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ABSTRACT

This work presents new equipment’s representation methodologies in the steady-

state power flow analysis and their impacts on the voltage stability of electrical power

systems. With special focus on system’s voltage collapse scenario, characterized by a

stability to instability transition, the traditional power flow method is reformulated with

the introduction of smooth functions. As an option to introduce the desired smoothness,

it is opted to incorporate the sigmoid function into the power flow formulation. The

sigmoid function can be implemented within the traditional Newton-Raphson power flow

formulation in the modeling of various control equipments. For the purpose of this work, it

will be proposed new modelings for generators and Static VAr Compensators (SVCs). On

account of being able to actively participate in voltage regulation, by means of controling

reactive power injection, absorption and flow, these equipments received an exceptional

attention. In order to analyze the condition of voltage collapse, power systems are stressed

with gradual increases in generation and load. The continuous power flow tool is, therefore,

applied, considering equipment’s limits and saturation characteristics under study. On

a general point of view, the voltage collapse is considered as a power system’s point

of maximum loadability, on the threshold of voltage stability. In a mathematical point

of view, however, the voltage collapse is characterized as a point where a bifurcation

occurs. Since power flow solves a system of nonlinear equations, and the continuous power

flow determines a sequence of nonlinear equations solutions, bifurcations can be present

throughout power flow analysis and simulations. Hence, several types of bifurcations can

be observed, being characterized by different mathematical conditions. The use of sigmoid

function in the modeling of control equipment proposes a new condition of voltage stability

for electrical systems. The bifurcations found within the system, that once may have

had different characteristics, now have the same common characteristic. This condition

is translated as an advantage for voltage stability of electrical power systems in terms

of easily identification of critical scenarios, which are responsible for admitting collapse.

All propositions were tested by means of several simulations on different test-systems.

A Python-based program was developed and the result simulations were validated by

CEPEL’s (Electric Energy Research Center) production-grade academic version software.

Keywords: Voltage Stability. Bifurcation. Control Devices. Newton Method. Sigmoid

Function.



RESUMO

Este trabalho apresenta novas metodologias de representação de equipamentos

na análise de fluxo de potência em regime permanente e seus impactos na estabilidade

de tensão de sistemas elétricos de potência. Com foco especial no cenário de colapso de

tensão do sistema, caracterizado por uma transição de estabilidade para instabilidade, o

método tradicional de fluxo de potência é reformulado com a introdução de funções suaves.

Como opção para introduzir a desejada suavidade, optou-se por incorporar a função

sigmoide na formulação do fluxo de potência. A função sigmoide pode ser implementada

dentro da formulação tradicional de fluxo de potência de Newton-Raphson na modelagem

de vários equipamentos de controle. Para o propósito deste trabalho, serão propostas

novas modelagens para geradores e Compensadores Estáticos de Potência Reativa (CERs).

Por poderem participar ativamente da regulação de tensão, por meio do controle de

injeção, absorção e fluxo de potência reativa, esses equipamentos receberam uma atenção

excepcional. Para analisar a condição de colapso de tensão, os sistemas de potência são

estressados com aumentos graduais em geração e demanda. A ferramenta de fluxo de

potência continuado é, portanto, aplicada, considerando as características de limite e

saturação dos equipamentos em estudo. De um ponto de vista geral, o colapso de tensão

é considerado como um ponto de carga máxima do sistema de potência, no limiar da

estabilidade de tensão. Do ponto de vista matemático, porém, o colapso de tensão é

caracterizado como um ponto onde ocorre uma bifurcação. Como o fluxo de potência

resolve um sistema de equações não lineares, e o fluxo de potência contínuo determina

uma sequência de soluções de equações não lineares, as bifurcações podem estar presentes

em análises e simulações de fluxo de potência. Assim, vários tipos de bifurcações podem

ser observados, sendo caracterizadas por diferentes condições matemáticas. A utilização

da função sigmoide na modelagem de equipamentos de controle propõe uma nova condição

de estabilidade de tensão para sistemas elétricos. As bifurcações encontradas dentro

do sistema, que antes poderiam ter características diferentes, agora têm uma mesma

característica comum. Esta condição se traduz como uma vantagem para a estabilidade

de tensão dos sistemas elétricos de potência em termos de facilidade na identificação de

cenários críticos, responsáveis por admitir o colapso. Todas as proposições foram testadas

por meio de várias simulações em diferentes sistemas-teste. Um programa em Python foi

desenvolvido e as simulações dos resultados foram validadas pela versão acadêmica do

software do CEPEL (Centro de Pesquisas em Energia Elétrica).

Palavras-chave: Estabilidade de Tensão. Bifurcação. Equipamentos de Controle. Método

de Newton. Função Sigmoide.
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GENERAL NOTATION RULES

Notation conventions adopted in this work are displayed below, in accordance to

Cutsem and Vournas (2007) and Milano (2010):

• Phasors: capital italic letter with an overline (e.g. V , S);

• Phasors magnitude and scalars: capital italic letter without an overline (e.g. V , P ,

Q, θ);

– Greek letters are also treated as scalars (e.g. θ, α, λ, ε, γ);

• Vectors: lowercase bold-italic letter. Column oriented as default, while superscript T

denotes transpose, or row oriented vectors (e.g. x, xT );

• Phasors in a vector: capital bold-italic letter with an overline (e.g. V , S);

• Phasors magnitude vector and scalars vector: capital bold-italic letter without an

overline (e.g. V , P , Q, θ);

– Greek letters vector (e.g. θ, α, λ, ε, γ);

• Vector functions: lowercase bold-italic letter (e.g. f);

• Scalar functions or functions parameters/variables: lowercase italic letter (e.g. f , tol,

lim);

• Matrices: capital bold letter (e.g. J);

• Submatrices: bold letter with bold subscript indicating the differentiable variable. A

special notation is set for the Jacobian matrix, with bold subscripts indicating the

state equation and the state variable, respectively.

fx =

S

U

∂fi

∂xj

T

V JP θ =

S

U

∂Pi

∂θj

T

V

All notations are susceptible to the adoption of supscripts and/or subscripts.
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Vectors and Matrices
J Jacobian matrix
JR Reduced Jacobian matrix
JP θ Jacobian active power per phase angle submatrix
JP V Jacobian active power per voltage magnitude submatrix
JQθ Jacobian reactive power per phase angle submatrix
JQV Jacobian reactive power per voltage magnitude submatrix
JY θ Jacobian control equation per phase angle submatrix
JY V Jacobian control equation per voltage magnitude submatrix
JP λ Jacobian active power per loading parameter submatrix
JQλ Jacobian reactive power per loading parameter submatrix
JY λ Jacobian control equation per loading parameter submatrix
JY X Jacobian control equation per control state variable submatrix
θ Vector of buses phase angle
V Vector of buses voltage magnitude
X Vector of state variables θ and V

P Vector of buses active power injection
Q Vector of buses reactive power injection
P 0

L Vector of buses active loads on base case
Q0

L Vector of buses reactive loads on base case
I Identity matrix
A Generic matrix
Λ Diagonal eigenvalue matrix
φ Right eigenvector matrix
ψ Left eigenvector matrix
φk Right eigenvector k

ψk Left eigenvector k

P Participation factor matrix
pk Participation factor vector
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1 INTRODUCTION

Electric Power Systems (EPSs) consist of a complex network of multiple individual

components that includes generators, loads, switching devices, transformers and many

more, which are interconnected by transmission lines. Each of these components possesses

unique operational characteristics that limit their functionality. Therefore, a series of

control options are adopted in order to contribute for a satisfactory operation of the power

system.

To analyze the operational behavior of a power system, at a given operating point,

the Newton-Raphson’s Power Flow (PF) tool is used. This tool is the most frequently

used one in studies related to electrical power systems. From the results it returns, it

is possible to infer about the operating conditions of the system in relation to stability,

security, reliability, robustness and quality.

Power systems stability is defined, according to Kundur et al. (2004), as:

the ability of an electric power system, for a given initial operating

condition, to regain a state of operating equilibrium after being subjected to a

physical disturbance, with most system variables bounded so that practically

the entire system remains intact.

This definition ensures that an electrical power system is classified as stable once

it can withstand a variety of disturbances without resulting in an operational collapse,

failure or interruption. The definition presented in Kundur et al. (2004) is extended into

three fields of study, which are angle stability, frequency stability and voltage stability. In

Hatziargyriou et al. (2020), the definition is further extended to two more fields of study,

named resonance stability and converter-driven stability, due to the recent and significant

integration of Converter Interfaced Generations (CIGs) technologies.

On account of voltage stability, it is a major concern for EPS planning and

operation. It is commonly related to power systems as the ability to maintain equilibrium

(voltage at all buses at a specific interval level) given load disturbances. One of the

main sources of equilibrium for this problem comes from EPSs ability to meet its own

reactive power demand. This condition can be attained by means of generators, Static

VAr Compensators (SVCs) and other electric devices actively operating in the EPS.

Once the disturbances are no longer compensated by reactive power generation,

for example, a progressive decrease or increase in bus voltage values occurs. Although it is

normally classified as a local phenomenon, voltage instability consequences may impact

the EPS as whole. Voltage collapse, therefore, configures a condition where a series of

voltage instability events leads to a significant low-voltage profile for a majority of buses

in the EPS.
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A classical example of the voltage stability phenomenon is given in Kundur (1994)

and Taylor (1994). It consists in evaluating the voltage magnitude profile for the radial

system illustrated in Figure 1, given a constant voltage source ability to meet a variable

demand. Although this power system presents a simple topology, important information

are obtained regarding the relationships between voltage magnitude (V ), active power

generation (P ) and reactive power generation (Q). This information is crucial for a deeper

understanding of (voltage) stability of EPSs.

Figure 1 – Radial power system to analyze voltage stability phenomenon.
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Source: Adapted from Kundur (1994), Taylor (1994).

However, for EPSs with higher complexity network containing multiple electric

devices operating simultaneously, the same aforementioned relationships can be obtained

via the adoption of the Continuation Power Flow (CPF) tool. This tool, developed by

Ajjarapu and Christy (1992), consists of a series of PF analysis considering a gradual

increment in load demand of the system, which is analogous to a controlled disturbance.

Based on the implementation of this tool, it is possible to evaluate and define stable

and unstable operational regions for EPSs, as well as predict the Maximum Loadability

Point (MLP) that is identifiable in the transition between both regions.

All things considered, this work deals with voltage stability and, specifically, the

indentification and classification of voltage collapse in EPS.

1.1 PROBLEM IDENTIFICATION

On a general point of view, voltage collapse is related to a power system’s point of

maximum loadability, on the threshold of voltage stability (this analysis is valid only if

the constant power load models are adopted in the power flow problem). As mentioned

previously, voltage collapse is characterized by a series of voltage instability events, and

therefore, there are many conditions that lead up to this event in EPSs. In (KUNDUR
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et al., 2004), the causes for voltage collapse are classified into two subcategories that

are large-disturbances: systems faults, loss of generation or circuit contingencies; and

small-disturbances: variations of loads, of continuous controls or of discrete controls.

In a mathematical point of view, however, voltage collapse is characterized as a

point where bifurcation occurs. The bifurcation point is basically defined as a limit point

in parameter space for which occurs a significant change on the qualitative structure

that models EPS in the PF problem, resulting in the birth or death of (power flow)

solution points (NEVES, 2022; CUTSEM; VOURNAS, 2007). Depending on the cause

of voltage collapse, as mentioned previously, bifurcations can also be classified into other

subcategories, such as Saddle-Node Bifurcation (SNB), Limit-Induced Bifurcation (LIB),

Constraint Violation Induced Bifurcation (CVIB), Hopf Bifurcation (HB) and many others.

Each bifurcation classification has particular mathematical properties that define them.

This comparison between general and mathematical points of view is correlated

due to the nonlinearity characteristic of power systems. In the PF analysis, EPSs are

translated into a system of nonlinear equations that are linearized in the Newton-Raphson

method for solution finding. The control options adopted for the electric devices actively

operating in EPSs are also incorporated in the system of nonlinear equations in order to

approximate simulated solutions with real operating conditions. As PF analysis presents

infinite possible solutions, depending on EPSs topology, generation and load scenarios,

equally possible are the conditions that lead these same EPSs to voltage collapse.

In this work, a special emphasis is given to analyzing the events that lead up to

voltage collapse which are mathematically classified as SNBs and LIBs. The former is a

bifurcation point associated with the lose of equilibrium by the power system, whereas the

latter occurs when two equilibrium points (power flow solutions) coalesce and disappear

(CUTSEM; VOURNAS, 2007). Examples for these events are sustained load buildup,

generators reaching reactive power limits and also SVCs alternating operational modes.

SNB and LIB bifurcations classifications are differed by a particular mathematical

property that is the nonlinear system of equations singularity at the MLP. Although these

events have mathematical characteristics that distinct themselves from each other, it is

pratically difficult to analyze and indentify real causes for voltage collapse in EPSs.

1.2 MOTIVATION

In recent works available in power flow literature, a new PF formulation is proposed

and entitled Smooth Power Flow (SPF) (NEVES; ALBERTO; CHIANG, 2022b; NEVES,

2022). This new formulation introduces a smoothness to the traditional power flow

formulation, enhancing the simulated solutions and analysis of EPSs.

One of the ameliorations that comes with the introduction of smoothness within
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the SPF formulation is precisely related to the multiple bifurcations classification. As

mathematically proved and detailed in Neves (2022), with the implementation of SPF all

static bifurcations are transformed into SNBs. This means that the events of sustained load

buildup, generators reaching reactive power limits and also SVCs alternating operational

modes, for example, are now all classified as SNB.

At first, this condition may not be interpreted as an improvement, or advantage,

since it does not prevent EPSs from having voltage collapse. However, the improvement

consists on how easily the events that lead up to voltage collapse in EPSs can now be

indentified. It will not be necessary to accumulate concern when analyzing and classifying

the voltage collapse numerical condition as well as identifying the causes for the same

problem. This identification is simplified by implementing modal analysis on simulated

SNB results, for example, as was done in this work.

The investigation of these different conditions motivated the development of this

work.

1.3 CONTRIBUTIONS

From this work, mathematical steady-state models were developed to represent

the SVCs in the power flow problem. The mathematical models incorporate sigmoid

function based switches to alternate between the control equations that best represent

the operating state of the control equipment. The sigmoid function is responsible for

introducing smoothness to the traditional PF formulation, as proposed by the SPF.

The Jacobian matrix, which represents the linearization of the nonlinear equations

that model an EPS, is resized considering the incorporation of the control equations that

model each SVC active in the network analyzed. This approach is known as full Newton.

Regarding the proposed SVCs methodologies, a contribution is made to the tra-

ditional thyristor firing-angle methodology proposed by Ambriz-Perez, Acha and Fuerte-

Esquivel (2000). This contribution, as it is detailed in Chapter 5, consists on the adoption

of a variable to represent the characteristic droop of the linear operational region of the

control device. The droop implementation was proposed once that, in the traditional

methodology, the bus voltage magnitude is ideally controlled around a scheduled value.

An additional contribution is related to the numerical demonstration and indentifi-

cation of SNBs in the SPF formulation. By means of the implemented sigmoid functions

based switches in the generator’s reactive power generation limits methodology and SVCs

methodologies, it was able to numerically demonstrate the mathematical theorem developed

in Neves (2022).
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1.3.1 Published Papers

A conference paper was accepted and published:

• BARBOSA, J. P. P.; PASSOS FILHO, J. A. Avaliação e aprimoramento de metodolo-

gias para representação de CER no problema de fluxo de potência. Simpósio

Brasileiro de Sistemas Elétricos-SBSE, v. 2, n. 1, 2022.

– This paper was awarded the “SBSE 2022 Best Paper” prize in the Master’s

category.

Other papers are currently being developed regarding the content of this work.

1.4 DOCUMENT STRUCTURE

Regarding the structure of this document, it is organized in eight chapters, including

this introductory Chapter 1, following:

• Chapter 2 describes the traditional power flow formulation and the operation condi-

tions of generators and SVCs in an electrical power system.

• Chapter 3 presents an implementation overview of the proposed methodology into

the traditional power flow formulation.

• Chapter 4 introduces the methodology to represent steady-state modeling of genera-

tors in the power flow formulation based on Chapter 3. This methodology was first

introduced in the literature by Pontes, Passos Filho and La Gatta (2018), Pontes

(2018).

• Chapter 5 proposes new methodologies to represent SVC in the power flow formu-

lation based on Chapter 3. A total of three steady-state traditional models are

reformulated for this control device.

• Chapter 6 proposes a new premise for voltage stability analysis, specially on the

voltage collapse scenario. A new consideration upon electrical power systems and

bifurcations is proposed based on the impacts of the SPF formulation.

• Chapter 7 introduces the computer simulations conducted on test systems along

with carried out analysis, presentation and validation of results.

• Chapter 8 presents the research conclusions and contributions of this work.

In addition, Appendices A, B and C details mathematical information on the

proposed SPF methodologies, the CPF methodology and the eigenproperties of the

Jacobian matrix, respectively.
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2 TRADITIONAL POWER FLOW FORMULATION

In this chapter, a brief review of the current and traditional literature on the steady-

state PF formulation and modeling is made. A set of nonlinear equations is considered in

order to propose a mathematical representation and, consequently, simulation of power

systems.

A special focus on the traditional modeling of generators and SVCs will be held in

the following sections. In view of Voltage Stability Assessment (VSA), these equipments

actively participate in voltage regulation by means of controling reactive power injection,

absorption and flow.

In addition, this work assumes the analysis of balanced three-phase electric power

systems, which allows a single-phase equivalent model representation (KUNDUR, 1994).

On account of loads representations, the constant power model was considered.

2.1 INITIAL CONSIDERATIONS

The Newton-Raphson method is a widespread numerical-computational technique

applied in the analysis of EPS, first introduced in the literature by Tinney and Hart

(1967). It is based on the power equations that model an EPS, which are deduced from

Kirchhoff’s Circuit Laws as given by (2.1) and (2.2). In general, these equations do not

consider equipment controls or operational limits.

ÿ

mœΩk

Im = 0 (2.1)

V k ·
ÿ

mœΩk

I
ú

m =
ÿ

mœΩk

Sk = 0 (2.2)

where Ωk is the set of all equipments connected to bus k, Im is the current injected by a

device m at bus k and Sm is the apparent power that device m injects at bus k.

From (2.1), Equations (2.3) and (2.4) determines “the relationship between node

current Ik and node-to-datum voltage V k in a network” as well as the complex power at a

generic node k (TINNEY; HART, 1967), respectively.

Ik =
ÿ

mœΩk

Ykm · V m (2.3)

Sk = Pk + jQk = V k · I
ú

k = V k ·

Q

a

ÿ

mœΩk

Ykm · V m

R

b

ú

(2.4)
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Ykm = Gkm + jBkm. (2.5)

where Ykm is an element of the admittance matrix corresponding to the Ωk-set of m buses

connected to bus k, and Gkm and Bkm are its corresponding conductance and susceptance,

respectively.

Note that, traditionally, the power flow formulation considers polar variables and

its equations are modeled in terms of power. Therefore, from (2.4) it can be determined

the active and reactive power injection equations, as follows:

Pk = Vk ·
ÿ

mœΩk

Vm · (Gkm · cos θkm + Bkm · sin θkm) (2.6)

Qk = Vk ·
ÿ

mœΩk

Vm · (Gkm · sin θkm ≠ Bkm · cos θkm) (2.7)

where θkm is the difference between bus k and m voltage phase angles (θkm = θk ≠ θm).

These are the canonical algebraic equations of the power flow formulation in polar

coordinates. These equations represent the behavior of power flow in EPSs as illustrated

in Figure 2. In addition, it is based in these equations that, by applying the numerical

Newton-Raphson method, the power flow solution can be obtained.

Figure 2 – Power injection at a generic bus k.
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Source: Adapted from Pontes (2018).

As it can be observed, associated with each bus there are four variables: active

power P , reactive power Q, voltage magnitude V and phase angle θ (STOTT, 1974;

KUNDUR, 1994). The power equations (2.6) and (2.7) are equivalent to the difference
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between power generated and power demanded by loads, as detailed in (2.8) and (2.9)

respectively.

Pk = PGk
≠ PLk

(2.8)

Qk = QGk
≠ QLk

(2.9)

Since only two state equations exist for four variables, a bus-type classification is

specified for the Newton-Raphson method implementation. This specification is needed in

order to prevail the power balance in the EPS, as stated in (2.1). According to Kundur

(1994), the classifications are:

• PV bus: specification of active power P and voltage magnitude V variables. Typically,

these are buses with generators, synchronous condensers, or static VAr compensators

connected at them, where the voltage magnitude value is controlled. Reactive power

Q and phase angle θ are treated as free variables. However, if reactive power limits

are considered in the analysis, the reactive power variable must respect the imposed

limits.

• PQ bus: specification of active power P and reactive power Q variables. Typically,

these are buses that do not have voltage magnitude control and with only loads

connected at them. Voltage magnitude V and phase angle θ are treated as free

variables.

• Swing bus: specification of voltage magnitude V and phase angle θ variables. Typi-

cally, this bus has an active generation device connected at it which is responsible

for suppling the remaining active power to balance the EPS nodal analysis (2.1). It

is a mathematical workaround once EPS power losses are not known a priori. Active

power P and reactive power Q are treated as free variables.

Based on the bus-type classification and the variables specification, the power

equations that model an EPS can be synthesized by the following equation (STOTT,

1974):

f (θ, V ) = 0 (2.10)

where f represents the vector of nonlinear equations that model an EPS. This vector

dimension depends directly on the number of buses of the analyzed EPS.
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In the implementation of the Newton-Raphson method, an initial estimation must

be set for the state variables θ and V . This initial estimation has great influence on the

iterative solution proposed by the method. In addition, Taylor’s theorem is applied in

order to expand the nonlinear equations in (2.10) in a resulting linear set of equations, as

detailed in (2.11). Taylor’s higher powers expansion can be neglected, leaving out only

the first order expansion denoted by the subscript ‘0’.

fθ, V

1

θ0 + ∆θ, V 0 + ∆V
2

= f
1

θ0, V 0
2

+

C

∂f

∂θ

D

0

· ∆θ +

C

∂f

∂V

D

0

· ∆V (2.11)

The Taylor expansion Equation (2.11) can also be formulated in the matrix form:

Ë

f sch
− f (θ0, V 0)

È

=
5

Ë

∂f

∂θ

È

0

Ë

∂f

∂V

È

0

6

·

S

U

∆θ

∆V

T

V (2.12)

which in turn is simplied by the following equation:

∆f = J · ∆X (2.13)

where ∆f is the vector of state equations variation, J is referred to as the Jacobian matrix

and ∆X is the vector of state variables (θ and V ) variation.

If the initial estimation of θ0 and V 0 is exact, then ∆f and ∆X would be zero,

as defined in (2.10) (KUNDUR, 1994). In contrast, the vector of state variables can be

determined by (2.12) in order update the state variables values:

θh+1 = θh + ∆θ (2.14)

V h+1 = V h + ∆V (2.15)

This process is repeated until the errors for the state equations are lower than a

specified tolerance ε. During the Newton-Raphson iterative process, the Jacobian needs

to be recalculated at each step h. In addition, the obtained results accuracy depends

mainly on the tolerance determined for the calculation errors of the solution. The adopted

tolerance value also has influence on the number of iterations needed to obtain a precise

solution, which tends to be small and independent of the size of the EPS under study.

It is important to note that the initial estimation conveys an crucial condition for

the simulation convergence. That is, the initial values of θ0 and V 0 must be sufficiently
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reasonable in order to reliably simulate the EPS operational behavior. Otherwise, the

initial values will lead up to convergence errors and the simulation will mistakenly return

undesired results.

As mentioned before, the power equations that model an EPS do not consider

equipments controls or operational limits. However, for an analysis of EPSs closer to

realistic operation, controls and limits must be considered in the power flow formulation

problem. In order to do so, a set of inequations must be defined and incorporated together

with (2.10).

The inequations that model electric devices operational limits in an EPS can be

synthesized by (2.16). This vector dimension depends directly on the number of controls

adopted in the power flow formulation.

g (θ, V ) Ø 0. (2.16)

In the following sections, the traditional modeling of generators and SVCs will be

presented in detail. These equipments received a special focus in this work by reason of

being able to actively impact voltage stability in an EPS.

2.1.1 Generators

Generators are one of the most important electric devices to be actively operating

by reason of being the major source of electric power generation in EPSs. In steady-state

analysis, generator buses are generally modeled as PV buses due to their ability to control

the bus voltage magnitude at a specified value by means of actuation on the field current

using an Automatic Voltage Regulator (AVR) (NEVES, 2022). Quoting Cutsem and

Vournas (2007), “Synchronous generators are a primary source of reactive power and are

to a great extent responsible for maintaining a good voltage profile across a power system”.

In contrast, they are also one of the most complex electric devices to be actively

operating in EPSs. Due to its constructive characteristics and operational limits, generators’

reactive power generation capability is limited and, consequently, responsible for voltage

instability incidents (TAYLOR, 1994). A generator capability curve1 is defined and

assembled by a series of operational limit curves, as illustrated by Figure 3 and exemplified

in Kundur (1994), Taylor (1994), Monticelli and Garcia (1999), Cutsem and Vournas

(2007).

The roman algarisms in Figure 3 reffer to the following generator’s limits (PONTES,

2018):
1 Capability curves can differ from generators to generators, depending mainly on the construc-

tive characteristics of the equipment.
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Figure 3 – Generator capability curve.
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Source: Adapted from Monticelli and Garcia (1999).

(I) Field current maximum limit;

(II) Armature current maximum limit;

(III) Mechanical power limit;

(IV) Angular stability limit;

(V) Excitation current minimum limit.

Field current and armature current maximum limits are associated with generators

heating problems, that can lead to a shortening service life. The mechanical power limit

corresponds to the maximum mechanical power a generator can be tied up in his prime

mover. The maximum power factor angle also limits generator’s reactive power generation,

and is referred to as angular stability limit. It is a theoretical limit and directly depends

on the heating produced by the armature current. In conclusion, the excitation current

minimum limit corresponds to the minimum current needed to keep generator’s magnetic

field energized. The overexcited and underexcited regions corresponds to the generator

ability of reactive power injection or absorption in an EPS, respectively.

Nevertheless, as it is complex to determine generator’s capability curve, a simplified

approach, illustrated by Figure 4, is implemented for the steady-state analysis of EPSs.

From the following simplified approach, one can define the inequation that model

upper and lower boundaries for reactive power generation in the power flow problem:

Qmin
gen Æ Qgen Æ Qmax

gen (2.17)
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Figure 4 – Generator simplified capability curve.
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Source: Elaborated by the author (2023).

Since generators are able to regulate the voltage magnitude by means of reactive

power generation, which is given by (2.7), a set of control inequations are proposed based

on the generator’s operational behavior detailed by (2.17), as follows:

Y

_

_

_

_

]

_

_

_

_

[

Vgen > V ref
gen if Qgen = Qmin

gen ,

Vgen = V ref
gen if Qmin

gen < Qgen < Qmax
gen ,

Vgen < V ref
gen if Qgen = Qmax

gen ,

(2.18)

where Vgen is the voltage magnitude of the generator’s own bus, or of an controlled bus in

the network, and V ref
gen is its respective reference value.

As mentioned before, controls are not considered in the PF traditional formulation.

For generators or PV buses, the linearized reactive power equations responsible for

updating its voltage magnitude variable are disregarded and, therefore, the Jacobian

matrix dimension is defined as 2NPQ + NPV (KUNDUR, 1994; MONTICELLI, 1983).

However, in the scenario where the generator reactive power generation reach a limit,

being it maximum or minimum, they become unable to control bus voltage magnitude at

reference value. For that reason, reactive power equations must then be considered in the

PF formulation.

