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Resumo

O presente estudo apresenta uma nova abordagem utilizando Aprendizado de Maquina
Quantico ndo supervisionado (QML, do inglés Quantum Machine Learning) para o
Monitoramento da Integridade Estrutural (SHM, do inglés Structural Health Monitoring). A
metodologia proposta envolve a extracdo de caracteristicas a partir de sinais de aceleragao
brutos e sua codificagdo em estados quanticos para posterior analise em um classificador
quantico. Ao treinar o modelo com cendrios conhecidos de integridade, uma fungdo de
pontuacao de anomalias ¢ avaliada para identificar desvios do comportamento normal, com o
objetivo de detectar possiveis anomalias estruturais. O framework ¢ validado por meio de
aplicagdes experimentais em uma estrutura de laboratério de dois andares e em uma ponte
ferrovidria em escala real, demonstrando resultados promissores na deteccdo, localizagdo e
quantificagdo de anomalias. Através de experimentacdes e analises numéricas, este estudo
avanga na fronteira da pesquisa em SHM, estabelecendo as bases para futuras exploragdes na

intersecdo entre Computacao Quantica e Engenharia Civil.

Palavras-chave: monitoramento de integridade estrutural; aprendizado de méaquina quantico;

deteccao de danos; computagdo quantica; aprendizado nao supervisionado.



Abstract

This study presents a novel approach using unsupervised Quantum Machine Learning
(QML) for Structural Health Monitoring (SHM). The proposed methodology involves
extracting features from raw acceleration signals and encoding them into quantum states for a
subsequent analysis in a quantum classifier. By training the model with known intact scenarios,
an anomaly score function is evaluated to identify deviations from normal behavior aiming to
detect potential structural anomalies. The framework is validated through experimental
applications on a two-story laboratory frame and on a real-scale railway bridge, demonstrating
encouraging results in anomaly detection, localization, and quantification. Through
experimentation and numerical analyses, this study advances on the edge of SHM research,
laying the foundation for future exploration at the intersection of Quantum Computing and Civil

Engineering.

keywords: structural health monitoring; quantum machine learning; damage detection;

quantum computing; unsupervised learning.
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1 GENERAL INTRODUCTION

Engineering structures are frequently subject to changes in their dynamic properties due to
various factors such as traffic, temperature, wind, damage, and others (Alves et al., 2015).
These causes can be characterized as long-term (progressive) changes, which affect the service
life of structures (e.g., fatigue, corrosion, excessive deformations, etc.), inadequate maintenance
or unforeseen loads during design. They may also include sudden changes, which are less likely
to occur but cause greater and unexpected damage, such as earthquakes, storms or vehicle
accidents. This gives rise to the concept of Structural Health Monitoring (SHM), a set of

methods and devices used to assess the "health" of structures (Farrar; Worden, 2007).

Traditional SHM techniques depend on modal analysis, which identifies modal parameters,
such as natural frequencies (Mekjavi¢; Damjanovi¢, 2017), damping ratios (Curadelli et al.,
2008), and vibration modes (Salawu; Williams, 1995) (Moughty; Casas, 2017). Nevertheless,
the modal identification implies a filtering process that may result in information loss,
disguising minor structural changes potentially related to damage (Alves et al, 2015).
Furthermore, modal parameter-based approaches presume that structures remain inside the
linear elastic domain even after being damaged, which is not always the case. For example,
Morales et al. (2018) concluded that no clear relationship could be established between natural
frequencies, temperature variations and damage in a simply supported beam tested in a
laboratory, highlighting the limitations of conventional methods when faced with

environmental influences.

In parallel, Machine Learning has radically transformed the way in which we interact and
deal with data sets. This area of knowledge is present in a wide range of applications, such as
the programming of robots' Artificial Intelligence (A.I.), genetic recombination algorithms and
facial recognition software. The functioning of such systems is based on the analysis of large
data sets, forcing algorithms and computational resources to operate under conditions close to

their limits.

Recent approaches have explored artificial intelligence (Al) strategies to detect structural
degradation. These tools include (but are not limited to) Artificial Neural Networks (ANNs),
Decision Trees (DT), Support Vector Machines (SVMs) and Convolutional Neural Networks
(CNNs) (Zinno et al., 2022). SHM is thus treated as a time-series classification task; however,

these methods are predominantly supervised, requiring labeled vibrational data from both intact
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and damaged structures (which is often impractical (Alves; Cury, 2021)). In such cases, finite
element models are usually employed (Mariniello et al., 2021), which may introduce
uncertainties and calibration challenges. As a result, these methods also fail to identify unknown

and/or untrained behaviors.

In general, data processing and exchange can be modeled through concepts associated with
Classical Information Theory. However, with the progressive miniaturization of technology,
quantum phenomena assume an increasing role in the scales of information processing
technology present in current devices, in contrast to the effects generally described by Classical
Physics. As a result, translating existing models, solution designs and approaches to Quantum
Computing is a complex and non-trivial task, whose applications have aroused the interest of
research areas and industrial sectors such as aerospace, agriculture, automotive, chemicals,
energy, finance, government, healthcare, manufacturing, supply chain and telecommunications

(Yndurain, 2025).

Under such conditions, the interface between Quantum Physics and Machine Learning
generates two promising scenarios: if on the one hand it is estimated that Machine Learning
algorithms can be applied in the understanding and control of quantum systems, on the other
there is the expectation that quantum computing devices improve the performance of Machine
Learning algorithms to solve problems that today are beyond the threshold of contemporary

machines.
1.1 Motivation

This dissertation is justified by the need to overcome the limitations of traditional
monitoring techniques, such as visual inspection and modal parameter analysis for detecting
structural damage. Considering the innovation environment brought about by Industry 4.0,
there is a growing demand for automated and scalable predictive maintenance approaches.
While extensive literature explores Al applications in this context, few studies investigate the
potential of Quantum Machine Learning (QML) for this purpose. Quantum algorithms possess
unique capabilities to process large datasets and identify complex patterns, possibly enabling
more accurate detection and localization of structural anomalies compared to classical
approaches. As quantum hardware technology advances, these algorithms are expected to
become more sophisticated and optimized, eventually surpassing classical learning methods in

various applications.



Additionally, Al approaches are predominantly supervised, requiring categorized training
data for both intact and damaged structures — a requirement that is often unfeasible due to the
difficulty of obtaining comprehensive and representative datasets of real damage structures.
Therefore, exploring unsupervised methods is important to overcome these limitations and

provide more practical and technically feasible solutions.
1.2 Objective

The main objective of this dissertation is to investigate and evaluate the effectiveness of
unsupervised QML algorithms for vibration-based SHM. The aim is to develop and test a
methodology to autonomously detect damage in engineering structures using raw dynamic
responses (e.g., acceleration signals). To the best of the author’s knowledge, this represents the
first application of an unsupervised quantum algorithm for such purposes. Figure 1 illustrates

the scope of this dissertation.

Figure 1 - Research fields related to the present dissertation

Recent SHM Focus of this
approaches based on Machine Learning (ML) dissertation
classical Al &

Quantum Machine
Learning (QML)

Traditional SHM
aproaches

Computing

Source: The author

1.3 Specific Objectives

1. Develop a methodology for feature extraction from raw acceleration signals, encoding
these signals into quantum states, and utilizing a quantum classifier for analysis.
2. Assess the performance of the proposed method in terms of damage detection,

localization, and quantification.



3. Compare the effectiveness of the QML methodology with classical unsupervised
machine learning methods, specifically: k-means clustering and hierarchical clustering.

4. Analyze the robustness of the proposed methodology regarding environmental
variations, such as wind and temperature, particularly in real-scale structures.

5. Serve as a preliminary investigation that lays the groundwork for future explorations

and innovations at the intersection of Quantum Computing and Civil Engineering.

1.4 Text Structure

The dissertation is organized as follows: the general introduction presents the research
topic and objectives. Chapter 2 reviews recent literature related to the subject, while Chapter 3
contains the paper accepted for publication in the journal Mechanical Systems and Signal
Processing entitled “New Perspectives on Structural Health Monitoring using Unsupervised
Quantum Machine Learning”. Finally, Chapter 4 presents concluding remarks and

recommendations for future research.
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2 BRIEF LITERATURE REVIEW

Estimating the current safety conditions of a specific structure is critical to ensure its
performance throughout its service life. However, this prediction is strongly influenced by
various factors such as environmental conditions, usage loads, design specifications and many
other elements, resulting in complex interactions that often make comprehensive analysis
impractical. Traditionally, structural assessment has been performed through human visual
inspections, which can be impractical in remote locations and, furthermore, is subjective,
relying on the engineer or technician’s expertise. Visual inspections are also limited to the

structure’s surface and may fail to detect internal damage.

Structural Health Monitoring (SHM) systems have thus gained considerable interest among
researchers across various fields, including Civil Engineering (Rabi et al., 2024), Railway
Engineering (Magalhaes et al., 2024), Mechanical Engineering (Dreher et al., 2023), Aerospace
Engineering (Kosova et al., 2025) and oil and gas industry (Wang et al., 2024). This interest
stems from their non-destructive and real-time approach, which has the potential to reduce
maintenance costs by optimizing repair frequency. Consequently, in the Industry 4.0

environment, predictive maintenance complements the preventive one.

In contrast, vibration-based structural integrity analysis involves assessing structures using
dynamic data acquired from sensors mounted directly on the structure. This methodology is the
primary focus of this research especially when combined with Al techniques, as it proves highly
valuable in scenarios where visual inspection of structural issues becomes challenging or

unfeasible.

In vibration-based SHM, the fundamental framework is the paradigm of structural damage
identification, which consists of four levels according to Rytter (1993): detection (Level 1),
localization (Level II), quantification (Level III), and prognosis (Level IV). This research
focuses on verifying the existence of damage (SHM Level I) and locating it (SHM Level II),
fundamental aspects of ensuring structural safety. Additionally, the study investigates its
validity for damage quantification (SHM Level III). Furthermore, the proposed anomaly index
can be spatially visualized along the structure, facilitating analysis and decision-making for the

responsible engineer during the prognosis stage (SHM Level IV).

In recent decades, advancements in Data Science and Machine Learning (ML) have made

signal processing an ever-growing field and a crucial tool for SHM technologies (Avci et al.,
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2021). In these vibration-based approaches, accelerometers are used to identify structural
anomalies. In this context, Finotti et al. (2019) introduced a methodology for detecting
structural changes based on statistical indicators and classification techniques, including ANN
and SVM. Ten statistical indicators were extracted from vibrational data and used as inputs for
classification methods. The methodology’s effectiveness was evaluated through applications in
three different scenarios: a numerical model of a simply supported beam subjected to various

damage levels, a laboratory-manufactured steel beam and a railway bridge in France.

To advance to SHM Level II (damage localization), Alves and Cury (2021) employed data
science and statistical techniques. Features in multiple domains (time, frequency, and
quefrency) were extracted from vibration data of the structure in its reference (intact) state and
current (unknown) state. The methodology involved creating an index that accurately
represented the damage location(s) after extracting 35 handcrafted features from raw
measurement data. Confidence intervals were established for each feature associated with the
intact state, and unknown state properties were compared to these intervals, identifying damage

accordingly.

More recent approaches have applied Deep Learning (DL) to structural degradation
detection, addressing the challenge of time-series classification (Sony et al., 2022).
Convolutional Neural Networks are the most common technique in this context for handling
large volumes of raw data, and are the leading approach for pattern recognition in images
(Ciresan et al., 2010). This strategy automatically extracts damage-sensitive information from
acceleration signals training successive layers of neurons, in contrast to other data mining
methods requiring manual feature creation. However, most DL approaches are supervised and

may not effectively detect previously untrained behaviors.

Chegeni et al. (2022) proposed a feature extraction process based on coefficients and
residues of autoregressive (AR) models to localize and quantify simple and multiple damages,
and the study presented superior results compared to classical techniques. Additionally, there
has been a recent increase in developing hybrid architectures combining various strategies to

enhance SHM methodologies' effectiveness.

In the research conducted by Luleci, Catbas, and Avci (2023a), an alternative approach
was developed to handle the large volume of training data. The authors used One-Dimensional

Wasserstein Deep Convolutional Generative Adversarial Networks with Gradient Penalty (1-D
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WDCGAN-GP) to generate supplementary synthetic dynamic signals representing the
structure’s damaged scenario. In other words, anomalous vibrational responses were created
that were not experimentally collected. This methodology relies on two neural networks: a
generator that produces vibrational data and a discriminator that estimates the authenticity of
these signals. As learning progresses, the generator produces replicas nearly indistinguishable
from the original data. The researchers validated the datasets generated using quantitative and

qualitative approaches.

In a more recent development, Luleci, Catbas, and Avci (2023b) adopted an innovative
GAN model variant, the One-Dimensional CycleWDCGAN-GP. This model not only learns to
generate similar signal examples within the same context but also excels in understanding the
complex relationship between two distinct data contexts: the intact and damaged states. The
method’s remarkable capability lies in capturing normal structure signals and transforming
them into anomalous responses representing damage, effectively bridging the gap between the
two data contexts. Although time-domain tests revealed notable performance, improvements in
frequency-domain analyses are possible with more diverse training. This proposal used
dynamic signals from a steel structure, including datasets representing damaged (loose bolt)
and “healthy” structures, where data were used to train the CycleGAN model. Later, intact state
signals were transformed into the damaged context and vice versa. Evaluation criteria ensured
that results in both contexts closely resemble real data, corroborating the model’s effectiveness

in translating information between domains.

