	J	Н	J	Н	J	Н	J
λq_1		-1			J		J		J		J	
Θ_2					Н	J	Н	J	Н	J	Н	J
λp_2					J		J		J		J	
V_2					Н	J	Н	J	Н	J	Н	J
λq_2					J		J		J		J	

A matriz Hessiana referente ao problema é apresentada a seguir:

Figura III.3 – Estrutura da matriz hessiana – exemplo de 2 barras

Onde:

НeЈ

Corresponde às derivadas de segunda ordem entre as variáveis

 $\theta_i; \lambda_{pi}; V_i; \lambda_{ai}; \theta_i; \lambda_{pi}; V_i; \lambda_{ai}; CH_1; CH_2; P_{G1}; Q_{G1}$

Observa-se que matriz é altamente esparsa e a estrutura em blocos é ideal para representação da curva de variação da demanda, conforme formulação proposta no problema de alocação de capacitores apresentado no item III.3. A dimensão da matriz Hessiana para solução do problema de reconfiguração através da modelagem proposta é dada pela seguinte expressão:

$$DimW = 2 \times NGER + 4 \times NBAR + NCH$$
(III.10)

Onde:

DimW	É a dimensão da matriz Hessiana;
NGER	É o número de geradores do sistema;
NBAR	É o número de barras dos sistema;
NCH	É o número de chaves manobráveis presentes no sistema;

III.2.5 Algoritmo Heurístico Proposto Para Reconfiguração

O algoritmo heurístico proposto para reconfiguração (AHR) de sistemas de distribuição de energia elétrica abordado neste trabalho é mostrado no fluxograma da Figura III.4, logo a seguir, um detalhamento de cada uma de suas etapas será apresentado.

Figura III.4 – Fluxograma do Algoritmo Heurístico Proposto (AHR)

Etapa-1: Identificação dos laços da rede Elétrica.

Nesta etapa cada chave de interconexão presente no sistema de distribuição é considerada fechada, o fechamento de cada uma dessas chaves ocasiona a formação de um laço e, conseqüentemente, a configuração inicial do sistema é malhada. O objetivo desta etapa é a identificação destes laços. Para tanto, é necessário um processo de busca que se inicia a partir de um dos terminais de uma determinada chave de interconexão e percorre

todos os circuitos que formam um caminho fechado até a outra extremidade desta chave. Este processo consiste na determinação do caminho mínimo [70] composto pelas barras situadas entre os dois terminais da chave de interconexão. Para cada chave, o caminho mínimo associado não pode passar por outra chave de interconexão. A chave de interconexão considerada e os circuitos percorridos formam um laço. Ou seja, cada laço possui uma única chave de interconexão. Este processo é executado para todas as chaves de interconexão.

Etapa-2: Ordenação dos Laços.

O presente trabalho realiza a reconfiguração do sistema pela abertura de uma chave indicada pelo índice SS desfazendo dessa maneira cada um dos laços formados na etapa anterior. Entretanto, o algoritmo realiza a análise de um laço de cada vez, sendo que a ordem pela qual cada laço será desfeito é de fundamental importância para o resultado final do problema. Portanto, esta etapa tem o objetivo de determinar uma ordem ótima para a análise dos laços da rede. Isso será realizado a partir da simulação do FPO formulado em (III.2.2), com a rede malhada, para obter os índice de sensibilidade SS, Equação (III.9). A ordem crescente destes índices determina a ordem dos laços a ser utilizada na Etapa-3.

Etapa-3: Abertura passo a passo das chaves

Nesta etapa é simulado um FPO para cada laço em análise para reconfiguração do sistema. Para tanto, utiliza-se a ordem dos laços definida na Etapa-2. O primeiro laço é analisado ainda com toda a rede malhada, tal como na Etapa-2. O segundo laço é analisado com a chave definida para o laço 1 aberta e com o restante da rede malhada, e assim sucessivamente. Cada simulação é usada para analisar os índices *SS* do laço correspondente. Após cada simulação, somente a chave associada ao menor índice *SS* do laço sob análise é aberta e as demais chaves do laço permanecem fechadas. Ao final desta etapa, obtêm-se as chaves que devem permanecer abertas a fim de manter o sistema radial e com perdas mínimas.

A utilização de índices de sensibilidade, tais como o índice proposto SS, para a reconfiguração de SDE pode conduzir a soluções sub-ótimas e de má qualidade. Isto se deve à natureza discreta e combinatória do problema, pois a cada operação de

chaveamento, o estado operativo do sistema é alterado e, conseqüentemente, é alterada a sensibilidade expressa pelo índice *SS*. Por isso, a cada abertura de chave o índice *SS* é recalculado, ou seja, a sensibilidade do sistema é atualizada à medida que a sua configuração evolui para uma topologia radial.

Dentro da Etapa-3 verifica-se que uma mesma chave seccionadora ("*sectionalizing switch*") pode estar presente em dois ou mais laços da rede elétrica, logo a decisão de em qual laço a chave deve pertencer na Etapa-3 é realizada pela ordem obtida na Etapa-2, com isso, o primeiro laço definido pela Etapa-2 ficará com todas as chaves pertencentes a ele eliminando dos demais laços as chaves em comum, o segundo laço ficará com todas suas chaves exceto aquelas que eram comuns a ele e ao laço 1, o terceiro laço ficará com todas suas suas chaves exceto aquelas que eram comuns a ele e aos laços 1e 2 e assim sucessivamente. Verifica-se, portanto, que o status das chaves comuns é dependente da ordem dos laços. Neste sentido, a ordenação ótima dos laços constitui-se em uma tarefa importante da metodologia proposta.

Outro aspecto do AHR é que os índices *SS* do primeiro laço podem ser obtidos diretamente após a execução da Etapa-2. Ou seja, o número de simulações necessárias na Etapa-3 é igual ao número de laços menos um.

Destaca-se que o AHR atende às condições de radialidade e de conectividade da rede de distribuição, uma vez que somente uma chave manobrável por laço pode ser aberta. Além disto, qualquer chave, cuja abertura conduz a isolamento de barras da rede, é fechada previamente e retirada do conjunto de circuitos manobráveis. Ou seja, a aplicação do algoritmo sempre gera configurações radiais e conexas.

Ainda na etapa 3, uma lista com NX chaves vizinhas as chaves abertas em cada laço é armazenada. O valor de NX corresponde a 30% do número de chaves do laço analisado, esse valor foi obtido através de diversas simulações em todos os sistemas pesquisados.

Etapa-4: Refinamento da Solução.

Essa etapa consiste basicamente em fazer uma permuta das chaves abertas com suas vizinhas do mesmo laço, a fim de se obter soluções de melhor qualidade. Essas chaves foram obtidas na etapa 3. Na literatura essa permuta de chaves é uma técnica conhecida como *branch exchang* [10], [12] e [76].

III.2.6 Exemplo de Aplicação do Algoritmo HeurísticoProposto para Reconfiguração (AHR)

A Figura III.4 apresenta o diagrama do sistema teste de 14 barras [10]. Este sistema é composto de 3 alimentadores de 23kV contendo 16 circuitos. Na topologia inicial, os circuitos representados por linhas contínuas estão acoplados a chaves normalmente fechadas (*"sectionalizing switch"*) e os circuitos tracejados representam as chaves S14, S15 e S16 normalmente abertas (*"tie switch"*). A chave S9 não é manobrável, pois sua abertura resultaria em isolamento de uma das barras do sistema. Tem-se, portanto, um total de 15 chaves manobráveis. Para esta configuração inicial, as perdas são de 511,44 kW.

Figura III.5 – Sistema exemplo de 14 barras

A seguir, são apresentadas as etapas do algoritmo heurístico proposto (AHR) para análise deste sistema teste de 14 barras.

Etapa-1: Identificação dos laços da rede elétrica

A execução da Etapa-1 do algoritmo da Figura III.4 tem como objetivo a identificação dos laços da rede elétrica. Neste sistema de 14 barras, verifica-se a formação

de 3 laços denominados de L_A , L_B e L_C , a partir das chaves de interconexão S_{14} , S_{15} e S_{16} , respectivamente.

O Laço L_A é identificado a partir da chave de interconexão S_{14} . Partindo-se do terminal T1₁₄ de S_{14} , percorre-se o caminho $S_2 - S_1$, até o alimentador 1 da subestação (SE). A partir do alimentador 2 de SE, percorre-se o caminho $S_5 - S_6 - S_8$ até a outra extremidade de S_{14} , T2₁₄. Logo, o Laço L_A é composto pelas chaves S_{14} , S_8 , S_6 , S_5 , S_1 e S_2 . Destaca-se que L_A contém uma única chave de interconexão, S_{14} conforme mencionado no item III.2.5.

De forma análoga, são formados os laços L_B e L_C . Neste caso, a execução da Etapa-1 conduz à seguinte formação de laços:

Laço A-(L_A): S₁₄, S₈, S₆, **S**₅, **S**₁, S₂;

Laço B-(L_B): S₁₅, S₁₁, **S₁₀**, **S₅**, S₇;

Laço C-(L_C): S₁₆, S₁₃, S₁₂, **S₁₀, S₁**, S₃, S₄.

Com esta formação, identifica-se: (i) a chave S_1 comum aos laços L_A e L_C ; (ii) a chave S_5 comum aos laços L_A e L_B e (iii) a chave S_{10} comum aos laços L_B e L_C .

Etapa-2: Ordenação dos laços

O objetivo desta etapa é a definição da ordem ótima dos laços a partir do índice de sensibilidade proposto, *SS* (Equação III.9), obtido através da simulação do FPO com a rede malhada. A Tabela III.1 mostra os índices para as chaves deste sistema.

Tabela III.1 – Índices de Sensibilidade SS (Equação III.8)

Chave	SS	Chave	SS
S ₁	180,8755	S ₁₀	126,7872
S ₂	118,5432	S ₁₁	50,4846
S ₃	49,4363	S ₁₂	65,1025
S ₄	15,9046	S ₁₃	69,3151
S ₅	187,5587	S ₁₄	65,6413
S ₆	158,6928	S ₁₅	24,0618
S ₇	9,3415	S ₁₆	5,6018
S ₈	44,2152		

A Tabela III.2 apresenta as listas de chaves associadas a cada laço, ordenadas em ordem crescente dos respectivos índices de sensibilidade *SS*.

Laço	Listas de Chaves
L_{A}	$S_8 - S_{14} - S_2 - S_6 - S_1 - S_5$
L _B	$S_7 - S_{15} - S_{11} - S_{10} - S_5$
L _C	$S_{16} - S_4 - S_3 - S_{12} - S_{13} - S_{10} - S_1$

Tabela III.2 – Listas de chaves associadas a cada laço (Etapa-2):

Verifica-se que as chaves associadas aos menores índices em cada laço são as chaves S_{16} , $S_7 \, e \, S_8$, conduzindo a ordem $L_C - L_B - L_A$. Como L_C é o primeiro laço a ser reconfigurado, a chave S_1 deve ser eliminada do laço L_A , enquanto que S_{10} deve ser retirada de L_B . Adicionalmente, como L_A será reconfigurado após L_B , S_5 deve ser eliminada de L_A . Após as eliminações das chaves comuns, os laços L_C , $L_B e L_A$ ficam definidos como:

$$\begin{split} 1^{0} \text{ Laço } (\text{L}_{\text{C}}) &: \text{S}_{16}, \text{S}_{4}, \text{S}_{3}, \text{S}_{12}, \text{S}_{13}, \textbf{S}_{10}, \textbf{S}_{1}; \\ 2^{0} \text{ Laço } (\text{L}_{\text{B}}) &: \text{S}_{7}, \text{S}_{15}, \text{S}_{11}, \textbf{S}_{5}; \\ 3^{0} \text{ Laço } (\text{L}_{\text{A}}) &: \text{S}_{8}, \text{S}_{14}, \text{S}_{2}, \text{S}_{6}. \end{split}$$

Etapa-3: Reconfiguração dos laços

Esta etapa consiste na determinação do ponto de perdas mínimas do sistema, através da simulação do FPO (item III.2.2) para reconfiguração dos laços, utilizando-se a ordem da Etapa-2. Após cada simulação são calculados os índices de sensibilidade *SS* associados às chaves do laço sob análise.

A reconfiguração do laço L_c não requer simulação adicional do FPO, pois as condições de análise de L_c são as mesmas da Etapa-2, ou seja, considera-se toda a rede malhada. Portanto, S₁₆ deve ser selecionada para abertura.

Seguindo, realiza-se a simulação corresponde ao laço L_B . Esta simulação considera o laço L_C reconfigurado e o restante da rede malhada. Os índices de sensibilidade *SS* do laço L_B , calculados após a simulação, são apresentados na Tabela III.3.

Chave	S ₇	S ₁₅	S ₁₁	S ₅
SS	11,602	26,186	51,603	186,949

Tabela III.3 – Índices SS: sistema 14 barras Laço LB.

O último laço a ser reconfigurado é LA. A Tabela III.4 apresenta os índices SS obtidos para as chaves do laço L_A .

Tabela III.4 – Índices SS: sistema 14 barras Laço LA.

Chave	S ₈	S ₁₄	S ₂	S ₆
SS	44,723	65,822	119,300	158,886

Após estes procedimentos, o resultado obtido para este sistema de 14 barras corresponde a abertura das chaves S_{16} , S_7 e S_8 a partir da configuração em malha.

A Tabela III.5 mostra a lista de chaves vizinhas as chaves abertas na etapa 3 e que serão utilizada na etapa 4 a fim de se melhorar a solução encontrada.

Tabela III.5 – Lista de chaves vizinhas selecionadas.

Laço	Chave Aberta	Chave vizinha Selecionada para etapa 4
L_{A}	S ₈	S ₁₄
L _B	S ₇	S ₁₅
L _C	S ₁₆	S ₃ ; S ₄

Etapa-4: Refinamento da solução

A aplicação de permuta de status entre a chave aberta e suas vizinhas selecionadas não resultou em nenhuma melhoria da solução para este sistema. Permanecendo a solução encontrada na etapa 3. Na topologia final obtida, as perdas neste sistema de 14 barras diminuíram para 466,13 kW. Em relação à topologia inicial, ocorreu uma redução de 8,66% no valor das perdas, como mostra a Tabela III.6.

Topologia	Perdas (kW)	Chaves Abertas
Inicial	511,44	$S_{14} - S_{15} - S_{16}$
AHR	466,13	S ₇ - S ₈ - S ₁₆

Tabela III.6 – Resultados: sistema 14 barras.

A solução encontrada pelo AHR , neste caso, corresponde a solução ótima global do sistema, essa resposta foi obtida pela enumeração exaustiva de todas as soluções em [37]. Outros trabalhos [10], [16], [36] e [37] apresentaram a mesma solução.

III.3 Metodologia Heurística Construtiva Proposta para Alocação Ótima de Bancos Fixos de Capacitores

III.3.1 Considerações Iniciais

Nos sistemas radiais de distribuição de energia elétrica (SDE) devem ser instalados bancos de capacitores para reduzir as perdas, melhorar o perfil de tensão, corrigir o fator de potência, reduzir as perdas técnicas e aliviar o carregamento de potência reativa capacitiva liberando capacidade no sistema. A decisão do local de instalação, capacidade e tipos de banco (fixos ou chaveados) a serem utilizados, de forma a minimizar os custos operacionais do sistema, está sujeita a um conjunto de restrições operacionais que conduz a um problema de programação não linear inteira mista. As restrições de limite de tensão nas barras e o objetivo de reduzir perdas pela instalação destes capacitores tornam-se conflitantes, principalmente nos períodos de maior carregamento do sistema. Diante do quadro descrito, surgiu a motivação para o desenvolvimento deste trabalho, ou seja, a elaboração de uma técnica de solução baseada em um algoritmo heurístico construtivo, considerando-se três níveis de carregamento no sistema. Para solução deste problema, no presente trabalho, foram adotadas as seguintes considerações:

- A curva de variação da carga do sistema [45] (curva de demanda) é aproximada por níveis discretos de carregamento (u), sendo cada um com uma duração pré determina (T_u).
- As cargas do sistema (residências, industriais e comerciais) têm o mesmo padrão de variação.
- As cargas são modeladas como sendo potência constante.
- A tensão na subestação é fixa em 1,0 pu.
- A heurística utilizada seleciona um conjunto de barras candidatas [73] a alocação de bancos de capacitores reduzindo o espaço de busca.
- Neste trabalho será considerada a alocação somente de bancos fixos de capacitores, ou seja, o banco uma vez alocado no sistema permanecerá instalado independente do nível de carregamento.