For modeling reactive power generation limits in the PF problem, the following

analysis must be considered (assume that the generator is connected at bus k, controlling

its own bus voltage magnitude Vk, gen and QGk, gen is the reactive power generation variable)

(MONTICELLI, 1983; STOTT, 1974):

1. Normal operation: At each iteration h of Newton-Raphson’s numerical method,

Jacobian matrix dimension is 2NP Q + NP V , generator’s reactive power generation is
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within limits (Qmin
Gk, gen < QGk, gen < Qmax

Gk, gen) and the bus voltage magnitude value is

at reference value (Vk, gen = V
ref

k, gen).

2. Bus type modification routine (PV æ PQ): A verification on QGk, gen must be made at

each iteration h of Newton-Raphson’s numerical method. If QGk, gen Ø Qmax
Gk, gen, then

the bus type must convert to PQ and QGk, gen = Qmax
Gk, gen. Else, if QGk, gen Æ Qmin

Gk, gen,

then the bus type must also convert to PQ and QGk, gen = Qmin
Gk, gen. For both cases,

the Jacobian matrix dimensions must be redefined considering now the reactive

power equations in order to update generator’s bus voltage magnitude value.

3. Backoff routine (PQ æ PV): If condition 2 is true, a verification on QGk, gen must

be made at each iteration h + 1 of Newton-Raphson’s numerical method. If QGk
=

Qmax
Gk, gen and Vk, gen < V

ref
k, gen, then generator’s bus type remains as PQ. The same

stands if QGk, gen = Qmin
Gk, gen and Vk, gen > V

ref
k, gen. In contrast, if QGk, gen = Qmax

Gk, gen

and Vk, gen Ø V
ref

k, gen, the generator’s bus type is reconfigured to PV, its voltage

magnitude is equal to the reference value, and the Jacobian matrix dimension must

be reconfigured. The same is valid for QGk, gen = Qmin
Gk, gen and Vk, gen Æ V

ref
k, gen.

Note that the Backoff routine should be considered only after Newton-Raphson’s

first iteration, in order to avoid convergence problems.

2.1.2 Static VAr Compensators

With the rising in the field of power electronics and the emergence of Flexible

AC Transmission System (FACTS) devices during the 1990s, the operation of EPSs

became more reliable and efficient (TAYLOR; SCOTT; HAMMAD, 1994; MATHUR;

VARMA, 2002). SVC is one of the multiple control equipments that integrates FACTS’s

devices family and, of the multiple benefits it can provide to EPS, voltage stability

enhancement and stability margin increment can be highlighted (PEREZ; MESSINA;

FUERTE-ESQUIVEL, 2000; MILLER et al., 1982). It is an electric equipment with fast

control response, capable of injecting or absorbing reactive power in an EPS in order

to control its own bus k, or a controlled bus m, voltage magnitude at a reference value

(PEREZ; MESSINA; FUERTE-ESQUIVEL, 2000; TAYLOR; SCOTT; HAMMAD, 1994;

ERINMEZ, 1986).

Different constructive topologies have been proposed for SVCs. One of the most

commonly adopted in researches and real-life operations is the Fixed-Capacitor Thyristor-

Controlled Reactor (FC-TCR) (KUNDUR, 1994; TAYLOR; SCOTT; HAMMAD, 1994),

as illustrated by Figure 5. As it can be observed from this illustration, the term “static”

that makes up the SVC name indicates that this control device has no moving or rotating

components (MILLER et al., 1982; KUNDUR, 1994). Instead, it is basically consisted of

thyristors, reactors and capacitors, that are power electronics components.
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Figure 5 – Static VAr Compensator FC-TCR topology.
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Source: Elaborated by the author (2023).

Initially, in Newton-Raphson’s Power Flow (PF) formulation problem, SVCs were

modeled as generators operating as Synchronous Condensers (TAYLOR; SCOTT; HAM-

MAD, 1994; ERINMEZ, 1986). Additionally, the SVC’s connection bus is traditionally

represented as PV type, applying the reactive power generation equation (2.7) to model its

behavior. However, this modeling is only acceptable when the control device is operating

within reactive power generation limits, otherwise a series of errors are identified (AL-

VARADO; DEMARCO, 1995). For that reason, other steady-state models were proposed

in order to proper adjust simulation results to the SVC realistic operational behavior.

In this work, the methodologies proposed by Passos Filho (2000) and Ambriz-Perez,

Acha and Fuerte-Esquivel (2000) will be detailed in the following sections and implemented

in the following chapters. Besides these proposed methodologies, other SVC steady-state

representation models are found in the literature, as in Cutsem and Vournas (2007, p.34).

2.1.2.1 SVC reactive power injection methodology

The SVC reactive power injection methodology proposed by Passos Filho (2000) is

based on the control device steady-state VQ characteristic curve, as illustrated by Figure 6.

This curve details the relationship between SVC’s controlled bus m voltage magnitude

(Vm, svc) and its reactive power generation (QGk, svc) at bus k. It is considered a SVC

connected at bus k, controlling the voltage magnitude of bus m. From Figure 6, three

regions define the SVC operative behavior, nominated as: capacitive, linear and inductive.

First, the capacitive operational region is superiorly delimited by the controlled

bus minimum voltage magnitude (V min
m, svc). Likewise, the inductive operational region

is delimited by the controlled bus maximum voltage magnitude (V max
m, svc). SVC’s linear

operational region is inferiorly delimited by the capacitive region and superiorly delimited

by the inductive region. The inequations that model SVC’s operational regions are detailed

below:
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Figure 6 – Static VAr Compensator voltage magnitude per reactive power generation
characteristic.
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Source: Adapted from Passos Filho (2000).

Y

_

_

_

_

]

_

_

_

_

[

QGk, svc = Bcap
svc · V 2

k, svc if Vm, svc Æ V min
m, svc,

QGk, svc =
Vm, svc≠V

ref
m, svc

r
if V min

m, svc < Vm, svc < V max
m, svc,

QGk, svc = Bind
svc · V 2

k, svc if Vm, svc Ø V max
m, svc,

(2.19)

Note that the reactive power equation that models the linear operational region is

characterized by a droop, defined by the ‘r’ variable. The droop is responsible for adjusting

the SVC’s controlled bus voltage magnitude around a reference value (V ref
m, svc) according

to the network behavior.

In his proposed methodology, Passos Filho (2000) considers a full Newton im-

plementation. Hence, new control equations are incorporated into the Jacobian matrix

based on the set of inequations (2.19) and the SVC reactive power generation variable

is considered a new state variable (or control variable) in the PF. In addition, since

the reactive power generation is given by (2.19) and not by (2.7), the PQ bus type is

considered for SVCs.

2.1.2.2 SVC current injection methodology

Similarly to the previous methodology, the SVC current injection methodology

proposed by Passos Filho (2000) is based on the control device steady-state VI charac-

teristic curve, as illustrated by Figure 7. This curve details the relationship between

SVC’s controlled bus voltage magnitude (Vm, svc) and its current generation (Ik, svc). It is

considered a SVC connected at bus k, controlling the voltage magnitude of bus m. From
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Figure 7, three regions define the SVC operative behavior, nominated as: capacitive, linear

and inductive.

Figure 7 – Static VAr Compensator voltage magnitude per current generation characteristic.
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Each SVC’s operational region is identically delimited as the reactive power injection

methodology, detailed in the previous section. A difference, however, is noted on the

inequations that model these operational regions, given the relationship between reactive

power generation and current generation:

Isvc =
QG, svc

Vsvc

(2.20)

Y

_

_

_

_

]

_

_

_

_

[

Ik, svc = Bcap
svc · Vk, svc if Vm, svc Æ V min

m, svc,

Ik, svc =
Vm, svc≠V

ref
m, svc

r
if V min

m, svc < Vm, svc < V max
m, svc,

Ik, svc = Bind
svc · Vk, svc if Vm, svc Ø V max

m, svc,

(2.21)

Note that the current equation that models the linear operational region is charac-

terized by a droop, defined by the ‘r’ variable. The droop, once more, is responsible for

adjusting the SVC’s controlled bus voltage magnitude around a reference value (V ref
m, svc)

according to the network behavior.

In his proposed methodology, Passos Filho (2000) considers a full Newton imple-

mentation. Hence, new control equations are incorporated into the Jacobian matrix based

on the set of inequations (2.21) and the SVC current generation variable is considered

a new state variable (or control variable) in the PF. In addition, the PQ bus type is

considered for SVCs, considering the (2.20) relationship between Isvc and QG, svc variables.
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2.1.2.3 SVC thyristor firing-angle methodology

The steady-state SVC thyristor firing-angle methodology proposed by Ambriz-

Perez, Acha and Fuerte-Esquivel (2000) is based on the control device equivalent reactance

and susceptance equations, as respectively defined by (2.22) and (2.23), considering the

SVC FC-TCR topology configuration (MILLER et al., 1982; ERINMEZ, 1986; KUNDUR,

1994).

xeq (αk, svc) =
XC · XL

1

XC

π

2

· [2 · (π ≠ αk, svc) + sin (2αk, svc)] ≠ XL

(2.22)

beq (αk, svc) = ≠

1

XC

π

2

· [2 · (π ≠ αk, svc) + sin (2αk, svc)] ≠ XL

XC · XL

(2.23)

The thyristor firing-angle inferior and superior limits are 90¶ and 180¶, respectively.

The firing-angle variable is not allowed to vary between other range of angle values

(KUNDUR, 1994). Considering k as the SVC’s bus and m as the SVC’s controlled bus,

variable αk, svc varies between its limits in order to adjust the equivalent susceptance value

and, consequently, the SVC reactive power generation value:

QGk, svc = V 2
k, svc · beq (αk, svc) (2.24)

In this methodology the reactive power generated by the SVC is calculated in

terms of the equivalent susceptance equation due to its continuity, which configures a

better numerical behavior when linearized into the Jacobian matrix in comparison to the

equivalent reactance outputs (AMBRIZ-PEREZ; ACHA; FUERTE-ESQUIVEL, 2000).

In Figure 8, the relationship between the SVC equivalent reactance, and susceptance,

equations and the thyristor firing-angle variable is depicted. For the proposed example,

the capacitive and inductive reactances are equal to 50Ω and 25Ω, respectively.

According to the illustration, this SVC methodology only defines two operational

regions for the control device, which are separated by the α0
k, svc value (thyristor firing-angle

for null reactive power generation). For values of αk, svc smaller than α0
k, svc, the equipment

characteristic is inductive. On the other hand, for values of αk, svc bigger than α0
k, svc the

characteristic is capacitive.

In view of the relationship between reactive power generation and thyristor firing-

angle in (2.24), the set of inequations that model this proposed SVC methodology is given

by:
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Figure 8 – Static VAr Compensator (a) equivalent reactance and (b) equivalent susceptance
outputs as functions of the thyristor firing-angle.
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Source: Adapted from Ambriz-Perez, Acha and Fuerte-Esquivel (2000).

For 90¶ Æ αk, svc Æ 180¶ :

Y

_

_

_

_

]

_

_

_

_

[

QGk, svc = V 2
k, svc · beq (180¶) if Vm, svc < V ref

m, svc

QGk, svc = V 2
k, svc · beq (αk, svc) if Vm, svc = V ref

m, svc

QGk, svc = V 2
k, svc · beq (90¶) if Vm, svc > V ref

m, svc

(2.25)

In their proposed methodology, Ambriz-Perez, Acha and Fuerte-Esquivel (2000)

alter the current reactive power generation equation (2.7) by reason of the SVC reactive

power equation (2.24). This equation is then linearized into the Jacobian matrix based

on the set of inequations (2.25) and the SVC thyristor firing-angle variable is considered

a new state variable (or control variable) in the PF. In addition, the PQ bus type is

considered for SVCs.

Although the Ambriz-Perez, Acha and Fuerte-Esquivel (2000) methodology correctly

models SVCs steady-state behavior in the PF problem, a simplification on the control

device droop is still carried out. Ideally, the SVC would be able to control the voltage

magnitude of bus m at a reference value. However, a droop value between 1% and 5%
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must be adopted in the SVC model in order to correctly represent its behavior in an EPS

during PF analysis (TAYLOR; SCOTT; HAMMAD, 1994).

With the proposed droop implementation, the SVC thyristor firing-angle methodol-

ogy becomes equivalent to the SVC reactive power injection methodology.

2.2 PARTIAL CONCLUSIONS

This chapter presented a brief review of the current and traditional literature on

the steady-state PF formulation and modeling is made. The power system nonlinear

equations are synthesized by (2.10), whereas the set of inequation constraints responsible

for modeling electric device controls and operational limits are synthesized by (2.16).

Moreover, the main traditional steady-state modelings of generators and SVCs

found in the PF literature were presented in this chapter. According to each proposed

methodology, a set of inequations can be incorporated into the PF system of equations.

The methodologies presented in this chapter served as the basis for the implemen-

tations proposed in chapters 4 and 5. The proposed implementations consider the PF

formulation detailed in Chapter 3, defined as Smooth Power Flow (SPF).

In conclusion, on account of the SVC thyristor firing-angle methodology, an im-

provement is proposed from the use of a droop variable. An analysis of the results obtained

with the proposed improvement, in the SPF approach, is detailed in Chapter 5.
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3 SMOOTH POWER FLOW FORMULATION

In this chapter, a brief review of the current works developed in the SPF research

area is made. In particular, the work elaborated by Neves (2022) will be used as a reference,

with due proportions.

An introduction to the Smooth Power Flow (SPF) formulation implemented in

this work is made. It is proposed the employment of switches based on sigmoid function

in the models of electric devices controls and operational limits in order to introduce the

desired smoothness to the traditional PF formulation problem.

In the following sections, a study on the sigmoid function followed by its employment

justification on the proposed SPF formulation process is presented. Additionally, an

explanation on how to implement sigmoid switches to model different control equipments

in the SPF problem is also given.

3.1 INITIAL CONSIDERATIONS

The SPF is a recent research methodology in the PF literature. It is based on the

traditional PF formulation problem, adopting the same nonlinear system of equations

to model an EPS as detailed in (2.10). The proposed methodology consists in modeling

electric devices control and operational limits with the intention of enhancing voltage

stability analysis for power systems. Therefore, a new formulation process is adopted for

the system of inequations (2.16) that is incorporated to the traditional PF formulation.

A breakthrough work was developed by Neves (2022), introducing solid mathe-

matical foundation for the SPF formulation as well as innovative contributions to current

voltage stability literature. In this work, not only the modeling of different electrical

devices control and operational limits is presented, but also new methods for contingency

ranking and Voltage Stability Margin (VSM) are proposed and justified via the SPF

methodology.

Besides the aforementioned work, other papers can be found in the PF literature

regarding the advantages of the SPF formulation. An introductory work was published by

Kataoka (2005), considering the modeling of reactive power generation limits via the use

of a hyperbolic function or sigmoid function, transforming an undifferentiable condition

into a differentiable condition.

A similar reactive power generation limits methodology was developed by Pontes,

Passos Filho and La Gatta (2018, 2018). In its work, it is proposed the use of sigmoid

function based switches in order to model generators operational behaviors. As a conclusion,

it was observed that the traditional bus type re-specification is not needed (PV ¡ PQ) and

the overall number of iterations remain small with no alteration on the solution accuracy.
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In Ju et al. (2020) is proposed a three-phase smooth power flow methodology.

The proposed work considers a power flow analysis of microgrid systems, adopting a

projected Levenberg-Marquardt (PLM) model after non-smooth constraints are converted

into smooth functions. The non-smooth constraints of distributed generation models are

analyzed in this work.

A new reactive power generation limit methodology is proposed in Neves, Alberto

and Chiang (2020). In its approach, the proposed smooth model is applied for fast

detecting LIBs caused by violations of reactive power generation limits. Based on the

aforementioned work, Neves and Alberto (2020) explores the proposed methodology and

determines new voltage stability indexes considering loading parameter uncertainties.

In sequence, new SPF models are proposed for different electric devices by Neves,

Alberto and Chiang (2022b), considering their “control limits and saturation effects

approximations”. Additionally, the work details that every static bifurcation obtained

via traditional PF simulation is then transformed into SNBs in the SPF formulation.

This breakthrough information is then applied in estimating load margin for contingency

screening and ranking in voltage stability analysis (NEVES; ALBERTO; CHIANG, 2022a).

More recently, the SPF reactive power generation limits model is employed for the

review of power flow accuracy and load margin calculation based on bus-type switching

(ZENG et al., 2023). Two smooth functions are proposed and multiple power flow solutions

are analyzed based on different PV to PQ switching schemes.

Regarding the use of sigmoid functions, it has been the focus of many works

published in many research areas. In Uykan and Koivo (2004) the function is applied on

the of development of cellular radio systems control algorithms. The sigmoid function is

applied in a transmission expansion planning problem in Oliveira et al. (2005) to evaluate

the best investment strategy. A work analyzing solar panel characteristics by applying

sigmoid functions under various values of temperature and solar irradiance was published

by Sapteka et al. (2018).

In this work, the sigmoid function is employed in the modeling of control limits of

generators and SVCs. The methodology proposed by Pontes, Passos Filho and La Gatta

(2018), Pontes (2018) is adopted for the aforementioned electric devices modelings and a

special focus is given in voltage stability analysis. As mathematically proven by Neves,

Alberto and Chiang (2022b), Neves (2022), the employment of smooth functions into the

traditional PF formulation possibilitates the transformation of LIBs into corresponding

SNBs. This condition is set to introduce great improvements in VSA, as it will be further

explored in this work.

As mentioned before, the work developed in Neves (2022) introduces solid math-

ematical foundation for the SPF formulation and, therefore, it will be used as a main

reference to the proposed PF smoothness introduced in this work.
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3.2 THE SIGMOID FUNCTION

The sigmoid function equation is defined as follows:

sig (x) =
1

1 + e≠slp·(x≠lim)
(3.1)

where x is the input variable, slp is the slope variable and lim is the inflection point

variable.

According to Weisstein (2023) and based on (3.1), the sigmoid function derivative

is given by:

∂ sig (x)

∂x
= slp · (1 ≠ sig (x)) · sig (x) (3.2)

This derivative property will be applied in Appendix A, where new Jacobian matrix

terms are calculated.

Sigmoid functions most common output consists of the range of 0 to 1, although

another commonly output range is from -1 to 1. In this work, the former output option

is set default for the proposed sigmoid function applications. A representation on the

sigmoid function output range of 0 to 1 is shown in Figure 9.

Figure 9 – Sigmoid function.
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Source: Adapted from Pontes (2018).

If the exponential term (slp value) in the sigmoid function Euler’s variable e

becomes positive, then an inverse output behavior is noted. This condition is illustrated

by Figure 10.
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Figure 10 – Sigmoid function inverse behavior.
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Source: Adapted from Pontes (2018).

The sigmoid function slope variable slp determines the curve inclination. As

illustrated by Figure 11, a small slope value configures a slower transition between 0 and

1, whereas a big slope value configures a faster transition between 0 to 1.

Figure 11 – Sigmoid function slope variation.
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Source: Adapted from Pontes (2018).

Additionally, the sigmoid function inflection point variable lim configures the point

where the transition happens. In Figure 12 is detailed how lim influences on the transition

between the aforementioned default output range.
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Figure 12 – Sigmoid function inflection point variation.
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3.2.1 Smoothness validity

Consider that control limits in PF, such as (2.18), can be represented in the xy-

plane as shown in Figure 13, with x being the input variable and y the output variable

(assume y1 < y2). The Transition Point (TP) indicates that a system structure changes

between saturated and unsaturated modes and, therefore, a point (x, y) in Figure 13

should belong in any PF solution (NEVES, 2022).

Figure 13 – Control limits enabling transition between electric device operational behaviors
based on the traditional modeling.

xspec

y1

y2

x

y
TP

TP

Source: Adapted from Neves (2022).

A main problem, however, consists of the discontinuities instanced in all inequations.
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In the SPF formulation, therefore, it is proposed the adoption of smooth step function

to model the inequations related to electric devices control and operational limits, also

defined as saturated and unsaturated modes. The smooth step function is adopted in

order to discard the discontinuity problems observed in the traditional PF formulation.

In Neves (2022), a definition and equation for smooth step function are given, which are

hereinafter detailed:

Definition 1 (Smooth step function). A smooth step function is a family of C1 functions

gγ : R
4 æ R, parameterized by a scalar variable γ > 0 and satisfying the following

properties:

[I] limγæ0+ gγ (y, yspec, u1, u2) = u1 ’ y < yspec;

[II] limγæ0+ gγ (y, yspec, u1, u2) = u2 ’ y > yspec;

[III] there is α œ (0, |u1 ≠ u2|) such that min {u1, u2} + α Æ gγ (y, yspec, u1, u2) Æ

max {u1, u2} ≠ α for all γ;

[IV] there is ζ > 0 such that min {u1, u2} Æ gγ (y, yspec, u1, u2) Æ max {u1, u2} ’ y œ

[yspec ≠ ζ, yspec + ζ] for all γ;

[V] for all γ, gγ changes concavity in relation to y only at y = yspec.

An example of smooth step function is defined by Neves (2022) as follows:

gγ (y) =

Y

_

_

_

_

]

_

_

_

_

[

u1, if y Æ yspec ≠ γ
2
,

u2, if y Ø yspec + γ
2
,

p(y), otherwise,

(3.3)

for p being a cubic polynomial in variable y:

p(y) =
u1 + u2

2
+

3

u2 ≠ u1

2

4

·

S

U3 ·

A

y ≠ yspec

γ

B

≠ 4 ·

A

y ≠ yspec

γ

B3
T

V (3.4)

which satisfies the following equations:

p

3

yspec ≠
γ

2

4

= u1 (3.5a)

pÕ

3

yspec ≠
γ

2

4

= 0, (3.5b)

p

3

yspec +
γ

2

4

= u2 (3.5c)

pÕ

3

yspec +
γ

2

4

= 0, (3.5d)
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Despite the differences between the sigmoid function (3.1) and the smooth function

(3.3), (3.4) adopted by Neves (2022), it can be easily verified that the properties in

Definition 1 are satisfied by the sigmoid function. The sigmoid function validity will be

based on an adapted version of the aformentioned definition, considering the differences

between functions.

Properties [I] and [II] are satisfied considering the adoption of a high slope value

(slp æ +Œ © γ æ 0+). The sigmoid function slope variable is associated with the cubic

polynomial function γ variable.

Property [III] is satisfied if the input variable x is equal to the inflection point

variable lim, returning sig (x = lim) = 1
2
. Since the sigmoid function adopted output

consists of the range of 0 to 1, sig (x = lim) = gγ (yspec) = p (yspec) = u1+u2

2
whenever

u1 ”= u2.

Property [IV] is satisfied considering 0 Æ sig (x) Æ 1 ’ x œ [xspec ≠ slp, xspec + slp].

The slope variable has great influence on the sigmoid function output, as it is detailed in

Figure 14.

Property [V] is satisfied for the reason that sigmoid function also changes concavity

in the mean of its critical points, at (xspec≠slp)+(xspec+slp)
2

= xspec, similar to the cubic

polynomial function (3.4).

As a result, the sigmoid function fits within the smooth step function definition and,

therefore, can be implemented in a SPF formulation proposal. The control limit transition

between saturated and unsaturated modes illustrated in Figure 13 can be reformulated

considering now the sigmoid function, as shown in Figure 14. The main difference between

figures consists on the slope value adopted, since that, as slp tends to Œ, both illustrations

will be equal (NEVES, 2022).

In the following section, a representation of how the sigmoid function is applied in

the modeling of electric devices control and operational limits is detailed. The inequations

that model an electric device saturated and unsaturated modes will be reformulated

considering the implementation of sigmoid function based switches.

3.2.2 Implementation process

As previously mentioned, the SPF principle considers a reformulation on the set

of inequations (2.16) that model eletric devices controls and operational limits. In Neves

(2022), Neves, Alberto and Chiang (2022a), a set of control models are reformulated

considering the cubic polynomial function (3.3), (3.4). Correspondingly, sigmoid function

based switches are employed in the modeling of reactive power generation limits in Pontes,

Passos Filho and La Gatta (2018).

The SPF approach taken by (PONTES; PASSOS FILHO; LA GATTA, 2018) was
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Figure 14 – Control limits enabling transition between electric device operational behaviors
based on sigmoid function approach.

xspec − slp xspec xspec + slp
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Source: Adapted from Neves (2022).

implemented in this work and is hereinafter detailed.

The main objective is to associate a pair of sigmoid function based switches to each

PF state variable, or control variable, responsible for the control modeling. In general, if

the modeling of an electric device considers N operative modes, the number of sigmoid

switches adopted must be N-1.

Independently on the number of sigmoid function based switches adopted, the

switches are arranged to control equations that model the electric devices saturated or

unsaturated modes. Afterwards, the control equations corresponding to each mode are

combined together into one equivalent control equation.

In order to arrange the sigmoid function based switches to control equations, it is

applied the mathematical logic of truth tables. Since the sigmoid functions default outputs

are in the range of 0 to 1, the switches can be considered as logical variables. In order to

do so, a very high value must be assigned to the slope variable, approximating Figure 14

to Figure 13 as mentioned previously.

The invention of truth tables is accredited to Ludwig Wittgenstein, in his work

Tractatus Logico-Philosophicus published in 1922. Since then, it has been focus of many

works that involves combination of logical variables (ENDERTON, 2001). In the field of

electrical engineering, truth tables and mathematical logic is commonly applied in the

development of digital systems and circuits.

The following example details how truth tables and sigmoid function based switches

are applied together for the modeling of electric devices controls and operational limits.

To clearify, the expressions “switches” or “sigmoid switches” will be used in place



47

of “sigmoid function based switches”.

3.2.2.1 Example

Let a generic control of an electric device be represented by the following inequations:

Y

_

_

_

_

]

_

_

_

_

[

A = Amin if B > Bref

Amin < A < Amax if B = Bref

A = Amax if B < Bref

(3.6)

where A and B are variables in the PF problem.

Considering that the electric device possesses three different operational states and

only variable A is needed to determine them, then a total of two sigmoid switches are

employed in the given SPF modeling. Each switch is associated with a control equation,

and a combination of switches is associated with the control equation remaining.

In order to correctly model the electric device control in the proposed formulation,

the adopted sigmoid switches must have alternating behaviors. In other words, while swa1

alters from 0 to 1, swa2 must alter from 1 to 0, as illustrated by Figure 15. Therefore, the

combination of these sigmoid switches possibilitates a correct control equation output.

Figure 15 – Sigmoid switches swa1 and swa2 values in accordance to electric device control
limits. Adopted slope slp = 108.

Amin A Amax

0

1

swa1

swa2

Source: Elaborated by the author (2023).

If the control equation yc1 depends on A = Amax, which in turn is associated

with swa1 high output, then the truth table is given by Table 1. Similarly, if the control
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equation yc2 depends on A = Amin, which in turn is associated with swa2 high output,

then the truth table is given by Table 2.

Table 1 – Truth table for control equation yc1.

swa1 swa2 yc1

0 0 0

0 1 0

1 0 1 ∆ swa1

1 1 ◊

Source: Elaborated by the author (2023).

Table 2 – Truth table for control equation yc2.

swa1 swa2 yc2

0 0 0

0 1 1 ∆ swa2

1 0 0

1 1 ◊

Source: Elaborated by the author (2023).

Note that the condition where both switches present high value is never achieved,

as illustrated in Figure 15 and defined in Tables 1 and 2 by the ◊ output value. Therefore,

for the remainder control equation yc3, switches are combined as (¬swa1) · (¬swa2).

Combining the results presented, the corresponding control equation yc for the

model analyzed by inequations in Equation 3.6 is defined by (3.7). This control equation

can, therefore, be incorporated in the PF system of nonlinear equations to complete the

SPF formulation process.

yc = swa1 · yc1 + swa2 · yc2 + (1 ≠ swa1) · (1 ≠ swa2) · yc3 (3.7)

Another scenario could be analyzed if the state variable B also influences in the

electric device operational states. In this case, two more operational modes as well as two

more sigmoid switches must be considered in the proposed SPF modeling. This increases

the complexity on the truth table analysis as well as the corresponding control equation

outcome but not impossibilitates the SPF control model formulation.