Despite its potential, QML's application in data-driven vibration SHM is limited. Current
methods often overlook environmental and operational conditions, rely on simplistic models
and use supervised frameworks that struggle with obtaining damaged samples. More robust,
adaptable approaches are needed to handle real-world complexities. To date, no work has

evaluated an unsupervised QML method for vibration-based SHM problems.

This dissertation introduces a novel strategy for using quantum circuits in unsupervised
clustering for vibration-based SHM. It validates this approach with experimental and real-scale
structures, addressing anomaly detection, localization, and quantification. The study compares
the performance of quantum-enhanced methodology with classical clustering, highlighting the

benefits and limitations of each one. By combining experimentation and numerical analysis, it



advances SHM research at the intersection of Quantum Computing and Civil Engineering

through both laboratory and full-scale experiments.
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Abstract

This study presents a novel approach using unsupervised Quantum Machine Learning
(QML) for Structural Health Monitoring (SHM). The proposed methodology involves
extracting features from raw acceleration signals and encoding them into quantum states for a
subsequent analysis in a quantum classifier. By training the model with known intact scenarios,
an anomaly score function is evaluated to identify deviations from normal behavior aiming to
detect potential structural anomalies. The framework is validated through experimental
applications on a two-story laboratory frame and on a real-scale railway bridge, demonstrating
encouraging results in anomaly detection, localization, and quantification. Through
experimentation and numerical analyses, this study advances on the edge of SHM research,
laying the foundation for future exploration at the intersection of Quantum Computing and Civil

Engineering.

Keywords: Structural Health Monitoring. Quantum Machine Learning. Damage detection.

Quantum Computing. Unsupervised learning.
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1) Introduction

1.1) Background on SHM

Civil structures deteriorate over time due to continuous use and operational variables.
Typically, large systems experience ongoing transformations in their characteristics due to a
range of factors, which can be split into two main groups based on their duration. Firstly, there
are long-lasting or progressive changes that have an impact on the structure's overall lifespan.
Examples include fatigue, corrosion, abrasion, alkali—silica reaction, unanticipated loads during
the design phase, among others [1]. Secondly, there are sudden changes that are less frequent
but have potential to cause significant and unforeseen damage. This group includes events like

earthquakes, storms, vehicle accidents, fires, floods and so on [2].

For this reason, methods and procedures for inspecting structures have been created to
prevent both human fatalities and financial losses caused by abrupt or sustained damage, such
as visual inspection and nondestructive testing. However, conventional inspection procedures
like these often exhibit drawbacks, which include significant costs, time-consuming processes
and potential risks to technicians and engineers. As a result, there has been a growing will to
develop and implement Structural Health Monitoring (SHM) methods that can overcome these
limitations and provide more autonomous, cost-effective, and safer alternatives for assessing

structural integrity.

The paradigm of Structural Damage Detection (SDD) has been a constant pursuit. To
standardize this process, researchers and practitioners have turned to Rytter's four-level scale
[3] as a guiding framework. This scale has served as a compass, grouping SHM techniques
based on their potential to address key questions at distinct levels of damage identification.
From the foundation to the top, Level 1 corresponds to detecting the existence of damage within
the structural system, Level 2 involves determining the exact location of the damage, and Level
3 focuses on assessing the severity or extent of the damage. Lastly, Level 4 encompasses the
stage of evaluating the remaining lifespan or prognosis of the structure. Together, these levels
form an organized framework that supports the SDD community, providing them with a

powerful tool to manage the complexities of damage identification.
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In parallel, vibration-based monitoring uses dynamic data acquired from sensors
mounted in the structures to evaluate their integrity. This approach proves itself highly
beneficial in situations when identifying structural issues solely through visual inspections is
challenging or not feasible. For instance, anomalies or deterioration mechanisms can manifest
within structural elements hidden from surface observation. The internal damage may include
non-linearities, discontinuities, cracks, or voids inside the concrete [4,5]; hidden defects (such
as corrosion of the embedded reinforcement), as well as broken fibers or delamination fractures
in composite materials [6]. Hence, neglecting to recognize these issues poses significant safety

risks. [7].

Finally, when discussing the challenges and limitations of vibration-based SHM, it is
important to highlight the following topics: (a) Number of sensors: the effectiveness of the
vibration-based approach is highly dependent on the quantity of sensors forming an adequate
mesh. (b) Strategic sensors’ location: it is crucial to plan a sensor network that accurately
captures the dynamic characteristics of the structure, since achieving optimal sensor placement
ensures the most useful information at the lowest possible cost [8]. (¢) Environmental
conditions: structures are exposed to various ambient factors that can affect the accuracy of
vibration-based SHM methods due to noise and interference sources, which include wind
velocity, traffic vibrations, temperature fluctuations, humidity, and so on. To ensure robust and
accurate results, the techniques employed in each workflow should be capable of mitigating the

impact of environmental noise and maintaining the integrity of the vibration measurements.

1.2) Recent related work

Over the past decades, the field of signal processing has witnessed significant growth
and become a crucial component of SHM technologies, thanks to the advancements in Machine
Learning (ML) and Deep Learning (DL) techniques [9, 10]. In the ML context, Bisheh and
Amiri (2023) [11] introduced a method for structural damage detection using Variational Mode
Decomposition (VMD) to extract time-frequency domain features from vibration response data,
which were then applied with the Kernel Principal Component Analysis (KPCA) to reduce the
feature matrix's dimensionality and mitigate environmental changes. In this scenario, a trained
Support Vector Machine (SVM) was able to successfully discriminate between healthy and

damaged states in numerical and full-scale cases.
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As for DL-based methods, Chen et al. (2021)[12] presented a data-driven approach for
damage detection utilizing the Continuous Wavelet Transform (CWT) combined with Deep
Convolutional Neural Networks (DCNN). Their method was tested on two standard
benchmarks references: the Qatar University Grandstand Simulator (QUGS) - for detecting
damage in structural joints [13] - and the frame dataset from Los Alamos National Laboratory
[14]. The results showed superior performance compared to existing ML methods such as SVM,
CWT-SVM and random forest (RF). One year later, Sony et al. (2022) [15] developed a DL
framework employing Long Short-Term Memory (LSTM) layers, which produced superior
damage localization results compared to a CNN counterpart by using the first laboratory

(QUGS).

Civera et al. (2022) [16] introduced and validated a multi-stage clustering algorithm for
automatic operational modal analysis (AOMA) applied to unsupervised SHM. The method was
experimentally tested on a scaled 1:2 model, which was progressively damaged to replicate
foundation scouring at the central pier. The algorithm proved effective in identifying vibrational
modes, damage detection and severity assessment. Showcasing its potential for fault detection
in masonry structures, especially arch bridges. Furthermore, the study revealed that using
traditional k-means clustering to select physical modes may be overly conservative when

dealing with signals characterized by high noise levels or non-linear distortions.

Martucci et al. (2023) [17] explored the use of the Extreme Function Theory (EFT) in
conjunction with Gaussian Process Regression (GPR) for damage detection SHM of bridges.
The technique was experimentally applied to the [-40 bridge, demonstrating its ability to
identify deviations from undamaged conditions using raw mode shapes, without the need for
additional processing steps like deriving modal curvatures or using multiple modal parameters.
Four degrees of damage were produced to replicate fatigue cracking via torch cuts in the web
and flange. The results showed that the EFT framework exhibited high sensitivity to even small
damages in the bridge's plate girders, outperforming traditional Extreme Value Theory (EVT)

methods that rely on natural frequencies.

Regarding vision-based approaches, Zhang et al. (2021) [18] proposed a one-
dimensional CNN-LSTM fracture detection technique for concrete bridge decks. In terms of
precision and computation efficiency, their method outperformed current deep learning

techniques for real-time crack identification. In turn, the work of Zhao et al. (2022) [19] maps
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damage localization in a real concrete dam from unmanned aerial vehicle (UAV) images using
an improved version of YOLOvSs architecture network and a 3D photogrammetric
reconstruction method. Remarkably, the latter was able to identify large and small damage in
real time without sacrificing their respective accuracies. However, when dealing with unseen
concrete dams, this method presents a limitation regarding the need to increase the training

dataset, which is a recurring disadvantage of supervised approaches.

More recently, a new research field with promising algorithms based on the main
principles of Quantum Mechanics emerged: the Quantum Machine Learning (QML) [20]. In
this context, the potential power of QML and the advantages of CNN led to the creation of
novel techniques as the Quantum CNN (QCNN) [21]. Since then, some researchers assessed
this approach working with different types of data: while Arthur (2022) [22] explores the
potential of a hybrid-QCNN architecture using variational quantum circuits on many binary
classification datasets, Yang et al. (2021)[23] investigate the use of QNN for speech recognition
tasks. In turn, Wei et al. (2022) [24] employ QCNN for handwritten number recognition.

However, few studies addressed QML for SHM purposes. On the one hand, Trochun et
al. (2021) [25] introduced a hybrid-QCNN designed for binary image classification to identify
damaged buildings from satellite images. Nonetheless, the results showed slightly lower
accuracies comparable to traditional models, emphasizing that the direct comparison of metrics
between the best classical and hybrid classic-quantum algorithms might be premature in the
initial stages in this field. On the other hand, the research of Correa-Jullian et al (2022) [26]
explores the use of quantum kernel classification models, specifically the Quantum Support
Vector Machines (Q-SVMs) for fault detection in wind turbine systems (WTSs). The data
acquired by SCADA sensor measurements focused on early detection of pitch fault failures,
and the methodology incorporated feature reduction techniques, such as Principal Component
Analysis (PCA) and autoencoders (AE). The findings indicated that the quantum approach
performs considerably well compared to conventional ML models (and sometimes can even
outperform the last). In turn, the work of Bhatta and Dang (2024a) [27] was the first to use
QCNN to identify damage in reinforced concrete (RC) buildings into multiple categories,
whose approach is based on images taken after earthquakes. These results also confirmed that

the seismic damage detection accuracy of this model is comparable to other CNN architectures.
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Bhatta and Dang (2024b) [28] have also employed a QML algorithm to assess post-
earthquake building integrity, classifying structures as safe or unsafe. The model was trained
using simulation data derived from nonlinear time history analysis; a strategy employed to
compensate the scarcity of real-world damage data. While this approach addresses data
limitations, it may introduce potential biases that heavily depend on the quality of the simulated
data. The model used a combination of seismic inputs, such as Peak Spectral Acceleration
(PSA), and architectural features, including the number of stories and the years of construction,
all normalized using a min-max scaler. Despite its innovation, the QML algorithm's
performance was mixed, outperforming six classical supervised ML models but
underperforming against four others, highlighting that while promising, QML's superiority is
not yet fully observed in this context. A summary of the SHM studies mentioned in this section

is shown in Table 1.

Table 1 - Overview of recent Al-powered studies for SHM. Signals (S), Image (I)

Real
Data Quantum
Ref. scale
type ML

structure

Unsupervised | Detection | Localization | Quantification

Bisheh
and
Amiri S v v
(2023)
[11]
Chen et

al. S v v v
(2021)

[12]
Sony et
al.
(2022)
[15]
Civera

etal. S v v v
(2022)

[16]
Martuc

cietal

(2023)
[17]

Zhang

etal.
(2021)
[18]
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Zhao et
al.
(2022)
[19]
Trochu

netal
(2021)
[25]
Correa-
Jullian
etal. S v v v
(2022)
[26]
Bhatta
and
Dang 1 v v v v v
(2024a)
[27]
Bhatta
and
Dang S v v v
(2024b)
[28]

Ours S v v v v v v

Regardless of its great possibilities, the QML real-world application in data-driven
vibration SHM remains restricted. Besides, there are several works and methodologies
developed in this context with crucial drawbacks, including neglecting the influence of
environmental and operational conditions in the simulations, relying on simplistic numerical
models for validation and utilizing supervised frameworks that may be impractical due to
challenges in obtaining actual abnormal (i.e., damaged) training samples. As a result, there is a
need for more robust and adaptable approaches that can account for the complexities and
uncertainties inherent in real-world structural monitoring applications. To the best of the
author's knowledge, to date, no other work has evaluated an unsupervised QML methodology

applied to vibration-based SHM problems.

Hence, this work's unique contribution lies in a combination of (i) a new strategy for
incorporating quantum circuits in unsupervised clustering-like manner in the field of vibration-
based SHM, (ii) validation with experimental and real scale structures while also (iii)

investigating anomaly detection, localization and quantification aspects. Additionally, this
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study provides valuable insights about the comparative performance of the quantum-enhanced
methodology versus a classical clustering technique, bringing light on the potential benefits and
limitations of each approach. We also seek to advance on the field of SHM research by using
experimentation and numerical analyses, laying the basis for future exploration and innovation
at the edge of Quantum Computing and Civil Engineering. To this end, we explore both

laboratory and full-scale experiments.