Neste trabalho a curva de carga será discretizada em três níveis de carregamento [45]: leve, médio e pesado, com intervalos de tempo pré determinados. O horizonte de planejamento será de um ano (8760 horas).

III.3.2 Formulação do Problema Alocação Ótima de Bancos Fixos de Capacitores

O problema referente à alocação de banco de capacitores em sistemas de distribuição de energia pode ser formulado como:

Min FOB =
$$\left[\sum_{u=1}^{nt} \left(\sum_{k=1}^{nc} ce_{u} \cdot T_{u} \cdot L_{k,u}\right) + \sum_{i=1}^{nb} cb \cdot Qc \cdot \sum_{m=1}^{ncb} CH_{m,i}(x)\right]$$
 (III.11)

Sujeito a:

$$Pg_{i,u} - Pl_{i,u} + \sum_{j \in \Omega i} p_{ij,u} = 0$$
(III.12)

$$Qg_{i,u} + \left[Qc.\sum_{m=1}^{ncb} CH_{m,i}(x)\right] - Ql_{i,u} + \sum_{j \in \Omega i} q_{ij,u} = 0 \ (\lambda Q_{i,u})$$
(III.13)

$$L_{k,u} = g_{ij} \cdot [V_{i,u}^2 + V_{j,u}^2 - 2 \cdot V_{i,u} \cdot V_{j,u} \cdot \cos(\theta_{ij,u})]$$
(III.14)

$$p_{ij}^{\min} \le p_{ij,u} \le p_{ij}^{\max} \tag{III.15}$$

$$0 \le x \le 20 \tag{III.16}$$

$$\overline{Z}^{\min} \le \overline{Z} \le \overline{Z}^{\max} \tag{III.17}$$

Onde:

FOB	Representa a função objetivo;
пс	Representa o número de ramos (circuitos entre duas barras);
Ncb	Número de bancos de capacitores que podem ser instalados em uma mesma barra;
nb	Numero de barras candidatas;
nt	Representa o número de níveis de carregamento;
и	Representa o nível de carregamento;
Ce _u	Representa o custo da energia elétrica (US\$/kWh) para cada nível de carregamento <i>u</i> ;
T_u	Tempo de duração de cada nível de carregamento do sistema (horas);
$L_{k,u}$	Perda de potencia ativa para o circuito k no nível de carregamento <i>u</i> ;
Qc	Representa a potência nominal reativa do banco;
cb	Custo do banco de capacitor (US\$/kVAr);
$CH_{m,i}(x)$	Representa a chave associada a inserção do banco de capacitor <i>m</i> , na barra <i>i</i> .
	(Ecuação III.1).
x	Argumento da função sigmóide (Equação III.1);

$\lambda Q_{i,u}$	Multiplicador de Lagrange: Reflete a sensibilidade da função objetivo a
	variação da injeção de potência reativa na barra i no nível de carregamento u;
$Pg_{i,u}$	Geração de Potência ativa na barra <i>i</i> no nível de carregamento <i>u</i> ;
$Pl_{i,u}$	Carga de potência ativa na barra <i>i</i> no nível de carregamento <i>u</i> ;
$p_{ij,u}$	Fluxo de potência ativa no circuito <i>i-j</i> no nível de carregamento <i>n</i> ;
$Qg_{i,u}$	Geração de potência reativa na barra <i>i</i> no nível de carregamento <i>u</i> ;
$Ql_{i,u}$	Carga de potência reativa na barra i no nível de carregamento <i>u</i> ;
$q_{ij,u}$	Fluxo de potência reativa no circuito <i>i-j</i> no nível de carregamento <i>u</i> ;
V _{i,u}	Módulo da tensão na barra i no nível de carregamento <i>u</i> ;
g_{ij}	Condutância do circuito <i>i-j</i> ;
$\theta_{ij,u}$	Diferença entre os ângulos das tensões das barras do circuito <i>i-j</i> no nível de
	carregamento <i>u</i> ;
\overline{Z}	Vetor correspondente as variáveis que possuem limites inferiores e
	superiores;
$\Omega_{_{i}}$	Conjunto de barras diretamente conectadas a barra i;

O primeiro termo da função objetivo (III.11) corresponde ao custo das perdas de energia elétrica ativa, o segundo termo representa o custo de alocação dos bancos de capacitores. Observa-se que se $CH_{m,i}(x) = 0$, nenhum investimento em capacitor é realizado na barra *m* através da chave *i*. A Figura III.6 ilustra o chaveamento de capacitores em uma barra *i* de um sistema de distribuição hipotético de energia elétrica.

Figura III.6 – Exemplo de chaveamento de bancos de capacitores

Pode ser observado na figura III.6 que nem todas as barras do sistema são selecionadas para alocação de bancos fixos de capacitores.

As restrições (III.12) e (III.13) de balanço de potência ativa e reativa, respectivamente, analisam diretamente o estado da rede, em que as leis de Kirchhoff ("lei dos nós" e "lei das malhas") devem se manter em equilíbrio para todo e qualquer nível de carregamento.

A equação (III.14) é referente a perda de potencia ativa no circuito *k* entre as barras *i-j* em um nível de carregamento *u* do sistema.

A restrição funcional (III.15) corresponde ao limite de fluxo de potência ativa para qualquer um dos circuitos.

A equação (III.16) corresponde aos limites adotados para função sigmóide que representa a chave.

A restrição (III.17) representa os limites das variáveis que possuem limites superiores e inferiores tais como módulo de tensão, geração de potência ativa e reativa.

Diante da modelagem utilizada para o chaveamento, a expressão (III.11) passa a representar um problema de otimização não linear com variáveis contínuas, que será resolvido pela método primal-dual de pontos interiores. Verifica-se que a variável $CH_{m,i}(x)$ pode assumir qualquer valor no intervalo [0,1], tendo em vista que tais valores não são realizáveis na prática, torna-se necessário um passo adicional para decisão de quais as chaves assumiram valor zero (chave aberta- não inserção do banco) ou um (chave fechada- inserção do banco). Para tanto, este trabalho propõe um algoritmo heurístico construtivo detalhado a seguir.

III.3.3 Algoritmo Heurístico Construtivo Proposto (AHC) para Alocação de Bancos Fixos de Capacitores

Um algoritmo heurístico construtivo é um procedimento passo a passo, onde a cada passo é inserido um banco de capacitor, de valor previamente definido, em uma das barras candidatas à alocação. A barra candidata selecionada a alocação é escolhida através de um indicador de sensibilidade ou de desempenho. Assim, o processo de otimização é iniciado com o sistema base, ou seja, sem a inclusão de qualquer fonte de potência reativa, isso é realizado com objetivo de verificar as perdas iniciais do sistema, esse valor será utilizado no primeiro passo do algoritmo como critério de decisão do processo de alocação.

Em cada etapa de resolução é selecionada uma barra candidata do sistema, escolhida por um indicador de sensibilidade, e o sistema base é atualizado com a adição do banco de capacitor. O processo é tido como encerrado quando a função objetivo, referente a minimização das perdas ativas e dos investimentos em capacitores, não puder ser mais reduzida.

Do ponto de vista teórico, os algoritmos heurísticos construtivos, nem sempre encontram a configuração ótima global do problema considerado [74], na prática estes algoritmos heurísticos encontram as configurações ótimas de sistemas de pequeno porte e geralmente encontram soluções de boa qualidade para sistemas elétricos de médio e grande porte. Entretanto, são importantes pelos seguintes motivos: *(i)* são robustos e de fácil entendimento; *(ii)* apresentam baixos esforços computacionais; *(iii)* algumas características, propriedades e resultados destes algoritmos podem ser empregados no desenvolvimento de algoritmos mais complexos.

O algoritmo heurístico construtivo proposto pode ser dividido em três etapas distintas:

1) Etapa de Seleção:

Um aspecto importante do problema de alocação de bancos de capacitores é a questão relacionada a dimensão da região de solução , uma vez que esta eleva o esforço computacional exigido pelo algoritmo. Diante disso, nesta etapa, a metodologia proposta utiliza três diferentes tipos de informação obtidas da solução do FPO do caso base, a fim de determinar um índice de sensibilidade que é usado para reduzir o espaço de busca do

problema, ou seja, determinar entre todas as barras do sistema, aquelas que serão candidatas a alocação de bancos de capacitores. O índice de sensibilidade $BS_{i,u}$ é definido para cada barra *i* considerando o nível de carregamento do sistema u, como se segue:

$$BS_{i,u} = \lambda Q_{i,u} \cdot \frac{Ql_{i,u}}{V_{i,u}}$$
(III.18)

Onde:

- $BS_{i,i}$ Índice de sensibilidade da barra *i* no nível de carregamento *u*;
- λQ_{i,u} Multiplicador de lagrange associado a equação do balanço de potência reativa
 (III.13) da barra *i* no nível de carregamento *u*;

 Ql_{iu} Carga reativa na barra *i* no nível de carregamento *u*;

 $V_{i,u}$ Magnitude da tensão da barra *i* no nível de carregamento *u*;

Analisando-se o índice proposto, fica claro que o suporte de reativo é mais necessário em barras cuja demanda por potência reativa é maior e a magnitude de tensão encontra-se abaixo de seu valor nominal. Logo o índice proposto foi concebido para refletir essas duas condições incluindo também a sensibilidade dada pelo multiplicador de lagrange. É observado também que a unidade do índice $BS_{i,u}$ é V expressando o custo para se elevar a tensão na barra *i*.

A equação (III.18) sugere ainda que cada barra terá um valor de índice de sensibilidade para cada nível de carregamento da barra No presente trabalho o número de barras candidatas é de 20% das barras de maior índice de sensibilidade em cada nível de carregamento. Este valor se mostrou eficiente em todos os sistemas simulados.

2) Etapa Contínua:

Nesta etapa um FPO (III.11)é calculado assumindo-se que as chaves são representadas pela função sigmóide (III.1). Logo a função $CH_{m,i}(x)$ pode assumir qualquer valor no intervalo $0 \le CH_{m,i}(x) \le 1$. Uma vez que o valor da função chave tenha sido

determinado, um novo índice de sensibilidade de chave $(SS_{i,u})$ é definido para determinar a melhor chave a ser fechada, como segue:

$$SS_{i,u} = BS_{i,u}.CH_{m,i}(x)$$
(III.19)

Onde:

- $SS_{i,u}$ Índice de sensibilidade de chave da barra *i* no nível de carregamento *u*;
- $BS_{i,u}$ Indice de sensibilidade da barra *i* no nível de carregamento *u*;

 $CH_{mi}(x)$ Chave(s) ligada(s) na barra candidata;

A chave que tiver o maior valor do índice $SS_{i,u}$ será fechada e conseqüentemente o correspondente banco de capacitores será conectado a rede de distribuição. Uma vez fechada, a chave se manterá fechada durante todo o processo de solução do algoritmo. Pode ser visto na Equação (III.11) que é possível se instalar *ncb* banco de capacitores em uma determinada barra *i*. Entretanto só é permitido que uma dessas chaves seja fechada por vez.

Diante da modelagem utilizada para o chaveamento, foram adotados os seguintes critérios: (*i*) para as barras candidatas à inserção de bancos de capacitores, tem-se x[0,20]; isto permite que as chaves assumam valores contínuos dentro do intervalo de decisão [0,1]; (*ii*) se uma determinada barra candidata do sistema é selecionada à alocar um banco de capacitores, faz-se x variar no intervalo [11,20] e assim, tem-se $CH_{m,i}(x)=1$ representando a inserção do banco de capacitores; (iii) para barras candidatas não selecionadas faz-se x[0,0.0001], e assim, tem-se $CH_{m,i}(x)=0$. Para o intervalo x de [0.0001,11], o comportamento da chave é idêntico ao intervalo descrito em (i), como pode ser visto na Figura III.1.

3) Etapa Discreta:

Conforme mencionado anteriormente, um passo adicional é necessário para encontrar soluções discretas. Nesta etapa, os valores de todas as funções chaves que correspondam a todas as chaves que foram fechadas são feitos igual a 1 considerando-se todas as funções chaves restantes ajustadas em zero. Logo um FPO é então executado.

O processo iterativo continuará enquanto o valor da FOB (Equação III.11) permanecer menor que o valor da FOB anterior. Enquanto a convergência não for obtida, novos valores de FOB, Magnitudes de tensões e multiplicadores de Lagrange serão atualizados e usados nas próximas iterações.

O fluxograma do algoritmo proposto é apresentado na figura III.7.

Figura III.7 – Fluxograma do AHC

III.3.4 Níveis de Carregamento

A exemplo da literatura especializada [41], [42], [45], [47], no presente trabalho será considerado, para efeito de alocação de bancos fixos de capacitores, três níveis de carregamento do sistema de distribuição, sendo eles *(i)* Leve; *(ii)* Médio e *(iii)* Pesado, cada um com uma parcela de tempo dentro horizonte de planejamento de um ano (8760 horas), conforme pode ser observado na Figura III.8.

Figura III.8 - Curva de Carga Discreta Adotada.

Assim sendo, deve-se encontrar uma proposta única de solução que contemple os três níveis de carregamento, respeitando-se todas as restrições operacionais do sistema.

III.3.5 Estrutura da Matriz Hessiana Para solução do AHC

Nesse item apresenta-se a estrutura da matriz Hessiana considerando a proposta de alocação de bancos fixos de capacitores e os três níveis de carregamento detalhados no item anterior. Para melhor compreensão da matriz considere o sistema hipotético de duas barras mostrado na Figura III.9.

Figura III.9 – Sistema Hipotético de 2 barras.

Observa-se na figura III.10 que a matriz Hessiana de solução deste problema é altamente esparsa, sendo possível aplicar técnicas de esparsidade a fim de se reduzir a necessidade de memória e diminuir esforço computacional.

	CH1	CH2	PG _{1L}	QG1L	θ _{1L}	λp _{1L}	V _{1L}	λq _{1L}	θ_{2L}	λp_{2L}	V_{2L}	λq_{2L}	PG _{1M}	QG _{1M}	θ _{1M}	λр _{1М}	∇_{1M}	λq _{1M}	θ _{2M}	λp _{2M}	V_{2M}	λq _{2M}	PG _{1P}	QG _{1P}	θ ₁ ρ	λр1Р	V_{1P}	λq _{1P}	θ_{2P}	λр2Р	V _{2P}	λq _{2P}
CH1	Х							Х										Х										Х				
CH2		Х										Х										Х										Х
PG _{1L}			MPI			-1																										
QG _{1L}				MPI				-1																								
θ _{1L}					н	J	н	J	н	Ъ	н	J																				
λp_{1L}			-1		U.		J.		J.		J.																					
V _{1L}					Н	J	Н	J	н	J	Н	J																				
λq _{1L}	Х			1	J.		J.		IJ		J																					
θ_{2L}					н	Ъ	н	J	н	Ъ	н	J																				
λp_{2L}					J.		J		J		J																					
V_{2L}					Н	J	Н	J	н	J	Н	J																				
λq_{2L}		Х			IJ		J.		J.		J																					
PG _{1M}													MPI			-1																
QG _{1M}														MPI				-1														
θ _{1M}															Н	Ъ	н	J	н	J	н	J										
λp _{1M}													-1		J		J		-		J											
V_{1M}															н	J	н	J	н	J	н	J										
λq _{1M}	Х													-1	J.		J		J		J											
θ_{2M}															Н	Ч	н	Ĵ	Η	Т	н	J										
λp_{2M}															J		J		-		J											
V_{2M}															н	J	н	J	н	J	н	J										
λq_{2M}		Х													J		J		J		J											
PG _{1P}																							MPI			-1						
QG1P																								MPI				-1				
θ _{1P}																									н	Ĵ	н	J	Н	J.	Н	J
λр1Р																							-1		J		J		J		J	
V _{1P}																									Н	J.	H	J	Η	J	н	J
λq _{1P}	Х																							-1	J		J		. J.		J	
Ө ₂ р																									н	J	н	IJ	Н	ij.	н	Ĵ.
λр2Р																									J		J		J		J	
V _{2P}																									Н	J.	Н	J	Н	J	н	J
λq _{2P}		Х																							J		J		J		J	

Figura III.10 – Estrutura da Matriz Hessiana do sistema de 2 barras.