3.3 PARTIAL CONCLUSIONS

This chapter presented a review of the current works developed in the SPF. Among

the published works, a special emphasis should be given to Kataoka (2005) for first
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developing work in this research area, to Pontes, Passos Filho and La Gatta (2018), Pontes

(2018) for first introducing sigmoid switches in the modeling of reactive power generation

control limits, and to Neves (2022) for laying out a solid mathematical foundation for the

SPF formulation analysis, along with all the works published by the author.

The implementation of sigmoid function based switches to model electric devices

controls and operational limits is justified according to the definition in Neves (2022). It

was certified that sigmoid function fits the smooth step function requirements in order to

introduce the desired smoothness to the traditional PF formulation problem, and how the

nonsmooth control limits can be approximated by the sigmoid function approach.

In conclusion, not only was the sigmoid function characteristics detailed but also

the implementation process was made in this chapter. This implementation process will

be applied in the modeling of generators reactive power limits and SVCs, as it will be

presented in Chapters 4 and 5, respectively. Later, in Chapter 6, a deeper analysis on the

smoothness introduced by the sigmoid function will be presented.
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4 REACTIVE POWER GENERATION LIMITS

In this chapter, the main methodology to model generators’ reactive power limits

presented in Chapter 2 will be reformulated based on Chapter 3 SPF proposition.

For the smooth methodology here developed, the Jacobian matrix dimension

must be redefined considering the number of active generators in the power system

(2NBUS + NGEN). Due to the full Newton characteristic, the new control equations are

incorporated internally in the Jacobian matrix. Therefore, a dimension redefinition must

be made during the PF or the CPF simulations.

The proposed methodology was first introduced by Pontes (2018), Pontes, Passos

Filho and La Gatta (2018). It considers the implementation of sigmoid switches in order

to model generators different modus operandi, nominated as: “normal”, reactive power

generation “superior limit violation” and reactive power generation “inferior limit violation”.

A total of four sigmoid switches are employed to model generators’ reactive power limits,

allowing a backoff routine to take place and correctly assign the best operational state for

the device during the PF iterative process.

The following sections will detail the respective SPF formulation proposed to

model generators’ reactive power limits. To clarify, the expressions “switches” or “sigmoid

switches” will be used in place of “sigmoid function based switches”.

4.1 SPF-GENERATORS’ REACTIVE POWER LIMITS

Four sigmoid switches were employed in the SPF-Generators’ reactive power genera-

tion limits methodology (PONTES, 2018; PONTES; PASSOS FILHO; LA GATTA, 2018).

The switches expressions are detailed in Equations (4.1) to (4.4). For this methodology,

the new state variable is the reactive power generated by the control device QGk, gen.

sw1 =
1

1 + e≠slp·(QGk, gen ≠ lim
sup
q )

, (4.1)

sw2 =
1

1 + e+slp·(QGk, gen ≠ lim
inf
q )

, (4.2)

sw3 =
1

1 + e+slp·(Vk, gen ≠ lim
sup
v )

, (4.3)

sw4 =
1

1 + e≠slp·(Vk, gen ≠ lim
inf
v )

, (4.4)
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where:

• limsup
q is equal to Qmax

Gk, gen ≠ tolq,

• liminf
q is equal to Qmin

Gk, gen ≠ tolq,

• limsup
v is equal to V

ref
k, gen ≠ tolv,

• liminf
v is equal to V

ref
k, gen ≠ tolv.

The main operative objective of generators, when connected to a k-bus, is to supply

active and reactive power generation in order to meet the power systems load demand.

Switches sw1 and sw2 correspond to the reactive power generated by the equipment, with

transition points occuring at limsup
q and liminf

q , respectively. On the other hand, switches

sw3 and sw4 correspond to the generator bus voltage magnitude, with transition points

occuring at limsup
v and liminf

v , respectively. The operative behavior of each pair of switches

are illustrated in Figures 16 and 17, respectively.

Figure 16 – Sigmoid switches sw1 and sw2 values in accordance to generators’ reactive
power limits. Adopted slope slp = 108.

liminf
q

QGk, gen limsup
q

0

1

sw1

sw2

Source: Adapted from Pontes (2018).

As it can be observed, switches sw1 and sw2 have an inverse operation behavior

in comparison with switches sw3 and sw4. This condition is not problematic for the

SPF-Generator modeling. On the contrary, the conjunction of the two pair of switches

allows a better transition between generator’s operational states, as it will be further

detailed.
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Figure 17 – Sigmoid switches sw3 and sw4 values in accordance to generators’ reactive
power limits. Adopted slope slp = 108.
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Source: Adapted from Pontes (2018).

Once again, the switches are associated with the generator’s control equations that

best describes each operative state. As a result, Equation (4.5) combines the aformentioned

switches and operative regions equations in one only control equation which will then be

linearized and incorporated into the Jacobian matrix traditional PF formulation.

y = (sw1 · sw3 ) · (1 ≠ sw2 · sw4 ) ·
1

QGk, gen ≠ Qmax
Gk, gen

2

· · ·

+ (1 ≠ sw1 · sw3 ) · (1 ≠ sw2 · sw4 ) ·
1

Vk, gen ≠ V
ref

k, gen

2

· · · (4.5)

+ (1 ≠ sw1 · sw3 ) · (sw2 · sw4 ) ·
1

QGk, gen ≠ Qmin
Gk, gen

2

.

In the above equation, the reactive power generation variable QGk, gen is the new

state variable. Regarding the multiple control equations within (4.5), due to the use of

four sigmoid switches, a better modeling of the switches should be made in order to avoid

undesirable transition conflicts. In Table 3 it is described control equation (4.5) residue

for each operational state of the SVC.

Each generator’s operational states is better explained below. Due to the presence

of four sigmoid switches, a better and detailed transition between operational states is

made. As it is informed in Table 3, the four sigmoid switches allow a backoff routine to

take place. The multiple ◊ visible in Table 3 can be interpreted as non-interfering value

of the sigmoid switch on the overall output result.
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Table 3 – Generators’ sigmoid switches operation and control equation output.

Operational State sw1 sw2 sw3 sw4 ∆y

1 Superior Limit Violation 1 0 1 ◊ Qmax
Gk, gen ≠ QGk, gen

2 Superior Limit Backoff 1 0 0 ◊

V
ref

k, gen ≠ Vk, gen3 Normal 0 0 ◊ ◊

4 Inferior Limit Backoff 0 1 ◊ 0

5 Inferior Limit Violation 0 1 ◊ 1 Qmin
Gk, gen ≠ QGk, gen

Source: Elaborated by the author (2023).

• Operation 1 is active when the reactive power generated is greater than or equal to

the maximum supported (QGk, gen Ø Qmax
Gk, gen);

• Operation 2 is active when the reactive power generation is greater than or equal to

the maximum supported and the voltage magnitude is greater than the referenced

value (QGk, gen Ø Qmax
Gk, gen & Vk, gen > V

ref
k );

• Operation 3 is active when the reactive power generated is within the limits

(Qmin
Gk, gen < QGk, gen < Qmax

Gk, gen);

• Operation 4 is active when the reactive power generation is less than or equal to

the minimum supported and the voltage magnitude is less than the referenced value

(QGk, gen Æ Qmin
Gk, gen & Vk, gen < V

ref
k );

• Operation 5 is active when the reactive power generated is less than or equal to the

minimum supported (QGk, gen Æ Qmin
Gk, gen).

On account of the control equation (4.5) and the new state variable, the Jacobian

matrix shape is redefined. New line and column will be appended to the original matrix

formation for each generator active on the electrical system. Therefore, new differential

terms will be present in the augmented Jacobian matrix, which are shown in Equation

(4.6).

The new differential terms corresponds to differentiating the state equations P

and Q in terms of the new state variable, and to differentiating the new control equation

in terms of the state variables θ, V and QGk, gen. The mathematical calculation of each

new differential term can be found in Appendix A.
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4.2 SPF-GENERATOR FLOWCHART

On account of the proposed SPF-Generator methodology, Figure 18 flowchart

describes a standard algorithm to implement the model in the PF traditional formulation.

In this flowchart, a definition for the sigmoid switches value is made for the

respective proposed methodology implemented. Along with that, the new control variable

(QGk, gen) is incorporated in the nonlinear system of equations.

The proposed implementation methodology considers the full Newton approach.

The control equations related to each actively operating generator present in the electric

power system are linearized and solved together with the state equations that model the

electric power system in study.

4.3 PARTIAL CONCLUSIONS

This chapter presents a relevant contribution to the current literature on generator’s

reactive power limits model. This contribution is described in the following item:

• A SPF-Generator methodology to model reactive power generation limits in the PF

problem. The proposed methodology is implemented via full Newton approach by

the incorporation of new control equations into the nonlinear system of equations.

As it will be described in Chapter 6, the proposed SPF-Generator modeling also

presents new contributions to power systems’ voltage stability.
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Figure 18 – SPF-Generator standard flowchart.
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Source: Elaborated by the author (2023).
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5 STATIC VAr COMPENSATOR

In this chapter, the main SVCs methodologies presented in Chapter 2 will be

reformulated based on Chapter 3 SPF proposition.

For every smooth methodology here developed, the Jacobian matrix dimension must

be redefined considering the number of active SVCs in the power system (2NBUS + NSVC).

Due to the full Newton characteristic, the new control equations are incorporated internally

in the Jacobian matrix. Therefore, a dimension redefinition must be made during the PF

or the CPF simulations.

First, the proposed SPF will be employed to model two methodologies, based

on the work developed by Passos Filho (2000). Despite the similarities between both

methodologies, each possesses different analytical purposes. Later, the SPF will be

employed to model the thyristor firing-angle methodology (AMBRIZ-PEREZ; ACHA;

FUERTE-ESQUIVEL, 2000).

In conclusion, Section 5.4 details observations upon each proposed SPF-SVC

methodology. The proposed improvement into the thyristor firing-angle model, mentioned

in Chapter 2, will also be discussed in Section 5.3.

To clarify, the expressions “switches” or “sigmoid switches” will be used throughout

the next sections in place of “sigmoid function based switches”.

5.1 SPF-SVC REACTIVE POWER INJECTION METHODOLOGY

Two sigmoid switches are employed to model SVCs based on the reactive power

injection methodology (PASSOS FILHO, 2000). It was opted to employ two sigmoid

switches in this SPF-SVC model due to the direct relationship between reactive power

generation and controlled bus voltage magnitude, illustrated by Figure 6.

The switches expressions are detailed in Equations (5.1) and (5.2). For this

methodology, the new state variable is the reactive power generated by the control device

QGk, svc.

sw5 =
1

1 + e≠slp·(Vm, svc ≠ lim
sup
v )

, (5.1)

sw6 =
1

1 + e+slp·(Vm, svc ≠ lim
inf
v )

, (5.2)

where:
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• limsup
v is equal to

1

V ref
m, svc + r · Bind

svc · V 2
k, svc

2

+ tolv,

• liminf
v is equal to

1

V ref
m, svc + r · Bcap

svc · V 2
k, svc

2

≠ tolv,

Bcap
svc = Bmax

svc = beq(αk, svc = 180¶) =
Qmax

Gk, svc
1

V min
k, svc

22 , (5.3)

Bind
svc = Bmin

svc = beq(αk, svc = 90¶) =
Qmin

Gk, svc
1

V max
k, svc

22 . (5.4)

The main operative objective of the SVC, when connected to k-bus, is to control

a specified bus voltage magnitude at a reference value V ref
m, svc. Hence, switches sw5 and

sw6 transition points occur at limsup
v and liminf

v , respectively. The transition points

are evaluated in respect to the new state variable as well as to SVC’s constructive

characteristics.

In order to elucidate how sw5 and sw6 work, Figure 19 illustrates the switches

values for each operative region of the control device. Equation (5.1) is associated with

the transition between SVC’s “Linear” and “Inductive” operative regions, whereas (5.2) is

associated with SVC’s “Linear” and “Capacitive” operative regions transition.

Figure 19 – Sigmoid switches sw5 and sw6 values in accordance to SVC’s operative region.
Adopted slope slp = 108.

lim
inf
v V

ref
m

lim
sup
v

0

1

Inductive

Region

Capacitive

Region

Linear

Region

sw5

sw6

Source: Elaborated by the author (2023).
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As mentioned in Chapter 3, the switches are modeled in order to return high or

low binary values (1 or 0) and avoid undesired transitions. Therefore, the switches are

associated with the SVC’s control equations that best describes each operative region, as

also detailed in Chapter 3.

As a result, Equation (5.5) combines the aforementined switches and operative

regions equations in only one control equation which will then be linearized and incorporated

into the Jacobian matrix traditional PF formulation.

y = sw5 ·
1

QGk, svc ≠ V 2
k, svc · Bind

svc

2

+ sw6 ·
1

QGk, svc ≠ V 2
k, svc · Bcap

svc

2

· · · (5.5)

+
1

1 ≠ sw5
2

·
1

1 ≠ sw6
2

·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

.

As mentioned, the above equation will be linearized and fully incorporated into

the Jacobian matrix. Regarding the multiple control equations within (5.5), there will be

no conflict of linearization during the PF iterative process if the sigmoid switches slope

and transition points are modeled correctly. Therefore, only one control equation in (5.5)

will be active and linearized into the Jacobian matrix, in accordance to the SVC current

operational situation.

In Table 4, control equation (5.5) residue is described for each operational state

of the SVC. It is worth noting that the condition upon which sw5 and sw6 present high

binary value is never achieved, as also illustrated in Figure 19.

Table 4 – SPF-SVC reactive power injection methodology sigmoid switches operation and
control equation residue output.

Operational Region sw5 sw6 ∆y

1 Inductive 1 0 V 2
k, svc · Bind

svc ≠ QGk, svc

2 Linear 0 0 V ref
m, svc + r · QGk, svc ≠ Vm, svc

3 Capacitive 0 1 V 2
k, svc · Bcap

svc ≠ QGk, svc

Source: Elaborated by the author (2023).

Each SVC operational state is better explained below. The modeling takes into

account the equipment constructive characteristics and reactive power generation, as

illustrated in Figure 6.

• Operation 1 is active when the reactive power generated by the SVC is greater than

or equal to the maximum supported by the equipment (QGk, svc Ø Qmax
Gk, svc);

• Operation 2 is active when the reactive power generated is within the limits (Qmin
Gk, svc <

QGk, svc < Qmax
Gk, svc);
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• Operation 3 is active when the reactive power generated is less than or equal to the

minimum supported (QGk, svc Æ Qmin
Gk, svc).

On account of the control equation (5.5) and the new state variable, the Jacobian

matrix shape is redefined. New line and column will be appended to the original matrix

formation for each SVC connected on the electrical system. Therefore, new differential

terms will be present on the augmented Jacobian matrix, which are shown in (5.6).

The new differential terms correspond to differentiating the state equations P and

Q in terms of the new state variable, and to differentiating the new control equation in

terms of the state variables θ, V and QGk, svc. The mathematical calculation of each new

differential term can be found in Appendix A.
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(5.6)

5.2 SPF-SVC CURRENT INJECTION METHODOLOGY

Since the reactive power and current injections methodologies are similar considering

the traditional power flow, the same will prevail in the SPF-SVC methodology.

Two sigmoid switches are employed to model SVCs based on the current injection

methodology (PASSOS FILHO, 2000). It was opted to employ two sigmoid switches in this

SPF-SVC model due to the direct relationship between current injection and controlled

bus voltage magnitude, illustrated by Figure 7.

The switches expressions are detailed in Equations (5.7) and (5.8). For this

methodology, the new state variable is the current supplied by the control device Ik, svc.

sw7 =
1

1 + e≠slp·(Vm, svc ≠ lim
sup
v )

, (5.7)
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sw8 =
1

1 + e+slp·(Vm, svc ≠ lim
inf
v )

, (5.8)

where:

• limsup
v is equal to

1

V ref
m, svc + r · Bind

svc · Vk, svc

2

+ tolv,

• liminf
v is equal to

1

V ref
m, svc + r · Bcap

svc · Vk, svc

2

≠ tolv,

Ik, svc =
QGk, svc

Vk, svc

, (5.9)

Bcap
svc = Bmax

svc = beq(αk, svc = 180¶) =
Imax

k, svc
1

V min
k, svc

2 , (5.10)

Bind
svc = Bmin

svc = beq(αk, svc = 90¶) =
Imin

k, svc
1

V max
k, svc

2 . (5.11)

The main operative objective of the SVC, when connected to k-bus, is to control

a specified bus voltage magnitude at a reference value V ref
m, svc. Hence, switches sw7 and

sw8 transition points occur at limsup
v and liminf

v , respectively. The transition points

are evaluated in respect to the new state variable as well as to SVC’s constructive

characteristics.

Switches sw7 and sw8 operative behavior is similar to switches sw5 and sw6

behaviors, respectively. Hence, Figure 19 also illustrates the switches values for each

operative region of the control device.

Equation (5.7) is associated with the transition between SVC’s “Linear” and “Induc-

tive” operative regions, whereas (5.8) is associated with SVC’s “Linear” and “Capacitive”

operative regions transition.

As mentioned in Chapter 3, the switches are modeled in order to return high or

low binary values (1 or 0) and avoid undesired transitions. Therefore, the switches are

associated with the SVC’s control equations that best describes each operative region, as

also detailed in Chapter 3.

As a result, Equation (5.12) combines the aforementined switches and operative

regions equations in only one control equation which will then be linearized and incorporated

into the Jacobian matrix traditional PF formulation.
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y = sw7 ·
1

Ik, svc ≠ Vk, svc · Bind
svc

2

+ sw8 ·
1

Ik, svc ≠ Vk, svc · Bcap
svc

2

· · · (5.12)

+
1

1 ≠ sw7
2

·
1

1 ≠ sw8
2

·
1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

.

As mentioned, the above equation will be linearized and fully incorporated into

the Jacobian matrix. Regarding the multiple control equations within (5.12), there will be

no conflict of linearization during the PF iterative process if the sigmoid switches slope

and transition points are modeled correctly. Therefore, only one control equation in (5.12)

will be active and linearized into the Jacobian matrix, in accordance to the SVC current

operational situation.

In Table 5, control equation (5.12) residue is described for each operational state

of the SVC. It is worth noting that the condition on which sw7 and sw8 present high

binary value is never achieved.

Table 5 – SPF-SVC current injection methodology sigmoid switches operation and control
equation residue output.

Operational Region sw7 sw8 ∆y

1 Inductive 1 0 Vk, svc · Bind
svc ≠ Ik, svc

2 Linear 0 0 V ref
m, svc + r · Ik, svc ≠ Vm, svc

3 Capacitive 0 1 Vk, svc · Bcap
svc ≠ Ik, svc

Source: Elaborated by the author (2023).

Each SVC operational states are better explained below. The modeling takes into

account the equipment’s constructive characteristics and current supply, as illustrated in

Figure 7.

• Operation 1 is active when the reactive power generated by the SVC is greater than

or equal to the maximum supported by the equipment (Ik, svc Ø Imax
k, svc);

• Operation 2 is active when the reactive power generated is within the limits (Imin
k, svc <

Ik, svc < Imax
k, svc);

• Operation 3 is active when the reactive power generated is less than or equal to the

minimum supported (Ik, svc Æ Imin
k, svc).

On account of the control equation (5.12) and the new state variable, the Jacobian

matrix shape is redefined. New line and column will be appended to the original matrix

formation for each SVC connected on the electrical system. Therefore, new differential

terms will be present on the augmented Jacobian matrix, which are shown in (5.13).
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The new differential terms corresponds to differentiating the state equations P

and Q in terms of the new state variable, and to differentiating the new control equation

in terms of the state variables θ, V and Ik, svc. The mathematical calculation of each new

differential term can be found in Appendix A.
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5.3 SPF-SVC THYRISTOR FIRING-ANGLE METHODOLOGY

Differently to the aforementioned methodologies, four sigmoid switches are employed

in the SPF-SVC methodology based on the model developed by Ambriz-Perez, Acha and

Fuerte-Esquivel (2000). It was opted to employ four sigmoid switches in this SPF-SVC

model due to an inverse relationship between the thyristor firing-angle and the controlled

bus voltage magnitude, illustrated by Figure 8 and Equation (2.23).

The switches expressions are detailed in Equations (5.14) through (5.17). For this

methodology, the new state variable is the SVC’s thyristor firing-angle αk, svc.

sw9 =
1

1 + e≠slp·(αk, svc ≠ lim
sup
α

)
, (5.14)

sw10 =
1

1 + e+slp·(αk, svc ≠ lim
inf
α

)
, (5.15)

sw11 =
1

1 + e≠slp·(Vm ≠ lim
sup
v )

, (5.16)

sw12 =
1

1 + e+slp·(Vm ≠ lim
inf
v )

, (5.17)
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where:

• limsup
α is equal to 180¶ ≠ tolα,

• liminf
α is equal to 90¶ + tolα,

• limsup
v is equal to

1

V ref
m, svc + r · beq(90¶) · V 2

k, svc

2

+ tolv,

• liminf
v is equal to

1

V ref
m, svc + r · beq(180¶) · V 2

k, svc

2

≠ tolv,

QGk, svc = V 2
k, svc · beq(αk, svc), (5.18)

beq(α = 180¶) = Bcap
svc = Bmax

svc =
Qmax

Gk, svc
1

V min
k, svc

22 , (5.19)

beq(α = 90¶) = Bind
svc = Bmin

svc =
Qmin

Gk, svc
1

V max
k, svc

22 . (5.20)

Regarding the SVC thyristor firing-angle, it controls the equipment equivalent

susceptance value and, consequently, its reactive power generation by (5.18). Therefore,

switches sw9 and sw10 are developed to model the device control reactive power generation,

with transition points set at limsup
α and liminf

α , respectively. Additionally, switches sw11

and sw12 transition points occur at limsup
v and liminf

v , in order to control the specified

bus voltage magnitude at a reference value V ref
m, svc.

The operative behavior of switches sw9 and sw10 and switches sw11 and sw12 are

illustrated in Figures 20 and 21.

As it can be observed, both pair of switches have the same behavior. These switches

can have low binary values at the same time, but the same does not apply for high binary

values. The main difference between Figures 20 and 21, however, consists of the SVC

operational regions order. This condition is not problematic for the SPF-SVC modeling.

On the contrary, the conjunction of the two pair of switches allows a better transition

between SVC’s operational regions, as it will further be detailed.

Once again, the switches are associated with the SVC’s control equations that

best describes each operative region, as detailed in Chapter 3. As a result, Equation

(5.21) combines the aformentioned switches and operative regions equations in one only

control equation which will then be linearized and incorporated into the Jacobian matrix

traditional PF formulation.
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Figure 20 – Sigmoid switches sw9 and sw10 values in accordance to SVC’s operative
region. Adopted slope slp = 108.

lim
inf
α
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0

svc
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0

1
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Inductive

Region

Linear

Region

sw9

sw10

Source: Elaborated by the author (2023).

Figure 21 – Sigmoid switches sw11 and sw12 values in accordance to SVC’s operative
region. Adopted slope slp = 108.
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Source: Elaborated by the author (2023).
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y = sw10 ·
1

1 ≠ sw12
2

· (αk, svc ≠ 90¶) + sw9 ·
1

1 ≠ sw11
2

· (αk, svc ≠ 180¶) · · ·

+
Ë

sw11 · (1 ≠ sw10 ) · (1 ≠ sw12 ) + sw12 · (1 ≠ sw9 ) · (1 ≠ sw11 ) · · ·

+ (1 ≠ sw9 ) · (1 ≠ sw10 ) · (1 ≠ sw11 ) · (1 ≠ sw12 )
È

·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

.

(5.21)

In the above equation, the reactive power generation variable QGk, svc is given by

(5.18). Regarding the multiple control equations within (5.21), due to the use of four

sigmoid switches, a better modeling of the switches should be made in order to avoid

undesired transition conflicts. In Table 6 it is described control equation (5.21) residue,

for each operational state of the SVC.

Table 6 – SPF-SVC thyristor firing-angle methodology sigmoid switches operation and
control equation output.

Operational Region sw9 sw10 sw11 sw12 ∆y

1 Inductive 0 1 0 0 90¶ ≠ αk, svc

2 Inductive Backoff 0 1 0 1

V ref
m, svc + r · V 2

k, svc · beq (α) ≠ Vm, svc3 Linear 0 0 0 0

4 Capacitive Backoff 1 0 1 0

5 Capacitive 1 0 0 0 180¶ - αk, svc

Source: Elaborated by the author (2023).

Each SVC operational states are better explained below. Due to presence of four

sigmoid switches, a better and detailed transition between SVC operational regions is

made. As it is detailed in Table 6, the four sigmoid switches allows a backoff routine to

take place in order to correctly assign the best SVC operational state during the the PF

iterative process.

The modeling takes into account the equipment constructive characteristics, specif-

ically the equivalent susceptance, as illustrated in Figure 8(b), as well as the objective of

controlling the voltage magnitude of a specific bus.

• Operation 1 is active when the thyristor firing-angle is less than or equal to the

minimum supported (αk, svc Æ 90¶);

• Operation 2 is active when the thyristor firing-angle is less than or equal to the

minimum supported (αk, svc Æ 90¶) and the controlled bus voltage magnitude is less

than or equal to the minimum supported (Vm, svc Æ V min
m, svc);

• Operation 3 is active when the thyristor firing-angle and the controlled bus magnitude

are within their limits (90¶ < αk, svc < 180¶ and V min
m, svc < Vm < V max

m, svc);
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• Operation 4 is active when the thyristor firing-angle is greater than or equal to the

maximum supported (αk, svc Ø 180¶) and the controlled bus voltage magnitude is

greater than or equal to the maximum supported (Vm, svc Ø V max
m, svc);

• Operation 5 is active when the thyristor firing-angle is greater than or equal to the

maximum supported (αk, svc Ø 180¶).

On account of the control equation (5.21) and the new state variable, the Jacobian

matrix shape is redefined. New line and column will be appended to the original matrix

formation for each SVC connected on the electrical system. Therefore, new differential

terms will be present on the augmented Jacobian matrix, which are shown in (5.22).

The new differential terms corresponds to differentiating the state equations P

and Q in terms of the new state variable, and to differentiating the new control equation

in terms of the state variables θ, V and αk, svc. The mathematical calculation of each

new differential term can be found in Appendix A.
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5.4 OBSERVATIONS

The droop implementation in the thyristor firing-angle methodology is set clear in

(5.21), the SVC linear operational region equation, where the reactive power variable QGk, svc

is multiplied by the droop variable “r”. Considering this, the improved thyristor firing-angle

methodology returns the same results as the reactive power injection methodology. In order

to illustrate the droop implementation, Figures 22 and 23 present the SVC controlled bus

voltage variation per reactive power generated and per thyristor firing-angle methodologies,

respectively.

In both Figures, the SVC thyristor firing-angle with 0% droop implementation

refers to the methodology proposed by Ambriz-Perez, Acha and Fuerte-Esquivel (2000).

Although the SVC 0% droop model is able to control the bus voltage magnitude at the
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Figure 22 – SVC Controlled Bus Voltage Magnitude per Reactive Power Generated.
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Figure 23 – SVC Controlled Bus Voltage Magnitude per Thyristor Firing-Angle.
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scheduled value during the linear region, this operation is in fact idealized and does not

occur due to physical operational limitations of the equipment.

By implementing droop in the steady-state SVC thyristor firing-angle model, a

more realistic operation by the control device is obtained (BARBOSA; PASSOS FILHO,

2022). Hence, as it can be seen in Figures 22 and 23, the droop implementation affects
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directly the reactive power generated and the thyristor firing-angle when the control device

is operating in the linear region.

In terms of PF simulations, all SPF-SVC proposed methodologies implementations

results in equal amount of iterations. Therefore, it can be concluded that the difference in

the number of switches employed in each methodology does not result in an increase of

iterations, once the switches are configured correctly.