This paper is organized as follows: Section 2 introduces the fundamental concepts of
Quantum Computing, providing readers with the necessary background knowledge about
quantum bits, gates, and embedding techniques. In the sequence, Section 3 describes the
methodology adopted, covering feature extraction techniques and the formulation of the
proposed model. Section 4 presents the two experimental applications: a two-story laboratory
frame and a real-scale railway bridge, followed by thorough analyses and discussion of results.
Finally, Section 5 outlines the limitations and considerations of our study, and Section 6

presents the concluding remarks and discusses recommendations for future work.

2) Foundations of Quantum Computing

This section explores the essential prerequisites for understanding Quantum Computing
and its intersection with Quantum Machine Learning. We provide an overview of Quantum
Computing in Subsection 2.1, elucidating the fundamental concepts of vectors, quantum states
and qubits. In Subsection 2.2, the discussion centers on operators, quantum gates, and

entanglement, while Subsection 2.3 focuses on embedding techniques.
2.1) Quantum bits (Qubits)

The core of conventional systems in the computing field relies on bits, which are binary
units representing either 0 or 1 at any given time. This is a deterministic approach where the
state value is given by mutually exclusive conditions, such as whether a current flows across
the circuit or if the voltage measurement is above or below a certain value. Such bits are
employed to perform operations on logical gates (e.g., AND, OR, NOT, NAND, NOR, XOR
and XNOR gates), which are the fundamental components of modern digital circuits, allowing

the formulation of algorithms and setting the performance of a range of tasks.
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On the other hand, Quantum Computing introduces a novel entity known as a quantum
bit (or qubit), fundamentally reshaping our understanding of information processing. Unlike
classical bits, qubits can exist in a superposition, meaning they can simultaneously embody
both 0 and 1 states. This unique property not only expands the information capacity processing
exponentially, but also enables quantum computers to perform parallel calculations and explore

multiple possibilities at once.

The introduction of qubits into the computational landscape marks a departure from
classical constraints and offers a look into a new era of computing. Some algorithms have the
potential to solve complex problems at unprecedented speeds, such as reducing the spatial and
temporal complexities that define the respective codes [29, 30]. In this sense, a qubit is
represented mathematically as a vector inside a 2D complex space through an orthonormal
basis. According to the terminology adopted by Quantum Mechanics, physical states are
represented with the notation introduced by Dirac, where a vector is indicated with a “ket” | - ),

while its dual counterpart is denoted by a bra (. | [31].

The standard representation for vectors associated to “kets” and “bras” is usually

expressed by the following matrices (also known as the computational basis):
00 = [g]: 10 =[J]:= (oI= (10} (11 = [0 1] M
0 ) 1 ) ) )

since dual vectors correspond to the conjugate transpose of the original matrix. To avoid
any confusion, operators that act on a N dimension vector will be described as NxN matrices

highlighted in bold color.

Note that the states defined in Eq. (1) obeys the orthonormalization rules for inner
products, as (0]0)= (1|1) = 1 and (0|1) = (1]0) = 0. Hence, a single qubit's state can be

defined as a linear combination of the computational basis in a single column [31] as

a

[W(©) = al0) + 811 = [g]; wBeC @)

where the wave function |) satisfies the time-dependent Schrodinger’s equation for a

given Hamiltonian operator H:

19



HIp(©) = 22 5 o) = ot (FE) By = O

h

—iH(t—tg)

e o [P(to)).

where h is the reduced Planck’s constant.

On the other hand, the dual vector (Y (t)] is defined by a row as
W®| =a™0] +p(1] =[a”B"]; 4)

where a*and B* are the respectively conjugate of the coefficients defined in Eq. (2). The
notation [Y) and (| will be maintained for simplification purposes, since the dependency of

the parameter t in Eq. (3) is implicit on its coefficients [31].

Appendix A presents the algebraic procedure and statements required to define quantum
states, observables, dynamics, probabilities and measurements through the Postulates of
Quantum Mechanics. According to these postulates, the normalizing condition for a wave
vector is required since a quantum system may only collapse to one of the basis states, with a
probability (before the measurement process) that is proportional to the square of its

respectively amplitude. Hence, the complex numbers a and f satisty the relation
W) = lal* + B> =1, )

where |a|? and |B]? are the respective probabilities to find the qubits in the states |0) and

|1) after a measurement projected on the computational basis.

The Bloch sphere shown in Fig. 1 is the most useful tool to visualize any configuration
that may be assumed by a single quantum state. From this point of view, the formal

representation of a qubit is described by spherical coordinates parameters 8 and ¢ as

6 6 .
) = cos7 |0) + sinie“pll), ©)
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Figure 1 - Bloch sphere representation of a qubit associated to a particular wave

function |1). Adapted from Kaye et. al. (2007) [31].

For systems composed of multiple qubits, the global wave function is formally described

by a sequence of tensor product as

1) = 1) @ [Y2) @ - Q |[w)- (7

In this case, |¥) is represented by a column vector with 2Vrows, where the i-th state in
the ordered sequence from |[0;) @ |0,) @ - Q@ [0Oy) to |11) ® |1,) Q@ -+ ® |1y) is associated
to the respective amplitude probability located at the i-th row. For the sake of simplicity, the
tensor & will be omitted from now on, and the aforementioned states will be presented
according to the compressed standard notation as |00 - 0) to |11 --- 1) (considering that the

vector dimension is implicit on each definition).

With the appropriate operations performed by specific quantum gates, it is possible to
represent a superposition of all those states simultaneously. This capability opens doors to
various applications of Quantum Computing with significant consequences for computational

efficiency and problem-solving across diverse fields, as discussed in the next subsection.
2.2) Quantum gates

Quantum gates are the components that enable handling qubits by exploring properties
that are not allowed by its classical counterparts. They are expressed as unitary matrices U and
provide the basic techniques by which states can be altered to execute computing assignments.
In fact, the effect of U on |¥) (Eq. (7)) can be visualized in the Bloch sphere as rotating the
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initial wave vector to align it with the one described by U|¥) [32]. Throughout this subsection,

we discuss the main single and multiple-qubit operations.

For any operator O and arbitrary quantum states |Y) and |¢), there is a corresponding

operator O such that
(Y|0g) = (pOT[y), (8)

where OT is called the adjoint or conjugate Hermitian of 0. In this sense, OT is represented
as a square matrix in the dual space, where each element at the i-th row and j-th column is equal

to the conjugate transpose of the original matrix O, i.e., OF ij = 0%

An operator is said to be Hermitian if O = OT. In this case, the respectively eigenvalues
A; are always real numbers, which becomes evident when O is expressed in its diagonal form
(as A; = A7). These variables are called “observables”, since the eigenvalues are associated to

physical parameters that can be measured along the information processing [32].

In turn, a unitary operator U has normalized complex eigenvectors (|4;| = 1) and obeys

the condition

uut =utu =1, )

where the conjugate Hermitian plays the role of the inverse operator of U: UT = U~1,

Hence, according to Egs. (3) and (9), the wave function evolution can be described by unitary

—iH(t-tq) iH(t—-tq)

transformations U=e~ & and UT =e~ # that preserves the norm predicted by Eq. (5):

WOUTUY()) = (W(ty)UT|UY(ty)) = 1. For this reason, quantum gates are usually

associated with unitary Hermitian matrices (U = UT), which ensure that measurement outputs

will be real and satisfy the reversibility criteria (U = U™1) for logical operations.

Let us start describing the most common operations that act on a single qubit. The first

set of gates is given by the Pauli matrices:

[0 1

11 0] = [0X1]|+]1)X0] = 04|0) = [1); ox|1) = |0); (10)

Oy

o, = [? Bi] = —i|0)X(1|+i|1){0] = 6,]0) = i|1); 6y|1) = —i|0);
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o, =[; 2] =10001-11)11 = 6,10) = [0); 6,11 = —|D).

In fact, |0) and |1) are defined as the eigenstates of the @, operator, whose eigenvalues
+1 and —1 are the respectively outputs associated to the projectors Py = |0){0| and P; =
|1){(1]. Together with the Identity matrix, the Pauli operators constitute an orthonormal set to

represent any 2x2 matrix [33].

On the one hand, note that the action of g, in Eq. (10) is similar to the classical gate
NOT, as it flips the states |0) and [1). On the other hand, gy, and g, have no classical analogues,
since the respective local phases +i and —1 embedded in the outputs are purely quantum. Also
note that the Pauli operators are reversible and obey a recursive relation, since 6y > = I for k =

{x,v,z} and 6,0, = €03, where ¢ is the Levi-Civita symbol referring to the indices ordered in

k.

Another operation that is widely used in many quantum algorithms is represented by the
Hadamard gate H, which rotates the states |0) and |1) into a superposition of the computational
basis with equal probability amplitudes. This property enables the qubit to assume a
configuration whose components contribute simultaneously to both states until it is measured
[33], and its matrix representation is given by
10) + [1) 0)—11) _

| = HI0) = === |+); HI1) = R

D |=)- (11)

1
H=— [1 1
Vit -1
Note that the states {|+); |—)} also form an orthonormal basis and, as well as for Pauli
matrices, two consecutive applications of the Hadamard gate cancel each other out (H? = I)

and restore the original state of the qubit.

In general, all operations that act on single qubits can be generated through gates that
correspond to rotations about the x-, y-, and z-axes of the Bloch sphere (Fig. 1) by a specific

angle. These sets are defined for arbitrary parameters {a, 8, y} = [0; 2] [34] as
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COS — —isin— coSs— —sSin—
Ry(a) = 2, 2l RyB) = g ﬁz ; R, ()

—i Sina COSE SinE COSE
(12)

which can be summarized by the general rotations expressed in a single matrix as

4 i1 i 0
cos— —e'*sin—

U@pD=| %, 2 1; (13)
el‘psini el("’”)cosi

where {0, ¢, A} are bound to the interval [0; «t] [35].

In turn, two-qubit gates leverage the concept of superposition and entanglement to perform
operations over bipartite systems. In this context, the specific class of controlled gates — where
the state of one qubit (set as the control) influences another (chosen as the target) — plays a key
role towards these goals. The most representative example is the Controlled-Not (CNOT) gate,

which reproduces the action of the 6 operator under the standard following conditions:

e When the control qubit is in the state |0), the target qubit state remains unchanged.

e When the control qubit is in the state |1), the target qubit state is toggled.

These rules can be described by the following matrix and the subsequent relations:

CNOT = = [00)(00]+ |01){01| + |10){11| + |11){10] =

(=N eNeiy e
S O O
_ oo O
O RO O

(14)

CNOT |00)=|00); CNOT |01)=|01); CNOT |10)=|11); CNOT |11)=|10);

where the set {|00);|01);|10); |11)} represents the computational basis for bipartite

systems.
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|iq) H

o) .
Figure 2 - Circuit designed to generate a bipartite entangled state. Adapted from

Benenti et al. (2007) [34].

Fig. 2 shows the simplest circuit designed to generate a bipartite entangled state, where the
input |ig)|i;) (from bottom to top) is assumed to describe any arbitrary configuration. In turn,
the standard CNOT is defined by a black dot (control) connected to an empty circle (target),
which indicates that the gate is activated only if the control qubit is |1). Hence, when |i; ) passes
through the Hadamard gate, its state is changed to a superposition of the computational basis
|0) and |1). Consequently, the component associated to |0)|i,) is not altered, whereas the state

of the target in |1)|iy) is flipped.

This phenomenon described above is called entanglement [34], where the state of each
qubit becomes intrinsically linked to the other. When the input |i;)|iy) 1s defined as the
computational basis for bipartite systems (Eq. (13)), the circuit’s output is given by four

possibilities regarding maximally entangled bipartite states

o100y +111) 00y —[11)

%)= =i [9T) =
(15)

o 10D +[10)  [01) —[10)

oy = B2y - 221D,

which forms the Bell basis and plays a crucial role for most quantum algorithms [32]. Note
that |®*) and |®~) are defined as a superposition of qubits in a symmetric configuration that
are equally likely to be measured (|00) and |11)), while |[¥*) and |W~) describes a pair of
orthogonal states (|01) and |10)) with the same probability.

Since all multi-qubit operations can be performed with CNOT and single qubit gates
[32], the concepts and theoretical tools presented here are addressed in the analysis of the
algorithms covered in this work. In the following subsection, we discuss specific techniques to

process classical data in quantum algorithms.
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2.3) Quantum embedding techniques

One of the biggest challenges emerges when one must feed classical data in a quantum
algorithm due to the need to adapt the input properly to the quantum hardware. For this purpose,
embedding techniques are used to represent classical features into quantum states to serve as
the circuit input, so that quantum computers can manipulate information through physical
qubits. While a variety of quantum encoding methods exist, each has its unique advantages and
constraints [36], and the field continues to be an active area of research. In this subsection, two

typical encoding techniques are briefly discussed: angular and amplitude encodings.