Onde:

H e J Corresponde às derivadas de segunda ordem entre as variáveis $\theta_{1L}; \lambda_{p1L}; V_{1L}; \lambda_{q1L}; \theta_{2L}; \lambda_{p2L}; V_{2L}; \lambda_{q2L}; CH_1; CH_2; P_{G1L}; Q_{G1L};$ $\theta_{1M}; \lambda_{p1M}; V_{1M}; \lambda_{q1M}; \theta_{2M}; \lambda_{p2M}; V_{2M}; \lambda_{q2M}; P_{G1M}; Q_{G1M};$ $\theta_{1P}; \lambda_{p1P}; V_{1P}; \lambda_{q1P}; \theta_{2P}; \lambda_{p2P}; V_{2P}; \lambda_{q2P}; P_{G1P}; Q_{G1P}$

Os sub-índices L, M e P indicam que a variável esta associada ao carregamento Leve, Médio ou Pesado, respectivamente. Assim sendo, por exemplo, tem-se θ_{1L} como sendo a tensão na barra 1 no nível leve carregamento, θ_{1M} a tensão na barra 1 no nível médio de carregamento e θ_{1P} é a tensão na barra 1 no nível pesado de carregamento do sistema. As demais variáveis seguem a mesma lógica.

As posições assinaladas com um "X" representam o acoplamento entre as chaves e as variáveis presentes em cada nível de carregamento conforme formulação proposta em III.3.2.

A dimensão da matriz Hessiana para solução do problema de reconfiguração com a modelagem proposta é dada pelas seguintes equações:

$$DimW = (2 \times NGER + 4 \times NBAR) \times nt + NCH$$
(III.20)
$$NCH = Ncb \times nb$$
(III.21)

III.3.6 Exemplo de Aplicação do AHC

Um exemplo de aplicação do algoritmo proposto é realizado a seguir. Para tanto reconsidere o sistema de 14 barras da Figura III.5.

Os seguintes custos e parâmetros foram utilizados na função objetivo da Equação III.11: (*i*) custo de 4 US\$/kVAr para cada banco de capacitor; (*ii*) custo de energia de 0.06 US\$/kWh para os três níveis de carregamento; (*iii*) foi adotado um horizonte de investimento tomando como base o período de 1 ano (8760 horas) dividido da seguinte maneira: [1000, 6760, 1000] horas para os níveis de carregamento leve, médio e pesado, respectivamente; (*iv*) os fatores de carregamento foram definidos em termos da carga nominal do sistema como sendo 0,5 pu para o nível de carregamento leve, 1,0 pu para o nível de carregamento pesado. (v) adotou-se

a aplicação de somente um banco de capacitores de 150 kVA por barra selecionada. O limite inferior de tensão adotado nesse exemplo é de 0,85 pu e o máximo de 1,05 pu, a tensão na barra de geração foi fixa em 1,0 pu.

Destaca-se que para o nível pesado o sistema foi extremamente estressado no que diz respeito ao seu carregamento, o que leva a uma situação de alta regulação de tensão que deverá em parte, ser resolvida pela aplicação dos capacitores.

Etapa de Seleção:

FPO caso base

O resultado do FPO simulado para o caso base é dado na tabela a baixo:

Nivel de Carregamento	Perdas(kW)	Custo das Perdas(US\$)			
Leve	255,72	15343,07			
Médio	1083,69	439547,70			
Pesado	8176.79	490607,23			
Total	9.516,20	945498.00			

Tabela III.7 – FPO caso base para o sistema 14 barras.

<u>Índices de Sensibilidade</u> BS_{i u}

Os valores dos índices de $BS_{i,u}$ são determinados para todas as barras *i* com os resultados do FPO do caso base, cabe destacar que esse valor é dado para cada barra *i* em cada nível de carregamento *u*. No entanto, para posterior escolha das barras que serão candidatas a alocação é tomado o maior dos índices da barra *i* referente aos níveis de carregamento *u*, conforme observado no gráfico da Figura abaixo:

Figura III.11 – Índice de Sensibilidade $BS_{i\mu}$.

Pode ser observado na Figura III.11 que 3 das 14 barras apresentam os maiores valores de índice de sensibilidade comparado as demais. A tabela a seguir mostra o ranking das barras segundo seus valores de $BS_{i,u}$.

Ranking	Barras	Ranking	Barras
1ª	6	15 ^a	4
2ª	7	16 ^a	3
3ª	10	17 ^a	12
4 ^a	8	18ª	13
5 ^ª	9	19ª	11
6ª	5	20ª	14
7ª	2	21ª	1

Tabela III.8 – Ranking das Barras Segundo Índice $BS_{i,u}$.

Seleção das barras candidatas a alocação:

De acordo com a etapa anterior o espaço de busca para o AHC foi reduzido e as barras escolhidas como candidatas a alocação são apresentadas na tabela a seguir. Ressaltase que o número de barras candidatas representa 20% das barras com maiores índices de sensibilidade em cada nível de carregamento, isso implica que as barras escolhidas em um determinado nível podem não ser as mesmas para outro nível, com isso, o número de barras candidatas pode ser maior que 20% do total de barras do sistema. No exemplo, as barras 6,7 e 8 foram indicadas para os níveis leve e médio, e as barras 7, 8 e 10 para o pesado. Portanto o espaço de busca fica determinado pela união dos conjuntos das barras determinadas para cada nível. As barras selecionadas no exemplo são mostradas na tabela III.9.

Tabela III.9 - Barras Candidatas - Etapa de Seleção.

Barras Candidatas					
6	7	10	8		

Etapa Contínua:

Nesta etapa as chaves são inseridas no problema e então é simulado um FPO, com o problema convergido todas as chaves se encontram no intervalo [0,1] conforme mostrado a seguir.

Número da Chave	Barra da Chave	Valor da Chave
1	6	0,990
2	7	0,990
3	10	0,990
4	8	0,992

Tabela III.10 - Valores de Posição das Chaves - Etapa Contínua.

Com os valores de posição das chaves calculam-se os índices de sensibilidade $SS_{i,u}$. Ressalta-se mais uma vez que será escolhido o maior entre os 3 níveis de carregamento para que esse represente a barra. Os valores de $SS_{i,u}$ são apresentados na tabela III.11.

Número da Chave	Barra da Chave	Valor do maior SS _{i,u}
1	6	0,2077
2	7	0,1310
3	10	0,0848
4	8	0,0695

Tabela III.11 – Calculo dos índices $SS_{i,u}$ - Etapa Contínua.

A chave a ser fechada é a que possuir o maior valor para $SS_{i,u}$. Portanto, de acordo com a Tabela III.10, a chave a ser fechada é a chave número 1 que alocará um capacitor na barra 6.

Etapa Discreta:

Com a chave fechada determinada na etapa anterior, um novo FPO (Equação III.11) é simulado . Se a convergência do FPO for obtida normalmente uma nova FOB é determinada, se não a chave é aberta e a chave com o segundo maior valor de $SS_{i,u}$ é fechada e o FPO é simulado novamente e assim consecutivamente até que se obtenha convergência ou que todas as chaves sejam testadas, caso a ultima situação ocorra o programa é terminado indicando que a alocação não foi possível.

Nesse exemplo o programa convergiu normalmente com a chave 1 fechada, assim o novo valor da FOB é:

Tabela III.12 – Calculo da FOB- etapa discreta.

FOB anterior	945.497,99
FOB atual	943.781,67

Assim, Enquanto $FOB_{Atual} \leq FOB_{Anterior}$ ou até que todas as chaves tenham sido fechadas, o processo voltará a etapa contínua e os mesmos procedimentos descritos serão realizados.

A Figura III.12 ilustra a trajetória de redução de perdas do AHC e a Tabela III.13 mostram o resultado final da alocação.

Figura III.12 - Trajetória de Redução de Perda

Nivel de Carregamento	Perdas(kW)	Custo das Perdas(US\$)		
Leve	251,89	15113,67		
Médio	1072,51	435006,73		
Pesado	8110,69	486641.70		
Total	9435,09	936762,12		
Capacidade Total Instalada (kVAr)	60	00		
Custo dos Bancos (US\$)	2400,00			
FOB (US\$)	939162,12			
Tempo de Simulação	5 segundos			

Tabela III.13 – Resultados do AHC

Observa-se nesse exemplo que as perdas foram reduzidas em aproximadamente 1%, no entanto, como será visto no Capitulo IV, as reduções em sistemas reais, bem como em outros sistemas encontrados na literatura, são bem mais relevantes. Destaca-se também, que o tempo de simulação é muito pequeno.

Capítulo IV

Estudo de Casos

IV.1 Introdução

O objetivo deste capítulo é apresentar os resultados obtidos através da aplicação das metodologias propostas para reconfiguração ótima de redes de distribuição e também de alocação ótima de bancos fixos de capacitores. Os sistemas utilizados para simulação das metodologias propostas são bem conhecidos na literatura sendo eles:

- 1. Sistema de distribuição radial de 33 Barras [12];
- 2. Sistema de distribuição radial de 70 barras [23];
- 3. Sistema de distribuição radial de 83 barras [29];
- 4. Sistema de distribuição brasileiro de 476 barras [36], [37].

Os dados complementares destes sistemas encontram-se no Apêndice B.

OBS: O sistema de 70 barras [23] (os dados desse sistema não se encontram no apêndice B, todavia podem ser encontrados em [23]) é aplicado no estudo de caso de reconfiguração, no estudo de casos de alocação é utilizado um outro sistema de 70 barras cujos dados encontram-se no Apêndice B.

Todas as simulações foram realizadas em um computador Pentium IV, 2,66 GHz e 512 MB de RAM. As implementações foram feitas em MATLAB.

IV.2 Resultados do AHR para Reconfiguração

Nesta seção, são apresentados os resultados obtidos através da aplicação do algoritmo heurístico proposto para reconfiguração (AHR) de redes de distribuição. Os limites inferiores e superiores de tensão nodal adotados são 0,92 p.u. e 1,05 p.u., respectivamente. A tensão da subestação é considerada fixa e igual a 1.0 pu.

IV.2.1 Sistema Teste de 33 Barras:

O sistema apresentado por Baran [12] é ilustrado na Figura IV.1. A rede de 12,66 kV consiste de 33 barras e 5 laços, com uma carga total de 5058,25 kW e 2547,32 kVAr. As chaves normalmente abertas S_{33} , S_{34} , S_{35} , S_{36} e S_{37} são representadas por linhas tracejadas e as normalmente fechadas por linhas contínuas. A perda inicial é de 202.68 kW.

Figura IV.1 – Sistema teste de 33 barras.

Os resultados encontrados para esse sistema são apresentados e comparados com a literatura na Tabela IV.1.

Método	Chaves Abertas	Perda (kW)
AHR (Proposto)	$S_7 - S_9 - S_{14} - S_{32} - S_{37}$	136,57
Gomes [36]	$S_7 - S_9 - S_{14} - S_{32} - S_{37}$	136,57
Shirmohammadi [13]	$S_7 - S_9 - S_{10} - S_{32} - S_{37}$	136,66
Baran e Wu [12]	$S_7 - S_9 - S_{14} - S_{32} - S_{37}$	136,57

Tabela IV.1 - Resumo dos resultados obtidos para o sistema de 33 barras.

Ressalta-se que o AHR encontrou a solução final com 21 simulações do FPO, sendo que 5 para o caso base e 16 para a etapa de refinamento, ocasionando em uma redução de aproximadamente 33% das perdas totais do sistema. Os resultados obtidos com e sem a etapa de refinamento são apresentados a seguir.

Tabela IV.2 - Resultado do AHR com e sem etapa de refinamento

Chaves Abertas Sem	Chaves Abertas Com				
Etapa de Refinamento	Etapa de Refinamento				
S ₆	S ₇				
S ₁₀	S9				
S ₁₄	S ₁₄				
S ₃₂	S ₃₂				
S ₃₇	S ₃₇				
Perdas (kW)					
137,59	136,54				

Observa-se que há a troca entre chaves vizinhas resultando em uma pequena melhora da qualidade da resposta.

IV.2.2 Sistema Teste de 70 Barras [23]:

A Figura IV.2 apresenta o diagrama do sistema de distribuição de 70 barras [23], o qual é constituído de 5 alimentadores de 12,66 kV, 1 subestação e 74 ramos. Os ramos S_{70} , S_{71} , S_{72} , S_{73} e S_{74} são chaves normalmente abertas. Estas chaves, juntamente com as chaves
normalmente fechadas, somam 57 chaves manobráveis, estando excluídos deste conjunto os ramos nos quais a abertura de sua chave resultaria em isolamento de alguma parte do sistema. As perdas na configuração inicial deste sistema são de 20,84 kW.

Figura IV.2 – Sistema teste de 70 barras.

Os resultados encontrados para esse sistema são apresentados e comparados com a literatura na Tabela IV.3.

Método	Chaves Abertas	Perda (kW)		
Caso Base	S70 - S71 - S72 - S73 - S74	20,84		
AHR (Proposto)	$S_{15} - S_{57} - S_{62} - S_{70} - S_{71}$	9,34		
Chiang e Jean-Jumeau [23]	$S_{15} - S_{59} - S_{62} - S_{70} - S_{71}$	9,34		
Montavani, Casari e	$S_{14} - S_{56} - S_{62} - S_{70} - S_{71}$	9,34 *		

Tabela IV.3 - Resumo dos resultados obtidos para o sistema de 70 barras

* O trabalho apresentado em [23] encontra alem dessa, mais outras nove configurações com perdas finais de 9,34 kW.

Romero [13]

A tabela a seguir apresenta os resultados obtidos com e sem a etapa de refinamento.

	Resultado sem Etapa	Resultado com Etapa
	Refinamento	Refinamento
Chaves abertas	$S_{14} - S_{56} - S_{63} - S_{70} - S_{71}$	$S_{15} - S_{57} - S_{62} - S_{70} - S_{71}$
Perdas	9,48	9,34
Simulações de FPO	5	31
Tempo (s)	2,51	8,58

Tabela IV.4 - Resultado do AHR com e sem etapa de refinamento

IV.2.3 Sistema Teste de 83 Barras:

A Figura IV.3 apresenta um sistema de distribuição da Taiwan Power Company [29] com 11 alimentadores e 83 barras. A rede possui uma carga de 30750 kW e 22300 kVAr. A configuração inicial da rede apresenta 83 seccionadoras (normalmente fechadas) e 13 chaves de interconexão (normalmente abertas) cuja representação é feita por linhas tracejadas.

Para este sistema as perdas iniciais são de 564,29 kW.

Figura IV.3 – Sistema teste de 83 barras.

Esse sistema possui 13! (6.227.020.800) possíveis ordens para análise de laços. E o número possíveis de combinações de rede na qual a solução ótima pode ser encontrada é dado pela seguinte expressão:

$$C_n^p = \frac{n!}{p!(n-p)!}$$

Onde: *n* é o número total de chaves manobráveis (83 chaves seccionadoras + 13 chaves de interconexão) e p é o número de chaves de interconexão. Assim, o número de combinações possíveis é de:

$$C_{96}^{13} = \frac{96!}{13!(96-13)!} \cong 4,0363 \times 10^{15}$$

Esse número extremamente elevado de configurações é um excelente teste para se verificar a eficiência da metodologia.

Os resultados da simulação desse sistema são mostrados na tabela abaixo.

Método	Chaves Abertas	Perda (kW)
AHR (Proposto)	$S_{55} - S_7 - S_{86} - S_{72} - S_{13}$ $S_{89} - S_{90} - S_{83} - S_{92} - S_{93}$ $- S_{34} - S_{42} - S_{62}$	470,10
Su e Lee [29]	$\begin{array}{c} S_{55}-S_7-S_{86}\!\!-S_{72}-S_{13}\\ S_{89}-S_{90}-S_{83}\!\!-S_{92}-S_{39}\\ S_{34}-S_{41}-S_{62} \end{array}$	469,88
Cheng e Kou [77]	$S_{55} - S_7 - S_{86} - S_{72} - S_{13}$ $S_{89} - S_{90} - S_{83} - S_{92} - S_{39}$ $S_{34} - S_{41} - S_{62}$	469,88

Observa-se que em relação a topologia inicial os três métodos trocaram o status de 9 das 13 chaves.

O AHR obteve um valor de perda superior em 0,22 kW, em conseqüência da troca de 2 chaves, em comparação as metodologias [29] que utiliza algoritmo híbrido de *simulated annealing* e genético e [77] que utiliza algoritmo genético. No entanto, a diferença entre as metodologias é da ordem de 0,0468%, o que indica que do ponto de vista de redução de perdas os algoritmos encontraram a mesma resposta, redução de 11,68% de perdas em relação ao caso base.