Additionally, to avoid direct transition between inductive and capacitive regions, a

step through the linear region is performed, equaling the controlled bus voltage magnitude

to its reference value and the specified state variable to result in null reactive power by

the SVC.

As mentioned in the beginning of this chapter, each SPF-SVC proposed methodology

is best suited for a specific research goal. According to Ambriz-Perez, Acha and Fuerte-

Esquivel (2000), the thyristor firing-angle methodology is best suited for harmonics and

electromagnetic transients studies (MILLER et al., 1982). The reactive power and current

injections methodologies, in turn, have a more general approach, being appropriated to

studies related to the impacts of reactive power and current injections in the electric

power system, respectively. Nevertheless, all SPF-SVC methodologies approaches are

recommended for power flow studies.

5.5 SPF-SVC FLOWCHART

On account of the proposed SPF-SVC methodologies, Figure 24 flowchart describes

a standard algorithm to implement the SPF-SVCs models in the PF traditional formulation.

In this flowchart, a definition for the sigmoid switches value is made for the

respective proposed methodology implemented. Along with that, the new control variable

is incorporated in the nonlinear system of equations. As detailed in Subsections 5.1, 5.2

and 5.3, the new control variable can be QGk, svc, Ik, svc or αk, svc, respectively.

The proposed implementation methodology considers the full Newton approach.

The control equations related to each actively operating SVC present in the electric power

system are linearized and solved together with the state equations that model the electric

power system in study.

5.6 PARTIAL CONCLUSIONS

This chapter presents relevant contributions to the current literature on SVC

steady-state models. These contributions are described in the following items:

• A SPF-SVC reactive power injection methodology to represent SVCs in the steady-

state PF problem. This methodology relates the reactive power generated by the
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control device with the controlled bus voltage magnitude values. This results in

a better analysis of the impacts of reactive power generation by SVCs in order to

control a bus voltage magnitude.

• A SPF-SVC current injection methodology to represent SVCs in the steady-state PF

problem. This methodology relates the current injected by the control device with

the controlled bus voltage magnitude values. This results in a better analysis of the

impacts of current injection by SVCs in order to control a bus voltage magnitude.

Figure 24 – SPF-SVC standard flowchart.

Variables initialization

Calculate

∆P 0, ∆Q0, ∆y0

||∆P ||∞ ≤ εP

||∆Q||∞ ≤ εQ

or ||∆y||∞ ≤ εY

End

h ← h + 1

Define SPF-SVC

switches values

Jacobian matrix

Solve nonlinear equa-

tions system →

∆θ, ∆V and ∆x

θ
h+1 ← θ

h
+ ∆θ

h

V h+1 ← V h
+ ∆V h

xh+1 ← xh
+ ∆xh

Calculate

∆P h, ∆Qh, ∆yh

Yes

No

Source: Elaborated by the author (2023).



70

• A SPF-SVC thyristor firing-angle methodology to represent SVCs in the steady-state

PF problem. This methodology relates the reactive power generated, by means of

the control device thyristor firing-angle, with the controlled bus voltage magnitude

values. This results in a better analysis of the impacts of reactive power generation

by SVCs in order to control a bus voltage magnitude.

• An enhancement to traditional SVC thyristor firing-angle methodology, by incorpo-

rating a droop variable in the proposed SPF-SVC thyristor firing-angle methodology.

The droop consideration approximates the SVC steady-state model simulations to

real operational conditions.

As it will be described in Chapter 6, the proposed SPF-SVCs modelings also

presents new contributions to power systems’ voltage stability.
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6 VOLTAGE STABILITY IMPACTS

The previous chapters presented a thorough review of the traditional power flow

formulation and the proposed smooth power flow formulation via sigmoid functions, as well

as the proposed SPF methodologies for modeling reactive power generation limits and SVCs

in the power flow problem. The use of sigmoid functions in the proposed SPF methodology

correctly models electric devices for steady-state analysis, once the switches are responsible

for enabling the control equation that best represents the operational behavior at each

iteration of the PF simulation. However, a further mathematical analysis can be made

with the intent of better understanding the impacts of the proposed methodology in VSA.

For that reason, in this chapter a special focus will be on the improvements regarding

voltage collapse and bifurcations due to the SPF formulation. As mentioned in Section 3.1,

it is mathematically proven in Neves (2022), Neves, Alberto and Chiang (2022a) that

the introduction of smoothness in the PF formulation transforms every bifurcation into

SNBs. In the following sections it is proposed a numerical demonstration of this condition,

evaluating the voltage stability of EPS, when the same tend to collapse, via modal analysis.

The CPF formulation and the eigenproperties detailed in Apendices B and C,

respectively, were applied in the proposed SPF formulation to evaluate voltage stability in

EPSs.

6.1 INITIAL CONSIDERATIONS

Voltage stability analysis is a widely research subject in electrical engineering, once

that the growing increase in load demand directly affects the concern to prevent EPSs

from collapsing. Many published works assess the problem of voltage stability by means

of an steady-state analysis of power systems, as Neves (2022, p.52) properly mentions

(VENIKOV et al., 1975; ABE et al., 1978; TAMURA; MORI; IWAMOTO, 1983; KWATNY;

PASRIJA; BAHAR, 1986; SAUER; PAI, 1990; FLATABO; OGNEDAL; CARLSEN,

1990; SCHLUETER et al., 1991; CUTSEM, 1991; MORISON; GAO; KUNDUR, 1993;

CANIZARES, 1995).

The Continuation Power Flow (CPF) method stands out among the different

simulation tools capable of evaluating voltage stability of EPSs in terms of load demand

increments. It was first introduced in the literature of power flow research and applications

by Ajjarapu and Christy (1992) and, according to the authors, consists of “a class of

techniques used to find a path of equilibrium solutions of a set of nonlinear equations

(SEYDEL, 1988; RHEINBOLDT, 1986; RHEINBOLDT; BURKARDT, 1983; RIKS,

1987)”.

By correctly implementing the CPF method, it is possible to analyze how close

an EPS is to the MLP. Despite the natural differences between EPSs, it is important to
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properly model all electric devices actively operating, considering their control limits and

saturation behaviors, in order to obtain simulation results as close as possible to reality

(PASSOS FILHO, 2000).

In a general point of view, the voltage collapse is considered as a power system’s

point of maximum loadability, on the threshold of voltage stability. In a mathematical

point of view, however, the voltage collapse is characterized as a point where a bifurcation

occurs (CHIANG et al., 1990). Since power flow solves a system of nonlinear equations, and

the CPF determines a sequence of nonlinear equations solutions, Bifurcation Points (BPs)

can be present throughout power flow analysis and simulations.

According to Neves (2022), the loss of a solution of (2.10) in a BP can be caused

when the system reaches the limit of function f itself (loss of equilibrium point due

loadability limit) or when some of the admittable solutions violate one of the inequality

constraints determined in g (2.16). Bifurcations can, therefore, be classified into different

categories. However, in this work, an emphasis will be made in analyzing SNB and LIB

bifurcations, which are described below:

1. Saddle-Node Bifurcation (SNB): when f is C1,2 but fX is singular at the BP;

2. Limit-Induced Bifurcation (LIB): when f is not C1 at the BP. In this case, the

bifurcation occurs due to control variables changing electric devices operational

behavior from unsaturated to saturated or vice-versa..

The aforementioned classifications consider the assumptions of the Implicit Function

Theorem, as detailed by Neves (2022, p.56). It also considers the analysis on account of

the traditional PF formulation.

Once a desired smoothness is introduced in the traditional PF formulation, trans-

forming it into a SPF formulation, “the Implicit Function Theorem ensures that all static

bifurcations points, without exception,” are points where the smoothed fX exists and is

singular (NEVES, 2022).

By way of explanation, every static bifurcation is now classified as SNB in the

SPF formulation. This condition is made possible due to the continuity characteristic of

smooth step functions, such as the sigmoid function, as detailed in Subsection 3.2.1, and

the mathematical theorems regarding SPF formulation, thoroughly detailed by (NEVES,

2022).

As mentioned by Neves, Alberto and Chiang (2020), Neves, Alberto and Chiang

(2022b), there are a few published works in voltage stability literature that developed

techniques to detect LIB. The voltage collapse of EPSs classified as LIB commonly occurs

2 For C1-class functions, the zeroth and first derivatives are continuous.
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due to electric devices operational behavior variation, such as generators reactive power

generation limits and SVCs limits (TAYLOR, 1994; CUTSEM; VOURNAS, 2007).

To qualitatively evaluate the impact of the SPF formulation in bifurcation analysis,

the eigenproperties associated with modal analysis are employed. Despite the compu-

tational burden, modal analysis is a widely applied tool in power systems research for

voltage stability evaluation via the JR matrix sensitivity (GAO; MORISON; KUNDUR,

1992; MORISON; GAO; KUNDUR, 1993; KUNDUR, 1994; PASSOS FILHO, 2005).

According to Taylor (1994, p.238):

The relationship between voltage stability and eigenvalues of the JR

matrix is best understood by relating the eigenvalues with the V -Q sensitivities

of each bus (which must be positive for stability). JR can be taken as a

symmetric matrix and therefore the eigenvalues of JR are close to being purely

real. If all the eigenvalues are positive, JR is positive definite and the V -Q

sensitivities are also positive, indicating that the system is voltage stable.

By implementing CPF and modal analysis in the proposed SPF formulation, the

condition of EPSs tending to voltage collapse is analyzed and the electric devices responsible

for the instability are easily identified.

In this work, therefore, a special analysis is made in the transformation from LIBs

to SNBs. The proposed SPF generator methodology detailed in Chapter 4 is considered

with the intent of numerically verify the proposed analysis.

6.2 BIFURCATIONS AND MODAL ANALYSIS

The precise mathematical definitions of SNB and LIB classifications are detailed in

the first two subsections, adapted from Neves (2022). In sequence, the condition by which

generic bifurcations are transformed into SNB in the SPF is succintly discussed. These

definitions will be applied in the proposed modal analysis based on a specific mathematical

theorem detailed in Neves (2022), as described in the last subsection.

6.2.1 Saddle-Node Bifurcation

This subsection title is identical to Neves (2022, p.72) on purposed. The Saddle-

Node Bifurcation (SNB) definition shown in his work is adapted and detailed hereinafter.

Definition 2 (Saddle-Node Bifurcation). The system of N equations and N + 1 variables

given by:

f (X, λ) = 0 (6.1)

where:
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• X œ R
n;

• λ œ R;

• f : Rn ◊ R æ R
n;

undergoes a saddle-node bifurcation at point
1

Xcrit, λcrit
2

if the following conditions hold:

[I] f
1

Xcrit, λcrit
2

= 0;

[II] f is continuously differentiable at
1

Xcrit, λcrit
2

;

[III] fX

1

Xcrit, λcrit
2

is singular;

[IV] There is an unique solution branch passing through
1

Xcrit, λcrit
2

, which can be

parameterized by s œ R and denoted by (X (s) , λ (s)) such that (X (s) , λ (s)) =
1

Xcrit, λcrit
2

when s = ŝ. In addition, s = ŝ is a critical point of function λ (s).

According to Neves (2022), the point
1

Xcrit, λcrit
2

is classified as critical point of

f (X, λ) if there is a neighborhood U of
1

Xcrit, λcrit
2

such that:

• f (X, λ) Ø f
1

Xcrit, λcrit
2

’ (X, λ) œ U and

f (X, λ) > f
1

Xcrit, λcrit
2

’ (X, λ) œ ∂U;

or

• f (X, λ) Æ f
1

Xcrit, λcrit
2

’ (X, λ) œ U and

f (X, λ) < f
1

Xcrit, λcrit
2

’ (X, λ) œ ∂U;

The Definition 2 is illustrated by Figure 25, where the SNB is given by
1

Xcrit, λcrit
2

and there is no solution point (X, λ) that satisfies (6.1) for λ > λcrit.

6.2.2 Limit-Induced Bifurcation

This subsection title is identical to Neves (2022, p.72) on purposed. The Limit-

Induced Bifurcation (LIB) definition shown in his work is adapted and detailed hereinafter.

Definition 3 (Limit-Induced Bifurcation). The system of N equations and N +1 variables

given by:

f (X, λ) = 0 (6.2a)
Y

_

]

_

[

a (X, λ) = 0, if b (X, λ) > 0,

a (X, λ) Ø 0, if b (X, λ) = 0
(6.2b)
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Figure 25 – Saddle-Node Bifurcation.
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where:

• X œ R
n;

• λ œ R;

• f : Rn ◊ R æ R
n≠1;

• a : Rn ◊ R æ R;

• b : Rn ◊ R æ R;

undergoes a limit-induced bifurcation at point
1

Xcrit, λcrit
2

if the following conditions hold:

[I] f
1

Xcrit, λcrit
2

= 0, a
1

Xcrit, λcrit
2

= 0 and b
1

Xcrit, λcrit
2

= 0;

[II] f , a, b are continuously differentiable at
1

Xcrit, λcrit
2

;

[III] both

S

U

fX

aX

T

V and

S

U

fX

bX

T

V are nonsingular at
1

Xcrit, λcrit
2

;

[IV] (bX · α + bλ) · (aX · β + aλ) > 0 at
1

Xcrit, λcrit
2

, where α is the unique solution of
S

U

fX

aX

T

V · α +

S

U

fλ

aλ

T

V = 0 and β is the unique solution of

S

U

fX

bX

T

V · β +

S

U

fλ

bλ

T

V = 0.
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According to Neves (2022), Definition 3 restricts LIB points to points where there

is an unsaturated

f (X, λ) = 0 (6.3a)

a (X, λ) = 0 (6.3b)

to saturated change

f (X, λ) = 0 (6.4a)

b (X, λ) = 0 (6.4b)

in the system behavior, or vice versa.

The Definition 3 is best explained by means of the illustrations in Figures 26 and

27. Consider that Curves 1 and 2 represent solutions of a state variable V under different

conditions: Curve 1 is a solution curve for the system (6.2a) when a generator is modelled

as constant V; Curve 2 is a solution curve for the system (6.2a) when a generator is

modelled as constant Q. The Actual Curve, in turn, is the true variation of the state

variable V based on the generator operational behavior.

Figure 26 – Transition Point followed by a Saddle-Node Bifurcation.
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Source: Adapted from Neves, Alberto and Chiang (2022b).

From Figure 26, the state variable V varies in accordance to Curve 1 until a first

limit is encountered (λ = λT P ). This limit is justified by a variation in the generator

operational behavior, once it reaches its reactive power maximum or minimum generation

capacity. Although the generator’s limit is reached, the EPS can withstand this condition
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and, therefore, λ keep increasing (NEVES; ALBERTO; CHIANG, 2022b). The state

variable V continues to vary, but now in accordance with Curve 2 and until the EPS

collapses (λ = λcrit).

The first limit encountered is classified as a TP, a generic point where there is a

saturated to unsaturated (or vice versa) change in the system behavior. This limit cannot

be classified as a LIB by reason that it does not satisfy condition [IV] stated in Definition 3

(NEVES, 2022). The second limit encountered is classified as a Bifurcation Point (BP) due

to the fact that the solution points of (6.2a) coalesce and vanish for λ > λcrit (NEVES;

ALBERTO; CHIANG, 2022b). Therefore, the BP is characterized as a critical point and

can also be classified as SNB.

Figure 27 – Limit-Induced Bifurcation.
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Source: Adapted from Neves, Alberto and Chiang (2022b).

A different condition is analyzed in Figure 27. Similarly, the state variable V

initially vary in accordance with Curve 1 until a limit is encountered (λ = λT P ). This limit

is also justified by a variation in the generator operational behavior, once it reaches its

reactive power maximum or minimum generation capacity. In contrast, in this situation

the EPS cannot withstand the generator’s limit condition being reached and, therefore, a

voltage collapse occurs.

The limit encountered can no longer be classified solely as a TP, but also a BP,

with the solution points of (6.2a) coalescing and vanishing for λ > λT P (NEVES, 2022).

No alteration on the generator’s operational behavior, either from saturated to unsaturated

or vice versa, solves the solution of (6.2a). Hence, the limit point featured in Figure 27 is

classified as LIB.
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6.2.3 Bifurcations in the Smooth Power Flow (NEVES, 2022, p.86)

As detailed in the previous subsections, a power system defined by (6.1) can have

its instability classified as SNB and LIB according to Definitions 2 and 3, respectively.

Based on the discussion presented in Subsection 6.2.2 and the TP condition illustrated in

Figure 13, these bifurcations can also be represented in the xy-plane by Figures 28 and

29, as properly mentioned by (NEVES, 2022). In these figures, the dots indicate solution

points and the arrows indicate a set of solution points found due to increase in λ (NEVES,

2022).

Figure 28 – Saddle-Node Bifurcation occurence in the xy-plane, assuming y1 < y2 and two
solutions disappear with the increase of λ.
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Source: Adapted from Neves (2022).

In Figure 28, the condition illustrated by Figure 26 is reproduced in the xy-plane.

The bifurcation occurs when the generator is not switching between operating modes, and

is either represented by control equation y1 or y2 in the power flow problem, as illustrated

by Figure 28(a). The bifurcation also occurs when the generator is in the midst of switching

its operating modes, as illustrated by Figure 28(b). For both cases, the bifurcation is not

caused by the generator reaching its reactive power generation limit, but for an unknown

condition in the EPS. The MLP emphasized by “◊” corresponds to a BP (λ = λcrit), with

a TP being considered before the BP (λT P < λcrit) or not as detailed in Figure 28(b) and

(a), respectively.

In comparison, the condition illustrated by Figure 27 is represented in the xy-plane

by Figure 29. In this case, the bifurcation truly occurs when the generator reaches its

reactive power generation limit and is switching between operating modes, from saturated

to unsaturated mode or vice versa, or also from control equation y1 to y2 (or vice versa)

in the power flow problem. In this situation, the MLP emphasized by “◊” corresponds to

a TP being also characterized as a BP (λ = λT P = λcrit).

Based on the condition detailed by Figures 27 and 29, Neves (2022) presents a

series of mathematical theorems in order to demonstrate that bifurcations in the SPF are
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Figure 29 – Limit-Induced Bifurcation occurence in the xy-plane, assuming y1 < y2 and
two solutions disappear with the increase of λ.
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Source: Adapted from Neves (2022).

classified as SNB. These theorems are based on the smooth step function characteristics

(Definition 1), which are responsible for discarding discontinuity problems observed in the

traditional PF formulation.

Among the introduced theorems, Theorem 9 (NEVES, 2022, p.90) “proves the

existence of a SNB of the smoothed system corresponding to the LIB of the original

system.”. Hence, the condition highlighted in Figures 27 and 29 is further explored with the

introduction of smooth functions, mathematically proving that there is a SNB arbitrarily

close to a LIB.

Figure 30 – Smooth Power Flow identification of Saddle-Node Bifurcation arbitrarily close
to Limit-Induced Bifurcation.

xspec

y1

x

y

α

ζ

SNB

LIB

Source: Adapted from Neves (2022).

The Theorem 9 proof is illustrated in Figure 30, according to Neves (2022). The
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dashed lines delimit an arbitrarily close region where both BPs are close to each other,

the arrows indicate a set of solution points found due to increase in λ, and the variables

ζ and α indicates the validation of properties [III] and [IV] from Definition 1 (NEVES,

2022). These two variables guarantee a solution point for (6.2a) which is not classified as

a LIB, but as a SNB (λ̃crit < λcrit).

6.2.4 Proposed modal analysis

All things considered, it is proposed the implementation of modal analysis for

numerical verification of Theorem 9. As mentioned before, it is applied the generator

reactive power limit methodology detailed in Chapter 4 along with the CPF formulation,

stressing EPSs until it collapses.

The eigenvalues and eigenvectors will be extracted from the proposed SPF-Generator

Jacobian matrix, defined by (4.6) and (A.37), in its reduced form. The eigenvalues

will identify the interaction modes between generators control equations, whereas the

eigenvectors fill in sensitive information regarding the eigenvalues controllability and

observability (PASSOS FILHO, 2005).

In respect of the reduced Jacobian matrix, some initial considerations must be

made. The Jacobian matrix, as presented in (2.13), is detailed as follows:

J =

S

U

JP θ JP V

JQ θ JQ V

T

V (6.5)

where JP θ, JP V , JQ θ and JQ V are the submatrices of the Jacobian matrix that corresponds

to the active and reactive power state equations (P and Q) linearization in respect to the

state variables (θ and V ).

Considering now the incorporation of generator control equations, the augmented

Jacobian matrix presented in (4.6) can be rewritten as:

J =

S

W

W

W

U

JP θ JP V JP XG

JQ θ JQ V JQ XG

JYG θ JYG V JYG XG

T

X

X

X

V

(6.6)

where the new submatrices corresponds to the active and reactive power state equations

linearization in respect to the generators control variables (XG) and also the linearization

of the generators control equations (YG) in respect to all the power flow state variables (θ,

V and XG).

The Jacobian matrix from (6.6) can be further expanded, once it is considered the

CPF formulation. In this case, the new submatrices will correspond to relationship of
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state equations and control equations in regard to the control variable λ, as detailed in

Appendix B. However, for the purpose of modal analysis, the Jacobian matrix expansion

in (6.6) is adequate.

By reducing the Jacobian matrix, a new matrix is defined as JR (GAO; MORISON;

KUNDUR, 1992; MORISON; GAO; KUNDUR, 1993; KUNDUR, 1994). In this work,

three attempts were made to reduce the Jacobian matrix, which are presented in the

following subsubsections.

6.2.4.1 Attempt #1

In the first attempt, the Jacobian matrix detailed in (6.6) is manipulated, altering

the state variables order:

J =

S

W

W

W

U

JP θ JP XG
JP V

JYG θ JYG XG
JYG V

JQ θ JQ XG
JQ V

T

X

X

X

V

(6.7)

Considering the problem of voltage collapse due to generators reactive power

generation limit, the manipulation is justified because an attempt is made in order to

facilitate a simple correlation QV via modal analysis, as follows:

∆Q = JR · ∆V (6.8)

where:

JR =
Ë

JQV ≠ JQθXG
· J≠1

P YGθXG
· JP YGV

È

(NBUS)◊(NBUS)
(6.9)

JQθXG
=

Ë

JQθ JQXG

È

(NBUS)◊(NBUS+NGEN)
(6.10)

JP YGθXG
=

S

U

JP θ JP XG

JYGθ JYGXG

T

V

(NBUS+NGEN)◊(NBUS+NGEN)

(6.11)

JP YGV =

S

U

JP V

JYGV

T

V

(NBUS+NGEN)◊(NBUS)

(6.12)
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This Jacobian matrix reduction correlates the reactive power generation and voltage

magnitude for all buses in the analyzed EPS, given that the JR dimension is NBUS ◊ NBUS.

However, it was observed in simulations that all bifurcations encountered were classified

as LIB. Therefore, a new Jacobian matrix reduction attempt is made and is presented in

the following subsubsection.

6.2.4.2 Attempt #2

In the second attempt, the Jacobian matrix detailed in (6.6) is considered as it

is, with no manipulations being made. Once again, the QV correlation is analyzed via

modal analysis, as follows:

∆Q = JR · ∆V (6.13)

where:

JR =
Ë

JQYGV XG
≠ JQYGθ · J≠1

P θ · JP V XG

È

(NBUS+NGEN)◊(NBUS+NGEN)
(6.14)

JQYGV XGθ =

S

U

JQV JQXG

JYGV JYGXG

T

V

(NBUS+NGEN)◊(NBUS+NGEN)

(6.15)

JQYGθ =

S

U

JQθ

JYGθ

T

V

(NBUS+NGEN)◊(NBUS)

(6.16)

JP V XG
=

Ë

JP V JP XG

È

(NBUS)◊(NBUS+NGEN)
(6.17)

In comparison with the previous attempt, the reduced Jacobian matrix increases

dimension in terms of the number of generators (NGEN) in the EPS , as detailed in (6.14).

This dimension increment of JR means that the reactive power generation limit control

equations are included in the correlation between reactive power generation and voltage

magnitude for all buses in the analyzed EPS.

Since the control equations were included in the QV modal analysis, SNB bifurca-

tions were encountered during simulations. Not all bifurcations were classified as SNB

though, once that it depends on how close the BPs are from each other, as explained by

(NEVES, 2022) and illustrated by Figure 30.
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The SNB bifurcations were identified due to the presence of eigenvalues values

tending to zero in the reduced Jacobian matrix (JR). In all cases analyzed, the mode-shape

and participation factors for the given small eigenvalues always pointed to the control

equations incorporated into the Jacobian matrix. Therefore, a new Jacobian matrix

reduction attempt is made and is presented in the following subsubsection.

6.2.4.3 Attempt # 3

In the third and final attempt, the Jacobian matrix detailed in (6.6) is considered as

it is, with no manipulations being made. In this turn, it is opted to obtain the correlation

between control equations and the voltage magnitude state variable (Y V ), as follows:

∆Y = JR · ∆V (6.18)

where:

JR =
Ë

JYGXG
≠ JYGθV · J≠1

P QθV · JP QXG

È

(NGEN)◊(NGEN)
(6.19)

JYGθV =
Ë

JYGθ JYGV

È

(NGEN)◊(2NBUS)
(6.20)

JP QθV =

S

U

JP θ JP V

JQθ JQV

T

V

(2NBUS)◊(2NBUS)

(6.21)

JP QXG
=

S

U

JP XG

JQXG

T

V

(2NBUS)◊(NGEN)

(6.22)

Differently from the previous attempts, the reduced Jacobian matrix dimension

in (6.19) depends only on the amount of generator’s reactive power limits control equa-

tions that are incorporated into the system of nonlinear equations. That means that is

particularly analyzed the correlation between generator’s control equations and voltage

magnitude for EPSs (NGEN).

Since only the control equations are being analyzed in the modal analysis, it

could be observed that all SNB bifurcations encountered during simulations (JR small

eingenvalues) resulted from them. This analysis is valid once that the SPF formulation

smoothness is introduced precisely by the control equations incorporated into the Jacobian

matrix.
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Hence, the Jacobian matrix reduction (6.19) proposed in this subsubsection will

be considered in the simulations presented in Chapter 7. The modal analysis properties

presented in Appendix C will be implemented onto the reduced Jacobian matrix given

in (6.19). The sensitivity between a generator, at bus k, reactive power generation and

voltage magnitude will be evaluated as follows:

∂ QGk, gen

∂ Vk, gen

=
NBUS+NGEN

ÿ

i=1

φki · λ
eig
i · ψik (6.23)

Within the modal analysis, the goal is to identify which generator is associated

with critical eigenvalue via modal-shape and participation factor analyzes. The critical

eigenvalue are responsible for the Jacobian matrix singularity, as detailed in property [II]

of Definition 2, which, therefore, characterizes a voltage collapse classified as SNB.

6.3 PARTIAL CONCLUSIONS

This chapter presents relevant mathematical concepts regarding EPSs voltage

collapse classifications considering the traditional PF formulation and the SPF formulation.

These concepts have solid mathematical foundation provided by theorems, which are

thoroughly detailed by Neves (2022).

Although this chapter only considered the SPF-Generator methodology for the

analysis of voltage collapse classified as SNBs, the same analysis can be extended for

SPF-SVCs methodologies. Regarding the proposed modal analysis, the following chapter

presents simulation results which validates the identification of SNBs via SPF formulation.
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7 SIMULATION RESULTS

In this chapter, the steady-state SPF simulations results obtained from the im-

plementation of the proposed SPF-Generator and SPF-SVCs modelings are presented.

The proposed methodologies were simulated in both tutorial systems and well-known

Institute of Electric and Electronic Engineers (IEEE) systems, under different conditions.

To obtain the desired results, a Python-based program was developed employing the CPF

formulation detailed in Appendix B together with the SPF methodologies.