On the one hand, angle encoding exploits the inherent phase and the properties of qubits
to process the information. This method employs rotation gates R to convert a classical data x

(representing a given data point) [36] to a quantum state with n qubits as

x = |x) = R(x;) ® R(xz) - R(x;) - R(x,—1) ® R(xy), (16)

where the symbol & denotes the tensor product between the n individual rotations applied
to each qubit. These gates can perform the operations detailed in Eq. (12): Ry, Ry or R,, which
are attached separately to each qubit by adjusting the rotation angle to produce the desired state
|x). For a better understanding, a step-by-step numerical example of encoding classical data
into quantum states is provided in Appendix B. While this scheme may not be as robust in terms
of encoding capacity compared to others, it stands out for its simplicity in configuration, which
makes it widely adopted. This technique is frequently employed in QML models for data
classification [37], as well as in QNNs [38].

On the other hand, amplitude encoding creates and maps different phases for bits, as it
converts a classical input vector x (of length N) into the amplitudes of an n-qubit state with

n = log,(N). This operation is defined by [37]
211
1
x - x) =) i), (17
Il £

where the states |i) are associated with a given basis. The main representative example is
the action of the Hadamard gate (Eq. (11)) over the n qubits when |x) is expressed in the

computational basis, which generates a superposition of all possible states between [0;) @
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105) @ - @ |0y) and |1;) ® |1,) @ -+ @ |1y) with an amplitude probability proportional to
1/3/2m,

3) Methodology

The current SHM methodology involves collecting vibration data two structures of
interest. The acceleration measurements are processed to extract relevant information from the
signal responses, and the ones collected under reference conditions (e.g., undamaged) are
compared to those captured under unknown scenarios (e.g., damaged) using an unsupervised
quantum classifier. In Subsection 3.1, we outline the process to extract statistical features from
data to encode them into quantum states. Next, we apply Quantum Machine Learning (QML)
techniques in Subsection 3.2 to analyze the chosen dataset. Finally, we present a comprehensive

framework of the proposed methodology in Subsection 3.3.
3.1) Feature extraction

Feature extraction serves as a critical stage in structural damage identification problems,
where the focus lies in extracting relevant information from the signals acquired from sensors
or monitoring systems. An effective feature extraction procedure guarantees that the data are
transformed into a format that highlights their key characteristics, which can be used to
distinguish normal from abnormal structural behaviors [39]. Based on this premise, the present
study employs time domain features obtained from raw acceleration data regarding 11 statistical

features x;; extracted from vibration signals y;, as shown in Table 2.

The selection of these specific waveform features was motivated by their capacity to
capture both linear and nonlinear aspects of vibration signals. They were proposed by the well
stablished book of Farrar and Worden [40], which emphasizes that statistical features derived
from time-domain data are particularly advantageous in SHM, as they can detect subtle changes
in structural behavior that may precede visible damage. Additionally, these features offer
simplicity, computational efficiency, and direct interpretability. A deeper look at the relevance
of selected feature set reveals that lower-order statistics, such as mean and variance, represents
the central tendency and dispersion of the data. Conversely, higher-order statistics (HOS), such

as skewness and kurtosis, represent the asymmetry of the data distribution, which are sensitive
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to transient events. Previous research has shown that HOS performs considerably well in SHM

applications, as presented in the works developed by [39-44].

Table 2 - Statistical features x; extracted from signal y;

Statistic

Definition

Peak [42-44]

X1, = max (y;)

Mean [43, 44] 1oV
X2,i = N 1yl

i
Mean Square [43, 44] I,
X3,i = N 1yi

1=

Root mean square [41-44]

Squared mean root [44]

Variance [40, 43, 44] 1 2
Xe,i “N_1 - |Yi le|
Standard deviation [43, 44] X7 = /X6
Skewness [41, 43, 44] i —x2,)3

NG CDE

Kurtosis [41-44]

= Yy —x)*
TN = D (ag )

Crest Factor [41-44] max (|y;|)
X10i = T
Xa,i
Shape factor [41, 42, 44] Yor s = X4
i =T

3.2) Unsupervised QML

The method used in the present paper is named Quantum Variational Rewinding

algorithm (or QVR), which is adapted from the work of Baker et al. (2022) [45]. Based on
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previously established limits, its purpose consists in distinguishing a given data distribution
between a pattern considered normal and an anomalous one. Initially, the method was
conceived to deal only with time series. For this reason, we choose to use statistical features as
inputs to the quantum states, where the main benefit of such a strategy is to reduce the

processing power and memory necessary to run the algorithms.

Before applying the QVR algorithm, we first establish a set of values x™°"™# defined
as a reference for a normal distribution, which represents the temporal behavior of a system
under regular conditions. Then, we train a chosen network with the same data to generate a

normal

function a normat(x) that indicates the anomaly score for all x € x , where the condition

a,normat (x) = 0 must be satisfied for every input. Next, we feed the system with a new dataset
xUkoWn 14 test the effectiveness of the model with a previously defined threshold { € R. If
A, normal (X¥™OW) > T for any subset of the input data, the set is classified as anomalous;

X

otherwise, the series meets the expected requirements of a normal distribution.

Now, let us illustrate the method by considering a set of T-many features classical data
x = (x,:t € T) from a given time series y = (y;: i € ZZ,) obtained after p-many observations,
where p is a positive integer. The first stage consists in converting the whole set into a sequence
S = (|x¢): t € T) of n-qubit quantum states representing x. To this end, we build a quantum
circuit starting with all inputs equal to |0), and then evolve each one with a quantum feature
map through a unitary operator U(x,). This stage can be associated to an unknown embedding
Hamiltonian Hg, where each component generated in this process corresponds to an element of

S [45]:
|x¢) = U(x,)|0)8" = e~ Helx)|g)®n, (18)

In the following step, all states |x;) are subjected to a new dynamic described by another

unitary operator Vi(@,y), which is also associated with an unknown Hamiltonian H(ea, y)t:

xe, @, ) = Ve(a, Y)Ixe) = e M@ |xy), (19)

—iH(a,y)t

In this case, Vi(a,y) =e can be written as an eigendecomposition of the

respective matrices of eigenvectors W(a) and its diagonalized form D(y, t):
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Vi(a,y) = WH(@)D(y, ) W(a), (20)

where y represents the eigenvalues of H(a, y)t [45].

For the method to succeed, the original statement a,normat (x) = 0 must be satisfied for
every non-anomalous behavior. This condition can be fulfilled by imposing the restriction
lx., @, ¥) = [0)®" for normal distributions, which is equivalent to ensure that the probability
associated to measuring the qubits at the end of the process satisfies [(0|®"|x., a,y)|? = 1.
Consequently, from Egs. (18-20):

(0|®ne~H@Nto=He(XD)|0) ~ 1 = e~ H@Nto~HE() ~ | & H(a,y)t

(21)
~ —Hg(x,),

i.e., the Hamiltonians must be anti-symmetric and the parameterized unitary operator

Vi(a,y) should be able to rewind each state |x,) to the global initial input defined as |0)®™.

In practice, it is impossible for a single Hamiltonian to successfully rewind every x €

normal

x , as they are univocally defined. On the other hand, we can calculate the expected value

generated by many Hamiltonians [46] through the function
F(¢, xt) = E)/~ N(u,0) [<O|®n|xti Q, V)]» d) = [a; W, G]; (22)

normal

considering that F (¢, x;) = 1 forall x € x and t € T. For each case, the parameter

y is selected from a normal distribution N (u, 0) with mean u and standard deviation o.

Next, we can define the loss function £(¢) to minimize the mean square error in Eq.

(22) as:

Z [1 - F(¢,x)]* + P (0), (23)

x exnormal t €T

L(¢) =

2 |xnormal | |T|

where the factor 1/2|x™°"™a!||T| ensures the normalization condition for £(¢), whereas

the function P, (o) (set with a single hyperparameter 7) penalizes large values of o [46].

Finally, the anomaly score function @, normar (x*"*°%™) is defined as:
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1
axnormaz (xunkown) — m Z [1 _ F(¢*, x%mknown)]z’ (24)
teT

where ¢*is the argument established through a classical optimization routine that

minimizes L(¢) in Eq. (23).

In this sense, we can train a clustering algorithm with the results provided by Eq. (24)
with normal features x € x™°"™% to produce a cluster F(¢*, x,) centered at 1. Therefore, if
F(¢*,x,) > 1 for a new dataset x“"™K"OWn the pattern will be classified as an anomalous
distribution. For a more detailed understanding about the algorithm iterations, training loops
and classification, “Appendix C: Unsupervised QML Pseudocodes” is advised. Furthermore,
"Appendix D: List of customizable parts of QML" aims to serve as a baseline for future

researchers to investigate and replicate the experiments with other hyperparameters.
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3.2.1 Tuning the threshold

During the process of tuning the threshold ¢ explained in Subsection 3.2, the parameter
is adjusted to optimize a chosen metric through the comparison between a normal and an
unknown time series. In this study, an accuracy score is defined as the reference to be optimized,

where the anomaly score function @ norma (x***°%™) obtained from the previous unsupervised

training phase is applied to a new data to search values for { along a refined sampled one-
dimensional grid. Since our goal is to identify the results that yield the highest accuracy score,
anomalies are classified according to higher increasing limits, while normal behaviors (i.e.,
undamaged) are assigned to patterns whose maximum values do not surpass a rate of 50%,

which represents the baseline randomness of a binary classification.

3.3) Proposed framework

A visual representation of the main steps and components involved in the proposed
approach is illustrated in Fig. 3. The procedure starts by collecting acceleration measurements
from a network of sensors placed all over the structure under investigation (Fig. 3(a)). The
vibration responses are then split into signal samples, which is followed by a feature extraction
process conducted on the raw dynamic data. The method generates 11 statistical indicators for
the respectively signal samples collected from each sensor (Fig. 3(b)), which are essential to
capture the fundamental properties of the dynamic behavior of the structure. Note that the whole

procedure must be performed for both intact (which is previously known) and unknown signals.
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Figure 3 — Overview of the methodology steps.

However, features with different units of measurement across the signals can be
problematic, as it introduces a bias that may affect the model’s performance. An alternative is
to employ dimensionless variables, which should have similar interval sizes to prevent one or
more features from dominating the classification model. In this sense, many effective strategies
can be adopted, such as ratios between features, dividing by a reference value, or employing

min-max scaling or normal standardizations (also known as the z-score normalization).

For this study, the z-score normalization may not be particularly useful, as there is no
guarantee that the features extracted from various structures follow a normal distribution.
Conversely, a min-max normalization process can be considered suitable [28], wherein each
feature is scaled within the interval [0,1] based on its original range. This choice solves the
initial restriction, as it ensures that all variables must have equal weight (since they exhibit the

same range lengths). Hence, for a given feature x;, the min-max normalization is defined as

scated _ __ i — min (x)

! " max (x) — min (x)

x (25)
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The next step consists in encoding the scaled features that will serve as inputs for the
quantum circuit (Fig. 3(b)). As discussed in Subsection 2.3, this operation is required because
it allows the features extracted from the sensor data to be represented in a quantum formalism,
enabling it to be processed and analyzed by the proposed quantum algorithm. The
corresponding quantum circuit is illustrated in Fig. 4. While the first block (indicated by U(x))
represents the unitary operation responsible to encode the features, the second (V(a,y))
contains the unitary operator build to train the parameters that will be optimized. When U (x)
and V(a, y) are expressed as controlled gates that act simultaneously on two or more qubits

(Fig. 2), the respectively quantum states get entangled (see Eq. (15)).

U(X) V(C(, Y)

I [ =

Figure 4 — General structure of the quantum circuit architecture.

By considering only the known intact scenario features as the training set, we define a
loss function (Eq. (23)) to measure the discrepancy between the actual and expected quantum
states, which is bound to penalize large deviations. Afterwards, the training process (illustrated
in Fig. 3(c)) is performed to minimize £(¢) with classical optimization techniques. Then, an
anomaly score function is evaluated (Eq. (24)), which is fitted specifically to quantify
deviations from the normal behavior (defined with the features extracted previously) from the
known intact signal. This function is designed to identify anomalies when the variables deviate
significantly from the normal center, i.e., the anomaly score tends to vanish in normal situations
and increases when it is far from the normal center. Note that these rules guarantee the

unsupervised premise of our methodology.

In summary, the proposed approach converts the problem of anomaly detection into a
clustering approach in the quantum space. By training the model on normal feature instances,
we can identify deviations from the expected behavior and point out potential structural
anomalies. Moreover, like many ML algorithms, the training process is conducted using mini-
batches, whose default parameters are set as follows: Batch size: 10; Optimizer: Adam;
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Learning rate: 0.01; Batch iterations: 1000 and W (@) layers: 2. Moreover, Python is the primary
language used to implement the current QML computations, more specifically through the
Jupyter Notebook environment and within the Google Colaboratory platform. In turn, codes
are processed on the standard cloud CPU to ensure reproducibility with the following
specifications: Intel(R) Xeon(R) 2.20GHz and 12.7 GB of RAM. Due to the instability of the
near-term Quantum Computing devices [47] known as NISQ (from Noisy Intermediate-Scale
Quantum), tests were carried out on quantum simulators to provide more reliable results, since
the former have few qubits available in open access accounts as the ones provided by the IBM

Experience Platform [35].