A seguir são apresentados os resultados com e sem a etapa de refinamento.

	Resultado sem Etapa	Resultado com Etapa
	Refinamento	Refinamento
	$S_{84} - S_7 - S_{86} - S_{72} - S_{88}$	$S_{55} - S_7 - S_{86} - S_{72} - S_{13}$
Chaves abertas	$S_{89} - S_{90} - S_{83} - S_{92} - S_{93}$	$S_{89} - S_{90} - S_{83} - S_{92} - S_{93}$
	$S_{34} - S_{42} - S_{63}$	$S_{34} - S_{42} - S_{62}$
Perdas	470,62	470,10
Simulações de FPO	13	46
Tempo (s)	7,37	31,71

Tabela IV.6 – Comparação do resultado com e sem etapa de refinamento

Observa-se que a etapa de refinamento conduziu a troca de 3 chaves e uma redução de perdas de apenas 0,52 kW, esse fato ilustra a eficiência do índice heurístico proposto para escolha da chave a ser aberta, bem como a eficiência da metodologia adotada.

IV.2.4 Sistema de Distribuição Brasileiro de 476 Barras:

Para verificar a eficácia da metodologia proposta em SDE de médio porte, utilizouse um SDE brasileiro de 476 barras [36], [37], contendo 2 alimentadores aéreos urbanos de 13,8 kV. Um destes alimentadores possui 258 barras, carga ativa de 5140 kW e carga reativa de 1949 kVAr. O outro alimentador, por sua vez, possui 218 barras, carga ativa de 3874 kW e carga reativa de 1498 kVAr. Este SDE possui 22 chaves manobráveis, considerandose somente neste grupo circuitos cuja abertura não resulta em isolamento de algum trecho do sistema. Entre estas 22 chaves, quatro são de interconexão (normalmente abertas).

Para a configuração inicial, este SDE apresenta um total de 202,09 kW de perdas. O resultado encontrado pelo AHR é apresentado e comparado com Gomes [36] na tabela a seguir.

Topologia	Perdas (kW)	Chaves Abertas
Inicial	202,09	S476, S477, S478, S479
AHR	159.67	S476, S477, S90, S479
Proposto		
Gomes [36]	159,67	S476, S477, S90, S479

Tabela IV.7 - Comparação do resultado com e sem etapa de refinamento

Para esse sistema a resposta não foi melhorada pela etapa de refinamento, obtendose uma redução de perdas de 21% com a simulação de 11 FPO`s, sendo 7 desses utilizados na etapa de refinamento, mostrando a robustez da metodologia adotada.

IV.3 Resultados para Alocação Ótima de Bancos de Capacitores – Algoritmo Proposto (AHC)

A metodologia desenvolvida para alocação ótima de bancos de capacitores é aplicada aos sistemas de 70 barras e de 476 barras.

IV.3.1 Sistema Teste de 70 Barras

Os seguintes custos e parâmetros foram utilizados na função objetivo da Equação III.11: (*i*) custo de 4 US\$/kVAr para cada banco de capacitor; (*ii*) custo de energia de 0.06 US\$/kWh para os três níveis de carregamento; (*iii*) foi adotado um horizonte de investimento de 1 ano (8760 horas) dividido da seguinte maneira: [1000, 6760, 1000] horas para os níveis de carregamento leve, médio e pesado, respectivamente; (*iv*) os fatores de carregamento foram definidos em termos da carga nominal do sistema como sendo 0,5 pu para o nível de carregamento leve, 1,0 pu para o nível de carregamento médio e 2,45 pu para o nível de carregamento pesado. (v) adotou-se a aplicação de no máximo três bancos de capacitores de 200 kVA por barra selecionada. O limite inferior de tensão adotado nesse exemplo é de 0,9 pu e o máximo de 1,05 pu, a tensão na barra de geração foi fixa em 1,0 pu para todos os níveis de carregamento.

O resultado do FPO para o caso base, sem alocação de capacitores, é mostrado na tabela a baixo.

Nível de Carregamento	Dordan (1-W)	Custo das Perdas
	reiuas (Kw)	(US\$)
Leve	51,61	3.096,60
Médio	225,00	91.260,00
Pesado	1.970,39	118.223,40
Total	2.247,00	212.580,00

Tabela IV.8 - Resultado do caso base- Sistema teste de 70 Barras

Os índices de sensibilidade $BS_{i,u}$ calculados para redução do espaço de busca do algoritmo são mostrados na figura a seguir.

Figura IV.4 – Índices $BS_{i,u}$ para seleção de barras candidatas

As barras candidatas a alocação são escolhidas de acordo com seus índices e são mostradas na tabela seguinte.

Tabela IV.9 - Barras candidatas a alocação - Sistema teste de 70 Barras

Ranking	Barra	Ranking	Barra	Ranking	Barra
Kaliking	Candidata	Kaliking	Candidata	Naiikiiig	Candidata
1ª	62	8^{a}	12	15 ^a	69
2^{a}	65	9ª	19	16 ^a	56
3 ^a	60	10 ^a	18	17 ^a	52
4 ^a	66	11 ^a	17	18 ^a	55
5 ^a	63	12 ^a	9	19 ^a	8
6ª	22	13 ^a	25	20 ^a	51
7 ^a	13	14 ^a	70	21ª	11

A figura a seguir mostra a trajetória de redução de perdas com a alocação selecionada pelo AHC, bem como as barras nas quais os capacitores foram alocados em cada passo do algoritmo.

Figura IV.5 - Trajetória de perdas com a alocação

O resultado final da alocação de capacitores é resumido na seguinte tabela.

Nivel de Carregamento	Perdas (kW)	Custo das Perdas (US\$)			
Leve	56,63	3397,80			
Médio	145,90	59.177,04			
Pesado	1.382,10	82926,00			
Total	1.584,63	145.500,84			
Simulações de FPO	18				
Tempo de Simulação	0,7 minutos				

Tabela IV.10 - Resultados do AHC

O custo total de investimento em capacitores é US\$ 7.200,00. As perdas foram reduzidas de 2.247,00 kW para 1.548,63 kW e conseqüentemente, o custo dessas perdas foi reduzido de 212.580,00 para 145.500,84, essa redução nos custo de operação do sistema representa uma receita para a concessionária de US\$ 67.079,16.

A resposta encontrada foi comparada a outra metodologia, conforme observado a abaixo.

	AHC				T	abu	Searc	ch [5	55]		
Alocação	13	22	60	62	63	65	13	22	60	62	65
Número de Capacitores	1	1	1	3	1	2	1	1	1	3	3
FOB (US\$)	152.700,84					153	3.092	,17			

Tabela IV.11 – Comparação da Solução do AHC

Pode ser observado que o AHC encontrou uma resposta ligeiramente melhor que a metodologia [55], essa metodologia usa heurística para limitar o espaço de busca e tabu search para realizar a alocação dos bancos.

IV.3.2 Sistema Teste de 476 Barras

Considerando que na pratica a tarifação de energia elétrica é diferenciada por horosazonalidade e que a tarifa de consumo de energia na ponta (nível de carregamento pesado) é maior que a tarifa no período fora da ponta (nível de carregamento leve), considerou-se que a tarifa na ponta é 80% mais cara no nível de carregamento pesado. Assim os novos valores adotados para função objetivo da Equação III.11 são: *(i)* nível leve e médio de carregamento (0,06 US\$/kW); *(ii)* nível pesado de carregamento (0,108 US\$/kW).

Os resultados das simulações podem ser vistos nas tabelas que se seguem.

Perdas(kW)	1.645,28
Custo das Perdas (US\$)	234.987,96

Tabela IV.12 – AHC Caso Base

Um total de 98 barras candidatas a alocação foram selecionadas baseadas em seus índices de sensibilidade. A tabela a seguir mostra o resultado obtido com o AHC.

Barra	16	20	31	59	66	70	160
Número de Capacitores Alocados	1	1	2	2	2	2	3

Tabela IV.13 – Alocações do AHC

De forma resumida a Tabela IV.14 mostra os principais resultados da simulação do sistema teste de 476 barras.

Capcidade Total Instalada (kVAr)	2.600
Perdas (kW)	1.458,12
Custo das Perdas (US\$)	206.314,61
Investimento em Capacitores (US\$)	10.400,00
Função Objetivo (US\$)	216.714,61
Tempo de Processamento HCA	32 minutos

Tabela IV.14 - Resultado Final do AHC

Observa-se que o lucro em energia conservada é da ordem de aproximadamente

8 %, correspondente a diferença entre o custo das perdas iniciais e finais do sistema.

IV.4 Conclusões

Este capítulo apresentou os resultados obtidos através da aplicação das metodologias heurísticas propostas para solução dos problemas reconfiguração ótima e

alocação ótima de bancos fixos de capacitores. Todos os testes foram realizados em sistemas bem conhecidos na literatura técnica especializada. Os resultados obtidos foram muito satisfatórios quando comparados a outras técnicas.

Capítulo V

Conclusões

V.1 Considerações Finais

Esta dissertação apresentou novas técnicas heurísticas para aplicação em otimização de sistema de distribuição de energia elétrica. As propostas foram desenvolvidas para análise em regime permanente e considerando-se apenas a representação monofásica dos elementos da rede.

Os índices de sensibilidade baseados nos coeficientes de Lagrange propostos neste trabalho se mostraram muito eficientes, quer para redução no espaço de busca no problema de alocação de capacitores, ou de determinação de status de chaves nos dois problemas abordados. Além disso, o uso da função sigmóide para representar o comportamento discreto dos status das chaves, aliada com índices de sensibilidade baseados em heurística tem claramente contribuído para o desempenho geral do algoritmo.

Os métodos propostos apresentaram como vantagem a solução do problema com baixo esforço computacional devido ao reduzido número de execuções de FPO's, apresentando grande potência de aplicação em sistemas de grande porte.

V.2 Propostas de Desenvolvimentos Futuros

Seguindo a linha de pesquisa desenvolvida nesta dissertação e tendo em vista os resultados obtidos, alguns tópicos tornam-se promissores como propostas de trabalhos futuros:

- Desenvolvimento de novas técnicas de reconfiguração independentes da ordenação dos laços tendo em vista a grande dependência dos resultados;
- Implementação da curva de carga na metodologia de reconfiguração a fim de obter uma configuração da rede que atenda aos níveis de carregamento;
- Implementação dos bancos chaveados de capacitores;
- Desenvolver uma metodologia para localização ótima de reguladores de tensão a fim de reduzir perdas no sistema de distribuição, aplicando a proposta de discretização de tapes sugerida nesse trabalho;
- Formulação de uma ferramenta única para solução integrada do processo de reconfiguração e alocação ótima de bancos de capacitores, bem como ajuste de outras variáveis discretas de controle, tais como os tapes de reguladores de tensão, dentro de um mesmo programa de otimização de redes de distribuição de energia elétrica.

Apêndice A

Modelo Proposto para Discretização de Tapes de Reguladores de Tensão em um FPO

A.1 Introdução

Neste apêndice será apresentado uma proposta para discretização de tapes dos reguladores de tensão dentro de um fluxo de potência ótimo (FPO), a modelagem apresentada poderá ser utilizada também para representação de outras variáveis discretas.

A.2 Representação de Reguladores de Tensão

Para sistemas monofásicos as modelagens do regulador de tensão e transformadores são idênticas. A Figura A.1 apresenta o circuito equivalente de um regulador de tensão (ou transformador) e na Figura A.2 será apresentado o seu modelo π -equivalente.

Apêndice A- Modelo Proposto para Discretização de Tapes de Reguladores de Tensão em um FPO

Figura A.1 - Circuito equivalente do Regulador de Tensão ou Transformador

Onde:

a	Variável relacionada ao controle de tensão ou á variação do tape do
	transformador;
ϕ	Variável relativa ao defasamento angular usada para controle de fluxo de
	potência ativa em uma linha. No caso do regulador $\phi = 0^{\circ}$;
у	Reatância série do regulador ou transformador

Figura A.2 – Circuito π -equivalente de um Regulador de Tensão ou Transformador

Onde:

$$A = a_{km} y_{km}$$

$$B = a_{km} (a_{km} - 1) y_{km}$$

$$C = (1 - a_{km}) y_{km}$$

(A.1)

As expressões gerais dos fluxos de potência ativa e reativa para o regulador de tensão são dadas a seguir.

Injeção de potência pelo regulador na barra k.

$$\begin{cases} P_{km} = \left(a_{km}V_{k}\right)^{2} g_{km} - a_{km}V_{k}V_{m}g_{km}\cos(\theta_{k} - \theta_{m} + \phi_{km}) + \\ -a_{km}V_{k}V_{m}b_{km}sen(\theta_{k} - \theta_{m} + \phi_{km}) \\ Q_{km} = -\left(a_{km}V_{k}\right)^{2}\left(b_{km} + b_{km}^{sh}\right) + a_{km}V_{k}V_{m}b_{km}\cos(\theta_{k} - \theta_{m} + \phi_{km}) + \\ -a_{km}V_{k}V_{m}g_{km}sen(\theta_{k} - \theta_{m} + \phi_{km}) \end{cases}$$
(A.2)

Injeção de potência pelo regulador na barra m.

$$\begin{cases} P_{mk} = a_{km}V_m^2 g_{km} - a_{km}V_k V_m g_{km} \cos(\theta_k - \theta_m + \phi_{km}) + a_{km}V_k V_m b_{km} sen(\theta_k - \theta_m + \phi_{km}) \\ Q_{mk} = -a_{km}V_m^2 b_{km} + a_{km}V_k V_m b_{km} \cos(\theta_k - \theta_m + \phi_{km}) + a_{km}V_k V_m g_{km} sen(\theta_k - \theta_m + \phi_{km}) \end{cases}$$
(A.3)

A.3 Formulação do Problema de Otimização com Discretização de Tapes de Reguladores de Tensão

O processo de discretização de tapes dentro de um FPO será realizado através da introdução de uma função de penalidade [63] na FOB, tornando o problema multiobjetivo. Portanto, um dos objetivos do FPO é, por exemplo, minimizar perdas de potencia ativa, e o outro é minimizar a função de penalidade cujos pontos de mínimo correspondem aos tapes do regulador de tensão. Com isso, o FPO pode ser formulado da seguinte maneira.

 $\operatorname{Min} FOB = FOB' + \rho(a_{km})$ sujeitos a: $g(\overline{z}) = 0$ $\overline{z_{\min}} \le \overline{z} \le \overline{z_{\max}}$ (A.4)

Onde:

FOB	Função multi-objetivo a ser minimizada;
FOB`	Função objetivo original do problema (perdas, investimento, por exemplo);

$g(\overline{z})$	Restrições de igualdade (balanço de potência ativa e reativa, por exemplo);
Z	Conjunto de variáveis (de estado ou controle) integrantes da formulação
	podem ser contínuas ou discretas, (tensão; ângulos, coeficientes de Lagrange,
	potências geradas, chaves, são exemplos dessas variáveis)
\overline{Z} min	Restrição de canalização (limites inferiores de tensão, geração, chaves, etc.);
\overline{Z}_{\max}	Restrição de canalização (limites superiores de tensão, geração, chaves, etc.);
$\rho(a_{km})$	Função de penalidade associada aos tapes dos reguladores de tensão.

A função de penalidade $\rho(a_{km})$ da equação A.4 é mostrada a seguir.

$$\rho(a_{km}) = \sum_{i=1}^{nrt} \sum_{j=1}^{nstep} C_{tap} \left[1 - \frac{\left(a_{km,i} - step_j - \sigma\right)^2}{\omega_0^2 \left(1 + \frac{\left(a_{km,i} - step_j - \sigma\right)^2}{\omega_0^2}\right)} \right]$$
(A.5)

$$\sigma = \frac{step_{j+1} - step_j}{2} \tag{A.6}$$

Onde:

nrt	Número de reguladores de tensão presentes	no sistema;
-----	---	-------------

nstep Número de tapes de cada regulador de tensão;

$$step_j$$
 Tapes do regulador de tensão;

$$\sigma$$
 Valor da metade de um tape.

 ω_0 Determina a inclinação da função;

$$C_{tap}$$
 Fator de penalidade correspondente a variável discreta $a_{km,i}$

A figura a seguir mostra o gráfico de duas funções penalidades para a variável discreta tape, com diferentes inclinações (ω_0).

Apéndice A- Modelo Proposto para Discretização de Tapes de Reguladores de Tensão em um FPO

Figura A.3 – Gráfico da função penalidade para discretização dos tapes.