To validate the simulation results, a production-grade academic version software

provided by Electric Energy Research Center (CEPEL) was used. In all systems simulations,

the following parameters were applied:

• Base apparent power: (SB) = 100 MVA;

• Base electrical frequency: (fB) = 60 Hz;

• Active power convergence tolerance: εP = 10≠6 p.u.;

• Rective power convergence tolerance: εQ = 10≠6 p.u.;

• Control equations convergence tolerance: εY = 10≠6 p.u.;

Other simulation parameters such as sigmoid switches slope and tolerance, and also

CPF convergence parameters, will be defined on case-by-case basis. For all case studies

detailed hereinafter, the load model considered was constant power.

First, in Section 7.1, the results simulations and discussions regarding the SPF-

Generators methodology are presented. On account of the SPF-Generator methodology,

the respective results presented hereinafter consider only the voltage stability analysis

proposed in Subsection 6.2.3, once that this model steady-state results have already been

validated by Pontes (2018), Pontes, Passos Filho and La Gatta (2018).

Later, Section 7.2 presents the results simulations and discussions regarding the

steady-state SPF-SVC methodologies. A comparison is made between each proposed SPF-

SVC methodology, as the droop enhancement for the thyristor firing-angle methodology

returns same results as the reactive power injection methodology (BARBOSA; PASSOS

FILHO, 2022). An evaluation of SNB classifications being caused by SVC reaching reactive

power limits is also analyzed in two case studies.

7.1 GENERATORS

Three different case studies were created and simulated, as described below:
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• Case I: Tutorial system. Consists of a 2 bus system, similar to the one presented

by (MILANO, 2010, p.103). For this system, the CPF formulation will be applied in

order to observe voltage collapse classified as SNB via SPF formulation.

• Case II: Tutorial system (mirrored). It is based on the previous case tutorial

system, mirror-expanded, and contains 4 buses. For this system, the CPF formulation

will be applied in order to observe voltage collapse classified as SNB via SPF

formulation.

• Case III: IEEE 118 bus system (modified). It is a medium size power system

that contains 118 buses, over 170 lines and over 50 generators terminals, representing

a real EPS (CHRISTIE, 1999). A modification is proposed similarly as presented in

Greene, Dobson and Alvarado (1997). For this system, the CPF formulation will be

applied in order to observe voltage collapse classified as SNB via SPF formulation.

The Jacobian matrix reduction detailed in Subsubsection 6.2.4.3 was implemented

in all the case studies, which are detailed in the following subsections.

7.1.1 Case I: Tutorial system I

This 2 bus system is based on the EPS developed by Milano (2010) for discussions

regarding the continuation power flow analysis and voltage stability analysis. From this

tutorial power system, both SNB and LIB voltage collapse conditions can be simulated,

depending mainly on the generators maximum reactive power limit setted value. This

power system topology and data are shown in Figure 31.

Figure 31 – Tutorial system I topology.

∞

V 1 = 1 0�

Qmax
G,1 = 0.65

V θ

y�1

se = j0.15788

PQ

(0.1 + j0)

Source: Adapted from Milano (2010).

For the proposed SPF-Generator methodology and voltage stability analysis (iden-

tification of SNBs), the following parameters values were adopted:

• Active power convergence tolerance: εP = 10≠10 p.u.;



87

• Rective power convergence tolerance: εQ = 10≠10 p.u.;

• Control equations convergence tolerance: εY = 10≠10 p.u.;

• Sigmoid switches sw1 through sw4 slope: slp = 1015;

• Sigmoid switches sw1 and sw2 tolerances: tolsup
q = tolinf

q = 10≠20;

• Sigmoid switches sw3 and sw4 tolerances: tolsup
v = tolinf

v = 10≠20;

• Slack bus maximum reactive power generation: Qmax
Gk, Œ

= 0.65 p.u.;

• CPF loading parameter step: λstep = 10%.

As a result of applying the CPF formulation along with the SPF-Generator method-

ology, a SNB bifurcation was successfully identified instead of a LIB. The information

regarding the SNB bifurcation appointed in Table 7.

Table 7 – Simulation results identifying SNB in tutorial system I through SPF-Generator
methodology.

Critical loading parameter
1

λ̃crit
2

1822.1214646199573%

Reactive power generated by QG, ∞ 0.6499999999975472 p.u.
JR determinant 0.001467898289992188
JR eigenvalue [0.0014679]

Source: Elaborated by the author (2023).

This result verifies the mathematical property of the SPF formulation ability of

transforming LIBs into SNBs, as stated by Neves (2022), and demonstrates the proposed

application of modal analysis for the indentification of SNBs. Furthermore, Figure 32

highlight the participation factor based on the SNB eigenvalue as detailed in Table 7.

As it can be observed from Figure 32, the JR eigenvalue indicates the highest

possible participation factor for the slack bus generator. The column refers to the slack

bus reactive power generation limits control equation linearized in the Jacobian matrix. It

can be observed that the collapse is caused 100% because the slack bus generator reaches

its limit.

The mode-shape analysis was not reproduced for this simulation once it only

presents one eigenvalue and, therefore, it is not possible to analyze the impact of the

control variable perturbation in other control variables. In fact, the result would be similar

to the participation factor shown in Figure 32.

In addition, the condition illustrated in Figure 30 is reproduced by the sigmoid

switches output. As mentioned in Chapter 3, sigmoid function with high slope value

enables a fast transition between output 1 and 0, and vice versa. However, at the SNB
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Figure 32 – Tutorial system I participation factor for λeig = 0.0014679.
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Source: Elaborated by the author (2023).

point of collapse, the slack bus sigmoid switches sw1, sw2, sw3 and sw4 possess the values

displayed in Table 8.

Table 8 – SPF-Generator sigmoid switches outputs in SNB indentification for tutorial
system I.

sw1 sw2 sw3 sw4
1.00 0.00 0.02 0.98

Source: Elaborated by the author (2023).

The switches values correctly indicates that the slack bus reactive power generation

is reaching maximum limit and is on the verge of transitioning from normal mode control

equation to superior limit violation mode control equation, detailed in Chapter 4. Inter-

estingly, the electric device steady-state control equations were traditionally developed

to represent each generator operational mode individually. With the result presented in

Table 8, it is observed a mix of two control equations, which is justified by the adoption of

smooth step function continuity characteristic (Definition 1).

7.1.2 Case II: Tutorial system I (mirrored)

This 4 bus system is a mirrored version of the aforementioned EPS. The ideia

behind the modification of tutorial system I is to analyze, through modal analysis, a

similar result as shown in Subsection 7.1.1 for eigenvalues, mode-shape and participation

factor once that an SNB is identified via SPF-Generator methodology.

To mirror the tutorial system I, a branch with high impedance value was adopted

connecting both PQ buses, creating two electrical areas. Both areas are capable of

attending their load demands. The main goal is to simulate SNB voltage collapse condition
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caused by the slack bus generator reactive power reaching maximum limit. The power

system topology and data are shown in Figure 33.

Figure 33 – Tutorial system I (mirrored) topology.

∞

V 1 = 1 0�

Qmax
G,1 = 0.65

V θ

y�1

se = j0.15788

PQ

(0.1 + j0)

y�1

se → ∞

PQ

(0.1 + j0)

y�1

se = j0.15788

PV

V = 1 0�

PG, gen = 0.1

Source: Elaborated by the author (2023).

For the proposed SPF-Generator methodology and voltage stability analysis, the

following parameters values were adopted:

• Active power convergence tolerance: εP = 10≠10 p.u.;

• Rective power convergence tolerance: εQ = 10≠10 p.u.;

• Control equations convergence tolerance: εY = 10≠10 p.u.;

• Sigmoid switches sw1 through sw4 slope: slp = 0.9235 · 1014;

• Sigmoid switches sw1 and sw2 tolerances: tolsup
q = tolinf

q = 10≠20;

• Sigmoid switches sw3 and sw4 tolerances: tolsup
v = tolinf

v = 10≠20;

• Slack bus maximum reactive power generation: Qmax
Gk, Œ

= 0.65 p.u.;

• PV bus maximum reactive power generation: Qmax
Gk, gen = Œ;

• CPF loading parameter step: λstep = 10%.

It is important to inform that the CPF loading parameter was applied only for

the PQ bus connected to the slack bus, while the other PQ load remained constant

throughout the whole simulation. As a result of applying the CPF formulation along with

the SPF-Generator methodology, a SNB bifurcation was identified instead of a LIB. The

information regarding the SNB bifurcation is detailed in Table 9.

This result once again verifies the mathematical property of the SPF formulation

ability of transforming LIBs into SNBs, as stated by Neves (2022). Moreover, Figures 34

and 35 highlights the mode-shape and participation factor based on the SNB smallest

eigenvalue obtained in simulations.
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Table 9 – Simulation results identifying SNB in tutorial system I (mirrored) through
SPF-Generator methodology.

Critical loading parameter
1

λ̃crit
2

1822.121465441%

Reactive power generated by QG, ∞ 0.6499999999999866 p.u.
JR determinant 2.6442422689774046
JR eigenvalues [0.00835568031 316.460440]

Source: Elaborated by the author (2023).

Figure 34 – Tutorial system I (mirrored) mode-shape for λeig = 0.00835568031.
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Source: Elaborated by the author (2023).

From the mode-shape analysis, illustrated in Figure 34, it can be observed how

a perturbation in a control variable impacts other control variables. In this case, it is

analyzed the slack bus reactive power generation perturbation impacts on the reactive

power generated by the PV bus. As illustrated by Figure 34, the variation on the reactive

power generation by the slack bus has no impact on the reactive power generated by the

PV bus. This condition was expected once that these two buses are located in different

electrical areas with a high impedance branch connecting (and isolating) both areas.

As it can be observed from Figure 35, the smallest JR eigenvalue indicates highest

possible participation factor for the slack bus generator and a null participation factor for

the PV bus generator. Therefore, it can be concluded by analyzing Figure 35 that the

PV bus generator has no interference in the EPS voltage collapse, which is caused 100%

because of the slack bus generator reaching its limit.

Analyzing the sigmoid switches values for the slack bus generator, in Table 10, and

PV bus generator, in Table 11, it can also be inferred that the PV bus has no intereference

in the EPS voltage collapse. The slack bus generator switches values correctly indicate

that the reactive power generation is reaching maximum limit, transitioning from normal

mode control equation to superior limit violation mode control equation.
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Figure 35 – Tutorial system I (mirrored) participation factor for λeig = 0.00835568031.
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Source: Elaborated by the author (2023).

Table 10 – Slack bus SPF-Generator sigmoid switches outputs in SNB indentification for
tutorial system I (mirrored).

sw1 sw2 sw3 sw4
0.25 0.00 0.33 0.67

Source: Elaborated by the author (2023).

On the other hand, the PV bus generator switches values correctly indicate that it

is in normal operating mode at the MLP. Sigmoid switches sw3 and sw4 values at 0.50 in

Table 11 are a result of a small value adopted for the voltage magnitude tolerance tolsup
v

and tolinf
v .

Table 11 – PV bus SPF-Generator sigmoid switches outputs in SNB indentification for
tutorial system I (mirrored).

sw1 sw2 sw3 sw4
0.00 0.00 0.50 0.50

Source: Elaborated by the author (2023).

Regarding the results shown in this subsection, it is noticed that they are very

close to those presented in the Subsection 7.1.1, mainly on account of the critical loading

parameter (λ̃crit) shown in Tables 7 and 9. This result was expected to happen once

the EPS is divided in two separate electrical areas, given by the high impedance branch.

Although the power system presents multiple areas, the voltage collapse still happens due

to the slack bus generator reaching its maximum generation limit.
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7.1.3 Case III: IEEE 118 bus system (modified)

A similar LIB voltage collapse as presented in Greene, Dobson and Alvarado (1997),

Neves, Alberto and Chiang (2020) was simulated in this case study for the IEEE 118 bus.

It is considered a proportional increase to the base case in generation and load demand.

The EPS system topology is illustrated in Figure 38, whereas its data is available in

Christie (1999).

In this case study, the following CPF as well as SPF-Generator parameters were

adopted:

• Active power convergence tolerance: εP = 10≠10 p.u.;

• Rective power convergence tolerance: εQ = 10≠10 p.u.;

• Control equations convergence tolerance: εY = 10≠10 p.u.;

• Sigmoid switches sw1 through sw4 slope: slp = 1010;

• Sigmoid switches sw1 and sw2 tolerances: tolsup
q = tolinf

q = 10≠17;

• Sigmoid switches sw3 and sw4 tolerances: tolsup
v = tolinf

v = 10≠8;

• CPF loading parameter step: λstep = 10%.

By using CEPEL production-grade academic version software, which applies the

traditional modeling for generators, a LIB voltage collapse was identified in the system

due to generator located at bus 4 reaching its maximum reactive power limit. In turn, by

using the developed Python program and the proposed SPF-Generator methodology, a

SNB voltage collapse was identified for the same generator bus. The information regarding

the SNB bifurcation is detailed in Table 12.

Table 12 – Simulation results identifying SNB in IEEE 118 bus system through SPF-
Generator methodology.

Critical loading parameter
1

λ̃crit
2

100.7694%

Reactive power generated by QG, 4 2.9999992291 p.u.

JR eigenvalues
[(. . . ) 0.01390944 0.01267277

0.02319254 0.02779360 0.03126189 (. . . )]

Source: Elaborated by the author (2023).

Differently from Tables 7 and 9, in Table 12 the five smallest eigenvalues among

the 54 available are shown. Based on these eigenvalues, an interesting analysis is made by

observing its respective participation factors, which are shown in Figures 36 to 41.

Figures 36, 37, 39 and 40 correspond to eigenvalues that indicate control conflicts

between two or more buses. These conflicts are related to generator buses reactive power
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generation output in order to control their own bus voltage magnitude. However, a conflict

arises by reason of these generator buses being electrically close to each other, or even

connected to each other, and for having different control goals.

Figure 36 – IEEE 118 bus system participation factor for λeig = 0.01390944.
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Source: Elaborated by the author (2023).

In Figure 36, the main conflict consists on the control goals related to the reactive

power generation of buses 25 and 26. By analyzing the IEEE 118 bus system topology, it

can be seen that both buses are connected to each other. Since each generator controls

their own bus voltage magnitude at a specific value, the conflict arises.

Figure 37 – IEEE 118 bus system participation factor for λeig = 0.01267277.
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Source: Elaborated by the author (2023).

In Figure 37, the conflict arises from buses 116, 69 and 66 reactive power generation,

due to the same reason aforementioned. In this case, the buses are not directly connected

at each other but are electrically close.
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Figure 38 – IEEE 118 bus system topology.

Source: Adapted from Christie (1999).
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Figure 39 – IEEE 118 bus system participation factor for λeig = 0.02319254.
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Source: Elaborated by the author (2023).

Figure 40 – IEEE 118 bus system participation factor for λeig = 0.03126189.
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Source: Elaborated by the author (2023).

In Figures 39 and 40, the same conflict condition is observed. Therefore, the

eigenvalues associated with this condition does not represent voltage collapse scenarios for

the analyzed system, even though how small the eigenvalues are.

On the other hand, Figure 41 shows participation factors for buses which are not

electrically close or connected to each other (buses 4, 40 and 113). Therefore, it can be

concluded from this figure analysis that it corresponds to a voltage collapse condition in

the EPS. Not only that, it is a voltage collapse classified as SNB which is caused 90.2%

because of the generator bus 4 reaching its maximum reactive power limit.

Although the eigenvalue associated with Figure 41 is not the smallest one, it
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Figure 41 – IEEE 118 bus system participation factor for λeig = 0.02779360.
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Source: Elaborated by the author (2023).

correctly corresponds to a voltage collapse scenario classified as SNB. As mentioned

before, in Greene, Dobson and Alvarado (1997), Neves, Alberto and Chiang (2020) the

same voltage collapse simulated via traditional PF formulation is classified as LIB. This

condition was verified via simulations conducted in CEPEL’s production-grade academic

version software.

7.2 STATIC VAr COMPENSATORS

A total of five different case studies were created and simulated, as described below:

• Case I: Tutorial system II. Consists of a 4 bus system developed by (PASSOS

FILHO, 2000) to validate the methodology. The SPF-SVCs methodologies result

will be compared to the results presented in the aforementioned work.

• Case II: Tutorial system III. Consists of a 3 bus system used in EPSs voltage

stability studies (KUNDUR, 1994, p.968). For this system, the CPF formulation

will be applied in order to observe SVCs operational behavior variation.

• Case III: Nordic system. It is a fictitious system based on a real EPS that

contains 74 buses, over 100 branches and 20 generator terminals (CUTSEM et al.,

2015; CUTSEM et al., 2020). For this system, the CPF formulation will be applied

in order to observe SVCs operational behavior variation.

• Case IV: Tutorial system IV. Consists of a SVC connected to an infinite bus

used by Chen and Min (2007) to evaluate voltage collapse being caused by the

control device reaching reactive power generation limit. For this system, the CPF
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formulation will be applied in order to observe voltage collapse classified as SNB via

SPF-SVC reactive power injection methodology.

• Case V: IEEE 30 bus system. It is a system based on a real EPS that contains

30 buses, 41 branches and 6 generator terminals (CHRISTIE, 1999). SVCs are

introduced into this power system, as detailed in Chen and Min (2007), with the

intention of evaluating voltage collapse being caused by the control device reaching

reactive power generation limit. For this system, the CPF formulation will be applied

in order to observe voltage collapse classified as SNB via SPF-SVC reactive power

injection methodology.

These case studies are detailed in the following subsections.

7.2.1 Case I: Tutorial system II

For this case study, the EPS system topology along with bus and line data are

illustrated in Figure 42. The SVC is connected at a low-side bus with the intent of

controlling the high-side bus voltage magnitude. The flat start condition is applied to

initiate the simulation.

Figure 42 – Tutorial system II topology.
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Source: Adapted from Passos Filho (2000).

The SPF-SVC parameters employed in this simulation are given below:

• SVC linear operating region droop: r = 3%;

• SVC controlled bus voltage magnitude reference: V ref
m, svc = 1 p.u.;

• Sigmoid switches sw5 through sw12 slope: slp = 108;

• Sigmoid switches sw5 through sw8, sw11 and sw12 tolerances: tolsup
v = tolinf

v = 10≠6;

• Sigmoid switches sw9 and sw10 tolerances: tolsup
α = tolinf

α = 10≠6;
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The same simulation protocol adopted by Passos Filho (2000) was employed in

this case study and is shown in Tables 13, 14 and 15. Initially, a transition between SVC

linear and capacitive operational regions is demonstrated. Later, the transition is made

between SVC linear and inductive operational regions. This transition is made possible by

a variation on the system’s load demand.

Table 13 – SPF-SVC reactive power injection methodology simulation results.

Simulation

Voltage
SVC

Load

Iterations
Magnitude [p.u.] Demand

Low-side High-side Mode
Generation Active Reactive

[p.u.] [MW] [MVAr]

1 0.988 1.008 Linear 0.411 120.0 0.0 5ú

2 0.985 1.010 Linear 0.509 132.0 0.0 5ú

3 0.985 1.010 Linear 0.509 132.1 0.0 5ú

4 0.985 1.010 Capacitive 0.510 132.2 0.0 5
5 0.982 1.007 Capacitive 0.507 133.0 0.0 6
6 0.951 0.976 Capacitive 0.476 140.0 0.0 6
7 1.012 0.992 Linear -0.407 50.0 -60.0 5ú

8 1.014 0.990 Linear -0.476 50.0 -70.0 4
9 1.015 0.990 Linear -0.489 50.0 -72.0 5
10 1.015 0.990 Inductive -0.490 50.0 -72.1 4
11 1.015 0.990 Inductive -0.490 50.0 -72.4 4
12 1.025 1.000 Inductive -0.500 50.0 -80.0 4

Source: Elaborated by the author (2023).

Table 14 – SPF-SVC current injection methodology simulation results.

Simulation

Voltage
SVC

Load

Iterations
Magnitude [p.u.] Demand

Low-side High-side Mode
Generation Active Reactive

[p.u.] [MW] [MVAr]

1 0.988 1.008 Linear 0.411 120.0 0.0 5ú

2 0.985 1.010 Linear 0.509 132.0 0.0 5ú

3 0.985 1.010 Linear 0.509 132.1 0.0 5ú

4 0.985 1.010 Capacitive 0.509 132.2 0.0 5
5 0.982 1.007 Capacitive 0.507 133.0 0.0 6ú

6 0.951 0.976 Capacitive 0.476 140.0 0.0 6
7 1.012 0.992 Linear -0.407 50.0 -60.0 5ú

8 1.014 0.990 Linear -0.476 50.0 -70.0 4
9 1.015 0.990 Linear -0.489 50.0 -72.0 5
10 1.015 0.990 Inductive -0.490 50.0 -72.1 5ú

11 1.015 0.990 Inductive -0.490 50.0 -72.4 4
12 1.025 1.000 Inductive -0.500 50.0 -80.0 4

Source: Elaborated by the author (2023).

The results shown in Tables 13 and 14 are in accordance with the ones presented

in Passos Filho (2000). A novelty is presented in Table 15, which details the same results

as the aforementioned tables, but for the SPF-SVC thyristor firing-angle methodology.
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Table 15 – SPF-SVC thyristor firing-angle methodology simulation results.

Simulation

Voltage
SVC

Load

Iterations
Magnitude [p.u.] Demand

Low-side High-side Mode
Generation Active Reactive

[p.u.] [MW] [MVAr]

1 0.988 1.008 Linear (α = 144.24¶) 0.411 120.0 0.0 6úú

2 0.985 1.010 Linear (α = 171.7¶) 0.509 132.0 0.0 10úú

3 0.985 1.010 Linear (α = 174.2¶) 0.509 132.1 0.0 10úú

4 0.985 1.010 Capacitive (α = 180¶) 0.51 132.2 0.0 10úú

5 0.982 1.007 Capacitive (α = 180¶) 0.507 133.0 0.0 9úú

6 0.951 0.976 Capacitive (α = 180¶) 0.476 140.0 0.0 8úú

7 1.012 0.992 Linear (α = 93.88¶) -0.407 50.0 -60.0 6úú

8 1.014 0.990 Linear (α = 90.65¶) -0.476 50.0 -70.0 5úú

9 1.015 0.990 Linear (α = 90.01¶) -0.489 50.0 -72.0 6úú

10 1.015 0.990 Inductive (α = 90¶) -0.490 50.0 -72.1 10úú

11 1.015 0.990 Inductive (α = 90¶) -0.490 50.0 -72.4 10úú

12 1.025 1.000 Inductive (α = 90¶) -0.500 50.0 -80.0 10úú

Source: Elaborated by the author (2023).

The results obtained are satisfactory and validate the correct functioning of the sigmoid

switch in all SPF-SVC methodologies proposed.

The single asterisk mark (ú) in the “Iterations” column represents Python sim-

ulations which resulted in one iteration count higher than CEPEL’s production-grade

academic version software. The double asterisk mark (úú), in turn, represent Python

simulations which resulted in two or more iteration count higher than CEPEL’s.

The higher number of iterations for the SPF-SVC thyristor firing-angle methodology

is justified by reason that the control variable α tends to be more sensitive than the control

variable QGk, svc or Ik, svc. This sensitivity is reassured in Figure 8, where it is illustrated that

small variations of α provoke large variations in the control device equivalent susceptance,

and, consequently, in the reactive power generated by the equipment.

7.2.2 Case II: Tutorial system III

Based on the validity of all the proposed SPF-SVC methodologies in power flow

steady-state analysis, in this case study the CPF formulation will be employed only with

the SPF-SVC thyristor firing-angle methodology. The intent is to analyze the proposed

droop enhancement detailed in Section 5.4 and to compare the validated methodology

with other forms of SVC representation in the steady-state analysis, as mentioned in

Subsection 2.1.2.

An adapted version of the EPS system topology along with bus and line data are

illustrated in Figure 43. It consists of a 3 bus system used in EPSs voltage stability studies

as properly mentioned by Kundur (1994, p.968). For all steady-state SVC representations,

the equipment is considered to be connected at bus PQ and controlling the PQ load bus

voltage magnitude at the reference value of 1 p.u.. The flat start condition is applied
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Figure 43 – Tutorial system III topology.
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before initiating the CPF simulation.

In this case study, the SPF-SVC parameters employed are detailed hereinafter and

the simulation results are presented in Figure 44, which illustrates the PQ bus voltage

behavior due to load increments.

• SVC linear operating region droop r is subject to variations;

• SVC controlled bus voltage magnitude reference: V ref
m, svc = 1 p.u.;

• Sigmoid switches sw9 through sw12 slope: slp = 108;

• Sigmoid switches sw11 and sw12 tolerances: tolsup
v = tolinf

v = 10≠6;

• Sigmoid switches sw9 and sw10 tolerances: tolsup
α = tolinf

α = 10≠6;

By modeling the SVC as a synchronous condenser or via the traditional thyristor

firing-angle methodology, the PQ load bus voltage magnitude is controlled at the reference

value throughout most of the load increment. This condition is ideal once that a droop

between 1% and 5% must be considered for the equipment (TAYLOR, 1994; MILLER et

al., 1982).

Additionally, the synchronous condenser is not a valid representation of SVCs

in steady-state power flow analysis by reason of, once that reactive power generation

limits are reached, the behavior of both electric devices are not equal. This condition is

illustrated in Figure 44 and also explained by (7.1).

Qlim
Gk, gen ”= beq (α = 90¶ or 180¶) · V 2

k, svc (7.1)

Therefore, the synchronous condenser model is replaced by the SPF-SVC thyristor

firing-angle model, which considers the droop implementation. The different droop values
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Figure 44 – Tutorial system III load bus PV curve.
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configure a better bus voltage magnitude profile, closer to the control device realistic

operational behavior, and simulate different impacts on voltage stability and loading

margin in an EPS. Based on Figure 44, adopting droop of 1% results in a voltage profile

that varies little in comparison to the other droop values simulated for the same load

increment margin.

The result presented was validated with CEPEL’s production-grade academic

version software, where the traditional reactive power injection methodology is employ to

model SVC in the steady-state power flow problem (PASSOS FILHO, 2000).

7.2.3 Case III: Nordic system

The already validated SPF-SVC thyristor firing-angle methodology is employed in

this case study, considering now simulations analyzes on the well-known Nordic system

(CUTSEM et al., 2015; CUTSEM et al., 2020). Once again, the intent is to analyze

the proposed droop enhancement detailed in Section 5.4 and compare the validated

methodology with other forms of SVC representation in the steady-state analysis, as

mentioned in Subsection 2.1.2.

The Nordic system topology A was considered in this case study, and it consists of

74 buses, over 100 branches and 20 generator terminals (CUTSEM et al., 2015; CUTSEM

et al., 2020). By applying the CPF in this EPS base case condition, it was observed that

bus 1041 has the most critical profile. Therefore, it is proposed the analysis of a SVC

connected at and controlling the voltage magnitude profile of this same bus.

In this case study, the SPF-SVC parameters employed are detailed hereinafter and
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Figure 45 – Nordic system A topology.

Source: Cutsem et al. (2015), Cutsem et al. (2020).

the simulation results are presented in Figures 46 and 47, which illustrate the bus 1041

voltage behavior and reactive power generation due to load increments, respectively.

• SVC linear operating region droop r is subject to variations;
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• SVC controlled bus voltage magnitude reference: V ref
m, svc = 1 p.u.;

• Sigmoid switches sw9 through sw12 slope: slp = 108;

• Sigmoid switches sw11 and sw12 tolerances: tolsup
v = tolinf

v = 10≠6;

• Sigmoid switches sw9 and sw10 tolerances: tolsup
α = tolinf

α = 10≠6;

• SVC capacitive susceptance: beq (α = 180¶) = Bcap
svc = 2 p.u.;

• SVC inductive susceptance: beq (α = 90¶) = Bind
svc = ≠2 p.u.;

Figure 46 – Nordic system A bus 1041 PV curve.
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Once more, as illustrated in Figure 46, the synchronous condenser and traditional

thyristor firing-angle SVC modelings are able to maintain the voltage profile for bus 1041

at the referenced value throughout most of the power flow continuation simulation. This

operational condition, however, is acceptable only for generators once that a droop must

be taken into consideration for SVC modelings (TAYLOR; SCOTT; HAMMAD, 1994;

MILLER et al., 1982).