Regarding computational libraries, we focused on Pennylane, PyTorch and Covalent.
The first is chosen to run codes in a quantum simulator, whereas PyTorch supports the
optimization of trainable quantum parameters through Adam Optimizer. Conversely, Covalent
manages the interaction between these systems by distributing different tasks to distinct
computational resources and integrating them into a specific workflow. Given that QML
algorithms involve both classical and quantum computing resources, Covalent is essential to
provide the required heterogeneity along this process. Additionally, MATLAB independent
routines are developed to complement these tasks, such as data preprocessing, visualization,

preparation and comparison by the K-means and hierarchical clustering method.

In this study, half of the known healthy data are utilized solely for fine-tuning the
anomaly score function @, normat (x*™°%™) and the other half for testing. After establishing this
dependency, the parameters of the quantum circuit responsible for processing data remain
unchanged for subsequent testing. When the algorithm is executed on unknown scenarios, a
threshold value (Q) is established to enhance the detection of anomalies (as described in
Subsection 3.2.1 and illustrated in Fig. 3(d)). In this sense, our goal consists in adjusting
seeking to achieve the highest accuracy allowed to distinguish between the known datasets from
any unknown sequence. Besides, for all applications analyzed, data instances are randomized
to avoid any undesired bias. Hence, for a given unknown scenario, half of the testing data is
allocated for tuning the threshold ¢, while the remaining is used to assess the algorithm's
classification accuracy (Fig. 3(e)). This approach aims to prevent overfitting and ensures that

the algorithm generalizes properly to new unseen scenarios beyond the training data.
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Finally, the classification of each signal unknown sample by the algorithm is described

according to the true labels:

Anomalous,  if @ norma(x¥OW™) > T; (26)

Signal sample classification = { i
Normal, Otherwise;

whereas the accuracy is determined by

TP 27)

Accuracy = m ;

where TP and FP respectively stand for true and false positives. For cases where the
unknown data are healthy, it is expected that the algorithm will struggle to differentiate and will
produce a nearly random binary classification, i.e., approximately 50% accuracy. Conversely,
if the unknown data contain anomalies, the algorithm should separate data more effectively,
resulting in a higher accuracy. Consequently, Eqgs. (26) and (27) serve as an index for assessing
damage, and this approach ensures that the algorithm remains unsupervised to autonomously
detect and analyze structural anomalies. Moreover, the proposed methodology is evaluated on
structures subject to two stages of progressive structural abnormalities. Therefore, this allows
assessing not only the algorithm's ability to quantify damage but also to differentiate patterns

of increasing structural degradation.

4) Applications

Two experiments are used to assess the proposed methodology’s performance: a 2-story
slender frame (Subsection 4.1) and the KW51 railway bridge (Subsection 4.2). By testing both
laboratory and real-scale structures subject to progressive anomaly events and single damage
scenarios, the study aims to simulate realistic conditions where structural integrity may be
compromised. In both applications, an additional intact scenario, not included in the training
phase, is introduced to assess the models' susceptibility to overfitting. This approach aims to
improve the classifier's generalization capabilities, ensuring more reliable outcomes. Such
investigations are expected to provide insights into the method's robustness and applicability in
detecting and characterizing structural abnormalities, thereby advising on its potential for real-

world structural health monitoring applications.
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4.1) 2-story laboratory frame

The configuration of the two-story slender aluminum frame is depicted in Fig. 5. Its bar
elements are linked using screws, washers, and nuts of equal specifications: 300 mm long,
15.875 mm wide, and 1.587 mm thick [48]. The schematic of the experimental setup is
displayed in Fig. 5(a). It consists of four unidirectional Bruel© piezoelectric Integrated
Electronics Piezoelectric (IEPE) accelerometers positioned at the marked locations on the
structure to record horizontal accelerations. Each sensor has a sensitivity of 100 mV/g and a
low-pass filter was configured with a cutoff frequency of 100 Hz. To apply the load, a pendulum
with a mass of 14 g was attached to the top. The loading process consisted in releasing the
pendulum from rest from a predefined position and letting it collide to the frame at 180mm
from the ground (see Fig. 5(b)). The three structural conditions examined in the current study

are described in Table 3. For more information, the reference Finotti ef al. (2023) [48] is

advised.
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Figure 5 - (a) Photo of the two-story laboratory frame and (b) dimensions. Adapted
from Finotti et al. (2023) [48].
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Table 3 - Structural conditions of two-story laboratory frame

Situation Description
Intact scenario Baseline
Unknown intact scenario No mass added
Damage scenario I Mass added at the second floor (7.81 g)
Damage scenario II More mass added at the second floor
(15.62 g)

One hundred (100) tests were performed for each structural condition, yielding 400 in total.
Furthermore, each accelerometer had 2000 sampled points, with the largest peak of acceleration
acting as the starting point. This window aims to capture strong impact amplitudes while
ignoring low energy signals that result from decreasing responses until stationary vibration. The
data were recorded at a frequency of 500 Hz, such that each sample had a length of four seconds.
A typical signal and its frequency response are shown in Fig. 6 and Fig. 7, respectively. The
selection of the data acquisition rate at 500 Hz was decided after a preliminary assessment of
the signal’s bandwidth, structural dynamics, accuracy requirements, and data storage

constraints, according to Finotti et al. (2023) [48].
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4.1.1) Results and discussion

As explained in Subsection 4.1, an anomaly is introduced by placing a mass at the center

of the second floor, positioned between sensors #2 and #3. Therefore, for analytical purposes,
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these sensors are the ones more prone to detect any potential structural damage. This is because
perturbations in the structure’s mass, stiffness, and energy dissipation properties are frequently
related to damage [49]. The primary goal of this experiment is thus to examine the effectiveness
of the proposed methodology's localization (Rytter scale level 2). The secondary objective is to
assess its quantification (Rytter scale level 3), which concerns how consistently the indicators

react to progressive damage scenarios.

For control, the quantum technique is applied using different numbers of qubits,
specifically 1-qubit, 2-qubit and 3-qubit systems, and then compared with their classical
counterparts. Configurations with more qubits were not considered due to computational time
constraints. As for the classical methods, k-means and hierarchical clustering were chosen since
both are well-established unsupervised classification techniques. Additionally, k-means was
tested considering three different metrics: Euclidean, cityblock, and cosine [50]. As for the
hierarchical clustering, four distinct linkage methods were used to determine the distance
between clusters: single, complete, average and ward [50]. Notably, clustering methods require
a minimum of two clusters for classification. In this case, one cluster represents the baseline
intact scenario features, while the other captures the unknown scenario features. This process

is performed independently for each examined scenario and for each sensor.

Moreover, theoretical concepts of binary classifications are explored and used to create a
damage index from the models’ accuracies. In this case, 100% of accuracy means that the data
could be completely separated, leading to the hypothesis that there are different structural
behaviors, which indicates a high potential for anomaly near a given sensor. Conversely, 50%
of accuracy means that the data were randomly separated, thus, both healthy and damaged data
were considered to display similar behaviors, i.e., the algorithm failed to distinguish these

datasets, which indicates low potential for anomaly.

Figures 8(a), (b), and (c) illustrate the clustering accuracies obtained for each sensor,
considering different damage scenarios and clustering approaches. The red curve in Fig. 9
illustrates the expected behavior of the results, representing the optimal accuracy distribution
among the sensors that best reflects the actual locations of the anomalies. This curve serves to
provide a clear and objective depiction of method's capability for anomaly localization and
quantification. In Fig. 9(a), the red curve is a smooth, wavy line centered around 50%,

representing the expected behavior in an intact scenario. In Fig. 9(b), the curve forms a
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quadratic parabola centered between sensors #2 and #3. A similar pattern is observed in Fig.
9(c), but with greater intensity due to the progression of damage. For the intact data, all models,
both classical and quantum, yielded accuracies near the random threshold (50%), except for
hierarchical clustering embedded, which all linkage scheme demonstrated false positives at
sensor #3. It reflects the challenge of differentiating between baseline and other intact scenarios,

where minimal structural variation is expected.

For damage scenario I, the proposed quantum approach successfully locates damage at
sensor #2 for the case of 1 and 2 qubits (see Fig. 8(b)), while k-means pinpoints damage at
sensor #3 and hierarchical indicates at sensor #2, both being acceptable responses (ground truth
is #2 and #3). The latter showed a false positive (FP) at sensor #4 (ward linkage), but also

achieved the highest accuracies. Quantitatively, for this 1-qubit case, the accuracy indices

. . . A
increased from new intact data to damage scenario I (M - 1) by +22.2%/+41.5%/-
CCNew intact

2.1%/+9.8% for each sensor, respectively. As for damage scenario II, the indices’ increases

(M — 1) were of +5.5%/+64.2%/-21.3%/-9.8%, respectively. Other ratios can be

ACCNew intact

found in Table 4.
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Figure 8 - Accuracy results for the laboratory 2-story frame: (a) New intact scenario, (b)

Damage scenario I and (¢) Damage scenario I1.
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A
Table 4 — Ratio between accuracy results of two-story frame - Ratio A: ——22megel _ 1

and Ratio B: (

Accpamage 11 _ 1)

AcCNew intact

CCNew intact

Model Ratio Sensor #1 Sensor #2 Sensor #3 Sensor #4
Ours A +22.2% +41.5% 2.1% +9.8%
(1 qubit) B +5.5% +64.2% -21.3% -9.8%
Ours A +23.4% +23,1 +6.4% +8.8%
u
; +70.2°
(2 qubit) B N % +78.8% +23.4% +14.0%
A +42.6% +62.0% +5.9% -7.0%
Ours +80.9%
(3 qubit) B 7 +76.0% +5.9% +26.3%
Hierarchical A +18.4% +50.9% -41.5% +15.4%
clustering +73.8% +53.8%
B -6.59 -35.1¢
(Complete) * % % *
Hierarchical A -4.7% +79.8% -45.7% -1.0%
clustering +61.3% +74.5%
B -8.29 -44.6°
(Average) * % % *
Hierarchical A +23.4% +36.3% -36.2% +48.0%
clustering +83.2% +76.5%
B -30.19 -37.8°
(Ward) * % % *
Komeans A +34.7% +21.2% +45.8% +13.8%
+81.39 +63.89
(Euclidean) B 8 1*3 % +93.1% +62.2% 63*8 &
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K-means A +31.5% +12.4% +42.7% +16.7%
(Cityblock) B BT sgaw | asomwe | OO
K-means A *+38.6% +25.1% +32.8% +20.7%
(Cosine) B IR a8 | +s09w |

*Stands for excessive increase of false positives (values greater than +50,0%). Bold indicates
the highest accuracy of each table line.

For damage scenario II, the QML method kept its indication of anomaly at sensor #2 and
produced better outcomes when the number of qubits was set to one, as observed in Fig. 8(c).
However, there are some issues about the reliability of the compared clustering methods. As
damage severity increases from scenario I to II, the resolution of damage localization with k-
means declines. As observed in Fig. 8(b-c), the increase of the local anomaly had a significant
impact on the accuracy of the k-means model across all sensors. It shows high FPs in sensors
#1 and #4 for all tested metrics. The hierarchical clustering failed completely at this scenario,
misinterpreted the increase in mass, could not distinguish the new vibrational behavior at
sensors #2-3 and shows excessive high FP at sensors #1 and #4. In other words, in this
experiment, classical algorithms exhibited excessive sensitivity to structural changes, limiting
the localization task in advanced damage stages. This is not ideal for sudden intense damage
such as earthquakes, fires, or collisions [51]. However, it is still possible to accomplish the task

of detecting the presence of damage (Rytter level I), which is indeed a less complex objective.

Regarding the secondary objective, the damage severity correlates with an increase in the
accuracy of the proposed model. As seen in Fig.8(b-c), the QML approach consistently
recognizes damage at sensor #2 and exhibits an increment in its indices, especially for the case
of 1-qubit, where an increase of 16% was observed in sensor #2 indices from damage I to II,
indicating a promising capability for quantification. Despite that, the accuracies of the 2-qubits
and 3-qubits models exhibit a curve where the maximal peaks occur also at sensor #2, as
observed in Fig. 8(c). Thus, the suggested quantum strategy performed better in terms of

damage quantification at the local of damage than its classical counterparts.

Additionally, an increase in the number of qubits does not necessarily translate to a direct
improvement in performance. This observation is reasonable given that an increase in the

number of qubits entails a corresponding rise in complexity of the quantum circuit, leading to
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more parameters to be trained. Consequently, this bigger complexity demands a larger volume

of data to effectively train the quantum algorithm and return improved results.

In summary, regardless of variations in terms of performance across all scenarios and
sensors, the quantum approach consistently proves itself competitive (Healthy scenario;
Damage scenario I) or superior performance (Damage scenario II) compared to k-means and
hierarchical clustering. This finding suggests that quantum-based approaches may be able to
improve SHM capabilities, particularly in scenarios where traditional methods may fall short.
It is important to note that quantum algorithms are still in their first phase of exploration
compared to conventional ML, and achieving better or even comparable results to classical ML

represents a promising advancement.