Conforme pode ser notado na equação A.5, cada regulador presente no sistema terá seus *nstep* tapes, representados por um somatório de funções de penalidade. A titulo de exemplo considere a representação de um regulador de tensão com os seguintes tapes: [0,90 0,95 1,00 1,05 1,10]. O gráfico da Figura A.4 mostra sua função de penalidade.

Apéndice A- Modelo Proposto para Discretização de Tapes de Reguladores de Tensão em um FPO

Figura A.4 – Gráfico da função penalidade para discretização dos tapes do regulador.

Observa-se que o ponto de mínimo dessa função sempre vai corresponder a um dos tapes do regulador de tensão. Salienta-se que a variável tape está presente na equação B.3, ou seja, ela tem influência direta nas equações de fluxo de potência e consequentemente, nas FOB's abordadas neste trabalho (reconfiguração e alocação de capacitores). Portanto, verifica-se o acoplamento entre os dois objetivos: perdas mínimas e mínima penalidade para o tape.

É importante ressaltar que a alocação aleatória do regulador de tensão na rede de distribuição pode tornar impossível uma solução factível. Assim, uma técnica de alocação ótima desses reguladores é um campo para investigações e pesquisa.

Apêndice B

Sistemas Utilizados

B.1 Introdução

Este apêndice apresenta os dados do sistema elétrico de distribuição comumente encontrados na literatura, sendo eles de 14, 33, 70 e 83 barras, alem de um sistema de distribuição brasileiro de 476 barras.

B.2 Sistema 14 barras

Esse sistema possui 14 barras e 3 chaves de interconexão, tesão de 23 kV, potência base de 100 MVA. A barra de geração é a barra 1.

Dames D (MW)			Capacitores
Barra	P (MW)	Q(MVAr)	(MVAr)
1	0	0	0
2	2	1,6	0
3	3	1,5	1,1
4	2	0,8	1,2
5	1,5	1,2	0
6	4	2,7	0
7	5	3	1,2
8	1	0,9	0
9	0,6	0,1	0,6
10	4,5	2	3,7
11	1	0,9	0
12	1	0,7	1,8
13	1	0,9	0
14	2,1	1	1,8

Tabela B.1 – Dados de barra do sistema de 14 barras.

Tabela B.2 – Dados de linha do sistema de 14 barras.

Do	Dara	Resistência	Reatância		
De	Fala	(pu)	(pu)		
1	2	0075	0,10		
2	3	0,080	0,11		
2	4	0,090	0,18		
4	5	0,040	0,04		
1	6	0,110	0,11		
6	7	0,080	0,11		
6	8	0,110	0,11		
7	9	0,110	0,11		
7	10	0,080	0,11		
1	11	0,110	0,11		
11	12	0,090	0,12		
11	13	0,080	0,11		
13	14	0,040	0,04		
Chaves de Interconexão					
3	9	0,040	0,04		
8	12	0,040	0,04		
5	14	0,090	0,12		

B.3 Sistema de Distribuição de 33 barras

Esse sistema possui 33 barras, sendo a barra 33 a barra de geração, 5 chaves de interconexão, tensão de 12,66 kV e potência base de 10 MVA.

Barra	P (kW)	Q (kVAr)
1	100.0	60.0
2	90.0	40.0
3	120.0	80.0
4	60.0	30.0
5	60.0	20.0
6	200.0	100.0
7	200.0	100.0
8	60.0	20.0
9	60.0	20.0
10	45.0	30.0
11	60.0	35.0
12	60.0	35.0
13	120.0	80.0
14	60.0	10.0
15	60.0	20.0
16	60.0	20.0
17	90.0	40.0
18	90.0	40.0
19	90.0	40.0
20	90.0	40.0
21	90.0	40.0
22	90.0	50.0
23	420.0	200.0
24	420.0	200.0
25	60.0	25.0
26	60.0	25.0
27	60.0	20.0
28	120.0	70.0
29	200.0	600.0
30	150.0	70.0
31	210.0	100.0
32	60.0	40.0
33	0.0	0.0

Tabela B.3 – Dados do sistema de 33 barra.

De	Para	R (Ohm)	X (Ohm)
33	1	0.0922	0.047
1	2	0.493	0.2511
2	3	0.366	0.1864
3	4	0.3811	0.1941
4	5	0.819	0.707
5	6	0.1872	0.6188
6	7	0.7114	0.2351
7	8	1.03	0.74
8	9	1.044	0.74
9	10	0.1966	0.065
10	11	0.3744	0.1238
11	12	1.468	1.155
12	13	0,5416	0,7129
13	14	0,591	0,526
14	15	0,7463	0,545
15	16	1,299	1,721
16	17	0,732	0,574
1	18	0,164	0,1565
18	19	1,5042	1,3554
19	20	0,4095	0,4784
20	21	0,7089	0,9373
2	22	0,4512	0,3083
22	23	0,898	0,7091
23	24	0,896	0,7011
5	25	0,203	0,1034
25	26	0,2842	0,1447
26	27	1,059	0,9337
27	28	0,8042	0,7006
28	29	0,5075	0,2585
29	30	0,9744	0,963
30	31	0,3105	0,3619
31	32	0,341	0,5302
	Chaves de In	nterconexão	
7	20	1	2
11	21	2	2
8	14	2	2
24	28	0,5	0,5
17	32	0,5	0,5

B.4 Sistema de Distribuição de 70 Barras

O sistema é composto por 70 barras, 5 chaves de interconexão, tensão de 12,66kV e potência base de 100 MVA. A barra de geração é a barra

Barra	P (kW)	Q (kVAr)	Barra	P (kW)	Q (kVAr)
1	0	0	36	8,667	6,185
2	0	0	37	8,667	6,185
3	0	0	38	0	0
4	0	0	39	8	5,709
5	0	0	40	8	5,709
6	0,878	0,72	41	0,392	0,325
7	13,455	0,72	42	0	0
8	24,887	17,81	43	2	1,427
9	10	7,208	44	0	0
10	9,333	6,666	45	3,076	8,787
11	48,5	34,609	46	3,076	8,787
12	48,5	34,609	47	0	0
13	2,71	1,821	48	26,35	18,8
14	2,71	1,521	49	28,226	91,492
15	0	0	50	128,226	91,492
16	15,176	10,198	51	13,512	0,894
17	16,5	11,775	52	1,202	1,162
18	16,5	11,775	53	1,449	1,162
19	0	0	54	8,787	6,322
20	0,316	0,212	55	8	5,708
21	37,983	27,1	56	0	0
22	1,762	1,184	57	0	0
23	0	0	58	0	0
24	9,39	6,67	59	0,667	24,025
25	0	0	60	0	0
26	4,667	3,33	61	414,667	295,91
27	4,667	3,33	62	10,667	7,612
28	8,667	6,185	63	0	0
29	8,667	6,185	64	75,67	53,873
30	0	0	65	19,67	13,912
31	0	0	66	6	4,282
32	0	0	67	6	4,282
33	4,582	3,26	68	9,333	6,66
34	6,501	5,549	69	9,333	6,66
35	1,92	1,29	70	0	0

Tabela B.4 – Dados de barra do sistema de 70 barra.

70 1 2 3 4 5	1 2 3 4 5 6 7	(Onms) 0,0005 0,0005 0,0001 0,0015 0,0251	(Onms) 0,0012 0,0012 0,0001 0,0001	3 36 37	36 37	0,0044	0,0108
1 2 3 4 5 5		0,0005 0,0001 0,0015 0,0251	0,0012 0,0012 0,0001 0,0001	36 37	30	0,0044	0,0106
1 2 3 4 5	$ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	0,0003 0,0001 0,0015 0,0251	0,0012	30	37	1111114	
2 3 4 5	5 4 5 6 7	0,0001 0,0015 0,0251	0,0001	2 /	20	0,004	0,1505
3 4 5	4 5 6 7	0,0015	0.0036	20	38	0,1055	0,125
4 5	5 6 7	0,0251	0,0000	38	39	0,0304	0,0355
5	6	0.044	0,0294	39	40	0,0018	0,0021
		0,366	0,1864	40	41	0,/283	0,8509
6	/	0,3811	0,1941	41	42	0,31	0,3623
7	8	0,0922	0,047	42	43	0,041	0,0478
8	9	0,0493	0,0251	43	44	0,0092	0,0116
9	10	0,819	0,2707	44	45	0,1089	0,1373
10	11	0,1872	0,0619	45	46	0,0009	0,0012
11	12	0,7114	0,2351	4	47	0,0034	0,0084
12	13	1,03	0,34	47	48	0,0851	0,2083
13	14	1,044	0,345	48	49	0,2898	0,7091
14	15	1,058	0,3496	49	50	0,0822	0,2011
15	16	0,1966	0,065	8	51	0,0928	0,0473
16	17	0,3744	0,1238	51	52	0,3319	0,1114
17	18	0,0047	0,0016	9	53	0,174	0,0886
18	19	0,3276	0,1083	53	54	0,203	0,1034
19	20	0,2106	0,0696	54	55	0,2842	0,1447
20	21	0,3416	0,1129	55	56	0,2813	0,1433
21	22	0,014	0,0046	56	57	1,59	0,5337
22	23	0,1591	0,0526	57	58	0,7837	0,263
23	24	0,3463	0,1145	58	59	0,3042	0,1006
24	25	0,7488	0,2475	59	60	0,3861	0,1172
25	26	0,3089	0,1021	60	61	0,5075	0,2585
26	27	0,1732	0,0572	61	62	0,974	0,0496
2	28	0,0044	0,0108	62	63	0,145	0,0738
28	29	0,064	0,1565	63	64	0,7105	0,3619
29	30	0,3978	0,1315	64	65	1,041	0,5302
30	31	0,0702	0,0232	11	66	0,2012	0,0611
31	32	0,351	0,116	66	67	0,0047	0,0014
32	33	0,839	0,2816	12	68	0,7394	0,2444
33	34	1,708	0,5646	68	69	0,0047	0,0016
34	35	1,474	0,4873	(Chaves de I	nterconexão	D
			-	De	Para	R (Ohms)	X (Ohms)
				11	43	0,5	0,5
				13	21	0,5	0,5
				15	46	1	1
				50	59	2	2
				27	65	1	1

Tabela B.5 – Dados de linha do sistema de 70 barra.

B.5 Sistema de Distribuição de 84 Barras

Esse sistema possui 84 barras, 13 chaves de interconexão, tensão de 11,4kV e potência base de 100MVA. A barra de geração é a barra 84.

Barra	P (kW)	Q (kVAr)	Barra	P (kW)	Q (kVAr)	Barra	P (kW)	Q (kVAr)
1	0	0	29	200	120	57	30	20
2	100	50	30	0	0	58	600	420
3	300	200	31	1800	1600	59	0	0
4	350	250	32	200	150	60	20	10
5	220	100	33	200	100	61	20	10
6	1100	800	34	800	600	62	200	130
7	400	320	35	100	60	63	300	240
8	300	200	36	100	60	64	300	200
9	300	230	37	20	10	65	0	0
10	300	260	38	20	10	66	50	30
11	0	0	39	20	10	67	0	0
12	1200	800	40	20	10	68	400	360
13	800	600	41	200	160	69	0	0
14	700	500	42	50	30	70	0	0
15	0	0	43	0	0	71	2000	1500
16	300	150	44	30	20	72	200	150
17	500	350	45	800	700	73	0	0
18	700	400	46	200	150	74	0	0
19	1200	1000	47	0	0	75	1200	950
20	300	300	48	0	0	76	300	180
21	400	350	49	0	0	77	0	0
22	50	20	50	200	160	78	400	360
23	50	20	51	800	600	79	2000	1300
24	50	10	52	500	300	80	200	140
25	50	30	53	500	350	81	500	360
26	100	60	54	500	300	82	100	30
27	100	70	55	200	80	83	400	360
28	1800	1300	56	0	0	84	0	0

Tabela B.6 – Dados de barras do sistema de 84 barra.

De	Para	R (Ohms)	X (Ohms)	De	Para	R (Ohms)	X (Ohms)	De	Para	R (Ohms)	X (Ohms)
84	1	0,1944	0,6624	84	30	0,1965	0,396	58	59	0,0405	0,138
1	2	0,2096	0,4304	30	31	0,131	0,269	59	60	0,0393	0,0807
2	3	0,2358	0,4842	31	32	0,131	0,269	60	61	0,0262	0,0538
3	4	0,0917	0,1883	32	33	0,0262	0,0538	61	62	0,1048	0,2152
4	5	0,2096	0,4304	33	34	0,1703	0,3497	62	63	0,2358	0,4842
5	6	0,0393	0,0807	34	35	0,0524	0,1076	63	64	0,0243	0,0828
6	7	0,0405	0,138	35	36	0,4978	1,0222	84	65	0,0486	0,1656
7	8	0,1048	0,2152	36	37	0,0393	0,0807	65	66	0,1703	0,3497
7	9	0,2358	0,4842	37	38	0,0393	0,0807	66	67	0,1215	0,414
7	10	0,1048	0,2152	38	39	0,0786	0,1614	67	68	0,2187	0,7452
84	11	0,0786	0,1614	39	40	0,2096	0,4304	68	69	0,0486	0,1656
11	12	0,3406	0,6944	38	41	0,1965	0,4035	69	70	0,0729	0,2484
12	13	0,0262	0,0538	41	42	0,2096	0,4304	70	71	0,0567	0,1932
12	14	0,0786	0,1614	84	43	0,0486	0,1656	71	72	0,0262	0,0528
84	15	0,1134	0,3864	43	44	0,0393	0,0807	84	73	0,324	1,104
15	16	0,0524	0,1076	44	45	0,131	0,269	73	74	0,0324	0,1104
16	17	0,0524	0,1076	45	46	0,2358	0,4842	74	75	0,0567	0,1932
17	18	0,1572	0,3228	84	47	0,243	0,828	75	76	0,0486	0,1656
18	19	0,0393	0,0807	47	48	0,0655	0,1345	84	77	0,2511	0,8556
19	20	0,1703	0,3497	48	49	0,0655	0,1345	77	78	0,1296	0,4416
20	21	0,2358	0,4842	49	50	0,0393	0,0807	78	79	0,0486	0,1656
21	22	0,1572	0,3228	50	51	0,0786	0,1614	79	80	0,131	0,264
21	23	0,1965	0,4035	51	52	0,0393	0,0807	80	81	0,131	0,264
23	24	0,131	0,269	52	53	0,0786	0,1614	81	82	0,0917	0,1883
84	25	0,0567	0,1932	53	54	0,0524	0,1076	82	83	0,3144	0,6456
25	26	0,1048	0,2152	54	55	0,131	0,269		Chave	es de Interco	onexão
26	27	0,2489	0,5111	84	56	0,2268	0,7728	De	Para	R (Ohms)	X (Ohms)
27	28	0,0486	0,1656	56	57	0,5371	1,1029	5	55	0,131	0,269
28	29	0,131	0,269	57	58	0,0524	0,1076	7	60	0,131	0,269
								11	43	0,131	0,269
								12	72	0,3406	0,6994
								13	76	0,4585	0,9415
								14	18	0,5371	1,0824
								16	26	0,0917	0,1883

Tabela B.7 – Dados	de lin	ha do siste	ema de 84 barra.
--------------------	--------	-------------	------------------

20

28

29

34

40

53

83

32

39

46

42

64

0,0786

0,0524

0,0786

0,0262

0,1965

0,0393

0,1614

0,1076

0,1614

0,0538

0,4035

0,0807

B.6 Sistema de Distribuição Brasileiro de 476 Barras

Sistema formado por dois alimentadores aéreos urbanos de 13,8 kV. O primeiro possui 258 barras, carga ativa de 5140 kW e carga reativa de 1949 kVAr, enquanto que o segundo possui 218 barras, carga ativa de 3874 kW e carga reativa de 1498 kVAr. As bases utilizadas são 1 MVA e 7960,4 V

As barras do primeiro alimentador são numeradas de 1 a 257, enquanto que as barras do segundo alimentador são numeradas de 1001 a 1218. A barra 1000 é a barra de geração.