Although each droop implementation value results in different controlled bus voltage

profiles, the employment of SVC in an EPS is responsible for enhancing the voltage profile

and load margin of the power system as a whole. In order to elucidate this characteristic,

Table 16 highlights the benefits that SVCs provides to EPSs in terms of VSM and critical

voltage magnitude.

Based on the information given in Table 16, it can be inferred that the best droop

value to adopt in this case study is 1%, once that it presents the best results. As an
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Table 16 – Impacts of adopted SVC droop values on voltage stability.

Parameters Base Case
SVC Droop

1% 3% 5%

Loading Margin [MW] 265.44 416.07 405.65 397.36

Critical Voltage Magnitude [p.u.] 0.9485 0.9923 0.9646 0.9485

Source: Elaborated by the author (2023).

example, if a minimum voltage magnitude limit is set at 0.95 p.u. for the EPS, it can

be observed that not only does the control device enhances the voltage magnitude at

bus 1041, but also improves the system VSM overall. In sense of transmission system

expansion problem, such benefits guaranteed by SVCs are translated into a 2 or 3 year

load increase for an EPS.

Figure 47 – Nordic system A SVC bus 1041 reactive power generation variation per network
load increment.
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The different adopted droop values also imply in different reactive power generation

variation during CPF simulation, as it can be seen in Figure 47. From this figure, it

can be observed that modeling the SVC with higher droop results in a broader range of

reactive power generation within the SVC linear region of operation. Considering that the

maximum and minimum reactive power generation of the SVC is known, as informed in

the beginning of this subsection, the smaller the droop value is, the greater the reactive

power generation variation will be within the specified limits.
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7.2.4 Case IV: Tutorial system IV

This 2 bus system is based on the EPS developed by Chen and Min (2007) for

discussions regarding voltage collapse being caused by SVC reaching maximum reactive

power limit. In his work, Chen and Min (2007) is able to identify a voltage collapse

classified as LIB being caused by the SVC traditional modeling. By implementing the

SPF-SVC reactive power injection methodology, presented in Chapter 5, it is intended to

observe the LIB voltage collapse classified as SNB.

This power system topology and data are shown in Figure 48. It is assumed that

the SVC is connected to a PQ bus, controlling its own bus voltage magnitude.

Figure 48 – Tutorial system IV topology.
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For the proposed SPF-SVC reactive power injection methodology and voltage

stability analysis, the following parameters values were adopted:

• Active power convergence tolerance: εP = 10≠10 p.u.;

• Reactive power convergence tolerance: εQ = 10≠10 p.u.;

• Control equations convergence tolerance: εY = 10≠10 p.u.;

• Sigmoid switches sw5 and sw6 slope: slp = 0.965 · 108;

• Sigmoid switches sw5 and sw6 tolerances: tolsup
v = tolinf

v = 10≠14;

• SVC linear operational region droop: r = 5%;

• CPF loading parameter step: λstep = 10%.

As a result of applying the CPF formulation along with the SPF-SVC reactive

power injection methodology, a SNB bifurcation was successfully identified instead of a

LIB. The information regarding the SNB bifurcation is detailed in Table 17.
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Table 17 – Simulation results identifying SNB in tutorial system IV through SPF-SVC
reactive power injection methodology.

Critical loading parameter
1

λ̃crit
2

1173.5360136855%

Reactive power generated by QG, svc 0.910976198541199 p.u.
JR determinant 0.0035957063551577137
JR eigenvalue [0.00359571]

Source: Elaborated by the author (2023).

This result verifies the mathematical property of the SPF formulation ability of

transforming LIBs into SNBs, as stated by Neves (2022). It also demonstrates the proposed

application of modal analysis for the indentification of SNBs for SVCs reaching reactive

power generation limits. A complementary analysis is made in terms of the participation

factor based on the SNB smallest eigenvalue appointed in Table 17, as illustrated by

Figure 49.

Figure 49 – Tutorial system IV participation factor for λeig = 0.00359571.
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Source: Elaborated by the author (2023).

As it can be observed from Figure 49, the JR eigenvalue indicates the highest

possible participation factor for the SVC reactive power generation. It can be observed

that the collapse is caused 100% because of the SVC reaching its limit. Regarding

the reactive power generated by the SVC detailed in Table 17, it is not equal to the

equipment’s maximum susceptance value because it also depends on the connected bus

voltage magnitude, as detailed in (5.3).

The mode-shape analysis was not reproduced for this simulation once it only

presents one eigenvalue and, therefore, it is not possible to analyze the impact of the

control variable perturbation in other control variables. In fact, the result would be similar

to the participation factor shown in Figure 49.
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The SPF-SVC reactive power injection methodology sigmoid switches values at the

MLP are detailed in Table 18. The switches correctly indicate that the SVC is transitioning

from normal operational mode to superior limit violation mode, detailed in Section 5.1. As

also commented in previous subsections, an output value between 0 and 1 for the sigmoid

switches represents a mix of control equations. This condition is justified by the adoption

of smooth step function continuity characteristic detailed in Definition 1.

Table 18 – SPF-SVC reactive power injection methodology sigmoid switches outputs in
SNB indentification for tutorial system IV.

sw5 sw6

0.0 0.49

Source: Elaborated by the author (2023).

7.2.5 Case V: IEEE 30 bus system

In Chen and Min (2007) the authors identify a voltage collapse classified as LIB in

the IEEE 30 bus system, which is caused by SVC connected at bus 30 reaching maximum

reactive power limit, as illustrated by Figures 50 and 51. This power system topology is

shown in Figure 53, whereas its data are available at Christie (1999).

Figure 50 – IEEE 30 bus system SVCs reactive power generation per network load
increment.
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The parameters values for each SVC actively operating in the IEEE 30 bus system

are detailed in Table 19, as defined by Chen and Min (2007). It is assumed that the SVC
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Figure 51 – IEEE 30 bus system voltage collapse scenario.
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is connected to a PQ bus, controlling its own bus voltage magnitude and that generators’

reactive power generation limits are also considered in simulations.

Table 19 – SVC parameters for LIB indentification in IEEE 30 bus system.

Bus
V ref

m Droop Capacitive Limit
[p.u.] [%] [MVAr]

19 1.030 5 40.0
21 1.040 2 40.0
30 1.000 2 50.0

Source: Adapted from Chen and Min (2007).

By implementing the SPF-SVC reactive power injection methodology, presented

in Chapter 5, along with the CPF formulation, it is intended to observe the LIB voltage

collapse to be classified now as SNB. For the proposed SPF-SVC reactive power injection

methodology and voltage stability analysis, the following parameters values were adopted:

• Active power convergence tolerance: εP = 10≠10 p.u.;

• Reactive power convergence tolerance: εQ = 10≠10 p.u.;

• Control equations convergence tolerance: εY = 10≠10 p.u.;

• Sigmoid switches sw5 and sw6 slope: slp = 1.5 · 107;

• Sigmoid switches sw5 and sw6 tolerances: tolsup
v = tolinf

v = 10≠10;
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• CPF loading parameter step: λstep = 10%.

As a result of applying the CPF formulation along with the SPF-SVC reactive

power injection methodology, a SNB bifurcation was successfully identified instead of a

LIB. The information regarding the SNB bifurcation is detailed in Table 20.

Table 20 – Simulation results identifying SNB in IEEE 30 bus system through SPF-SVC
reactive power injection methodology.

Critical loading parameter
1

λ̃crit
2

138.0792974308%

Reactive power generated by QG30, svc 0.49024314002829115 p.u.
JR determinant 0.0002244651201469047

JR eigenvalues
[(. . . ) 0.000452123879 1.03539813
0.897219043 0.534423518 (. . . )]

Source: Elaborated by the author (2023).

Table 20 only displays the top 4 smallest eigenvalues for the SNB MLP. The

mode-shape and participation factors will be analyzed for each of them, following Table 20

presented order, as illustrated by Figures 52 through 60.

Figure 52 – IEEE 30 bus system mode-shape for λeig = 0.000452123879.
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Figure 53 – IEEE 30 bus system topology.

Source: Adapted from Christie (1999).
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Figure 52 illustrates the mode-shape analysis for the eigenvalue λeig = 0.000452123879

and, as it can be observed, this eigenvalue is associated with the slack bus reactive power

generation (QG1, gen). A perturbation on the slack bus reactive power generation results

in a little to none variation on the other control variables. The null results observed in

Figure 52 corresponds to electric devices that reached reactive power generation limits and,

therefore, do not suffer any variation once QG1, gen is perturbed. The small mode-shape

values correspond to the reactive power generated by the SVCs, which suffer little impact

once QG1, gen is perturbed by reason of the buses are electrically distant from each other.

Figure 54 – IEEE 30 bus system participation factor for λeig = 0.000452123879.
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Source: Elaborated by the author (2023).

The corresponding participation factor for eigenvalue λeig = 0.000452123879 is

illustrated in Figure 54. At the MLP, the slack bus reactive power generation participates

96.12% in the reactive power generation balance for the EPS. Associated with this eigen-

value, the SVCs reactive power generation in buses 19, 21 and 30 have small participation

factor. Therefore, it can be observed a predominance characteristic of reactive power

generation by the generator at bus 1 in the MLP associated with voltage collapse scenario

analysis for the EPS.

In Figure 55 it is illustrated the mode-shape related to eigenvalue λeig = 1.03539813.

As it can be observed, this eigenvalue is correlated to the reactive power generated by the

SVC connected at bus 21 (QG21, svc). From the mode-shape analysis, it can be concluded

that a perturbation in QG21, svc results in small variations for the slack bus and SVC at

bus 19 reactive power generations.
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Figure 55 – IEEE 30 bus system mode-shape for λeig = 1.03539813.
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Figure 56 – IEEE 30 bus system participation factor for λeig = 1.03539813.
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In addition, the participation factor analysis illustrated in Figure 56 indicates a
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small conflict control with the SVC connected at bus 19. This conflict happens due to the

electrical proximity between buses 19 and 21, and the different control goals by their own

SVCs when the EPS is closer to the MLP.

Furthermore, it is said that there is a conflict because the mode-shape and par-

ticipation factor from Figures 55 and 56 are similarly replicated in Figures 57 and 58,

respectively. In these last two figures the eigenvalue λeig = 0.897219043 is associated with

the reactive power generation by the SVC connected at bus 19.

Figure 57 – IEEE 30 bus system mode-shape for λeig = 0.897219043.
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In conclusion, Figures 59 and 60 indicate the mode-shape and participation factor

for the eigenvalue λeig = 0.534423518. From the mode-shape analysis it can be observed

that a variation on the reactive power generation by the SVC located at bus 30 causes

little to none variation impact on the other control variables. The null results observed in

Figure 59 corresponds to electric devices that reached reactive power generation limits and,

therefore, do not suffer any variation once QG30, svc is perturbed. The small mode-shape

values correspond to the reactive power generated by the SVCs, which suffer little impact

once QG30, svc is perturbed by reason of the buses are electrically distant from each other.

In addition, the participation factor shown in Figure 60 corresponds to a voltage

collapse condition in the EPS, classified as SNB and which is caused 98.95% because of

the SVC at bus 30 reaching its maximum reactive power limit. This conclusion can be

made once that the reactive power generated by that SVC is close to the maximum limit,
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Figure 58 – IEEE 30 bus system participation factor for λeig = 0.897219043.
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Figure 59 – IEEE 30 bus system mode-shape for λeig = 0.534423518.
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as detailed in Table 20 and illustrated in Figure 50, and cannot participate more in the

voltage magnitude control of its own bus.

Figure 60 – IEEE 30 bus system participation factor for λeig = 0.534423518.
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Although the eigenvalue associated with the slack bus reactive power generation

(λeig = 0.000452123879) is smaller than the eigenvalue associated with the reactive power

generation by the SVC located at bus 30 (λeig = 534423518), the eigenanalysis shown in

Figure 60 indicates greater participation of the SVC in the voltage collapse scenario of the

EPS. Nevertheless, it demonstrates the proposed application of modal analysis for the

indentification of SNBs for SVCs reaching reactive power generation limits.

The SPF-SVC reactive power injection methodology sigmoid switches values at

the MLP are detailed in Table 21. The switches correctly indicate that the SVC at bus 30

is transitioning from normal operational mode to superior limit violation mode, detailed

in Section 5.1.

Table 21 – SPF-SVC reactive power injection methodology sigmoid switches outputs for
SVC at bus 30 in SNB indentification for IEEE 30 bus system.

sw5 sw6

0.0 0.35

Source: Elaborated by the author (2023).
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7.3 PARTIAL CONCLUSIONS

This chapter presents the simulation results of the proposed generator and SVC

methodologies as well as the proposed modal analysis for voltage stability evaluation,

which were detailed in previous chapters of this work.

In Section 7.1 the SPF-Generator methodology successfully identified SNBs bifur-

cations, as described in Chapter 6, in different EPS simulations. Both tutorial systems as

well as the IEEE 118 bus system simulations were stressed via the CPF formulation and

returned results which demonstrates the mathematical theory described by Neves (2022).

Additionally, in Section 7.2 the proposed SPF-SVC methodologies were able to

successfully return steady-state results as described in Passos Filho (2000). Not only

that, it was also proved the proposed enhancement on the SVC traditional firing-angle

methodology by the implementation of droop variable in the proposed control.

In conclusion, the SNB bifurcation analysis described in Chapter 6 was also extended

to the proposed SPF-SVC methodology, returning successful simulation results. Regarding

the results shown in Subsection 7.2.5, the developed Python program was unable to

simulate the same voltage collapse condition as presented in Chen and Min (2007), being

detailed, therefore, a similar condition in the subsection. All Python simulation results

were validated via CEPEL’s production-grade software with due proportions, comparting

the SPF results with the traditional PF approach.
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8 CONCLUSIONS

This work presents a thorough analysis on the advantages of the SPF formulation

regarding voltage collapse. The work developed by Neves (2022) was used as a main

reference, as the mathematical theorems described in it served as foundation for studies

related to the SPF formulation.

This work also presents steady-state methodologies for two electric devices, gen-

erators and SVCs, which are presented in Chapters 4 and 5, respectively. The proposed

methodologies consider the full Newton implementation, responsible for updating in the

power flow system of nonlinear equations the control equations that best describe the

control device operational behavior during simulation. The full Newton implementation

was considered in the proposed methodology because it improves the Jacobian matrix

sparsity characteristic by the addition of new linearized equations, increasing the matrix

dimension according with the number of generators (NGEN) or SVCs (NSVC) active in the

EPS.

The SPF-Generator methodology proposed in Chapter 4 is based on the work

developed by Pontes (2018), Pontes, Passos Filho and La Gatta (2018). Hence, no alteration

on the proposed methodology is made in this work, and was mainly implemented for

studies related to indentification and evaluation of voltage collapse in the SPF formulation

problem.

On the other hand, new steady-state methodologies of representing SVC in the

power flow problem were proposed. On account of the SVCs methodologies described

in Chapter 5, the reactive power injection methodology tends to be the most common

applied in power flow research considering the equations and state variables involved

in the methodology. The current injection and thyristor firing-angle methodologies can

also be implemented in the power flow analysis, the former being more adaptable for a

rectangular formulation approach whereas the latter is more recommended for harmonics

and electromagnetic transients studies. All models, nevertheless, are appropriate for

representing SVCs in the power flow problem.

Regarding the SPF-SVC thyristor firing-angle methodology, detailed in Section 5.3,

the proposed droop enhacement improves the traditional methodology developed by Ambriz-

Perez, Acha and Fuerte-Esquivel (2000). The results obtained in simulation by using

this methodology show the effectiveness of the proposed alteration, and returns identical

solution to the SPF-SVC reactive power injection model. This methodology, however,

presents a higher number of iterations by reason of its control variable αk, svc is more

sensitive to variations than the control variable QGk, svc, from the reactive power injection

methodology.

For the proposed SPF-Generator and SPF-SVCs methodologies, a set of sigmoid
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switches is incorporated in the devices control equations. The adoption of switches based on

sigmoid function introduces smoothness to the traditional PF formulation and is justified

by the smooth step function in Definition 1. Additionally, the results shown in Chapter 7

prove that the implementation of sigmoid switches does not intefere negatively in the

solution of power flow problems.

In respect of the simulation results presented in Chapter 7, it successfully demon-

strate the effectiveness of the proposed methodologies. In Section 7.1, EPSs were stressed

via the CPF formulation and the SPF-Generator methodology was able to correctly iden-

tify SNB bifurcations at the MLP. The numerical results obtained via modal analysis

demonstrates the mathematical theorems described in Neves (2022).

Additionally, in Section 7.2 different results are shown regarding the proposed

SPF-SVC methodologies. Despite the multiple study cases, all simulations returned correct

solutions for the steady-state analysis (Subsection 7.2.1), for CPF formulation analysis

(Subsections 7.2.2 and 7.2.3) and also for the indentification of SNBs at the MLP via

modal analysis (Subsections 7.2.4 and 7.2.5).

In conclusion, the developed Python program was able to correctly simulate all

EPS. The CEPEL production-grade academic version software was used in this work in

order to validate the simulation results. As the methodologies employed in the software

are based on the traditional control models via PF formulation, the software was used

in order to validate the steady-state analysis results, CPF simulation results, such as PV

curves, and also for the identification of voltage collapse classified as LIB in the analyzed

EPS. No computational burden was analyzed in this work.

8.1 FUTURE WORKS

As future works, the author suggests the following subjects:

• Extend the SPF methodology via sigmoid switches for other electric devices control

modelings;

• Improve the SPF bifurcation analysis with a fast and accurate computational simu-

lation, with respect to voltage stability;

• Optimal analysis for the adoption of sigmoid function slope variable (slp) in the

SPF formulation;

• Development of a voltage stability assessment computational tool to facilitate the

indentification of SNBs arbitrarily close to LIBs;

• Advanced research on stability attraction regions and surfaces for power systems

analysis and voltage stability assessment.
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APPENDIX A – JACOBIAN NEW DIFFERENTIAL TERMS

The proposed SPF-Generator and SPF-SVCs methodologies take into consideration

new control equations to be incorporated into the traditional PF system of nonlinear

equations formulation. To do so, these equations are set to be linearized and included in a

augmented Jacobian matrix. Additionally, the state equations must also be linearized in

terms of the new state variables.

The linearization of every new control equations take into consideration the pre-

existing state variables and the new state variables present in the system of nonlinear

equations. Therefore, this Appendix chapter goal is to introduce the mathematical

calculations necessary to comprehend the proposed SPF methodologies control equations

linearization.

Primarly, three mathematical properties will be used in order to define the new

Jacobian differential terms (SPIEGEL; LIPSCHUTZ; LIU, 2009). These are differentiating

a sum of variables, differentiating a product of variables and differentiating a fraction

in terms of a general variable “z”. Equations (A.1) to (A.3) details the aforementioned

mathematical properties, respectively.

∂

∂z
(u ± v ± w ± · · · ) =

∂u

∂z
±

∂v

∂z
±

∂w

∂z
± · · · (A.1)

∂

∂z
(u · v · w) =

∂u

∂z
· (v · w) +

∂v

∂z
· (u · w) +

∂w

∂z
· (u · v) (A.2)

∂

∂z

3

u

v

4

=
∂u
∂z

· v ≠ u · ∂v
∂z

v2
(A.3)

Additionally, the sigmoid function derivative (3.2) will also be used in order to

determine the sigmoid switches derivatives.

These properties will be applied in the linearization of the new control equations

in terms of the state variables θ, V and x, where x is the vector of new state variables

associated to each proposed SPF methodology. In order to do so, and to simplify the

linearization calculation, the new control equations will be divided into three terms.

In the following sections, the mathematical calculations to linearize the SPF-

Generator control equations and the SPF-SVCs proposed methodologies control equations

will be presented.
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A.1 SPF-GENERATORS REACTIVE POWER LIMITS METHODOLOGY

The SPF-Generator control equation (4.5) will be subdivided into three terms,

following:

y = A + B + C, (A.4)

where:

A = (sw1 · sw3 ) · (1 ≠ sw2 · sw4 ) ·
1

QGk, gen ≠ Qmax
Gk, gen

2

B = (1 ≠ sw1 · sw3 ) · (1 ≠ sw2 · sw4 ) ·
1

Vk, gen ≠ V
ref

k, gen

2

(A.5)

C = (1 ≠ sw1 · sw3 ) · (sw2 · sw4 ) ·
1

QGk, gen ≠ Qmin
Gk, gen

2

As detailed in Equation (4.5), the only active state variables in the proposed

methodologies are Vk, gen and QGk, gen, which corresponds to Vk and QGk
, respectively.

Therefore, differentiating the control equation y in terms of θk, θm or Vm are equal to zero.

∂y

∂θk

=
∂A

∂θk

+
∂B

∂θk

+
∂C

∂θk

= 0 (A.6)

∂y

∂θm

=
∂A

∂θm

+
∂B

∂θm

+
∂C

∂θm

= 0 (A.7)

∂y

∂Vm

=
∂A

∂Vm

+
∂B

∂Vm

+
∂C

∂Vm

= 0 (A.8)

It remains only to differentiate the control equation in terms of Vk, gen and QGk, gen,

and differentiating the state equations in terms of the new state variable. These new

differentiating terms will be detailed in the following Subsections.

A.1.1 Differentiating the control equation in terms of Vk, gen

The control equation (A.5) differentiation in terms of Vk is given below:

∂y

∂Vk

=
∂A

∂Vk

+
∂B

∂Vk

+
∂C

∂Vk

”= 0. (A.9)

Applying the mathematical property (A.2) in (A.9) results in:
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∂A

∂Vk

=
∂ (sw1 · sw3 )

∂Vk

· (1 ≠ sw2 · sw4 ) ·
1

QGk, gen ≠ Qmax
Gk, gen

2

+

+ (sw1 · sw3 ) ·
∂ (1 ≠ sw2 · sw4 )

∂Vk

·
1

QGk, gen ≠ Qmax
Gk, gen

2

+ (A.10)

+ (sw1 · sw3 ) · (1 ≠ sw2 · sw4 ) ·
∂

1

QGk, gen ≠ Qmax
Gk, gen

2

∂Vk

∂B

∂Vk

=
∂ (1 ≠ sw1 · sw3 )

∂Vk

· (1 ≠ sw2 · sw4 ) ·
1

Vk, gen ≠ V
ref

k, gen

2

+

+ (1 ≠ sw1 · sw3 ) ·
∂ (1 ≠ sw2 · sw4 )

∂Vk

·
1

Vk, gen ≠ V
ref

k, gen

2

+ (A.11)

+ (1 ≠ sw1 · sw3 ) · (1 ≠ sw2 · sw4 ) ·
∂

1

Vk, gen ≠ V
ref

k, gen

2

∂Vk

∂C

∂Vk

=
∂ (1 ≠ sw1 · sw3 )

∂Vk

· (sw2 · sw4 ) ·
1

QGk, gen ≠ Qmin
Gk, gen

2

+

+ (1 ≠ sw1 · sw3 ) ·
∂ (sw2 · sw4 )

∂Vk

·
1

QGk, gen ≠ Qmin
Gk, gen

2

+ (A.12)

+ (1 ≠ sw1 · sw3 ) · (sw2 · sw4 ) ·
∂

1

QGk, gen ≠ Qmin
Gk, gen

2

∂Vk

Since switches sw1 and sw2 corresponds to the reactive power generation variable,

their differentation in terms of Vk equals to zero. Therefore, must be only analyzed the

differentiating terms of switches sw3 and sw4, which corresponds to the k-bus voltage

magnitude where the Generator is connected.

∂sw1

∂Vk

= 0 (A.13)

∂sw2

∂Vk

= 0 (A.14)

∂sw3

∂Vk

= ≠slp · (1 ≠ sw3 ) · sw3 (A.15)

∂sw4

∂Vk

= slp · (1 ≠ sw4 ) · sw4 (A.16)
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Therefore, Equations (A.10), (A.11) and (A.12) respectively results in:

∂A

∂Vk

= sw1 · [≠slp · (1 ≠ sw3 ) · sw3 ] · (1 ≠ sw2 · sw4 ) ·
1

QGk, gen ≠ Qmax
Gk, gen

2

+ (A.17)

+ (sw1 · sw3 ) · [1 ≠ sw2 · slp · (1 ≠ sw4 ) · sw4 ] ·
1

QGk, gen ≠ Qmax
Gk, gen

2

∂B

∂Vk

= [1 + sw1 · slp · (1 ≠ sw3 ) · sw3 ] · (1 ≠ sw2 · sw4 ) ·
1

Vk, gen ≠ V
ref

k, gen

2

+ (A.18)

+ (1 ≠ sw1 · sw3 ) · [1 ≠ sw2 · slp · (1 ≠ sw4 ) · sw4 ] ·
1

Vk, gen ≠ V
ref

k, gen

2

+

+ (1 ≠ sw1 · sw3 ) · (1 ≠ sw2 · sw4 ) · 1

∂C

∂Vk

= [1 + sw1 · slp · (1 ≠ sw3 ) · sw3 ] · (sw2 · sw4 ) ·
1

QGk, gen ≠ Qmin
Gk, gen

2

+ (A.19)

+ (1 ≠ sw1 · sw3 ) · [sw2 · slp · (1 ≠ sw4 ) · sw4 ] ·
1

QGk, gen ≠ Qmin
Gk, gen

2

Therefore, by analyzing Equations (A.17) through (A.19), the control equation

differentiation in terms of Vk, gen is defined:

∂y

∂Vk

=
∂A

∂Vk

+
∂B

∂Vk

+
∂C

∂Vk

(A.20)

A.1.2 Differentiating the control equation in terms of QGk, gen

The control equation (A.5) differentiation in terms of QGk
is given below:

∂y

∂QGk

=
∂A

∂QGk

+
∂B

∂QGk

+
∂C

∂QGk

”= 0. (A.21)

Applying the mathematical property (A.2) in (A.21) results in:

∂A

∂QGk

=
∂ (sw1 · sw3 )

∂QGk

· (1 ≠ sw2 · sw4 ) ·
1

QGk, gen ≠ Qmax
Gk, gen

2

+

+ (sw1 · sw3 ) ·
∂ (1 ≠ sw2 · sw4 )

∂QGk

·
1

QGk, gen ≠ Qmax
Gk, gen

2

+ (A.22)

+ (sw1 · sw3 ) · (1 ≠ sw2 · sw4 ) ·
∂

1

QGk, gen ≠ Qmax
Gk, gen

2

∂QGk
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∂B

∂QGk

=
∂ (1 ≠ sw1 · sw3 )

∂QGk

· (1 ≠ sw2 · sw4 ) ·
1

Vk, gen ≠ V
ref

k, gen

2

+

+ (1 ≠ sw1 · sw3 ) ·
∂ (1 ≠ sw2 · sw4 )

∂QGk

·
1

Vk, gen ≠ V
ref

k, gen

2

+ (A.23)

+ (1 ≠ sw1 · sw3 ) · (1 ≠ sw2 · sw4 ) ·
∂

1

Vk, gen ≠ V
ref

k, gen

2

∂QGk

∂C

∂QGk

=
∂ (1 ≠ sw1 · sw3 )

∂QGk

· (sw2 · sw4 ) ·
1

QGk, gen ≠ Qmin
Gk, gen

2

+

+ (1 ≠ sw1 · sw3 ) ·
∂ (sw2 · sw4 )

∂QGk

·
1

QGk, gen ≠ Qmin
Gk, gen

2

+ (A.24)

+ (1 ≠ sw1 · sw3 ) · (sw2 · sw4 ) ·
∂

1

QGk, gen ≠ Qmin
Gk, gen

2

∂QGk

Since switches sw3 and sw4 corresponds to the voltage magnitude variable, their

differentiation in terms of QGk
equals to zero. Therefore, must be only analyzed the

differentiating terms of switches sw1 and sw2, which corresponds to the k-bus reactive

power generation where the Generator is connected.