4.2) KW51 Railway Bridge

The steel railway bridge known as KW51 (see Fig.10(a)) is in Leuven, Belgium. Positioned
along the railway line L36N between Leuven and Brussels, it spans over the Leuven—Mechelen
canal. This bow-string type bridge is 115 meters long and 12.4 meters wide [52]. It is close to
Leuven and Herent’s railway stations, approximately 2.2 km and 2.3 km away, respectively, as
shown in Fig.10(b). The bridge accommodates two ballasted electrified tracks, named track A
on the north side and track B on the south side, with a maximum speed limit of 160 km/h. Both
tracks have curved sections, with track A having a curve radius of 1,125 m and track B with a
radius of 1,121 m. Opened for traffic in 2003, this bridge serves passenger trains traversing

between Leuven and Brussels.

Bgmeld -

===~"" Herent

i
Map data © 2020 Google

Figure 10 - (a) Photo of railway bridge KWS51 in Leuven, Belgium, and (b) Schematic of

its location [52].
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The monitoring program began on October 2, 2018. Between May 15 and September 27,
2019, modifications were conducted to address a construction defect that was discovered during
an inspection. The connections between the diagonals, arches, and bridge deck were
strengthened due to these efforts. Images of these connections before and after retrofitting are
shown in Fig.11(a) and Fig.11(b), respectively. Fig.11(c) displays the scaffolding that was
employed during the strengthening procedure. Each diagonal had a steel box welded around its
initially bolted connection where it intersected with the arches and deck. The acceleration
measurements were collected over a 7.5-month period preceding retrofitting (October 2, 2018
— May 15, 2019), during the retrofitting phase (May 15 — September 27, 2019), and for 3.5
months post-retrofitting (September 27, 2019 — January 15, 2020) [52]. Hence, these three
alterations in the bridge’s dynamic behavior are treated in this section as structural
“abnormalities” and are employed to validate the proposed methodology in real-world

applications.

Figure 11 - Connections of KWS51 bridge (a) before, (b) after and (¢) during the
retrofitting [52].

For this research, only six accelerometers (#1 to #6) (the ones mounted on the bridge deck,
as shown in Fig. 12) were considered due to the less frequency of malfunctions during the
monitoring (see Fig. 13). They correspond to those referenced in the report by Maes and

Lombaert (2021) [52] as “aBD11Az”, “aBD17Ay”, “aBD17Az”, “aBD17Cz”, “aBD23Ay” and
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“aBD23Az”, respectively. These are uniaxial sensors and the last letter of the nomenclature
indicate the direction (y or z) where the measurements were recorded. Each accelerometer is
placed inside an [P66-rated polycarbonate junction box, which is attached to the structure using
a pot magnet [52]. Fig. 14 illustrates the sensor mounted on the structure. The time periods
allocated for unsupervised training and testing are outlined in Fig. 13. Data for the baseline,
new intact, during retrofitting, and after retrofitting scenarios were collected from the 1% to the
10" of March, April, July, and October of 2019, respectively. Each day within these periods, a
S5-minute recording starting at 4 pm (defined by default) was captured at a sampling rate of
825.8 Hz. Subsequently, 10 samples, each lasting three seconds, were extracted from these
original daily recordings, resulting in 100 signal samples for each scenario. An example of a
typical dynamic response of the bridge is shown in Fig. 15. In addition, the average FFT both
in z and y directions were computed and are displayed in Fig. 16(a) and Fig. 16(b), respectively.

Regarding environment factors, Fig. 17 presents the evolution of the surface temperature
below the bridge deck and the air temperature at the Vliet Building in each scenario. The
analysis reveals that the identified natural frequencies are influenced, to some extent, by
temperature variations in certain modes, with a notable impact observed during the frost period
in January 2019, which was not considered in this study. After the retrofitting, a small variation
of the natural frequencies with respect to the situation before retrofitting is observed, owing to
the presence of the scaffolding at both sides of the bridge [52], which corroborates the fact that
retrofitting can induce detectable changes in the structure's vibrational behavior to validate the

proposed model.
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Figure 12 - KWS51 bridge (a) lateral view; (b) studied accelerometers setup installed on
the bridge deck. Adapted from Maes and Lombaert (2021)[52].
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*Time periods considered for this study.

Figure 13 - Gantt Chart of Sensor Operations: Normal (green), Malfunction (red),
Interruption (blue), and Retrofitting period (shaded gray). Adapted from Maes and
Lombaert (2021) [52].
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(b)

Figure 14 - (a) Accelerometers aBD17Az and aBD17Ay; and (b) accelerometer
aAR1516Cy. [52].
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Figure 15 - Typical signals from the KWS51 Railway Bridge on March 1st, 2019, at
4:00 AM
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Figure 16 - Mean frequency in (a) Z-direction and (b) Y-direction from the KW51
Railway Bridge on March 1st, 2019, at 4:00 AM
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Figure 17 - Time history of the surface temperature below the bridge deck (black); the
air temperature at the Vliet Building (blue) and Retrofitting period (shaded gray).
Adapted from the study of Maes and Lombaert (2021) [52].

4.2.1) Results and discussion

This experiment stands out as the most complex for this study since it incorporates a variety
of environmental parameters and takes place under real operational and ambient conditions.
The tests consist in simulating structural anomaly in the bridge connections, which could be
potentially resulted from factors like overloading due to poor design/construction, material
fatigue, seismic activity, and corrosion [53, 54]. According to the work of Chmielewski and
Muzolf (2023) [53], the damage by fatigue in railway bridge rates is greatly impacted by the
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dynamic effects of freight rolling stock, especially with heavy freight transport. Moreover, the

degradation of these structures resulting from track misalignment is also considerable.

The introduced anomaly impacts the structural dynamics of the entire bridge due to the
reinforced connections across its span, as seen in Fig.11. Consequently, all six accelerometers
are prone to measure signs of damage (Rytter scale level 1 - detection). The main goal of this
application is to examine whether the sensors display higher indices more frequently during
abnormal conditions compared to the intact state. Additionally, the secondary objective is to

verify the potential for quantifying the level of damage.

Like the application discussed in Subsection 4.1, the proposed method is compared with
two classical algorithms, k-means and agglomerative hierarchical clustering, using multiple
parameters. The performance index in Fig. 18 is determined by the accuracy of correctly
distinguishing the unknown data from the known intact scenario data. A classification accuracy
of 100% indicates perfect classification, while 50% suggests random classification. As in the
first application, the red curve in Fig. 19 represents the expected behavior of the results,
illustrating the ideal accuracy distribution among the sensors that best aligns with the actual
anomaly locations. In Fig. 19(a), the red line appears as a smooth, wavy curve centered around
50%, reflecting the expected behavior in an undamaged scenario. In Fig. 19(b), this curve is
expected to move upward, indicating a deviation from the intact state. In Fig. 19(c), further
upward movement or an increase in the number of bars reaching higher values is expected,

corresponding to the progression of damage.

When examining the first objective, the quantum approach performs better with the new
intact scenarios by revealing less events of false positives, as shown in Fig. 18(a). The 1-qubit
model shows two FPs (sensors #4 and #6), while the 2-qubits and 3-qubits models only have
one false positive in sensor #6, with the remaining sensors hovering around 50% accuracy (<5%
variation). In contrast, the k-means algorithm yields high indices across all sensors, incorrectly
identifying differences in bridge integrity between March and April 2019, leading to maximum
false positives. Additionally, the 20-day monitoring window is too short for actual degradation
to occur, highlighting the ineffectiveness of the classical approach in this context. The
hierarchical clustering also shows FPs at all sensors with most linkage methods except for

average variant. (complete: FPs at #2, #5 and #6 sensors; ward: FPs at all sensors). This could
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be caused by external noise, such as an unusually windy month, in which the classic algorithms

misinterpreted as a novel structural dynamic pattern.

During the retrofitting period, as depicted in Fig. 18(b), the k-means algorithm consistently
maintains high indices; however, these values remain stable compared to the previous phase,
as observed in Table 5. Hierarchical clustering similarly indicates damage across all sensors
with a slight increase from the prior scenario, particularly for sensors #1, #2, and #3. Thus, for
the classic algorithms, since they have detected anomaly in the intact structure incorrectly, the
actual indications in this new vibrational behavior do not contribute significatively for the
overall quality of the results obtained and suggests a lack of robustness. In contrast, QML
unsupervised classifier identifies damage in two sensors (#2 and #4) with the 1-qubit setting,
one sensor (#6) with the 2-qubit system, and three sensors (#2, #5 and #6) with 3-qubit.

Quantitatively, for this 1-qubit case, the accuracy indices increased from the new intact data

scenario during the retrofitting phase (M— 1) by -7.4%/37.5%/4.2%/17.5%/0/-

ACCNew intact
34.1% for each sensor, respectively. Conversely, after the retrofitting (Fig. 18(c)), these

Accafter

increases (A —1) were observed as -5.6%/51.8%/4.2%/30.2%/72.0%/-1.2%,

CCNew intact

respectively. Additional ratios can be found in Table 5.
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Accuracy (%)
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l:l Hierarchical Clustering(complete)
100 ! ! ! ! T T l:l Hierarchical Clustering(average)
l:l Hierarchical Clustering(ward)
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Figure 18 - Accuracy results for the KWS51 railway bridge: (a) Before retrofitting, (b)
During retrofitting and (c) After retrofitting.
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Figure 19 - Detailed analysis of results of KW51 railway bridge: (a) Before retrofitting,

(b) During retrofitting and (c) After retrofitting.

Table 5 - Ratio between accuracy results of KW-51 bridge - Ratio A: A"lmﬂ — 1 and

Ratio B: (A

Accafter _ 1)

CCNew intact

CCNew intact

Model Ratio Sensor #1 Sensor #2 Sensor #3 Sensor #4 Sensor #5 Sensor #6
Ours A -7.4% +37.5% +4.2% +17.5% 0 -34.1%
(1 qubit) B -5.6% +51.8% +4.2% +30.2% +72.0% -1.2%
Ours A -12.0% +14.0% +18.8% +4.0% +3.5% -18.6%
(2 qubit) B +12.0% +14.0% -4.2% +24.0% +44.8% -5.8%
Ours A +6.7% +23.7% +18.4% 0 +84.8% -11.2%
(3 qubit) B -8.9% -11.9% -10.2% 0 +45.7% -2.5%
Hierarchical A -1.9% -35.0% -2.0% +25.0% +4.2% +4.2%
lusteri
(‘ézfn;ﬁ) B 0 33.1% +2.0% +28.7% -28.0% 228.0%
Hierarchical A +1.0% +2.0% -1.0% +36.1% +38.0% +38.0%
lusteri
Z’ :jef:gng B +4.0% +6.0% +5.9% -6.5% -6.5% -7.4%
Hierarchical A +9.6% +14.6% +14.0% +0.7% 0 +1.4%
lusteri
Cglvi,:;él;g B -32.7% 132.9% -33.8% +2.8% +0.7% +2.7%
K-means A +0.6% +2.3% +8.1% +1.8% -10.3% +1.4%
(Euclidean) B 0 +2.4% +8.3% +1.8% -9.5% +1.7%
K-means A +0.4% +2.8% +3.4% +3.4% -2.2% +0.7%
(Cityblock) B -0.2% +2.1% -3.1% +2.7% -0.6% +1.4%
K-means A +1.2% -6.4% +10.6% +20.9% -7.1% +2.7%
(Cosine) B +3.3% +5.7% +9.7% +36.3% -6.9% +4.3%
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Note: Bold stands for a significant increase in accuracy.

In the period after the retrofitting, shown in Fig. 18(c), the QML approach identifies
damage in four out of the six sensors (#2, #4, #5, #6) with high indices for the 1-qubit case, and
in two sensors (#5 and #6) for the 2-qubit and 3-qubit cases. This increase in damage alarms
corresponds to the escalation of actual damage. In fact, the changes in stiffness due to joint
reinforcement are more pronounced in this last scenario. Consequently, the detection becomes
more precise as abnormalities deviate further from the baseline condition. On the other hand,
the performance of the k-means remains unchanged from the previous monitoring phases. The

hierarchical algorithm maintained or decreased accuracy as damage increased.

As for the secondary objective, it is evident that the QML approach exhibits greater
potential for damage quantification. The correlation between the number of high-index
accuracies and the increase of structural anomalies highlights this capability. Again, the
increase in the number of qubits did not necessarily translate to a direct improvement in
performance. This is because the rise in complexity was not accompanied by additional data
for fine-tuning. Both experiments explored in this paper used the same number of training

samples.

In summary, the proposed approach demonstrates a reasonable ability to detect changes in
structural integrity, such as structural reinforcement in a real-scale bridge and outperformed the

classical technique’s performances.

5) Limitations and considerations

Like with any other data-driven damage localization method, the efficiency of the proposed
approach is inherently influenced by both the number and arrangement of the sensors.
Insufficient sensor coverage or improper sensor placement can lead to gaps in data collection,
limiting the methodology’s ability to detect and pinpoint damage accurately. Careful
consideration should be given to sensor deployment strategies, including the selection of sensor
types, cost, positioning, and the overall sensor network design. By optimizing these elements,

SHM procedures can achieve their maximal effectiveness [55].

Another issue is the induced anomalies, which are simulated by adding mass in the case of

the two-story frame and increasing stiffness in the case of the K51 bridge. While this may not
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perfectly replicate true damage behavior, it is considered a reasonable structural abnormality to

be investigated since changes in these parameters are usually associated with deterioration [49].