Barra	P(p.u)	Q(p.u)	Barra	P(p.u)	Q(p.u)	Barra	P(p.u)	Q(p.u)
1	0	0	37	0	0	73	0	0
2	0	0	38	0	0	74	0	0
3	0	0	39	0	0	75	0	0
4	0.43015	0.17782	40	0	0	76	0	0
5	0	0	41	0	0	77	0	0
6	0	0	42	0	0	78	0	0
7	0	0	43	0	0	79	0	0
8	0	0	44	0	0	80	0	0
9	0.43015	0.17782	45	0	0	81	0	0
10	0.43015	0.17782	46	0	0	82	0	0
11	0.43015	0.17782	47	0	0	83	0	0
12	0	0	48	0	0	84	0	0
13	0	0	49	0	0	85	0	0
14	0	0	50	0	0	86	0	0
15	0	0	51	0	0	87	0	0
16	0.43015	0.17782	52	0.001003	-0.00281	88	0	0
17	0.43015	0.17782	53	0	0	89	0	0
18	0	0	54	0	0	90	0	0
19	0	0	55	0	0	91	0.43015	0.17782
20	0.43015	0.17782	56	0	0	92	0	0
21	0	0	57	0	0	93	0.000685	0.00203
22	0	0	58	0	0	94	0	0
23	0	0	59	0.43015	0.17782	95	0	0
24	0	0	60	0	0	96	0	0
25	0	0	61	0	0	97	0.000822	0.001374
26	0	0	62	0	0	98	0	0
27	0	0	63	0	0	99	0.13015	0.042778
28	0	0	64	0	0	100	0	0
29	0	0	65	0	0	101	0	0
30	0	0	66	0.43015	0.17782	102	0	0
31	0.43015	0.17782	67	0.323	0.106165	103	0	0
32	0	0	68	0	0	104	0	0
33	0	0	69	0	0	105	0	0
34	0	0	70	0.43015	0.17782	106	0	0
35	0	0	71	0	0	107	0	0
36	0	0	72	0	0	108	0	0

Tabela B.8 – Dados de barra do sistema de 476 barra.

Barra	P(p.u)	Q(p.u)	Barra	P(p.u)	Q(p.u)	Barra	P(p.u)	Q(p.u)
109	0	0	145	0	0	181	0	0
110	0	0	146	0	0	182	0	0
111	0	0	147	0	0	183	0	0
112	0.000495	0.0014979	148	0	0	184	0	0
113	0	0	149	0.140238	0.074929	185	0	0
114	0	0	150	0	0	186	0	0
115	0	0	151	0	0	187	0	0
116	0	0	152	0	0	188	0	0
117	0.046746	0.0249762	153	0.04631	0.029671	189	0	0
118	0	0	154	0	0	190	0	0
119	0	0	155	0	0	191	0	0
120	0	0	156	0	0	192	0	0
121	0	0	157	0	0	193	0	0
122	0	0	158	0	0	194	0	0
123	0	0	159	0	0	195	0	0
124	0.47025	0.154564	160	0.78375	0.257606	196	0	0
125	0	0	161	0	0	197	0	0
126	0	0	162	0	0	198	0	0
127	0	0	163	0	0	199	0	0
128	0	0	164	0	0	200	0	0
129	0	0	165	0	0	201	0	0
130	0	0	166	0	0	202	0	0
131	0	0	167	0	0	203	0	0
132	0	0	168	0	0	204	0	0
133	0	0	169	0	0	205	0	0
134	0	0	170	0	0	206	0	0
135	0	0	171	0.213342	0.061394	207	0	0
136	0	0	172	0	0	208	0	0
137	0	0	173	0	0	209	0	0
138	0	0	174	0	0	210	0	0
139	0	0	175	0	0	211	0	0
140	0	0	176	0	0	212	0	0
141	0.000591	0.001121	177	0	0	213	0.32015	0.105228
142	0	0	178	0	0	214	0	0
143	0.083506	0.0205608	179	0	0	215	0	0
144	0	0	180	0	0	216	0	0

Barra	P(p.u)	Q(p.u)	Barra	P(p.u)	Q(p.u)	Barra	P(p.u)	Q(p.u)
217	0	0	253	0	0	1032	0	0
218	0	0	254	0	0	1033	0.01634	0.005371
219	0	0	255	0	0	1034	0.01501	0.004934
220	0	0	256	0	0	1035	0	0
221	0	0	257	0	0	1036	0	0
222	0	0	1001	0	0	1037	0	0
223	0	0	1002	0	0	1038	0	0
224	0	0	1003	0.017005	0.005589	1039	0	0
225	0	0	1004	0	0	1040	0	0
226	0	0	1005	0.038	0.01249	1041	0	0
227	0	0	1006	0	0	1042	0.00627	0.002061
228	0	0	1007	0	0	1043	0	0
229	0	0	1008	0	0	1044	0	0
230	0	0	1009	0	0	1045	0	0
231	0	0	1010	0.03952	0.01299	1046	0	0
232	0	0	1011	0.027075	0.008899	1047	0.01482	0.004871
233	0	0	1012	0	0	1048	0.0019	0.000625
234	0	0	1013	0.029545	0.009711	1049	0.005415	0.00178
235	0	0	1014	0	0	1050	0	0
236	0	0	1015	0	0	1051	0.03534	0.011616
237	0	0	1016	0.012065	0.003966	1052	0.011305	0.003716
238	0	0	1017	0.013205	0.00434	1053	0	0
239	0	0	1018	0.01577	0.005183	1054	0	0
240	0	0	1019	0	0	1055	0	0
241	0	0	1020	0	0	1056	0.027455	0.009024
242	0	0	1021	0.01007	0.00331	1057	0	0
243	0	0	1022	0.026695	0.008774	1058	0	0
244	0	0	1021	0	0	1059	0	0
245	0	0	1024	0	0	1060	0	0
246	0	0	1025	0	0	1061	0	0
247	0	0	1026	0.005605	0.001842	1062	0.00779	0.00256
248	0	0	1027	0	0	1063	0	0
247	0	0	1028	0.01102	0.003622	1064	0	0
250	0	0	1029	0	0	1065	0	0
251	0	0	1030	0	0	1066	0	0
252	0	0	1031	0.042655	0.01402	1067	0	0

Barra	P(p.u)	Q(p.u)	Barra	P(p.u)	Q(p.u)	Barra	P(p.u)	Q(p.u)
1068	0	0	1104	0.005795	0.001905	1140	0	0
1069	0	0	1105	0	0	1141	0.018525	0.006089
1070	0.010545	0.00346597	1106	0.00513	0.001686	1142	0	0
1071	0	0	1107	0	0	1143	0.017195	0.005652
1072	0	0	1108	0.00551	0.001811	1144	0	0
1073	0	0	1109	0	0	1145	0	0
1074	0	0	1110	0.00019	6.25E-02	1146	0	0
1075	0	0	1111	0	0	1147	0	0
1076	0	0	1112	0	0	1148	0	0
1077	0	0	1113	0	0	1149	0	0
1078	0	0	1114	0	0	1150	0	0
1079	0	0	1115	0	0	1151	0	0
1080	0	0	1116	0	0	1152	0	0
1081	0	0	1117	0	0	1153	0.010925	0.003591
1082	0	0	1118	0	0	1154	0.03401	0.011179
1083	0	0	1119	0	0	1155	0	0
1084	0	0	1120	0.006935	0.002279	1156	0.001995	0.000656
1085	0.00437	0.00143635	1121	0	0	1157	0	0
1086	0	0	1122	0	0	1158	0	0
1087	0	0	1123	0.011115	0.003653	1159	0	0
1088	0	0	1124	0	0	1160	0.087495	0.028758
1089	0	0	1125	0	0	1161	0	0
1090	0.00608	0.0019984	1126	0	0	1162	0	0
1091	0	0	1127	0	0	1163	0	0
1092	0	0	1128	0	0	1164	0	0
1093	0.010735	0.00352842	1129	0.012255	0.004028	1165	0	0
1094	0	0	1130	0.019665	0.006464	1166	0	0
1095	0	0	1131	0	0	1167	0	0
1096	0	0	1132	0	0	1168	0	0
1097	0	0	1133	0.020235	0.006651	1169	0.011685	0.003841
1098	0	0	1134	0	0	1170	0	0
1099	0	0	1135	0.075335	0.024761	1171	0.015865	0.005215
1100	0.020615	0.00677582	1136	0	0	1172	0	0
1101	0	0	1137	0.01083	0.00356	1173	0	0
1102	0.027645	0.00908647	1138	0.004085	0.001343	1174	0.008645	0.002841
1103	0	0	1139	0.024225	0.007962	1175	0	0

Barra	P(p.u)	Q(p.u)	Barra	P(p.u)	Q(p.u)
1176	0.039995	0.0131457	1201	0	0
1177	0	0	1202	0	0
1178	0	0	1203	0	0
1179	0	0	1204	0.012065	0.00396557
1180	0.0209	0.0068695	1205	0.016055	0.00527702
1181	0.002185	0.00071818	1206	0.020615	0.00677582
1182	0	0	1207	0	0
1183	0	0	1208	0	0
1184	0	0	1209	0	0
1185	0	0	1210	0.004085	0.00134267
1186	0	0	1211	0.014725	0.00483987
1187	0.00551	0.00181105	1212	0.017385	0.005714
1188	0.0114	0.003747	1213	0.00646	0.002123
1189	0.12749	0.0419039	1214	0.02527	0.008306
1190	0	0	1215	0	0
1191	0	0	1216	0.01292	0.004247
1192	0	0	1217	0	0
1193	0	0	1218	0.01292	0.004247
1194	0	0			
1195	0	0	-		
1196	0.00703	0.00231065	-		
1197	0	0	-		
1198	0	0			
1199	0.01254	0.0041217			
1200	0	0			

De	Para	R (pu)	X (pu)	De	Para	R (pu)	X (pu)
1	1000	0,000283556	0,000378075	160	155	0,00025205	0,000110272
2	1	0,00001	0,00001	161	156	0,00211092	0,000976694
3	2	0,000299309	0,000598619	162	156	0,000393828	0,000189038
4	3	0,0010082	0,000456841	163	158	0,00001	0,00001
5	3	0,000204791	0,000425334	164	159	0,00001	0,00001
6	5	0,0000945188	0,000189038	165	163	0,0005041	0,000236297
7	6	0,000598619	0,00118148	166	164	0,000110272	0,000220544
8	6	0,000110272	0,000220544	167	165	0,00001	0,00001
9	7	0,000189038	0,000362322	168	166	0,00001	0,00001
10	7	0,0000315063	0,0000630125	169	166	0,0000315063	0,0000630125
11	8	0,0000945188	0,000173284	170	167	0,000598619	0,000267803
12	9	0,000204791	0,000409581	171	168	0,000598619	0,000267803
13	12	0,0000787656	0,000173284	172	169	0,000189038	0,000378075
14	13	0,00001	0,00001	173	170	0,000157531	0,0000787656
15	14	0,000110272	0,000220544	174	170	0,000283556	0,000126025
16	15	0,000267803	0,000519853	175	172	0,000283556	0,000567113
17	15	0,0000315063	0,0000630125	176	173	0,00001	0,00001
18	15	0,0000945188	0,000189038	177	174	0,00001	0,00001
19	17	0,000283556	0,000330816	178	175	0,000330816	0,000157531
20	18	0,0000945188	0,000204791	179	175	0,000110272	0,000220544
21	19	0,000110272	0,000220544	180	176	0,0005041	0,000236297
22	21	0,00001	0,00001	181	177	0,000882175	0,000409581
23	22	0,0000157531	0,0000315063	182	178	0,00001	0,00001
24	23	0,000110272	0,000220544	183	178	0,00025205	0,000110272
25	23	0,0000945188	0,0000472594	184	179	0,0000787656	0,000157531
26	23	0,000456841	0,000220544	185	180	0,00155956	0,000724644
27	24	0,000110272	0,000204791	186	181	0,00001	0,00001
28	25	0,00001	0,00001	187	181	0,000803409	0,000362322
29	27	0,000220544	0,000456841	188	182	0,00140203	0,000645878
30	28	0,000393828	0,000189038	189	183	0,00001	0,00001
31	29	0,0000315063	0,0000630125	190	185	0,00119724	0,000551359
32	29	0,0000787656	0,000157531	191	185	0,000567113	0,00025205
33	29	0,0000787656	0,000157531	192	186	0,000330816	0,000157531
34	30	0,000330816	0,0000630125	193	187	0,000409581	0,000189038
35	32	0,0005041	0,000236297	194	188	0,00001	0,00001
36	33	0,00001	0,00001	195	188	0,000913681	0,000425334

Tabela B.9 – Dados de linha do sistema de 476 barra.

De	Para	R (pu)	X (pu)	De	Para	R (pu)	X (pu)
37	35	0,00001	0,00001	196	189	0,000362322	0,000173284
38	36	0,000189038	0,000378075	197	190	0,00001	0,00001
39	37	0,000393828	0,0000630125	198	190	0,000362322	0,000173284
40	38	0,0000315063	0,0000787656	199	191	0,000567113	0,00025205
41	40	0,000110272	0,000204791	200	193	0,000834916	0,000378075
42	40	0,000315063	0,000141778	201	194	0,000315063	0,000141778
43	40	0,000330816	0,000677384	202	195	0,00103971	0,000472594
44	41	0,000110272	0,000220544	203	195	0,00001	0,00001
45	43	0,0000945188	0,000189038	204	196	0,00118148	0,000551359
46	44	0,00001	0,00001	205	197	0,00321364	0,00148079
47	45	0,000472594	0,000220544	206	198	0,000393828	0,000189038
48	45	0,000267803	0,000535606	207	199	0,000267803	0,000126025
49	46	0,0000630125	0,000126025	208	199	0,0000945188	0,0000472594
50	47	0,000441088	0,000204791	209	200	0,000708891	0,000330816
51	48	0,0000787656	0,000157531	210	200	0,000677384	0,000315063
52	49	0,0000315063	0,0000472594	211	200	0,000614372	0,000283556
53	50	0,000441088	0,000204791	212	201	0,000346569	0,000157531
54	52	0,000126025	0,000141778	213	203	0,000157531	0,0000787656
55	52	0,000204791	0,000220544	214	205	0,00110272	0,0005041
56	52	0,0000787656	0,0000787656	215	206	0,00001	0,00001
57	53	0,00001	0,00001	216	208	0,00001	0,00001
58	54	0,0000945188	0,000110272	217	209	0,00001	0,00001
59	55	0,000409581	0,000834916	218	210	0,00001	0,00001
60	56	0,00001	0,00001	219	215	0,00118148	0,000551359
61	57	0,0000945188	0,0000472594	220	216	0,000519853	0,000236297
62	58	0,00001	0,00001	221	217	0,00138628	0,000645878
63	60	0,000141778	0,000173284	222	218	0,000220544	0,000110272
64	60	0,0000787656	0,0000945188	223	219	0,0144299	0,0000157531
65	61	0,000425334	0,000204791	224	220	0,000567113	0,00025205
66	61	0,000866422	0,000393828	225	220	0,00001	0,00001
67	62	0,000488347	0,000220544	226	221	0,000441088	0,000204791
68	64	0,0000787656	0,0000945188	227	221	0,000472594	0,000220544
69	68	0,000535606	0,000614372	228	222	0,00193763	0,000897928
70	68	0,000267803	0,000299309	229	223	0,000378075	0,000173284
71	69	0,000141778	0,000157531	230	225	0,000189038	0,0000945188
72	71	0,00001	0,00001	231	227	0,00001	0,00001
73	72	0,000519853	0,000582866	232	228	0,000236297	0,000110272
74	73	0,000126025	0,000141778	233	229	0,00001	0,00001