∂sw1

∂QGk

= slp · (1 ≠ sw1 ) · sw1 (A.25)

∂sw2

∂QGk

= ≠slp · (1 ≠ sw2 ) · sw2 (A.26)

∂sw3

∂QGk

= 0 (A.27)

∂sw4

∂QGk

= 0 (A.28)

Therefore, Equations (A.22), (A.23) and (A.24) respectively results in:

∂A

∂QGk

= [slp · (1 ≠ sw1 ) · sw1 ] · sw3 · (1 ≠ sw2 · sw4 ) ·
1

QGk, gen ≠ Qmax
Gk, gen

2

+ (A.29)

+ (sw1 · sw3 ) · [1 + slp · (1 ≠ sw2 ) · sw2 ] · sw4 ·
1

QGk, gen ≠ Qmax
Gk, gen

2

+

+ (sw1 · sw3 ) · (1 ≠ sw2 · sw4 ) · 1
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∂B

∂QGk

= [1 ≠ slp · (1 ≠ sw1 ) · sw1 ] · sw3 · (1 ≠ sw2 · sw4 ) ·
1

Vk, gen ≠ V
ref

k, gen

2

+ (A.30)

+ (1 ≠ sw1 · sw3 ) · [1 + slp · (1 ≠ sw2 ) · sw2 ] · sw4 ·
1

Vk, gen ≠ V
ref

k, gen

2

+

∂C

∂QGk

= [1 ≠ slp · (1 ≠ sw1 ) · sw1 ] · sw3 · (sw2 · sw4 ) ·
1

QGk, gen ≠ Qmin
Gk, gen

2

+ (A.31)

+ (1 ≠ sw1 · sw3 ) · [≠slp · (1 ≠ sw2 ) · sw2 ] · sw4 ·
1

QGk, gen ≠ Qmin
Gk, gen

2

+

+ (1 ≠ sw1 · sw3 ) · (sw2 · sw4 ) · 1

Therefore, by analyzing Equations (A.29) through (A.31), the control equation

differentiation in terms of QGk, gen is defined:

∂y

∂QGk

=
∂A

∂QGk

+
∂B

∂QGk

+
∂C

∂QGk

(A.32)

A.1.3 Differentiating the state equations in terms of QGk, gen

Differentiating the PF state equations, which define each bus active and reactive

power injections value (P and Q), in terms of the new state variable QGk, gen - which is

equivalent to QGk
- results in:

∂Pk

∂QGk, gen

=
∂Pk

∂QGk

=
∂

Ë

P cal
k ≠ (PGk

≠ PLk
)
È

∂QGk

= 0 (A.33)

∂Pm

∂QGk, gen

=
∂Pm

∂QGk

=
∂

Ë

P cal
m ≠ (PGm

≠ PLm
)
È

∂QGk

= 0 (A.34)

∂Qk

∂QGk, gen

=
∂Qk

∂QGk

=
∂

Ë

Qcal
k ≠ (QGk

≠ QLk
)
È

∂QGk

= ≠1 (A.35)

∂Qm

∂QGk, gen

=
∂Qm

∂QGk

=
∂

Ë

Qcal
m ≠ (QGm

≠ QLm
)
È

∂QGk

= 0 (A.36)

Therefore, the only non-zero differentiating term is (A.35).
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A.1.4 Augmented Jacobian matrix

The augmented Jacobian matrix values detailed in Equation (4.6) are simplified in

(A.37). For the steady-state SPF-Generator reactive power limits methodology, the new

differential terms are given in Equations (A.20), (A.32) and (A.35).

The augmented Jacobian matrix values are detailed in Equation (A.37) for the

SPF-Generator modeling:

S

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

U

...

∆Pk

∆Pm

...

∆Qk

∆Qm

...

∆y

...

T

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

V

=

S

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

U

. . .
...

... · · ·
...

... · · ·
... . .

.

· · · ∂Pk

∂θk

∂Pk

∂θm
· · · ∂Pk

∂Vk

∂Pk

∂Vm
· · · 0 · · ·

· · · ∂Pm

∂θk

∂Pm

∂θm
· · · ∂Pm

∂Vk

∂Pm

∂Vm
· · · 0 · · ·

· · ·
...

... · · ·
...

... · · ·
... · · ·

· · · ∂Qk

∂θk

∂Qk

∂θm
· · · ∂Qk

∂Vk

∂Qk

∂Vm
· · · ∂Qk

∂QGk, gen
· · ·

· · · ∂Qm

∂θk

∂Qm

∂θm
· · · ∂Qm

∂Vk

∂Qm

∂Vm
· · · 0 · · ·

· · ·
...

... · · ·
...

... · · ·
... · · ·

· · · 0 0 · · · ∂y

∂Vk
0 · · · ∂y

∂QGk, gen
· · ·

. .
. ...

... · · ·
...

... · · ·
...

. . .

T

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

V

·

S

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

U

...

∆θk

∆θm

...

∆Vk

∆Vm

...

∆QGk, gen

...

T

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

V

(A.37)

A.2 SPF-SVC REACTIVE POWER INJECTION METHODOLOGY

The SPF-SVC reactive power injection control equation (5.5) will be subdivided

into three terms, following:

y = A + B + C, (A.38)

where:

A = sw5 ·
1

QGk, svc ≠ V 2
k, svc · Bind

svc

2

B = (1 ≠ sw5 ) · (1 ≠ sw6 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

(A.39)

C = sw6 ·
1

QGk, svc ≠ V 2
k, svc · Bcap

svc

2

As detailed in Equation (5.5), the only active state variables in the proposed

methodologies are Vk, svc, Vm, svc and QGk, svc, which corresponds to Vk, Vm and QGk
,

respectively. Therefore, differentiating the control equation y in terms of θk or θm are

equal to zero.
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∂y

∂θk

=
∂A

∂θk

+
∂B

∂θk

+
∂C

∂θk

= 0 (A.40)

∂y

∂θm

=
∂A

∂θm

+
∂B

∂θm

+
∂C

∂θm

= 0 (A.41)

It remains only to differentiate the control equation in terms of Vk, svc, Vm, svc and

QGk, svc, and differentiating the state equations in terms of the new state variable. These

new differentiating terms will be detailed in the following subsections.

A.2.1 Differentiating the control equation in terms of Vk, svc

The control equation (A.39) differentiation in terms of Vk is given below:

∂y

∂Vk

=
∂A

∂Vk

+
∂B

∂Vk

+
∂C

∂Vk

”= 0. (A.42)

Applying the mathematical property (A.2) in (A.42) results in:

∂A

∂Vk

=
∂sw5

∂Vk

·
1

QGk, svc ≠ V 2
k, svc · Bind

svc

2

+ (A.43)

+ sw5 ·
∂

1

QGk, svc ≠ V 2
k, svc · Bind

svc

2

∂Vk

∂B

∂Vk

=
∂ (1 ≠ sw5 )

∂Vk

· (1 ≠ sw6 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

+ (1 ≠ sw5 ) ·
∂ (1 ≠ sw6 )

∂Vk

·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+ (A.44)

+ (1 ≠ sw5 ) · (1 ≠ sw6 ) ·
∂

1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

∂Vk

∂C

∂Vk

=
∂sw6

∂Vk

·
1

QGk, svc ≠ V 2
k, svc · Bcap

svc

2

+ (A.45)

+ sw6 ·
∂

1

QGk, svc ≠ V 2
k, svc · Bcap

svc

2

∂Vk

Since switches sw5 and sw6 corresponds to the controlled m-bus voltage magnitude

variable, their differentation in terms of Vk equals to zero. Also, the B-term in (A.39) does

not differentiate in terms of Vk. Therefore:
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∂A

∂Vk

= sw5 ·
1

≠2 · Vk, svc · Bind
svc

2

(A.46)

∂B

∂Vk

= 0 (A.47)

∂C

∂Vk

= sw6 · (≠2 · Vk, svc · Bcap
svc ) (A.48)

Analyzing Equations (A.46) to (A.48), it is assured that the only non-zero differ-

ential terms are:

∂y

∂Vk

=
∂A

∂Vk

+
∂C

∂Vk

(A.49)

= sw5 ·
1

≠2 · Vk, svc · Bind
svc

2

+ sw6 · (≠2 · Vk, svc · Bcap
svc )

A.2.2 Differentiating the control equation in terms of Vm, svc

The control equation (A.39) differentiation in terms of Vm is given below:

∂y

∂Vm

=
∂A

∂Vm

+
∂B

∂Vm

+
∂C

∂Vm

”= 0. (A.50)

Applying the mathematical property (A.2) in (A.50) results in:

∂A

∂Vm

=
∂sw5

∂Vm

·
1

QGk, svc ≠ V 2
k, svc · Bind

svc

2

+ (A.51)

+ sw5 ·
∂

1

QGk, svc ≠ V 2
k, svc · Bind

svc

2

∂Vm

∂B

∂Vm

=
∂ (1 ≠ sw5 )

∂Vm

· (1 ≠ sw6 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

+ (1 ≠ sw5 ) ·
∂ (1 ≠ sw6 )

∂Vm

·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+ (A.52)

+ (1 ≠ sw5 ) · (1 ≠ sw6 ) ·
∂

1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

∂Vm
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∂C

∂Vm

=
∂sw6

∂Vm

·
1

QGk, svc ≠ V 2
k, svc · Bcap

svc

2

+ (A.53)

+ sw6 ·
∂

1

QGk, svc ≠ V 2
k, svc · Bcap

svc

2

∂Vm

Since switches sw5 and sw6 corresponds to the controlled m-bus voltage magnitude

variable, their differentation in terms of Vm do not equal to zero, at first:

∂sw5

∂Vm

= ≠slp · (1 ≠ sw5 ) · sw5 , (A.54)

∂sw6

∂Vm

= slp · (1 ≠ sw6 ) · sw6 . (A.55)

Therefore, Equations (A.51), (A.52) and (A.53) respectively results in:

∂A

∂Vm

= ≠ slp · (1 ≠ sw5 ) · sw5 ·
1

QGk, svc ≠ V 2
k, svc · Bind

svc

2

(A.56)

∂B

∂Vm

= [1 + slp · (1 ≠ sw5 ) · sw5 ] · (1 ≠ sw6 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+ (A.57)

+ (1 ≠ sw5 ) · [1 ≠ slp · (1 ≠ sw6 ) · sw6 ] ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

+ (1 ≠ sw5 ) · (1 ≠ sw6 ) · 1

∂C

∂Vm

= slp · (1 ≠ sw6 ) · sw6 ·
1

QGk, svc ≠ V 2
k, svc · Bcap

svc

2

(A.58)

Therefore, by analyzing Equation (A.56) through (A.58), the control equation

differentiation in terms of Vm, svc is defined:

∂y

∂Vm

=
∂A

∂Vm

+
∂B

∂Vm

+
∂C

∂Vm

(A.59)

A.2.3 Differentiating the control equation in terms of QGk, svc

The control equation (A.39) differentiation in terms of QGk
is given below:

∂y

∂QGk

=
∂A

∂QGk

+
∂B

∂QGk

+
∂C

∂QGk

”= 0. (A.60)
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Applying the mathematical property (A.2) in (A.60) results in:

∂A

∂QGk

=
∂sw5

∂QGk

·
1

QGk, svc ≠ V 2
k, svc · Bind

svc

2

+ (A.61)

+ sw5 ·
∂

1

QGk, svc ≠ V 2
k, svc · Bind

svc

2

∂QGk

∂B

∂QGk

=
∂ (1 ≠ sw5 )

∂QGk

· (1 ≠ sw6 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

+ (1 ≠ sw5 ) ·
∂ (1 ≠ sw6 )

∂QGk

·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+ (A.62)

+ (1 ≠ sw5 ) · (1 ≠ sw6 ) ·
∂

1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

∂QGk

∂C

∂QGk

=
∂sw6

∂QGk

·
1

QGk, svc ≠ V 2
k, svc · Bcap

svc

2

+ (A.63)

+ sw6 ·
∂

1

QGk, svc ≠ V 2
k, svc · Bcap

svc

2

∂QGk

Since switches sw5 and sw6 corresponds to the controlled m-bus voltage magnitude

variable, their differentiation in terms of QGk
equals to zero. Therefore, analyzing Equations

(A.61) to (A.63), it is assured that the only non-zero differential terms are:

∂y

∂QGk

=
∂A

∂QGk

+
∂B

∂QGk

+
∂C

∂QGk

(A.64)

= sw5 ≠ r · (1 ≠ sw5 ) · (1 ≠ sw6 ) + sw6

A.2.4 Differentiating the state equations in terms of QGk, svc

Differentiating the PF state equations, which define each bus active and reactive

power injections value (P and Q), in terms of the new state variable QGk, svc - which is

equivalent to QGk
- results in:

∂Pk

∂QGk, svc

=
∂Pk

∂QGk

=
∂

Ë

P cal
k ≠ (PGk

≠ PLk
)
È

∂QGk

= 0 (A.65)

∂Pm

∂QGk, svc

=
∂Pm

∂QGk

=
∂

Ë

P cal
m ≠ (PGm

≠ PLm
)
È

∂QGk

= 0 (A.66)



135

∂Qk

∂QGk, svc

=
∂Qk

∂QGk

=
∂

Ë

Qcal
k ≠ (QGk

≠ QLk
)
È

∂QGk

= ≠1 (A.67)

∂Qm

∂QGk, svc

=
∂Qm

∂QGk

=
∂

Ë

Qcal
m ≠ (QGm

≠ QLm
)
È

∂QGk

= 0 (A.68)

Therefore, the only non-zero differentiating term is (A.67).

A.2.5 Augmented Jacobian matrix

The augmented Jacobian matrix values detailed in Equation (5.6) are simplified

in (A.69). For the steady-state SPF-SVC reactive power injection methodology, the new

differential terms are given in Equations (A.49), (A.59), (A.64) and (A.67).
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A.3 SPF-SVC CURRENT INJECTION METHODOLOGY

The SPF-SVC current injection control equation (5.12) will be subdivided into

three terms, following:

y = A + B + C, (A.70)

where:
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A = sw7 ·
1

Ik, svc ≠ Vk, svc · Bind
svc

2

B = (1 ≠ sw7 ) · (1 ≠ sw8 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

(A.71)

C = sw8 · (Ik, svc ≠ Vk, svc · Bcap
svc )

As detailed in Equation (5.12), the only active state variables in the proposed

methodologies are Vk, svc, Vm, svc and Ik, svc, which corresponds to Vk, Vm and Ik, respectively.

Therefore, differentiating the control equation y in terms of θk or θm are equal to zero.

∂y

∂θk

=
∂A

∂θk

+
∂B

∂θk

+
∂C

∂θk

= 0 (A.72)

∂y

∂θm

=
∂A

∂θm

+
∂B

∂θm

+
∂C

∂θm

= 0 (A.73)

It remains only to differentiate the control equation in terms of Vk, svc, Vm, svc and

Ik, svc, and differentiating the state equations in terms of the new state variable. These

new differentiating terms will be detailed in the following subsections.

A.3.1 Differentiating the control equation in terms of Vk, svc

The control equation (A.71) differentiation in terms of Vk is given below:

∂y

∂Vk

=
∂A

∂Vk

+
∂B

∂Vk

+
∂C

∂Vk

”= 0. (A.74)

Applying the mathematical property (A.2) in (A.74) results in:

∂A

∂Vk

=
∂sw7

∂Vk

·
1

Ik, svc ≠ Vk, svc · Bind
svc

2

+ (A.75)

+ sw7 ·
∂

1

Ik, svc ≠ Vk, svc · Bind
svc

2

∂Vk

∂B

∂Vk

=
∂ (1 ≠ sw7 )

∂Vk

· (1 ≠ sw8 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

+

+ (1 ≠ sw7 ) ·
∂ (1 ≠ sw8 )

∂Vk

·
1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

+ (A.76)

+ (1 ≠ sw7 ) · (1 ≠ sw8 ) ·
∂

1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

∂Vk
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∂C

∂Vk

=
∂sw8

∂Vk

· (Ik, svc ≠ Vk, svc · Bcap
svc ) + (A.77)

+ sw8 ·
∂ (Ik, svc ≠ Vk, svc · Bcap

svc )

∂Vk

Since switches sw7 and sw8 corresponds to the controlled m-bus voltage magnitude

variable, their differentation in terms of Vk equals to zero. Considering that Ik is given by

Equation (5.9), applying the mathematical property (A.3) results in:

∂Ik

∂Vk

=
∂

∂Vk

·
3

Qk

Vk

4

= ≠
Qk

V 2
k

(A.78)

Therefore, Equations (A.75) to (A.77) results in:

∂A

∂Vk

= sw7 ·

A

≠
Qk

V 2
k

≠ Bind
svc

B

(A.79)

∂B

∂Vk

= (1 ≠ sw7 ) · (1 ≠ sw8 ) ·

A

r ·
Qk

V 2
k

B

(A.80)

∂C

∂Vk

= sw8 ·

A

≠
Qk

V 2
k

≠ Bcap
svc

B

(A.81)

Analyzing Equations (A.79) to (A.81), it is assured that the only non-zero differ-

ential terms are:

∂y

∂Vk

=
∂A

∂Vk

+
∂B

∂Vk

+
∂C

∂Vk

=

C

sw7 ·

A

≠
Qk

V 2
k

≠ Bind
svc

BD

+

C

sw8 ·

A

≠
Qk

V 2
k

≠ Bcap
svc

BD

+ (A.82)

+

C

(1 ≠ sw7 ) · (1 ≠ sw8 ) ·

A

r ·
Qk

V 2
k

BD

A.3.2 Differentiating the control equation in terms of Vm, svc

The control equation (A.71) differentiation in terms of Vm is given below:

∂y

∂Vm

=
∂A

∂Vm

+
∂B

∂Vm

+
∂C

∂Vm

”= 0. (A.83)
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Applying the mathematical property (A.2) in (A.83) results in:

∂A

∂Vm

=
∂sw7

∂Vm

·
1

Ik, svc ≠ Vk, svc · Bind
svc

2

+ (A.84)

+ sw7 ·
∂

1

Ik, svc ≠ Vk, svc · Bind
svc

2

∂Vm

∂B

∂Vm

=
∂ (1 ≠ sw7 )

∂Vm

· (1 ≠ sw8 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

+

+ (1 ≠ sw7 ) ·
∂ (1 ≠ sw8 )

∂Vm

·
1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

+ (A.85)

+ (1 ≠ sw7 ) · (1 ≠ sw8 ) ·
∂

1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

∂Vm

∂C

∂Vm

=
∂sw8

∂Vm

· (Ik, svc ≠ Vk, svc · Bcap
svc ) + (A.86)

+ sw8 ·
∂ (Ik, svc ≠ Vk, svc · Bcap

svc )

∂Vm

Since switches sw7 and sw8 corresponds to the controlled m-bus voltage magnitude

variable, their differentation in terms of Vm do not equal to zero:

∂sw7

∂Vm

= ≠slp · (1 ≠ sw7 ) · sw7 , (A.87)

∂sw8

∂Vm

= slp · (1 ≠ sw8 ) · sw8 . (A.88)

Therefore, Equations (A.84), (A.85) and (A.86) respectively results in:

∂A

∂Vm

= ≠ slp · (1 ≠ sw7 ) · sw7 ·
1

Ik, svc ≠ Vk, svc · Bind
svc

2

(A.89)

∂B

∂Vm

= [1 + slp · (1 ≠ sw7 ) · sw7 ] · (1 ≠ sw8 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

+ (A.90)

+ (1 ≠ sw7 ) · [1 ≠ slp · (1 ≠ sw8 ) · sw8 ] ·
1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

+

+ (1 ≠ sw7 ) · (1 ≠ sw8 ) · 1
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∂C

∂Vm

= slp · (1 ≠ sw8 ) · sw8 · (Ik, svc ≠ Vk, svc · Bcap
svc ) (A.91)

Therefore, by analyzing Equations (A.89) through (A.91), the control equation

differentiation in terms of Vm, svc is defined:

∂y

∂Vm

=
∂A

∂Vm

+
∂B

∂Vm

+
∂C

∂Vm

(A.92)

A.3.3 Differentiating the control equation in terms of Ik, svc

The control equation (A.71) differentiation in terms of Ik is given below:

∂y

∂Ik

=
∂A

∂Ik

+
∂B

∂Ik

+
∂C

∂Ik

”= 0. (A.93)

Applying the mathematical property (A.2) in (A.93) results in:

∂A

∂Ik

=
∂sw7

∂Ik

·
1

Ik, svc ≠ Vk, svc · Bind
svc

2

+ (A.94)

+ sw7 ·
∂

1

Ik, svc ≠ V 2
k, svc · Bind

svc

2

∂Ik

∂B

∂Ik

=
∂ (1 ≠ sw7 )

∂Ik

· (1 ≠ sw8 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

+

+ (1 ≠ sw7 ) ·
∂ (1 ≠ sw8 )

∂Ik

·
1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

+ (A.95)

+ (1 ≠ sw7 ) · (1 ≠ sw8 ) ·
∂

1

Vm, svc ≠ V ref
m, svc ≠ r · Ik, svc

2

∂Ik

∂C

∂Ik

=
∂sw8

∂Ik

· (Ik, svc ≠ Vk, svc · Bcap
svc ) + (A.96)

+ sw8 ·
∂ (Ik, svc ≠ Vk, svc · Bcap

svc )

∂Ik

Since switches sw7 and sw8 corresponds to the controlled m-bus voltage magnitude

variable, their differentiation in terms of Ik equals to zero. Therefore, analyzing Equations

(A.94) to (A.96), it is assured that the only non-zero differential terms are:

∂y

∂Ik

=
∂A

∂Ik

+
∂B

∂Ik

+
∂C

∂Ik

(A.97)

= sw7 ≠ r · (1 ≠ sw7 ) · (1 ≠ sw8 ) + sw8
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A.3.4 Differentiating the state equations in terms of Ik, svc

Differentiating the PF state equations, which define each bus active and reactive

power injections values (P and Q), in terms of the new state variable Ik, svc - which is

equivalent to Ik - results in:

∂Pk

∂Ik, svc

=
∂Pk

∂Ik

=
∂

Ë

P cal
k ≠ (PGk

≠ PLk
)
È

∂Ik

= 0 (A.98)

∂Pm

∂Ik, svc

=
∂Pm

∂Ik

=
∂

Ë

P cal
m ≠ (PGm

≠ PLm
)
È

∂Ik

= 0 (A.99)

∂Qk

∂Ik, svc

=
∂Qk

∂Ik

=
∂

Ë

Qcal
k ≠ (QGk

≠ QLk
)
È

∂Ik

= ≠Vk (A.100)

∂Qm

∂Ik, svc

=
∂Qm

∂Ik

=
∂

Ë

Qcal
m ≠ (QGm

≠ QLm
)
È

∂Ik

= 0 (A.101)

An additional differential term must also be considered in the Jacobian matrix.

This new differential term is the SVC reactive power generated (5.9) by it bus voltage

magnitude, and must be added to the pre-existing term:

∂Qk

∂Vk

=
∂Qk

∂Vk

+
∂

Ë

Qcal
k ≠ (QGk, svc ≠ QLk

)
È

∂Vk, svc

=
∂Qk

∂Vk

≠ (Ik, svc) (A.102)

A.3.5 Augmented Jacobian matrix

The augmented Jacobian matrix values detailed in Equation (5.13) are simplified in

(A.103). For the steady-state SPF-SVC current injection methodology, the new differential

terms are given in Equations (A.82), (A.92), (A.97), (A.100) and (A.102).
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(A.103)

A.4 SPF-SVC THYRISTOR FIRING-ANGLE METHODOLOGY

The SPF-SVC thyristor firing-angle control equation (5.21) will be subdivided into

three terms, following:

y = A + B + C, (A.104)

where:

A = sw10 · (1 ≠ sw12 ) · (αk, svc ≠ 90¶)

B =
Ë

sw11 · (1 ≠ sw10 ) · (1 ≠ sw12 ) + sw12 · (1 ≠ sw9 ) · (1 ≠ sw11 ) · · · (A.105)

+ (1 ≠ sw9 ) · (1 ≠ sw10 ) · (1 ≠ sw11 ) · (1 ≠ sw12 )
È

·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

C = sw9 · (1 ≠ sw11 ) · (αk, svc ≠ 180¶)

As detailed in Equations (5.18) and (5.21), the only active state variables in the

proposed methodologies are Vk, svc, Vm, svc and αk, svc, which corresponds to Vk, Vm and

αk, respectively. Therefore, differentiating the control equation y in terms of θk or θm are

equal to zero.

∂y

∂θk

=
∂A

∂θk

+
∂B

∂θk

+
∂C

∂θk

= 0 (A.106)

∂y

∂θm

=
∂A

∂θm

+
∂B

∂θm

+
∂C

∂θm

= 0 (A.107)
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It remains only to differentiate the control equation in terms of Vk, svc, Vm, svc and

αk, svc, as well as differentiating the state equations in terms of the new state variable.

These new differential terms will be detailed in the following subsections.