Moreover, while environmental and operational variability (e.g., temperature fluctuations,
wind loads) are naturally embedded in the collected signals, their explicit impact on the
performance of the proposed approach has not been isolated or extensively analyzed. The
methodology relies on preprocessing techniques, such as feature normalization and
dimensionality reduction, to mitigate the effects of these external factors. However, future
studies are recommended to further investigate the robustness of the approach under extreme

noise scenarios to better understand its practical applicability in real-world SHM settings.

As with any ML application, ensuring the model's generalizability to different structures
remains a challenge. The proposed QML technique has shown promising results in two
independent case studies: a laboratory frame and a full-scale bridge, suggesting potential for
generalization. Notably, since the model is trained exclusively on baseline structural vibration
data (e.g., intact, actual, or lightly damaged), regardless of geometry or material properties, it
may be seamlessly applicable to a wide range of structures without requiring any prior
knowledge about them. However, its performance across various structural configurations,
particularly in situ or open-field circumstances, has not been comprehensively evaluated and

should be considered for future research.

Data acquisition in practical settings can be significantly more complex than in controlled
laboratory environments. Factors such as noise interference, sensor calibration issues, and
variability due to environmental conditions can impact the quality of the acceleration signals,

potentially affecting the accuracy of the anomaly detection process.

Another challenge is scalability. While the proposed approach demonstrated promising
results on the KW51 bridge and a laboratory frame, scaling the QML framework to larger and
more complex structures may require significant computational resources and preprocessing
time. The average training time per sensor was 22.8 + 1.1 min for the 1-qubit system, 51 + 2.6
min for the 2-qubit system, and 124 + 19.0 min for the 3-qubit system. These values were
consistent across both applications, as they employed identical numbers of features, samples,

and scenarios.
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Furthermore, an important limitation of our study lies in the fact that the quantum circuit
is simulated on a classical computer. This means that the presence of noise and errors inherent
to real-world quantum machines were not considered. It is known that quantum states are very
sensitive to environmental disturbances, such as fluctuations in temperature, electromagnetic
fields and mechanical vibrations [56]. When these systems interact with an external
environment, the overall effect reduces the purity of the qubits through a phenomenon known
as decoherence [34], which contracts the vector associated with the respective wave function in

the Bloch sphere (Fig. 1) towards its center.

In addition, NISQ devices are also susceptible to noise sources related to circuit depth and
width [57], which determine its spatial and temporal complexities and the success rate of the
algorithm. These errors increase by scaling the number of qubits and the interconnectivity
between them [35], as well as the execution time of the logic gates and the amount of
information processed through the controlled operations U(x) and V(a,y) [58]. For these
reasons, surpassing noise sources is one of the biggest challenges in the field of Quantum

Computing.

Without taking these factors into account, the results obtained by the proposed approach
may be somewhat worse when compared to those that may be achieved in an ideal quantum
computer with more qubits. In fact, Quantum Computing technology is still in its emerging
stages, and widespread adoption may require significant advancements in hardware

development and infrastructure.

To take into consideration all these constraints, we propose exploring hybrid quantum-
classical algorithms as a potential solution to current limitations in quantum hardware,
particularly regarding scalability and error rates. Further, we recognize the need for validation
of the framework on a broader range of structures and operating conditions to enhance its
generalizability. Finally, integrating domain-specific knowledge, such as physics-based
models, into the QML approach could improve the interpretability and robustness of the results,

spreading its application in practical engineering scenarios.

It is important to acknowledge these limitations and recognize that further research and
experimentation are necessary to fully understand the capabilities of Quantum Computing in

SHM applications.
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6) Concluding remarks and future work

This paper intended to show the capabilities of unsupervised QML for vibration-based
structural health monitoring. The methodology consisted in extracting eleven statistical features
from the time domain and encoding them into quantum states for analysis using a quantum
classifier. The model was trained using known healthy data and an anomaly score function was
optimized to detect deviations from normal vibrational behavior, thereby detecting potential
further structural anomalies in an unsupervised manner. The proposed method showed
promising results in damage assessment tasks in both applications evaluated: a two-story
slender laboratory frame and a real-scale railway bridge. The paper's key findings and

implications are summarized below:

e The statistical feature extraction and min-max normalization conducted to preprocess
the raw data obtained from the sensors proved effective in standardizing the data for
input into the algorithm.

e In the laboratory application, the proposed method performed better than classic ML
approaches when faced with new intact data, with minor observed variations (<5%)
around the threshold for random classification.

o The quantum approach demonstrated superior localization capabilities,
particularly in advanced damage stages, as it achieved higher accuracy in
pinpointing the location of damage within the structure. Conversely, the k-
means and hierarchical clustering method exhibited notable false positives in
this regard.

o Overall, the QML strategy demonstrates superior quantification capabilities,
particularly when utilizing one qubit.

e For the case of the railway bridge, variations in environmental conditions, such as wind
and temperature, were observed to have minimal impact on the accuracy of the damage
localization analysis.

o The method was able to detect different degrees of structural reinforcement in
the real scale bridge.

o The increase in the number of qubits did not necessarily result in improved
performance in both applications, as it necessitates more data to effectively train

the circuit parameters. This is evident as both applications were evaluated using
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the same amount of data, which might not have been sufficient to fully leverage

the increased qubit count.

In conclusion, the quantum approach consistently competed or outperformed the classical
clustering one, highlighting its application to SHM problems. As quantum hardware technology
continues to advance and become more accessible, the potential for QML algorithms to evolve
in complexity and capability grows. This progression may lead to QML models outperforming
classic ML ones in various applications. In the authors’ perspective, despite being relatively
new, QML in real-world applications offers the SHM industry significant insights into how it

can be utilized and opens the way for further study directions in the topic.

In particular, expanding the number of qubits and logical operations required to execute
the algorithm respectively increases the width and depth of the circuit. Consequently, it is
expected that the decoherence process tends to be significative in real experiments, corrupting
data and intensifying the overall error rates associated with logic gates. For future works, it is
recommended to test other circuit architectures, examine other quantum encoding schemes,
investigate quantum error correction protocols and compare the influence of noise levels on the
results extracted from real quantum computers with those obtained in the simulator device used
in this study. Furthermore, the exploration of alternative features and extraction processes are
encouraged. For example, the implementation of an autoencoder could automate the feature

computation process instead of relying on handcrafted features.
Data availability statement

For the two-story slender aluminum frame, the dataset is described in the work of Finotti
et al. (2023). Those interested in accessing this dataset can find it at the SHM-UFJF repository
via the following link: http://bit.ly/SHM-UFJF. Similarly, the dataset relating to the KW51
railway bridge is detailed in the study conducted by Maes and Lombaert (2021) and available
for access through an online repository using the following DOI:10.5281/zenodo.3745914.
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https://github.com/cidengcnpg/gqml. git
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Appendix A: The Postulates of Quantum Mechanics.
A.I) Postulate I

The state S of a physical system is completely described by a unit vector |\) that resides
in the Hilbert space Hy associated with the system. This vector is known as state vector or wave

function, whose temporal evolution is governed by the Schrédinger equation given by

d .
iy (o) = in 0 (D

where H is a self-adjoint operator that represents the Hamiltonian of the system and h = h/2m,

with h being the Planck's constant determined experimentally as h = 6.626 ~ 1073%].s.

As Eq. (A.1) is a first-order linear differential equation, any linear combination of
particular solutions is also a solution for the wave function. In this sense, the nature of |i)) can
be defined in a Hilbert space [31] in terms of discrete or continuous variables. For the first case,
the wave function has finite dimension and the number of coordinates that define it is limited.
For the second case, however, [1) is seen as a continuous function of specific parameters (like
spatial coordinates in a three-dimensional system) and the Hilbert space assumes infinite
dimension. Since the focus of the present work relies on the first case (that is, on systems with
finite dimensions and well-defined coordinates), we will assume that our Hilbert space H; is

always bounded.
Let us show how to determine the wave function under these restrictions. Every quantum

system is governed by an intrinsic dynamic that rules its behavior over time through the

following equation [34]:

[ () = UL, to) [ (to)), (A.2)

where U(t, tg) is called the temporal evolution operator and |(t,)) is the state of the system
at some instant ty < t. In general, it is necessary to have prior information regarding both of

them to predict the dynamics of the wave function.
When H is independent of time, the solution to Eq. (A.1) is given by

—iH(t-ty) 1 =i (t—ty)\" (A.3)
o= F e = Y 2 () i,

n=0
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On the other hand, when the parameters implicit in the Hamiltonian depend on the time
elapsed between t,, and t, it is necessary to resort to other types of techniques to calculate [1(t))
(as obtaining approximations of the matrix H through methods like the expansion of functions

in Taylor series, for example).
A.II) Postulate II

Each observable O is associated with a self-adjoint operator O that resides in a Hilbert
space Hs. If a measurement of O is performed on a system, the only possible results will be

equal to the eigenvalues A; of the operator O according to the relation

Olu;) = 4; lwy), (A4)

where |uq), |uy), |us) ... is an orthonormal basis of eigenstates of 0. If the system state vector

is expanded on this basis as

(A.5)
() = D Ci(o) ),

the probability that A; is the result of a measurement of the observable O at an instant t is given
by
p(A]t) = Ku[p)? = 1GOOI (A.6)

The unitarity of [¢) imposed by Postulate I can now be understood. Note that the
probability associated with the result of a measurement of O is related to the coefficient C;(t)
(also called the probability amplitude). Hence, if we consider the set of all possible outcomes,
the sum of the probabilities related to these events must necessarily be equal to one.

Consequently, the condition

p)|* = ZICL-(t)I2 = Zp(/mt) —1

must be satisfied. Therefore, if | (t)) represents the state of a system, it is necessarily unitary.

(A.7)

The values of observables predicted in measurements associated with quantum operators are
analogous to the quantities described by classical dynamic variables [34], such as energy
(associated to the Hamiltonian), position, linear and angular momentum, among others. In turn,

the condition imposed by Postulate II and Eq. (A.4) - where O must be a self-adjoint operator -
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guarantees that all eigenvalues A; associated with observables are represented by real numbers
[32].

However, the measurement of eigenvalues follows a probabilistic distribution, and these
cannot be confused with intrinsic parameters of the system: electric charge and mass, for
example, are invariant in relation to the observation reference in non-relativistic situations. On
the other hand, there are quantum observables (such as the spin O operator) that do not have
classical analogues, which reinforces that Quantum Mechanics provides a more complete
description of nature than Classical Mechanics.

We emphasize that when the Hamiltonian is independent of time, the solution to Eq.
(A.1) is given by Eq. (A.3). As Postulate II states that the possible results associated with an
operator are equivalent to their respective eigenvalues, we can simplify the analysis by
expressing [1(t)) in terms of the eigenstates of H. In this sense, the eigenstates and eigenvalues
of H can be denoted respectively by |Ey) and Ey, where N is the parameter that defines the

energy Ey of the system [34]. Hence,

H|N) = Ey |N) for N € N. (A.8)

By expanding the initial state of the wave function as

[Y(t0))=2n Cn(to)IN) (A.9)

and subjecting it to the action of the operator H, we conclude that

—iH(

(A.10)

W) = 1 p(t)) = Bt Cn - () Hn ) =

h

—iEN(t—to)

550 Oy () By )1 INY = By Cult) e T IND.

Consequently, [p(t)) can be expressed as a function of the energy values Ey that
satisfies Egs. (A.2) and (A.8). For the particular case where the initial state coincides with one

of the eigenstates of H such that [(t,)) = |N), the final state of the wave function is given by

() = e—iEN%t—to)|N>. (A.11)

Since |e'?| = 1 for any real parameter 8, the norm of [1(t)) is equivalent to
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[ iEnto) (A.12)

()] = x [IN)] = [IN)]-

The invariance of the norm of |(t)) with respect to time in Eq. (A.12) implies that the
transformation U(t, tg) o< I is unitary, as shown in Eq. (3) and resumed in Eq. (21). Therefore,
the probability |Cy (t)|? of the system being found in the stationary eigenstate |N) during the
time interval elapsed between t, and t is constant. In this case, the analogy of the action of the
operator H with the classical concept of energy conservation is valid, since any measurement
on [P(t)) always reveals the same energy value Ey. Also note that systems that differ by a
factor e'? are equivalent, since the predictions regarding the probabilities of collapse for a given
state are identical for both. Thus, we say that two systems |(t)) and [’ (t)) are similar if the
only difference between them is a phase factor equal to e'®, where 8 is a parameter that can be

associated with any real number.
Postulate 111

When the measurement of an observable O on a system initially described by the state

vector |Y(t)) provides the result A;, the state of this system is immediately described by

P; [Y(1)) (A.13)
J@OIP[PD)

after carrying out this measurement, where P; = |u;)(u;| is the projection operator relative to

the subspace corresponding to A;.