De	Para	R (pu)	X (pu)	De	Para	R (pu)	X (pu)
75	74	0,000346569	0,000393828	234	229	0,00154381	0,000708891
76	74	0,000425334	0,000204791	235	231	0,000850669	0,000393828
77	75	0,000236297	0,000267803	236	233	0,001276	0,000551359
78	76	0,00001	0,00001	237	235	0,000362322	0,000173284
79	77	0,000204791	0,000409581	238	235	0,000850669	0,000393828
80	78	0,00305611	0,00140203	239	235	0,000960941	0,000441088
81	79	0,000189038	0,000393828	240	236	0,000519853	0,000236297
82	79	0,000315063	0,000141778	241	238	0,000315063	0,000141778
83	79	0,00132326	0,000614372	242	239	0,00111847	0,000519853
84	80	0,000346569	0,000157531	243	239	0,000472594	0,000220544
85	80	0,00155956	0,000724644	244	240	0,00107121	0,000488347
86	80	0,000378075	0,000157531	245	240	0,00102395	0,000456841
87	81	0,0000945188	0,000189038	246	242	0,00001	0,00001
88	82	0,00001	0,00001	247	243	0,0005041	0,000236297
89	86	0,00001	0,00001	248	246	0,0005041	0,000236297
90	87	0,00001	0,00001	249	247	0,00001	0,00001
91	88	0,000189038	0,0000945188	250	248	0,000488347	0,000220544
92	89	0,00113423	0,0005041	251	249	0,000346569	0,000157531
93	90	0,0000315063	0,0000630125	252	250	0,000472594	0,000220544
94	92	0,000330816	0,000141778	253	250	0,000614372	0,000283556
95	92	0,00220544	0,0010082	254	253	0,000913681	0,000425334
96	93	0,00001	0,00001	255	254	0,000519853	0,000236297
97	93	0,000110272	0,000220544	256	254	0,00105546	0,000488347
98	94	0,000960941	0,000425334	257	255	0,000425334	0,000204791
99	96	0,000283556	0,000126025	1001	1000	0,0000787656	0,000157531
100	97	0,0000630125	0,000126025	1002	1001	0,00001	0,00001
101	97	0,0000630125	0,000126025	1003	1002	0,000693138	0,00138628
102	97	0,000236297	0,000472594	1004	1003	0,0000630125	0,000126025
103	98	0,000299309	0,000126025	1005	1004	0,000441088	0,000897928
104	98	0,00215818	0,000992447	1006	1004	0,00001	0,00001
105	100	0,0000945188	0,000173284	1007	1005	0,000220544	0,000456841
106	101	0,000362322	0,000173284	1008	1006	0,000535606	0,00025205
107	101	0,000456841	0,000220544	1009	1007	0,000236297	0,000472594
108	101	0,0000157531	0,0000315063	1010	1007	0,000299309	0,000141778
109	102	0,0000945188	0,000189038	1011	1008	0,000567113	0,00025205
110	104	0,00200065	0,000913681	1012	1008	0,00025205	0,000110272
111	105	0,00001	0,00001	1013	1009	0,000173284	0,000236297
112	105	0,000110272	0,000204791	1014	1009	0,0000630125	0,000141778

De	Para	R (pu)	X (pu)	De	Para	R (pu)	X (pu)
113	106	0,000535606	0,00025205	1015	1012	0,000204791	0,0000945188
114	106	0,00001	0,00001	1016	1012	0,000157531	0,0000787656
115	107	0,00001	0,00001	1017	1012	0,000897928	0,000409581
116	108	0,00001	0,00001	1018	1014	0,000110272	0,000220544
117	111	0,0000315063	0,0000787656	1019	1014	0,0000945188	0,0000472594
118	112	0,00001	0,00001	1020	1015	0,00001	0,00001
119	112	0,0000787656	0,000157531	1021	1015	0,00111847	0,000519853
120	113	0,00001	0,00001	1022	1018	0,000315063	0,000630125
121	114	0,000456841	0,000220544	1023	1019	0,00001	0,00001
122	115	0,0005041	0,000236297	1024	1020	0,000173284	0,0000787656
123	116	0,0000315063	0,0000630125	1025	1022	0,0000945188	0,000204791
124	118	0,000299309	0,000141778	1026	1023	0,000409581	0,000189038
125	119	0,00001	0,00001	1027	1025	0,00001	0,00001
126	120	0,000567113	0,00025205	1028	1026	0,000488347	0,000220544
127	122	0,00155956	0,000724644	1029	1027	0,0000945188	0,000189038
128	123	0,0000315063	0,0000630125	1030	1029	0,000126025	0,0000787656
129	125	0,0000787656	0,000157531	1031	1029	0,0000945188	0,000204791
130	126	0,000582866	0,000267803	1032	1030	0,00001	0,00001
131	127	0,00121299	0,000551359	1033	1031	0,000204791	0,000409581
132	127	0,000472594	0,000220544	1034	1032	0,000141778	0,0000945188
133	128	0,0000472594	0,0000945188	1035	1033	0,0000472594	0,0000945188
134	128	0,00001	0,00001	1036	1034	0,000220544	0,000141778
135	129	0,000630125	0,000283556	1037	1036	0,0000157531	0,0000315063
136	129	0,000409581	0,000834916	1038	1037	0,0000472594	0,0000945188
137	130	0,000535606	0,00025205	1039	1037	0,0000157531	0,0000315063
138	132	0,00001	0,00001	1040	1038	0,00001	0,00001
139	134	0,000519853	0,000220544	1041	1039	0,0000945188	0,0000630125
140	135	0,00001	0,00001	1042	1040	0,000126025	0,00025205
141	136	0,0000945188	0,000173284	1043	1040	0,000126025	0,00025205
142	137	0,000362322	0,000472594	1044	1041	0,0000945188	0,000173284
143	138	0,000330816	0,000157531	1045	1042	0,000110272	0,000204791
144	139	0,00001	0,00001	1046	1045	0,00001	0,00001
145	140	0,000472594	0,000220544	1047	1046	0,0000945188	0,000189038
146	141	0,000141778	0,000299309	1048	1047	0,0000945188	0,000189038
147	141	0,00001	0,00001	1049	1048	0,000126025	0,00025205
148	142	0,000157531	0,000220544	1050	1049	0,000126025	0,00025205
149	144	0,000173284	0,0000787656	1051	1050	0,0000787656	0,000173284
150	145	0,000519853	0,000236297	1052	1051	0,000157531	0,000330816
De	Para	R (pu)	X (pu)	De	Para	R (pu)	X (pu)
------	------	--------------	--------------	------	------	--------------	--------------
151	146	0,000488347	0,000992447	1053	1052	0,0000787656	0,000157531
152	146	0,00102395	0,000472594	1054	1053	0,00001	0,00001
153	147	0,000315063	0,000141778	1055	1054	0,000189038	0,000393828
154	148	0,000472594	0,000220544	1056	1055	0,0000630125	0,000110272
155	150	0,00001	0,00001	1057	1055	0,0000472594	0,0000945188
156	150	0,00141778	0,000661631	1058	1055	0,000157531	0,000330816
157	151	0,000693138	0,000315063	1059	1056	0,000110272	0,000204791
158	151	0,000110272	0,0000472594	1060	1058	0,00001	0,00001
159	151	0,0000157531	0,0000315063	1061	1060	0,000346569	0,000693138
1062	1061	0,0000787656	0,000141778	1144	1136	0,0000630125	0,0000472594
1063	1062	0,0000787656	0,000173284	1145	1136	0,000220544	0,000157531
1064	1063	0,000141778	0,000299309	1146	1138	0,000567113	0,00025205
1065	1063	0,00001	0,00001	1147	1139	0,000409581	0,000189038
1066	1064	0,0000315063	0,0000472594	1148	1140	0,000110272	0,000220544
1067	1065	0,0000472594	0,0000315063	1149	1140	0,00001	0,00001
1068	1066	0,0000945188	0,000189038	1150	1142	0,0000787656	0,000141778
1069	1068	0,00001	0,00001	1151	1144	0,00001	0,00001
1070	1069	0,000110272	0,000204791	1152	1145	0,00001	0,00001
1071	1070	0,000110272	0,000204791	1153	1146	0,000519853	0,000236297
1072	1071	0,00001	0,00001	1154	1146	0,000740397	0,000330816
1073	1071	0,000425334	0,000850669	1155	1147	0,00001	0,00001
1074	1072	0,000330816	0,000141778	1156	1149	0,000315063	0,000141778
1075	1073	0,0000157531	0,0000315063	1157	1150	0,000126025	0,00025205
1076	1073	0,0000157531	0,0000472594	1158	1150	0,0000787656	0,000157531
1077	1073	0,0000787656	0,000173284	1159	1150	0,000157531	0,000315063
1078	1074	0,00001	0,00001	1160	1151	0,000283556	0,000126025
1079	1075	0,00001	0,00001	1161	1152	0,000267803	0,000173284
1080	1076	0,00001	0,00001	1162	1155	0,000362322	0,000173284
1081	1077	0,000141778	0,000283556	1163	1157	0,00001	0,00001
1082	1077	0,000173284	0,000362322	1164	1159	0,000661631	0,000299309
1083	1077	0,0000157531	0,0000315063	1165	1159	0,000189038	0,000393828
1084	1078	0,000299309	0,000141778	1166	1161	0,000157531	0,0000945188
1085	1079	0,0000945188	0,000189038	1167	1161	0,000409581	0,000267803
1086	1080	0,000378075	0,000157531	1168	1161	0,00025205	0,000488347
1087	1081	0,00001	0,00001	1169	1163	0,0000630125	0,000110272
1088	1082	0,00001	0,00001	1170	1164	0,00001	0,00001
1089	1085	0,000283556	0,000126025	1171	1168	0,000236297	0,000488347
1090	1086	0,000378075	0,000157531	1172	1168	0,00001	0,00001

De	Para	R (pu)	X (pu)	De	Para	R (pu)	X (pu)
1091	1086	0,00001	0,00001	1173	1169	0,0000472594	0,0000945188
1092	1087	0,0000787656	0,000157531	1174	1170	0,000425334	0,000204791
1093	1088	0,0000787656	0,000173284	1175	1171	0,000157531	0,000315063
1094	1089	0,00001	0,00001	1176	1172	0,000299309	0,000141778
1095	1091	0,000346569	0,000157531	1177	1173	0,00001	0,00001
1096	1092	0,000330816	0,000661631	1178	1173	0,000157531	0,000299309
1097	1092	0,00001	0,00001	1179	1174	0,00204791	0,000945188
1098	1093	0,0000945188	0,000173284	1180	1177	0,000378075	0,000173284
1099	1094	0,000189038	0,0000787656	1181	1178	0,000267803	0,000126025
1100	1096	0,000110272	0,000204791	1182	1178	0,0000157531	0,0000315063
1101	1096	0,00001	0,00001	1183	1179	0,000472594	0,000220544
1102	1097	0,000283556	0,000126025	1184	1179	0,00001	0,00001
1103	1098	0,0000472594	0,000110272	1185	1182	0,0000472594	0,0000787656
1104	1098	0,000630125	0,000283556	1186	1182	0,000110272	0,0000472594
1105	1100	0,000220544	0,000157531	1187	1182	0,000819163	0,000378075
1106	1101	0,000126025	0,0000630125	1188	1183	0,00103971	0,000472594
1107	1103	0,0000787656	0,0000315063	1189	1184	0,000299309	0,000141778
1108	1103	0,00163833	0,00075615	1190	1185	0,000299309	0,000141778
1109	1103	0,0000945188	0,000189038	1191	1185	0,000315063	0,000141778
1110	1105	0,000110272	0,0000787656	1192	1185	0,00025205	0,0005041
1111	1105	0,00001	0,00001	1193	1186	0,00001	0,00001
1112	1107	0,00001	0,00001	1194	1190	0,00001	0,00001
1113	1109	0,00001	0,00001	1195	1191	0,00001	0,00001
1114	1110	0,000110272	0,0000787656	1196	1193	0,000472594	0,000220544
1115	1111	0,000598619	0,000267803	1197	1194	0,00170134	0,000787656
1116	1112	0,000236297	0,000110272	1198	1195	0,00176435	0,000803409
1117	1113	0,0000787656	0,000173284	1199	1196	0,000441088	0,000204791
1118	1114	0,000315063	0,000141778	1200	1197	0,000283556	0,000126025
1119	1114	0,0000630125	0,0000315063	1201	1197	0,000299309	0,000141778
1120	1116	0,000456841	0,000220544	1202	1197	0,000315063	0,000141778
1121	1116	0,00001	0,00001	1203	1198	0,0000945188	0,0000472594
1122	1117	0,000267803	0,000535606	1204	1198	0,00148079	0,000677384
1123	1117	0,000126025	0,00025205	1205	1200	0,000425334	0,000204791
1124	1117	0,0000157531	0,0000315063	1206	1200	0,000488347	0,000220544
1125	1118	0,000173284	0,0000787656	1207	1201	0,00001	0,00001
1126	1118	0,00001	0,00001	1208	1202	0,000330816	0,000141778
1127	1119	0,00001	0,00001	1209	1203	0,000441088	0,000204791
1128	1120	0,0012445	0,000567113	1210	1203	0,00141778	0,000661631

De	Para	R (pu)	X (pu)	De	Para	R (pu)	X (pu)
1129	1121	0,00025205	0,000110272	1211	1205	0,000409581	0,000189038
1130	1122	0,000110272	0,000220544	1212	1206	0,0005041	0,00025205
1131	1122	0,00001	0,00001	1213	1207	0,000362322	0,000173284
1132	1123	0,0000630125	0,000126025	1214	1208	0,000488347	0,000220544
1133	1124	0,000519853	0,000236297	1215	1209	0,00001	0,00001
1134	1125	0,00001	0,00001	1216	1213	0,00025205	0,000110272
1135	1126	0,000315063	0,000141778	1217	1215	0,000141778	0,0000630125
1136	1127	0,000141778	0,0000945188	1218	1216	0,000299309	0,000141778
1137	1128	0,000740397	0,000330816	Chaves de Interconexão			
1138	1128	0,000267803	0,000126025	De	Para	R (pu)	X (pu)
1139	1128	0,00137052	0,000630125	59	1057	0,00001	0,00001
1140	1130	0,000110272	0,000220544	10	1009	0,00001	0,00001
1141	1131	0,000346569	0,000157531	109	1148	0,00001	0,00001
1142	1132	0,00001	0,00001	20	1043	0,00001	0,00001
1143	1134	0,000141778	0,0000630125				

Referências Bibliográficas

- [1] GÖNEN, T., "Electric Power Distribution System Engineering", MacGraw Hill, 1986.
- [2] SARFI, R., SALAMA, M. and CHIKHANI, A., "A Survey of the in Distribution System Reconfiguration for System Loss Reduction", Electric Power System Research, pp. 61-70, 1994.
- [3] SALAMA, H. M. and CHIKANI M. M., "Classification of Capacitor Allocation Techniques", IEEE Transaction on Power Delivery, vol. 15, N.1, January, 2000.
- [4] KAGAN, N., OLIVEIRA, C. C. B., ROBBA, E. J., "Introdução aos sistemas de distribuição de energia elétrica", São Paulo, Brasil,: Edigard Blucher, 2005, v.1.
- [5] NARA, K., MICHIMA, Y. and SATOH, T. "Network Reconfiguration and Loss Minimization and Load Balancing", IEEE Transaction on Power Delivery, Vol. 4, N. 5, pp 870-875, 2003.
- [6] LIN, W. M., CHIN, H. C., "A New Approach for Distribution feeders Reconfiguration for Loss Reduction and Service Restoration" IEEE Transaction on Power Delivery, Vol. 4, N. 5, pp 870-875, 1997.
- [7] LINS, Z. D., JUNIOR, M. A. C., "An Expert System for Power Distribution Networks Feeders Planning" IEEE Transaction on Power Delivery, 1996.
- [8] ABB Power T&D Company Inc. "Electrical Transmission and Distribution Reference Book", North Carolina, USA, October, 1997.
- [9] MERLIN, A. & BACK, G. "Search for Minimum Loss Operational Spanning Tree Configuration for Urban Power Distribution System", Proceeding 5th Power System Conference, Cambridge, UK, September, 1975, pp. 1-18.
- [10] CINVALAR, S., GRAINGER, H. Y. and LEE, S., "Distribution Feeder Reconfiguration for loss Reduction", IEEE Transaction on Power Delivery, vol. 3, pp. 1217-1223, july 1988.
- [11] LIU, C. C., LEE S. J. and VU, K., "Loss Minimization of Distribution Feeders: Optimality and Algorithms" IEEE Transaction on Power Delivery, vol. 4, issue 2, pp. 1281-1289, April 1989.