A.4.1 Differentiating the control equation in terms of Vk, svc

The control equation (A.105) differentiation in terms of Vk is given below:

∂y

∂Vk

=
∂A

∂Vk

+
∂B

∂Vk

+
∂C

∂Vk

”= 0. (A.108)

Applying the mathematical property (A.2) in (A.108) results in:

∂A

∂Vk

=
∂sw10

∂Vk

· (1 ≠ sw12 ) · (αk, svc ≠ 90¶) +

+ sw10 ·
∂ (1 ≠ sw12 )

∂Vk

· (αk, svc ≠ 90¶) + (A.109)

+ sw10 · (1 ≠ sw12 ) ·
∂ (αk, svc ≠ 90¶)

∂Vk

∂B

∂Vk

=
∂

∂Vk

·
Ë

sw11 · (1 ≠ sw10 ) · (1 ≠ sw12 ) + sw12 · (1 ≠ sw9 ) · (1 ≠ sw11 ) · · ·

(A.110)

+ (1 ≠ sw9 ) · (1 ≠ sw10 ) · (1 ≠ sw11 ) · (1 ≠ sw12 )
È

·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

∂C

∂Vk

=
∂sw9

∂Vk

· (1 ≠ sw11 ) · (αk, svc ≠ 180¶) +

+ sw9 ·
∂ (1 ≠ sw11 )

∂Vk

· (αk, svc ≠ 180¶) + (A.111)

+ sw9 · (1 ≠ sw11 ) ·
∂ (αk, svc ≠ 180¶)

∂Vk

Since switches sw9 and sw10 corresponds to the thyristor firing-angle variable, and

switches sw11 and sw12 corresponds to the controlled m-bus voltage magnitude variable,

their differentation in terms of Vk equals to zero. Also, the B-term in (A.39) does not

differentiate in terms of Vk. Therefore, given (5.18):

∂A

∂Vk

= 0 (A.112)
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∂B

∂Vk

=
Ë

sw11 · (1 ≠ sw10 ) · (1 ≠ sw12 ) + sw12 · (1 ≠ sw9 ) · (1 ≠ sw11 ) · · · (A.113)

+ (1 ≠ sw9 ) · (1 ≠ sw10 ) · (1 ≠ sw11 ) · (1 ≠ sw12 )
È

·

C

≠r ·
∂QGk, svc

∂Vk

D

∂C

∂Vk

= 0 (A.114)

where:

∂QGk, svc

∂Vk

=
∂V 2

k, svc

∂Vk

· beq (αk, svc) = 2 · Vk, svc · beq (αk, svc) . (A.115)

Analyzing Equations (A.112) to (A.114), it is assured that the only non-zero

differential terms is:

∂y

∂Vk

=
∂B

∂Vk

=
Ë

sw11 · (1 ≠ sw10 ) · (1 ≠ sw12 ) + sw12 · (1 ≠ sw9 ) · (1 ≠ sw11 ) · · ·

(A.116)

+ (1 ≠ sw9 ) · (1 ≠ sw10 ) · (1 ≠ sw11 ) · (1 ≠ sw12 )
È

· [≠2 · r · Vk, svc · beq (αk, svc)]

A.4.2 Differentiating the control equation in terms of Vm, svc

The control equation (A.105) differentiation in terms of Vm is given below:

∂y

∂Vm

=
∂A

∂Vm

+
∂B

∂Vm

+
∂C

∂Vm

”= 0. (A.117)

Applying the mathematical property (A.2) in (A.117) results in:

∂A

∂Vm

=
∂sw10

∂Vm

· (1 ≠ sw12 ) · (αk, svc ≠ 90¶) +

+ sw10 ·
∂ (1 ≠ sw12 )

∂Vm

· (αk, svc ≠ 90¶) + (A.118)

+ sw10 · (1 ≠ sw12 ) ·
∂ (αk, svc ≠ 90¶)

∂Vm

∂B

∂Vm

=
∂

∂Vm

·
Ë

sw11 · (1 ≠ sw10 ) · (1 ≠ sw12 ) + sw12 · (1 ≠ sw9 ) · (1 ≠ sw11 ) · · ·

(A.119)

+ (1 ≠ sw9 ) · (1 ≠ sw10 ) · (1 ≠ sw11 ) · (1 ≠ sw12 )
È

·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2
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∂C

∂Vm

=
∂sw9

∂Vm

· (1 ≠ sw11 ) · (αk, svc ≠ 180¶) +

+ sw9 ·
∂ (1 ≠ sw11 )

∂Vm

· (αk, svc ≠ 180¶) + (A.120)

+ sw9 · (1 ≠ sw11 ) ·
∂ (αk, svc ≠ 180¶)

∂Vm

Since switches sw11 and sw12 corresponds to the controlled m-bus voltage magni-

tude variable, their differentiation in terms of Vm do not equal to zero. However, switches

as sw9 and sw10 corresponds to the thyristor firing-angle variable, their differentation in

terms of Vm are null:

∂sw9

∂Vm

= 0, (A.121)

∂sw10

∂Vm

= 0, (A.122)

∂sw11

∂Vm

= ≠slp · (1 ≠ sw11 ) · sw11 , (A.123)

∂sw12

∂Vm

= slp · (1 ≠ sw12 ) · sw12 . (A.124)

Therefore, Equations (A.118), (A.119) and (A.120) respectively results in:

∂A

∂Vm

= sw10 · [1 ≠ slp · (1 ≠ sw12 ) · sw12 ] · (αk, svc ≠ 90¶) (A.125)

∂B

∂Vm

= [≠slp · (1 ≠ sw11 ) · sw11 ] · (1 ≠ sw10 ) · (1 ≠ sw12 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

(A.126)

+ sw11 · (1 ≠ sw10 ) · [1 ≠ slp · (1 ≠ sw12 ) · sw12 ] ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

+ [slp · (1 ≠ sw12 ) · sw12 ] · (1 ≠ sw9 ) · (1 ≠ sw11 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

+ sw12 · (1 ≠ sw9 ) · [1 + slp · (1 ≠ sw11 ) · sw11 ] ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

+
#

sw11 · (1 ≠ sw10 ) · (1 ≠ sw12 ) + sw12 · (1 ≠ sw9 ) · (1 ≠ sw11 ) · · ·

+ (1 ≠ sw9 ) · (1 ≠ sw10 ) · (1 ≠ sw11 ) · (1 ≠ sw12 )
$

· 1
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∂C

∂Vm

= sw9 · [1 + slp · (1 ≠ sw11 ) · sw11 ] · (αk, svc ≠ 180¶) (A.127)

Therefore, by analyzing Equations (A.125) through (A.127), the control equation

differentiation in terms of Vm, svc is defined:

∂y

∂Vm

=
∂A

∂Vm

+
∂B

∂Vm

+
∂C

∂Vm

(A.128)

A.4.3 Differentiating the control equation in terms of αk, svc

The control equation (A.105) differentiation in terms of αk is given below:

∂y

∂αk

=
∂A

∂αk

+
∂B

∂αk

+
∂C

∂αk

”= 0. (A.129)

Applying the mathematical property (A.2) in (A.129) results in:

∂A

∂αk

=
∂sw10

∂αk

· (1 ≠ sw12 ) · (αk, svc ≠ 90¶) +

+ sw10 ·
∂ (1 ≠ sw12 )

∂αk

· (αk, svc ≠ 90¶) + (A.130)

+ sw10 · (1 ≠ sw12 ) ·
∂ (αk, svc ≠ 90¶)

∂αk

∂B

∂αk

=
∂

∂αk

·
Ë

sw11 · (1 ≠ sw10 ) · (1 ≠ sw12 ) + sw12 · (1 ≠ sw9 ) · (1 ≠ sw11 ) · · ·

(A.131)

+ (1 ≠ sw9 ) · (1 ≠ sw10 ) · (1 ≠ sw11 ) · (1 ≠ sw12 )
È

·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

∂C

∂αk

=
∂sw9

∂αk

· (1 ≠ sw11 ) · (αk, svc ≠ 180¶) +

+ sw9 ·
∂ (1 ≠ sw11 )

∂αk

· (αk, svc ≠ 180¶) + (A.132)

+ sw9 · (1 ≠ sw11 ) ·
∂ (αk, svc ≠ 180¶)

∂αk

Since switches sw9 and sw10 corresponds to the thyristor firing-angle variable,

their differentiation in terms of αk does not equals to zero. However, as switches sw11 and
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sw12 corresponds to the controlled m-bus voltage magnitude variable, their differentiation

in terms of αk are null:

∂sw9

∂αk

= ≠slp · (1 ≠ sw9 ) · sw9 , (A.133)

∂sw10

∂αk

= slp · (1 ≠ sw10 ) · sw10 , (A.134)

∂sw11

∂αk

= 0, (A.135)

∂sw12

∂αk

= 0. (A.136)

Therefore, Equations (A.130), (A.131) and (A.132) respectively results in:

∂A

∂αk

= [slp · (1 ≠ sw10 ) · sw10 ] · (1 ≠ sw12 ) · (αk, svc ≠ 90¶)+ (A.137)

+ sw10 · (1 ≠ sw12 ) · 1

∂B

∂αk

= sw11 · [1 ≠ slp · (1 ≠ sw10 ) · sw10 ] · (1 ≠ sw12 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

(A.138)

+ sw12 · [1 + slp · (1 ≠ sw9 ) · sw9 ] · (1 ≠ sw11 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

+ [1 + slp · (1 ≠ sw9 ) · sw9 ] · (1 ≠ sw10 ) · (1 ≠ sw11 ) · (1 ≠ sw12 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

+ (1 ≠ sw9 ) · [1 ≠ slp · (1 ≠ sw10 ) · sw10 ] · (1 ≠ sw11 ) · (1 ≠ sw12 ) ·
1

Vm, svc ≠ V ref
m, svc ≠ r · QGk, svc

2

+

+
#

sw11 · (1 ≠ sw10 ) · (1 ≠ sw12 ) + sw12 · (1 ≠ sw9 ) · (1 ≠ sw11 ) · · ·

+ (1 ≠ sw9 ) · (1 ≠ sw10 ) · (1 ≠ sw11 ) · (1 ≠ sw12 )
$

·

5

≠r ·
∂QGk, svc

∂αk

6

∂C

∂αk

= [≠slp · (1 ≠ sw9 ) · sw9 ] · (1 ≠ sw11 ) · (αk, svc ≠ 180¶)+ (A.139)

+ sw9 · (1 ≠ sw11 ) · 1

where, from Equations (2.23), (2.24) and (5.18):
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∂QGk, svc

∂αk

= V 2
k, svc ·

∂beq (αk, svc)

∂αk

= V 2
k, svc ·

C

2 ≠ 2 · cos (2 · αk, svc)

π · XL

D

(A.140)

Therefore, by analyzing Equations (A.137) through (A.139), the control equation

differentiation in terms of αk, svc is defined:

∂y

∂αk

=
∂A

∂αk

+
∂B

∂αk

+
∂C

∂αk

(A.141)

A.4.4 Differentiating the state equations in terms of αk, svc

Differentiating the PF state equations, which define each bus active and reactive

power injections value (P and Q), in terms of the new state variable αk, svc - which is

equivalent to αk - results in:

∂Pk

∂αk, svc

=
∂Pk

∂αk

=
∂

Ë

P cal
k ≠ (PGk

≠ PLk
)
È

∂αk

= 0 (A.142)

∂Pm

∂αk, svc

=
∂Pm

∂αk

=
∂

Ë

P cal
m ≠ (PGm

≠ PLm
)
È

∂αk

= 0 (A.143)

∂Qk

∂αk, svc

=
∂Qk

∂αk

=
∂

Ë

Qcal
k ≠ (QGk

≠ QLk
)
È

∂αk

= ≠V 2
k, svc

∂beq (αk, svc)

∂αk

(A.144)

∂Qm

∂αk, svc

=
∂Qm

∂αk

=
∂

Ë

Qcal
m ≠ (QGm

≠ QLm
)
È

∂αk

= 0 (A.145)

An additional differential term must also be considered in the Jacobian matrix.

This new differential term is the SVC reactive power generated (5.18) by it bus voltage

magnitude, and must be added to the pre-existing term:

∂Qk

∂Vk

=
∂Qk

∂Vk

+
∂

Ë

Qcal
k ≠ (QGk, svc ≠ QLk

)
È

∂Vk, svc

=
∂Qk

∂Vk

≠ [2 · Vk, svc · beq (αk, svc)] (A.146)
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A.4.5 Augmented Jacobian matrix

The augmented Jacobian matrix values detailed in Equation (5.22) are simplified

in (A.147). For the steady-state SPF-SVC thyristor firing-angle methodology, the new

differential terms are given in Equations (A.116), (A.128), (A.141), (A.144) and (A.146).
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APPENDIX B – THE CONTINUATION POWER FLOW

The CPF formulation considers the simulation of successive PF solutions. For each

PF simulation, an increase on the system’s overall load is implemented. This condition is

mathematically represented by (B.1), where the loading parameter variation variable λ is

incorporated into the traditional PF formulation equation.

f (θ, V , λ) = 0 (B.1)

On account of the loading parameter variable, the simulated MLP of a system’s

is labeled as λcrit, as shown in (B.2). Several techniques have already been proposed in

the literature with the goal of achieving a system’s MLP (AJJARAPU; CHRISTY, 1992;

CHIANG et al., 1995; MILANO, 2010). Nevertheless, for every proposed methodology, an

alteration on the system’s loading capacity and generation are considered (AJJARAPU;

CHRISTY, 1992). The active power demand and reactive power demand must vary in

accordance to the adopted loading parameter as stated by Equations (B.3a) and (B.4a),

respectively. Notice that (B.3b) and (B.4b) are simplifications of (B.3a) and (B.4a),

respectively.

0 Æ λ Æ λcrit (B.2)

PLk
= P 0

Lk
+ λ · (γk · SB · cosφk) (B.3a) PLk

= P 0
Lk

· (1 + λ) (B.3b)

QLk
= Q0

Lk
+ λ · (γk · SB · sinφk) (B.4a) QLk

= Q0
Lk

· (1 + λ) (B.4b)

An additional variation on the active power generation variable can also be consid-

ered, as shown by (B.5). This is due the understanding of how PV-type buses can actively

participate in the active power generation balance together with the Slack bus. Notice a

non necessity of reactive generation variable variation once PV and Slack buses already

participate in the reactive power generation balance.

PGk
= P 0

Gk
·

1

1 + βk · ∆P
sys
L, λ

2

(B.5)

Despite the different techniques, the CPF methodology main implementation

objective is to analyze a given system’s stable and unstable behavior. The stable behavior,

or stability region of a CPF simulation, is defined by the variation of the loading parameter
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until the critical value, or voltage collapse, is reached. On the other hand, the unstable

behavior, or instability region of a CPF simulation, is defined by the simulation of a

system’s behavior after the MLP is reached.

Considering that the CPF implementation defines the voltage stability of a given

electrical power system, it is important to understand how buses’ voltage magnitude varies

while load increments. A general illustration of a PV-curve, "nose" curve or a bus voltage

magnitude variation in terms of loading parameter variation is shown in Figure 61.

Figure 61 – The well-known continuation power flow PV-curve.
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Source: Adapted from (AJJARAPU; CHRISTY, 1992; CORSI; TARANTO,
2007; CHIANG et al., 1995).

In the ideal example illustrated by Figure 61 the stability region, instability region

and MLP are well defined. Considering the stability region, an important characteristic

related to a system’s VSM can be made. The VSM is defined by the loading parameter

variation until the system’s collapses, being very useful on expansion planning problems

and VSA.

The CPF is of great importance for power flow studies and VSA. It is known that

different electrical power system’s possess different behaviors (CORSI; TARANTO, 2007).

Therefore, for correct simulation it is crucial to have a well implemented CPF algorithm.

In the Section B.1 will be detailed the Prediction-Correction methodology proposed

by Ajjarapu and Christy (1992), which was implemented in the Python program developed

in this research.
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B.1 THE PREDICTION-CORRECTION METHODOLOGY

The main methodology by which the CPF is based on consists in prediction and

correction steps, as illustrated in Figure 62 (AJJARAPU; CHRISTY, 1992). The CPF

initiates with the PF solution for the base case, which is interpreted as the first correction

step, followed by a sequence of prediction and correction steps.

Figure 62 – Predicton-Correction methodology implemented in the continuation power
flow.
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The prediction step consists on finding a solution tangent to the previously solved

and converged PF system, considering an increment on the loading parameter λ. This is

accomplished by differentiating the power flow system of equations (B.1):

∂ [f (θ, V , λ)] = f θ · ∆θ + f V · ∆V + f λ · ∆λ = 0. (B.6)

On account of the loading parameter, which is considered as a new state variable,

a new control equation must be linearized and incorporated into the system of nonlinear

equations. During the prediction step, the Jacobian matrix is then reconfigured as

following:

S

W

W

W

U

JP θ JP V JP λ

JQθ JQV JQλ

JYλθ JYλV JYλλ

T

X

X

X

V

·

S

W

W

W

U

∆θ

∆V

∆λ

T

X

X

X

V

pred

=

S

W

W

W

U

0

0

λstep

T

X

X

X

V

pred

(B.7)
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The Equation (B.7) is a simplification of (B.6), considering λstep as the loading

parameter step variation. Notice in (B.7) the active power and reactive power residues

are null in the column-matrix of state variables vectors. This condition is set during the

predicition step so as to find solution for the nonlinear system of equations in terms only of

the loading parameter step variable. The solution of (B.7) results in the tangent vector t.

The tangent vector will then be added to the previously solved and converged PF solution,

in order to find the prediction solution.

t =

S

W

W

W

U

∆θ

∆V

∆λ

T

X

X

X

V

pred

=

S

W

W

W

U

0

0

λstep

T

X

X

X

V

pred

·

S

W

W

W

U

JP θ JP V JP λ

JQθ JQV JQλ

JYλθ JYλV JYλλ

T

X

X

X

V

≠1

(B.8)
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+

S
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U

∆θ

∆V
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T

X

X

X

V

pred

(B.9)

In succession, the correction step takes the prediction step point as an initiation

value for the PF solution. The system of nonlinear equations to be solved is similar

to Equation (B.7). In the correction step, however, notice in (B.10) that the loading

parameter residue is null in the column-matrix of state variables vectors. This condition is

set so as to “corrects” the solution point for the given loading parameter increment via

Newton-Raphson PF method.

S

W

W

W

U

JP θ JP V JP λ

JQθ JQV JQλ

JYλθ JYλV JYλλ

T

X

X

X

V

·

S

W

W

W

U

∆θ

∆V

∆λ

T

X

X

X

V

corr

=

S

W

W

W

U

∆P

∆Q

0

T

X

X

X

V

corr

(B.10)

The sequence of prediction-correction steps are set to continue throughout the

CPF simulation process. If any correction step results in a divergent solution, the loading

parameter step λstep must decrease in value and the prediction-correction step must

continue with convergent solutions. The variable λstep is set to decrease in value until a

tolerance value ελ condition is met. Once this condition is reached, the λcrit as well as the

system’s voltage stability are then determined. In order to trace the instability region of

the PV-curve, λstep sign must be negative in the prediction step.

In conclusion, the Jacobian matrix must be augmented during the prediction-

correction steps. As an advantage, the additional submatrixes do not alter throughout the

CPF simulation process, except the JYλλ which is an scalar equal 1 during the prediction

step or an scalar equal to 0 during the correction step.
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JP λ = P 0
L (B.11) JQλ = Q0

L (B.12)

JYλθ = 0T (B.13) JYλV = 0T (B.14)

Jpred
Yλλ = [1] (B.15) Jcorr

Yλλ = [0] (B.16)

B.1.1 Observations

In the previous section, Equations (B.7) and (B.10) consider λ as the continuation

parameter. However, other parameters can also be adopted as the continuation parameter,

such as bus voltage magnitude. For each continuation parameter adopted, modifications

on Jacobian matrix must occur in accordance.

An modification on the continuation parameter can take place during the CPF, in

order to adopt the parameter which present a higher rate of variation. At early stages

of the CPF simulation the continuation parameter adopted can be λ, since the loading

parameter is the variable which presents the higher rates of variation. However, as the curve

simulation approximates to the critical point, the continuation parameter can alter from

λ to the bus with highest rate of voltage magnitude variation (AJJARAPU; CHRISTY,

1992; FERRAZ, 1998).

Additionally, some considerations upon Equation (B.7) step parameter λstep sign

must be clear in order to fully simulate the CPF curve. While the prediction-correction

steps are simulated in a power system’s stability operational region, the λstep sign must be

positive. This indicates an increase in the loading parameter value. After the critical point

is found, the prediction-correction steps are set to simulate a power system’s instability

operational region. Therefore, the λstep sign must be negative, indicating a decrease in the

loading parameter value.

In conclusion, in the correction step highlighted by Equation (B.10), the loading

parameter value must not vary. For this reason, therefore, the loading parameter variation

∆λ is null. Nevertheless, in order to avoid Jacobian matrix singularity closer to the critical

operational point, the augmented row and column must be maintained (FERRAZ, 1998).

B.2 IMPLEMENTATION AND VALIDATION

The Prediction-Correction CPF algorithm was implemented in the Python program

developed in this research. Simulations were held on the IEEE 14 bus system and, with the

intent of validation, the results obtained via Python program are compared with CEPEL’s

production-grade software results.

No modification was applied in the IEEE 14 bus system, by which bus data and



154

line data are given in Christie (1999), and topology is illustrated in Figure 63. Altogether,

the following three CPF scenarios were simulated: (i) base case with increase in load; (ii)

base case with increase in load and considering reactive power generation limits; and (iii)

base case with increase in load and with proportional increase in active power generation.

From Figure 64 to 68 only the stable portion of the "nose" curve is displayed. The reason

for this is to analyze how the electrical power system behaves with load increments until

the MLP is reached.

Figure 63 – Tutorial system II topology.
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In all cases analyzed and hereafter illustrated, buses 10, 13 and 14 possessed the

worst voltage magnitude profile and, therefore, their voltage profile are shown in Figures

64, 65 and 67. Additionally, Figures 66 and 68 presents the behavior of reactive power

generation and active power generation due to load parameter increment, respectively.

Since Generators located at bus 3, 6 and 8 behave as Synchronous Condensers, their active

power generation during CPF remains null. Hence, in Figure 68, only the active power

generation of Generators located at bus 1 and 2 vary during simulation.

As it can be observed, the Python program developed successfully and correctly

simulated the proposed IEEE 14 bus system scenarios. All simulations were validated via

CEPEL’s reference software, considering the PQ constant load model.

In Figure 64, the critical loading parameter variable value was λcrit = 3.0067. The

IEEE 14 bus system was able to achieve high load parameter increments because no control

limits were adopted on the Generators. Once the reactive power generation limits started
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Figure 64 – Case (i): Voltage magnitude variation per load parameter increment.
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Figure 65 – Case (ii): Voltage magnitude variation per load parameter increment, consid-
ering reactive power control limits.
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to be controlled, in Figures 65 and 66, the loading parameter variable reached critical

value at λcrit = 0.7651. In conclusion, Figures 67 and 68 simulations reached a λcrit = 3.15

considering no control adoptions and proportional increase in active power generation.
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Figure 66 – Case (ii): Reactive power generation variation per load parameter increment,
considering reactive power limits control.
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Source: Elaborated by the author.

Figure 67 – Case (iii): Voltage magnitude variation per load parameter increment, consid-
ering proportional increase in active power generation.
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The different λcrit values obtained via Python simulation are in line with the

proposed analyzed cases.
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Figure 68 – Case (iii): Active power generation variation per load parameter increment,
considering proportional increase in active power generation.
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APPENDIX C – Eigenproperties of the Jacobian matrix

The following sections presents the eigenproperties necessary for evaluating voltage

stability impacts on EPSs via modal analysis. The information detailed hereinafter were

mainly obtained from (GAO; MORISON; KUNDUR, 1992; KUNDUR, 1994; TAYLOR,

1994; PASSOS FILHO, 2005).

C.1 EIGENVALUES

The eigenvalues of a matrix are defined as the values of the scalar parameter λeig

for which there exist non-trivial solutions other than φ = 0 to the equation

A · φ = λeig · φ (C.1)

where A is a NxN matrix and φ is a Nx1 vector.

The N eigenvalues corresponding to matrix A
1

λ
eig
1 , λ

eig
2 , . . . , λ

eig
N

2

are determined

by the solution of the characteristic equation:

det
1

A ≠ λeig · I
2

= 0 (C.2)

C.1.1 Eigenvalues and stability

The eigenvalues that derive from the characteristic equation solution may be real

or complex. In case of A matrix is real, then the complex eigenvalues always occur in

conjugate pairs. On the other hand, in case of A matrix is real and symmetrical, all

eigenvalues and eigenvectors will be real.

In dynamic analysis of EPSs, the stability of a system can be determined by the

eigenvalues. A real eigenvalue is correlated to a non-oscillatory mode, with a negative

and real eigenvalue representing a decaying mode whereas a positive and real eigenvalue

representing an aperiodic instability.

A complex eigenvalue always occur in conjugate pairs and each pair corresponds to

an oscillatory mode. The real component corresponds to the damping and the imaginary

component corresponds to the frequency of oscillation. For the real component in complex

eigenvalues, the previous analysis stands.

C.1.2 Eigenvalue sensitivity

Let the N -column vector φi be the right eigenvector of A associated with the

eigenvalue λ
eig
i , as follows
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A · φi = λ
eig
i · φi (C.3)

Differentiating with respect to the element of A in the kth row and jth column

(akj):

∂ A

∂ akj

· φi + A ·
∂ φi

∂ akj

=
∂ λ

eig
i

∂ akj

· φi + λ
eig
i ·

∂ φi

∂ akj

(C.4)

Premultiplying (C.4) by ψi results in:

ψi ·
∂ A

∂ akj

· φi =
∂ λ

eig
i

∂ akj

(C.5)

Considering that all elements of ∂ A
∂ akj

are zero, except for element in the kth row

and jth column, the sensitivity of the eigenvalue λ
eig
i to the element akj is given by the

product of the left eigenvector element and the right eigenvector element as follows:

∂ λ
eig
i

∂ akj

= ψik · φji (C.6)

C.2 EIGENVECTORS

The column vector φi that is solution for (C.1) is defined as the right eigenvector

of matrix A associated with the eigenvalue λ
eig
i :

A · φi = λ
eig
i · φi i = 1, 2, . . . , N (C.7)

where:

φi =

S

W

W

W

W

W

W

U

φ1i

φ2i

...

φNi

T

X

X

X

X

X

X

V

(C.8)

and also, the matrix of right eigenvectors is defined as:

φ = [φ1 φ2 . . . φN ] (C.9)
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Similarly to the right eigenvector definition, the left eigenvector is also defined. It

is a 1xN row vector that satisfies (C.10), associated with the eigenvalue λ
eig
i :

ψi · A = ψi · λ
eig
i (C.10)

where:

ψi = [ψi1 ψi2 . . . ψiN ] (C.11)

and also, the matrix of left eigenvectors is defined as

ψ =

S

W

W

W

W

W

W

U

ψ1

ψ2

...

ψN

T

X

X

X

X

X

X

V

(C.12)

The product of left and right eigenvectors associated with different eigenvalues are

orthogonal:

ψj · φi = 0 (C.13)

As for the product of left and right eigenvectors associated with the same eigenvalues,

it results in a non-zero real or complex constant Ci.

ψi · φi = Ci (C.14)

The normalization of left and right eigenvectors are commonly considered for

different applications and results in:

ψi · φi = 1 (C.15)

C.3 MODAL MATRICES

Let Λ be defined as a NxN diagonal matrix, that has the eigenvalues of A
1

λ
eig
1 , λ

eig
2 , . . . , λ

eig
N

2

as diagonal terms:
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Λ =

S

W

W

W

W

W

W

U

λ
eig
1 0 . . . 0

0 λ
eig
2 . . . 0

...
...

. . .
...

0 0 . . . λ
eig
N

T

X

X

X

X

X

X

V

(C.16)

From Equations (C.7) and (C.15), the following relationship between matrices A

and Λ, and vectors φ and ψ can be inferred:

A · φ = φ · Λ (C.17)

ψ · φ = I (C.18)

ψ = φ−1 (C.19)

Based on (C.18), the relationship between matrices A and Λ can be redefined as:

ψ · A · φ = Λ (C.20)

C.3.0.1 Eigenproperties example

Consider the system of linear equations in (C.21).

A · x = b (C.21)

where A is a matrix that contains the corresponding linear equations coefficients, x is a

vector that contains the corresponding linear equations variables and b is a vector that

contains the corresponding linear equations independent terms.

Manipulating the vector of linear equations variables in order to eliminate the

linkage between variables results in:

φ · x̂ = x (C.22)

The same may be considered for the vector of independent terms:
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φ · b̂ = b (C.23)

Replacing Equations (C.22) and (C.23) in (C.21) results in:

A · φ · x̂ = φ · b̂ (C.24)

which can be simplified, considering the relationship between A and Λ from (C.20), as

follows:

ψ · A · φ · x̂ = b̂ (C.25)

Λ · x̂ = b̂ (C.26)

From (C.25), the linkage between variables in each linear equation of the system

of equations is eliminated. This condition improves the analysis for a system of linear

equations, and is widely applied in electrical power system studies.

C.3.1 Mode-shape

Based on the aforementioned example, in (C.22) the right eigenvector is character-

ized for giving the system of equations mode-shape. “The degreee of activity of the state

variable xk in the ith mode is given by the element φik” (KUNDUR, 1994). Similarly, the

left eigenvector is characterized for identifying which combination of the original variables

displays only the ith mode.

The mode-shape is, therefore, a graphical visualization of the manitude and angles

of the right eigenvector elements φik. The magnitudes of the elements gives the extents of

the activities of the N variables in the ith mode and the angles gives phase displacement

of the variables with regard to the mode (KUNDUR, 1994).

C.3.2 Participation factor

The participation factor combines the informations in the left eigenvector ψ with

the ones in the right eigenvector φ, in order to obtain the relationship between eigenvalues

and the vector of variables of the system of equations. The goal is to calculate the

participation of a given state k for a given mode i.

P =
Ë

p1 p2 . . . pN

È

(C.27)
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pi =

S

W

W

W

W

W

W

U

p1i

p2i

...

pNi

T

X

X

X

X

X

X

V

=

S

W

W

W

W

W

W

U

φ1i · ψi1

φ2i · ψi2

...

φNi · ψiN

T

X

X

X

X

X

X

V

(C.28)

The element pki is named as the participation factor (KUNDUR, 1994; PÉREZ-

ARRIAGA; VERGHESE; SCHWEPPE, 1982), which is an dimensionless term. It is a

sensibility measurement for the eigenvalue λi to the diagonal element akk of the A matrix,

also defined as follows:

pki =
∂ λ

eig
i

∂ akk

(C.29)

The participation factor indicates the relative participations of the respective states

of matrix A in the corresponding modes.
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