We start the analysis of the third Postulate considering that the eigenvalues A; of O are
not degenerate and remembering that the expression O|u;) = A; |u;) is valid for any eigenstate
|u;) of O. Thus, when the measurement of this operator on the system provides the eigenvalue
A; as a result, Egs. (A.5) and (A.6) predict that the system will collapse to|u;). If we compare
this premise with Eq. (A.13), we will conclude that both are equivalent. Since A; is not
degenerate, |u;) will be the only state contained in the projector P; associated with this

eigenvalue. By replacing the term P; = |u;)(u;| in (A.13), we find that

P; (1)) _ lug Xu; | (¢)) _ (u [P () |w;) _
V@OIPIY©) v @Oludulp@®) g ()?

(A.14)

€i0|ui).
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which proves the statement that the system is in the unitary state |u;) except for a global phase
e¥= (u; | (6))/{w; [P ()], according to Eq. (A.12). Also note that p(4;[t) = [{u;|p(0))|? =
W©O|Pi|p().

But what happens when the eigenvalue A; is degenerate? In this case, there is a subspace
g of 0 associated with 4; and the projector P; is given by Y% _, |u?)(u?|, where k is the number

of degeneracies associated with this eigenvalue. Consequently, Eq. (A.12) is expressed as
Pp@®)  _ Ehalw! ) ulDip®) Bl p@)uf) (A5
VOORIO) - [y gOu) WO [Shlwl e’

and the new system will be a unit vector formed by the combination of states proportional to

[u?)

Note in Eq. (A.15) that the probability of the system collapsing for |ulg ) is given by

p(ult) = WOIPIY®) = TEo|wf [w(0))|. Since

211 0
S ] = ST Afuf Yl
0 - Awn

(A.16)
0=

Eq. (A.16) can be used to calculate the expected value (O) over all possible results from

the measurement of the operator O on the state|y(t)) [34], as

N N (A.17)
(0) = D A pilD) = ) 4 WOIPIY©) =

LA (WO |Ch=a|wd Wl DIw () =
WL Zh=1 A [ W D 19 (D) = W (©®) |0 (D)).

The average provided by Eq. (A.17) can be calculated directly through an inner product
between O (t)) and (Y (t)|, where the latter is the dual vector of the wave function presented
in Eq. (4). In parallel, this prediction can be verified experimentally by a sequence of
measurements on identical systems prepared under similar conditions, after counting the results
A; and their respective frequency of occurrence (which should be close to p(4;|t)). This is the

essence of most of Pennylane algorithms [59], where the expected value of a specific
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observable is calculated after the outputs of the quantum circuit are measured and the results

are recorded based on a certain number of “shots”.
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Appendix B: Mathematical Example of Encoding Statistical Data into Quantum States

In this appendix, we will demonstrate how a classical statistical feature extracted from
a signal (i.e., the mean value), can be transformed into a quantum state using quantum
embedding techniques. We will use angular encoding for this handmade example and show

how the same data could be encoded into quantum states for 1, 2, and 3-qubits systems.
Extracting the Classical Data x

Assume that after collecting the acceleration signals from a structure, the mean
acceleration value extracted following the min-max normalization process (within a range of

[0,1]) is 0.6. Thus:
x = 0.6 (B.1)

1) Encoding for 1-Qubit

To encode x into a quantum state, we apply a rotation gate R,(0), where the rotation is
0 = 2mx. Thus, the normalized range [0,1] spans 360° of an axis of the Bloch sphere. For x =

0.6, we have:

0 =2nx0.6=12m (B.2)

The rotation operation over the z-axis is represented by the matrix:

_( cos(0/2) —isin(0/2) (B.3)
R,(0) = (—i sin(8/2) cos (6/2) )

The following calculations are approximated to three decimal places for better

understanding. Substituting 8 = 1.2m, we get:

~
~

cos (0.6m) —i Sin(0.6T[)>

_ ~0.309 —0.951i (B.4)
R,(1.2m) = <—i sin(0.6m)  cos (0.6m) ( )

—-0.951i —0.309

Now, we apply this rotation to the basis state |0):

_ _ (—-0309 -0.951i\ 1\ _ (—0.309 (B.5)
%) = R,(1.2m)10) = (—0.9511' —0.309) () = (Coo510)
Thus, the resulting quantum state is:
|x) = —0.309|0) — 0.951i|1) (A.6)
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This state represents the classical data x = 0.6 encoded as a quantum state.
Additionally, the probabilities of measuring |0) and |1) are:
P(0) = | —0.309|? = 0.095 (B.7)

P(1) = | — 0.951i|? ~ 0.904

Note that the sum of probabilities of the quantum states is equal to 1.

2) Encoding for 2-Qubits
To encode the same data into a quantum state with 2 qubits, we apply the rotation

R,(1.2m) to each qubit separately. The total operation is the tensor product (symbol @) of two

rotations:

U = R,(1.21) ® R,(1.2m) (B.8)

Starting with the initial state |00), we apply the operation:

Ix,) = R,(1.21) ® R,(1.21)]00) (B.9)

Using the matrix for R,(1.21), we get:
_ (—0.309 —0.309 (B.10)
l2) = (—0.951i) ® (—0.951i)
Expanding Eq. (B.10), we get:
|x,) = 0.095]|00) + 0.294i|01) + 0.294i|10) + 0.904|11) (B.11)

This is the quantum state for the 2-qubit system. Additionally, the probabilities of
measuring |00), |01), [10) and |11) are:
P(00) = ]0.095|% ~ 0.009
P(01) = ]0.294i|? ~ 0.086
(B.12)
P(10) = |0.294i|? ~ 0.086

P(11) =]0.904|? ~ 0.817
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3) Encoding for 3-Qubits
Finally, for a 3-qubit system, we apply the same rotation R, (1. 21) to each of the three

qubits. The total operation is the tensor product of three rotations:

U = R,(1.21) ® R,(1.21) @ R,(1.27) (B.13)

Next, we apply the unitary operation U to the initial state of the system [000):

Ix5) = R,(1.27) ® R,(1.21) ® R, (1.27)|000) (B.14)

Using the matrix for R,(1.27), we get:

) = (Cogsa0) © (Comsin) @ (Covsny) B1

The result is a superposition of all eight possible states for the 3-qubit system:

|x3) = —0.030/000) — 0.091i|001) — 0.091i|010) + 0.280]011)
—0.091i|100) + 0.280|101) + 0.280|110) + 0.860i|111)  (B.16)

This is the quantum state for the 3-qubit system, representing the classical data encoded

into a superposition of quantum states. Additionally, the probabilities of measuring states |000),
|001), |010), |011), [100), |101), |110) and |111) are:

P(000) = | — 0.030|? = 0.001
P(001) = |—0.091i]? =~ 0.008
P(010) = |-0.091i|? ~ 0.008
P(011) = |0.280|? ~ 0.0784
P(100) = |-0.091i|? ~ 0.008
P(101) = ]0.280]% ~ 0.078
P(110) = |0.280]% = 0.078
P(111) = |0.860i|? =~ 0.740

(B.17)

Next operations:

After the quantum embedding process, the next step is to apply the following set of
operations to the encoded quantum states, described by the unitary operator V(a,y), which has
trainable parameters. This operator consists of a series of quantum gates, i.e., a set of specific
tensor product matrices, just like the calculations performed earlier: V(a,y) @ U®

100...0) = V(e,7) ® |x).
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Appendix C: Unsupervised QML Pseudocodes
A pseudocode is introduced to ease reproducibility and better understanding of the

version of QVR algorithm used in this study, which is adapted from [45]. The procedure
consists of two steps: unsupervised training (Pseudocode A) and testing (Pseudocode B). For

variables that are not specified below, please refer to the paper.

Pseudocode A: Unsupervised training phase

Input: A set of T-many features classical data x™°™™@! = (x,:t € T) extracted from
normal/intact acceleration signal samples, optimization routine, EPOCH, EXP denotes
{1,2,...,NE} the number of terms NE used in the calculation of the cost function, a penalty
function P, two Ansétze circuits U and W.

Set initial values for the parameters 8 = [a, 4, 6].
forj = 1to EPOCH do
Choose random batches By & X and By < {ty,...,tp}
fori = 1to By do
for k in EXP do

Choose a diagonal matrix M(y) with eigenvalues ¥ chosen uniformly
randomly with y ~ (i, 05)

for t; in Br do
Prepare the state embedding circuit U[x;(t;)] (Method: angle encoding)
Prepare the state |x;(t;)) == U[x;(t;)] |0)®™ with n qubits
Prepare the circuit WT (a) D (y, t;)W (a)
Prepare the state |x;(t;), ) := WT(a)D(y, t;)W () |x;(t)))
Compute the single point cost !Z(xi(tj), a,y)
end for
Compute an instance of the single time series cost function C,(x;,0)™ =
NiTth 0% (x;(t;), @, y)
using 8 = [a, u, o]
end for
Compute the intermediate cost function C(x;,0) = E_n(u,00)[C2(x1 0)7]
end for
Compute the final cost function C(0) = izﬂfie By C2(x;,0) + P;(0)
Run next step of the classical optimization routine

Update the parameters 8 = [a, u, o]

end for

Output: The optimized parameters 8* = [a*, u*, 6*] and the cost C(8%).
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Pseudocode B: Classification Phase

Input: A set of T-many features classical data x*™*m0Wn = (x,:t € T) extracted from unknown
acceleration signal samples, the optimized parameters 8* = [a*, u*, 0*], Ansitze circuits U and
W chosen in the training phase and the penalty function P chosen in the training phase.

for k in EXP do
Choose a diagonal matrix M (y) with eigenvalues ¥ chosen uniformly randomly with
Y ~ (Us,05)
for t; in Br do
Prepare the state embedding circuit U[x;(¢;)] (Method: angle encoding)
Prepare the state [x;(t;)) = U[x;(¢;)] |0Y®™ with n qubits
Prepare the circuit WT (a*)D(y, tHW(a")
Prepare the state |xl~(tj), 0*) =Wt (a)D(y, tHW(a®)|x;(t;))
Compute the single point cost .(Z(xi(tj), a’,y)
end for
Compute an instance of the single time series cost function C,(x;,0")” =
NLTthQZ (x:(t;), a*,¥") + P(0)
end for

Compute the single cost function C; (x;, 0%) = Ey_y(u, o) [C2(x:,07)7]

Output: axnormal (xunknown) = [ZC(G*) - ZPT(O') - C2 (xi, 0*)]
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Appendix D: List of customizable parts of QML

The QVR's algorithm editable elements are listed in Table I with their respective

explanations.
Elements Explanation and connection to other QVR components
n Number of qubits used in the system.

xnormal and xunknown

W(a)

D(y. t;)

U[x;(t)]

P (o)

Classical Optimizer

EPOCH

Set of normal and unknown features, respectively. This can be chosen to be
any set of features extracted from the acceleration signal samples.

Parameterized unitary used in the eigendecomposition of e “#H(®¥) where a
and y are vectors of free parameters. y is sampled from N (u, o) where u
and o are also free parameters of the model. This can be chosen to be any
parameterized quantum circuit.

Parameterized diagonal unitary used in the eigendecomposition of e ~H (@),
This can be chosen to be any parameterized quantum circuit implementation
of a diagonal unitary

Unitary employed to encode a set of classical data vector x; at feature t; into
a quantum state |x;(¢;)). This is commonly known as a “quantum feature

bE

map”.

A penalty function for large inputs in the parameter vector g, where T is a
hyperparameter vector. The penalty can be implemented using any
sigmoidal function.

A classical computer procedure for calculating 8*. Performance of the
optimization depends on (I) the starting parameters 8;,;;, (II) the feature set
size, (II1) the mini-batch size, and (IV) the convergence criterion.

The number of iterations of training taken to optimize 8*. This often defines
a computational time/precision trade-off.

Table I - The customizable elements of OVR.
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4 FINAL CONSIDERATIONS

The study presented in this dissertation is a pioneering effort in investigating the use of
unsupervised QML for SHM. It is intended to serve as a base for further research on the subject
as well as a benchmark for comparing other quantum methods. Although designed as an initial
approach, the methodology was validated on both laboratory and real-world structures,
specifically a two-story frame and a full-scale railway bridge, respectively. The strategy
employs eleven statistical features extracted from acceleration signals, which are embedded
into quantum states and subsequently fed into a quantum circuit. The training phase is
conducted exclusively using healthy data, and an anomaly score function is calibrated to
highlight deviations from the structure's standard dynamic response. This approach enables the
detection of structural abnormalities through an unsupervised procedure. The technique
developed in this dissertation yielded encouraging outcomes in the detection, localization and

quantification of damage during the conducted trials.

Finally, the quantum technique demonstrated comparable or superior performance to
classical clustering methods (such as k-means and hierarchical clustering), indicating its
relevance for SHM applications. The specific results, along with suggestions for future studies,
are detailed in the chapter “Concluding Remarks and Future Work™ of the paper. The science
of Quantum Computing is still in its early stages, and broader adoption would require
significant advancements in infrastructure and hardware development. However, with
technological progress and scalability, this approach could eventually surpass the well-

stablished classical ML in certain applications.

This work represents an important step toward integrating QML into SHM, showing its
potential to address current challenges and inspire new solutions to monitor and protect
structures, enhancing their safety and resilience. Furthermore, the concepts and techniques
covered in this study can encourage the search for innovative applications and ideas in other

research fields.
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