- [12] BARAN, M. E. and WU, F. F., "Network Reconfiguration in Distribution System for Load Reduction and Load Balancing" IEEE Transaction on Power Delivery, vol. 4, issue 2, pp. 1401-1407, April 1989.
- [13] SHIRMOHAMMADI, D. & HONG, H. W. "Reconfiguration of Electric Distribution Network or Resistive Line Losses Reduction" IEEE Transaction on Power Delivery, vol. 4, issue 2, pp. 1492-1498, April 1989.
- [14] MORELATO, A. L. and MONTICELLI A., "Heuristic Search Approach to Distribution System Restoration" IEEE Transaction on Power Delivery, vol. 4, issue 4, pp. 2235-2241, April 1989.
- [15] GOSWANI K. S. and BASU K. S., "A New Algorithm for the Reconfiguration of Distribution Feeders for Loss Minimization" IEEE Transaction on Power Delivery, vol. 7, issue 3, pp. 1484-1491, 1992.
- [16] CHEN, S. and CHO, M. Y., "Energy Loss Reduction by Critical Switches" IEEE Transaction on Power Delivery", vol. 8, issue 3, pp. 1246-1253, July 1993.
- [17] PEPONIS, G. and PAPADOPOULOS, M. "Reconfiguration of Radial Distribution Network: Application of Heuristic methods on Large-Scale Networks" IEE Proceedings Generation, Transmissions and Distribution, vol. 142, pp. 631-638, November 1995.
- [18] LIN W. M. and CHIN"A Heuristic Nonlinear Constructive Method for Distribution System Reconfiguration" IEEE Transaction on Power System", vol. 14, issue 2, pp. 478-483, May 1999.
- [19] SONG H. Y., WANG S. G., JOHNS T. A. and WANG Y. R., "Distribution Network Reconfiguration for Loss Reduction Using Fuzzy Controlled Evolutinary Programming" IEE Proceedings Generation, Transmissions and Distribution", vol. 144, n. 4, pp. 345-350, 1997.
- [20] DAS, D., "A fuzzy multiobjective approach for network reconfiguration of distribution systems" *IEEE Trans. on Power Delivery*, Vol. 21, No. 1, pp. 202-209, 2006.
- [21] JEON, A. J. and KIM, B. J., "An Efficient Algorithm for Network Reconfiguration in Distribution System" IEEE TENCON, pp. 907-910, 1999.
- [22] YONG J. J., KIM J. C., KIM J. Q., SHIM J. R. and LEE K. Y. "An Efficient Simulated Annealing Algorithm for Network Reconfiguration in Large-Scale Distribution System" IEEE Transaction on Power Delivery", vol. 17, issue 4, pp. 1070-1078, 2002.

- [23] CHIANG, H. and JEAN-JUMEAU, R., "Optimal network Reconfiguration in Distribution System: Part 1: A New Formulation and Solution Methodology" IEEE Transaction on Power Delivery", vol. 5, pp. 1902 - 1909, October 1990.
- [24] CHIANG, H. and JEAN-JUMEAU, R., "Optimal network Reconfiguration in Distribution System: Part 2: Solution Algorithm and Numeric Results" IEEE Transaction on Power Delivery", vol. 5, pp. 1568- 1574, October 1990.
- [25] NARA, K., KITAGAWA, M. S. and ISHIHARA, T., "Implementation of Genetic Algorithm for Distribution Systems Loss Minimum Reconfiguration" IEEE Transaction on Power Delivery, vol. 7, pp. 1044 - 1051, August 1992.
- [26] KUO C. C. and CHANG, H. C., "Applying a Refined Genetic Algorithm for Network Reconfiguration for Loss Reduction" IEEE of Japan Power and Energy, pp. 37 - 42, 1994.
- [27] KIM, H., KO Y. and JUNG, K. H., "Artificial Neural-Networks Based Feeders Reconfiguration for Loss Reduction in Distribution Systems" IEEE Transaction on Power Delivery, vol. 8, pp. 1356 - 1366, July 1993.
- [28] SALAZAR, H., GALLEGO, R. and ROMERO, R. "Artificial Neural-Networks and Clustering Techniques Applying in the Reconfiguration Distribution Systems" IEEE Transaction on Power Delivery, vol. 21, issue 3, pp. 1735 - 1742, July 2006.
- [29] SU, C-T. and LEE C-S., "Network Reconfiguration of Distribution System Using Improved Mixed-Integer Hybrid Differential Evolution" IEEE Transaction on Power Delivery, vol. 18, issue 3, pp. 1022 - 1027, July 2003.
- [30] CHIOU, J-P., CHANG, C-H. and SU, C-T., "Variable Scaling Hybrid Differential Evolution for Network Reconfiguration of Distribution System" IEEE Transaction on Power Delivery, vol. 20, issue 2, pp. 668 - 674, May 2005.
- [31] MORI, H. and OGITA, Y., "A parallel tabu search based method for reconfigurations of distribution systems" *IEEE Summer Power Engineering Society Meeting*, Vol. I, pp. 73-78, 2000.
- [32] KHOA, T. Q. D. and PHAN, B. T. T., "Ant colony search-based loss minimum for reconfiguration of distribution systems" *IEEE Power India Conference*, 2006.
- [33] MOMOH, J. A., and CAVEN, A. C., "Distribution System Reconfiguration Scheme Using Integer Interior Point Programming Technique" *IEEE*, 2003.
- [34] SCHMITD, H. P., IDA N., KAGAN, N., GUARALDO, J. C., "Fast Reconfiguration of Distribution Systems Considering Loss Minimization" IEEE Transaction on Power System, Vol. 20, Issue 3, pp. 1311 - 1319, August 2005.

- [35] MARTINS, V. F., "Algoritmo Heurístico Dedicado ao Problema de Reconfiguração de Sistemas de Distribuição" Dissertação de Mestrado, UFJF, Dezembro de 2003.
- [36] GOMES, F. V.; CARNEIRO, S.; PEREIRA, J. L. R.; VINAGRE, M. P.; GARCIA, P. A. N.; OLIVEIRA, E. J. and ARAÚJO, L. R., "A new distribution system reconfiguration approach using optimal power flow technique and sensitivity analysis for loss reduction" *IEEE* Transaction on Power System, Vol. 21, Issue 4, pp. 1616 - 1623, November 2006.
- [37] GOMES, F. V., "Reconfiguração de Sistemas de Distribuição Utilizando Técnicas de Otimização Contínua e Heurística para Minimização de Custos" Tese de Doutorado, COPPE/UFRJ, Março de 2005.
- [38] NEAGLE, N. M. and SAMSON, D. R., "Loss Reduction from Capacitor Installed on Primary Feeders" AIEE Transactions, pt. III 75: 950-959, 1956.
- [39] BAE, Y. G., "Analytical Method of Capacitor Allocation on Distribution Primary Feeders" IEEE Transaction in Power Apparatus and System, vol. PAS 97, issue 4, 1232 – 1238, July 1978.
- [40] DURAN, H., "Optimum Number, Location and Size of Shunt Capacitors in Radial Distribution Feeders: A Dynamic Programming Approach" IEEE Transaction em Power Apparatus and System, vol. 87, pp. 1769 – 1778, September 1968.
- [41] GRAINGER, J. J. and LEE S. H., "Optimum Size and Location of Shunt Capacitors for Reduction of Losses on Distributions Feeders", IEEE Trans. on Power Apparatus and Systems, vol. PAS-100, pp. 1105-1116, Mar 1981.
- [42] LEE S. H. and GRAINGER J. J., "Optimum Placement of Fixed and Switched Capacitors on Primary Distribution" IEEE Trans. on Power Apparatus and Systems, vol. PAS-100, pp. 345-352, January 1981
- [43] LEE S. H. and GRAINGER J. J., "Capacity Release by Shunt Capacitor Placement on Distribution Feeders: A new Voltage Dependent" IEEE Trans. on Power Apparatus and Systems, vol. PAS-100, pp. 1236-1244, May 1982
- [44] GRAINGER, J. J. and CINVALAR, S., "VoltVar Control on Distribution Systems with Lateral Branches Using Shunt Capacitors and Voltage Regulators: Part I, Part II and Part III" IEEE Trans. on Power Apparatus and Systems, vol. PAS-104, pp. 3278-3297, November de 1985.

- [45] BARAN, M. E. and Wu F. F., "Optimal Capacitor Placement on Radial Distribution Systems", IEEE Trans. On Power Delivery, vol. 4, pp. 725-734, January 1989.
- [46] BARAN, M. E. and WU, F. F., "Optimal Sizing of Capacitor Placed on a Radial Distribution Systems" IEEE Transaction on Power Delivery, vol. 4, pp. 735 – 743, January 1989.
- [47] CHIANG, H-D., WANG, J-C., COCKINGS, O., SHIN, H-D., "Optimal Capacitor Placements in Distribution Systems, Parts I and II" IEEE Transaction on Power Delivery, vol. 5, pp. 634 – 649, April 1990.
- [48] LEVITIN, G., KALYUZHNY, A., SHENKMAN, A. and CHERTCOV, M., "Optimal Capacitor Allocation in Distribution Systems Using a Genetic Algorithm and a Fast Energy Loss Computation Technique" IEEE Transaction on Power Delivery, vol. 15, N. 2, April 2000.
- [49] DELFANTI, M., GRANELLI, G. P., MARANNINO, P. and MONTAGNA, M., "Optimal Capacitor Placement Using Deterministic and Genetic Algorithm" IEEE Transaction on Power Systems, vol. 15, N. 3, August 2000.
- [50] SANTOS, J. R., EXPOSITO, A. G. and RAMOS, J. L. M., "A Reduced-Size Genetic Algorithm for Optimal Capacitor Placement on Distribution Feeders" Electrotechnical Conference, Proceeding of the 12th IEEE Mediterranean, vol. 3, May 2004.
- [51] SU, C-T., TSAI, C-C., "A New Fuzzy-Reasoning Approach to Optimum Capacitor Allocation for Primary Distribution System" Proceeding of the IEEE International Conference on Industrial Technology, pp. 237-241, December 1996.
- [52] Ng, H. N., SALAMA, M.M.A., CHIKHANI, A. Y., "Capacitor Allocation by Approximate Reasoning: Fuzzy Capacitor Placement" IEEE Transaction on Power Delivery, vol. 15, pp. 393-398, January 2000.
- [53] MEKHAMER, S. F., SOLIMAN, S. A., MOUSTAFA, M. A. and EL-HAWARY,
 M. E., "Application of Fuzzy Logic for Reactive–Power Compensator Feeders" IEEE Transaction on Power Systems, vol. 18, pp. 206-213, February 2003.
- [54] VENKATESH, B., RANJAN, R., "Fuzzy EP Algorithm and Dynamic Data Structure for Optimal Capacitor Allocation in Radial Distribution Systems" IEE Proceeding- Generation, Transmission and Distribution Systems, vol. 153, pp. 80-88, January 2006

- [55] HUANG, Y. C., YANG, H. T. and HUANG, C. L., "Solving the Capacitor Placement Problem in a Radial Distribution System Using Tabu Search Approach" IEEE Transaction on Power Systems, vol. 11, November 1996.
- [56] SEIFI, A. R., HESAMZADEH, M. R., HOSSEINZADEH, N. and WOLFS, P., "Application of a new Hybrid Optimization Method for Optimum Distribution Capacitor Planning", International Power Engineering Conference, pp. 70-74, December 2007.
- [57] TAKEHARA and R. S., ROMERO, R., "Artificial Immune Systems Applied to Optimal Capacitor Placement in Radial Distribution Networks", IEEE Transaction on Power Systems, 2006. Digital Object Identifier 1-4244-0288-3/06
- [58] AI-MOHAMMED, A. H., ELAMIN, I. "Capacitor Placement in Distribution Systems Using Artificial Intelligent Technique", IEEE Bologna PowerTech Conference, June 23-26, Bologna, Italy
- [59] Ng, H. N., SALAMA, M.M.A., CHIKHANI, A. Y., "A Survey of the Application of AI in Capacitor Allocation and Control" Canadian Conference on Electrical and Computer Engineering, vol. 1, 25-28 May 1997, pp. 161-164.
- [60] Ng, H. N., SALAMA, M.M.A., CHIKHANI, A. Y., "Classification of Capacitor Allocation Techniques" IEEE Transaction on Power Delivery, vol. 15, pp. 387-392, January 2000.
- [61] MEKHAMER, S. F., EL-HAWARY, M. E., MANSOUR, M. M., MOUSTAFA, M. A. and SOLIMAN, S. A. "State of Art in Optimal Capacitor Allocation for Reactive Power Compensation in Distribution Feeders" Large Engineering Systems Conference on Power Engineering, 2002 – LESCOPE 02, pp. 61-75, June 2002.
- [62] DONG, Z., ZHENGCAI, F., DU, Y. and LIUCHUN, Z., "Capacitor Switching and Network Reconfiguration for Loss Reduction in Distribution System" IEEE Transaction on Power Delivery, 2006. Digital Object Identifier 1-4244-0493-2/06
- [63] LIU, M., TSO, S. K., and CHENG, Y. "An Extended Nonlinear Primal-Dual Interior Point Algorithm for Reactive-Power Optimization of Large-Scale Power Systems with Discrete Control Variables" IEEE Transaction on Power Systems, vol. 17, N. 4, November 2002.
- [64] LIU, W-H. E., PAPALEXOPOULOS, A. D. and TINNEY, W. F. "Discrete Shunt Controls in a Newton Optimal Power Flow" IEEE Transaction on Power Systems, vol. 7, N. 4, November 1992.

- [65] S. GRANVILLE, "Optimal Reactive Dispatch Through Interior Point Method", IEEE/PES, N°93, February 1993.
- [66] M. J. LATORRE, "Aplicação do Método de Pontos Interiores Primal-Dual para a Resolução do Problema de Fluxo de Potência Ótimo", Tese de Mestrado, COPPE
 - UFRJ, Rio de Janeiro, 1995.
- [67] S. J. WRIGHT, "Primal-Dual Interior Point Methods", Philadelphia, PA, USA, Society for Industrial and Applied Mathematics (SIAM), 1997.
- [68] E. D. CASTRONUOVO, "Aplicação do Método de Pontos Interiores no Fluxo de Potência Ótimo Não Linear com Utilização de Processamento de Alto Desempenho", Tese de Doutorado - UFSC - Universidade Federal de Santa Catarina, Florianópolis, Brasil, 2001.
- [69] HAYKIN, S., "Neural Networks: A Comprehensive Foundation", Prentice Hall, 2nd edition, 2002.
- [70] GOLDBARG, M. C. e LUMA, H. P. L., "Otimização Combinatória e Programação Linear: Modelos de Algoritmos", Elsevier, 2nd edition, 2005.
- [71] KARMARKAR, N. K. Computational Results of na Interior Point Algorithm for Large Scale Linear Programming, Mathematical Programming, 52, pp. 555-586, 1991.
- [72] KLEE, V., MINTY, G., "How Good is the Simplex Algorithm?", In: Sisha, editor, Inequalities III, Academia Press, New York, NY, 1972.
- [73] CRIS, M., SALAMA, M. M. and JAYARAM, S. "Capacitor Placement in Distribution System Using Heuristic Search Strategies", IEE proceedings in Generation, Transmissions and Distributions, Vol. 144, No. 3, May 1997.
- [74] TAYLOR, T. and LUBKEMAN, D., "Implementation of Heuristic Search Strategies for Distribution Feeders reconfiguration", IEEE Transactions on Power Delivery, Vol. 5, No. 1, pp. 239-246, 1990.
- [75] GOSWAMI, S, K., Ghose, T., Basu, S. K., "An Approximate Method for Capacitor Placement in Distribution System Using Heuristics and Greedy Search Technique", Electric Power Research, Vol. 51, pp. 143-151, 1999.
- [76] SHIN, J. R., KIM, B. S., PARK, J. B. and LEE, K. Y., "A new optimal routing algorithm for loss minimization and voltage stability improvement in radial power system", IEEE Trans. Power System, Vol. 22, No. 2, pp. 648-657, 2007.

- [77] CHENG, H. C. and KOU, C. C "Network reconfiguration in distribution system using simulated annealing" IEEE Trans. Power System, Vol. 29, No. 2, pp. 227-238, May 1994.
- [78] MONTOVANI, J. R. S., CASARI, F., ROMERO, R. A., "Reconfiguração de Sistemas de Distribuição Radiais Utilizando o Critério de Queda de Tensão"SBA controle e Automação, Vol. 11, No. 3, pág. 150 - 159, Dezembro de 2000.
- [79] MENDOZA, J. E., MORALE, R. A. L., LOPEZ, E. A., et all "Multiobjetive Location of Automatic Voltage Regulators in Radial Distribution Network Using a Micro Genetic Algorithm", IEEE Trans. Power System, Vol. 22, No. 1, pp. 404-411, February 2007.
- [80] SAFIGIANNI, A. S., SALIS, J. G. "Optimum Voltage Regulator Placement in Radial Distribution", IEEE Trans. Power System, Vol. 15, No. 2, pp. 879 -886, MAY 2000.
- [81] Oliveira, E. J., SILVA JUNIOR, I. C., PEREIRA, J. L. R., CARNEIRO JUNIOR, S. "Transmission System Expansion Planning Using a Sigmoid Function to Handle Integer Investment Variables", IEEE Trans. Power System, Vol. 1, No. 1, pp. 1 -7, August 2005.