
UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Wellingston Cataldo Roberti Junior

U-DiVE: Design and Evaluation of a Distributed Photorealistic

Virtual Reality Environment

Juiz de Fora

2021

Wellingston Cataldo Roberti Junior

U-DiVE: Design and Evaluation of a Distributed Photorealistic

Virtual Reality Environment

Dissertação apresentada ao Programa de Pós-
Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universidade
Federal de Juiz de Fora como requisito parcial
à obtenção do título de Mestre em Ciência
da Computação.

Orientador: Dr. Marcelo Ferreira Moreno

Coorientador: Dr. Rodrigo Luis de Souza da Silva

Juiz de Fora

2021

Ficha catalográfica elaborada através do Modelo Latex do CDC da UFJF

com os dados fornecidos pelo(a) autor(a)

Cataldo Roberti Junior, Wellingston.
U-DiVE : Design and Evaluation of a Distributed Photorealistic

Virtual Reality Environment / Wellingston Cataldo Roberti Junior. – 2021.
51 f. : il.

Orientador: Marcelo Ferreira Moreno
Coorientador: Rodrigo Luis de Souza da Silva
Dissertação (Mestrado) – Universidade Federal de Juiz de Fora, Instituto

de Ciências Exatas. Programa de Pós-Graduação em Ciência da Computa-
ção, 2021.

1. Photorealism. 2. Virtual reality. 3. Streaming. I. Ferreira Moreno,
Marcelo, orient. II. Luis de Souza da Silva, Rodrigo III. Título.

PROPP 01.5: Termo de Aprovação COORD-PPG-CIÊNCIA-COMPUTAÇÃO 0647530 SEI 23071.901252/2022-24 / pg. 1

PROPP 01.5: Termo de Aprovação COORD-PPG-CIÊNCIA-COMPUTAÇÃO 0647530 SEI 23071.901252/2022-24 / pg. 2

Dedico este trabalho a quem colaborou diretamente

comigo: meus orientadores e professores, sem os quais

eu não teria concluído este projeto.

AGRADECIMENTOS

Agradeço aos meus orientadores, Marcelo e Rodrigo, pela paciência e ensinamentos

durante todo o processo do mestrado.

Agradeço a minha família pelo sustento e amigos pelos tempos de descontração.

Agradeço a minha namorada que me ajudou a manter confiante e persistente

durante todo o curso.

“Remember the two benefits of failure. First, if you do fail, you
learn what doesn’t work; and second, the failure gives you the
opportunity to try a new approach.” (Roger Von Oech)

RESUMO

Esta dissertação apresenta um framework que permite que dispositivos de baixo

custo visualizem e interajam com cenas fotorrealísticas. Para realizar essa tarefa, o

framework faz uso do pipeline de renderização de alta definição do Unity, que tem um

algoritmo de rastreamento de raio proprietário, e o pacote de streaming do Unity, que

permite o streaming de um aplicativo em seu editor. O framework permite a composição

de uma cena realista usando um algoritmo de Ray Tracing, e uma câmera de realidade

virtual com shaders de barril, para corrigir a distorção da lente necessária para usar um

cardboard de baixo custo. Inclui também um método para coletar a orientação espacial

do dispositivo móvel por meio de um navegador Web para controlar a visão do usuário,

entregue via WebRTC. O framework proposto pode produzir ambientes de baixa latência,

realistas e imersivos para serem acessados por meio de HMDs e dispositivos móveis de

baixo custo. Para avaliar a estrutura, este trabalho considera a verificação da taxa de

quadros alcançada pelo servidor e pelo dispositivo móvel, que deve ser superior a 30 FPS

para uma experiência fluida. Além disso, discute se a qualidade geral da experiência é

aceitável, ao avaliar o atraso da entrega das imagens desde o servidor até o dispositivo

móvel, em face da movimentação do usuário. Nossos testes mostraram que o framework

atinge uma latência média em torno dos 177 (ms) com equipamentos wi-fi de uso doméstico

e uma variação máxima das latências igual a 77.9 (ms), entre as 8 cenas testadas.

Palavras-chave: Fotorealismo. Realidade virtual. Ray Tracing. Streaming. Dispositivos

de baixo custo.

ABSTRACT

This dissertation presents a framework that allows low-cost devices to visualize and

interact with photorealistic scenes. To accomplish this task, the framework makes use of

Unity’s high-definition rendering pipeline, which has a proprietary Ray Tracing algorithm,

and Unity’s streaming package, which allows an application to be streamed within its

editor. The framework allows the composition of a realistic scene using a Ray Tracing

algorithm, and a virtual reality camera with barrel shaders, to correct the lens distortion

needed for the use on an inexpensive cardboard. It also includes a method to collect

the mobile device’s spatial orientation through a web browser to control the user’s view,

delivered via WebRTC. The proposed framework can produce low-latency, realistic and

immersive environments to be accessed through low-cost HMDs and mobile devices. To

evaluate the structure, this work includes the verification of the frame rate achieved by the

server and mobile device, which should be higher than 30 FPS for a smooth experience. In

addition, it discusses whether the overall quality of experience is acceptable by evaluating

the delay of image delivery from the server up to the mobile device, in face of user’s

movement. Our tests showed that the framework reaches a mean latency around 177 (ms)

with household Wi-Fi equipment and a maximum latency variation of 77.9 (ms), among

the 8 scenes tested.

Keywords: Photorealism. Virtual reality. Ray tracing. Streaming. Low-cost devices.

LISTA DE ILUSTRAÇÕES

Figure 1 - Framework overview. 16

Figure 2 - Scene of the VRun App (1) . 17

Figure 3 - Lee et al’s (2) Stereoscopic rendering with test scenes: Teapot (15K triangles),

Chess (42K), BMW (55K), Chemical Lab. (98K), Music box (106K), and

Provence (600K). Yellow pixels indicate bad pixels. (2) 18

Figure 4 - Lee et al’s tested scenes for real-time ray tracing (3) 19

Figure 5 - Scenes used in Godoy and Teixeira’s experiments (4) 19

Figure 6 - Interactive VR gaming arcade with mmWave APs and edge computing network

architecture (5) . 20

Figure 7 - Ahmadi et al’s architecture of a mobile network for a VR tiled multicast

streaming (6) . 21

Figure 8 - VR communications with edge and cloud servers as proposed by Salehi et al.

(7) . 22

Figure 9 - Embedding non-browser applications via WebRTC screen share functionality in

TogetherVR (8) . 22

Figure 10 - The tablet with augmented virtual objects with consistent illumination as

proposed by Rohmer et al. (9) . 23

Figure 11 - 16 user streams in a VRComm Virtual Experience (left) and RGBD user

transmission of RGB-part (middle) and depth-part (right) (10) 24

Figure 12 - Prototypes’ results for global illumination effects for Augmented Reality on

mobile phones, proposed by Csongei et al. (11) 24

Figure 13 - AR scene illuminated with ARKit (left) and GLEAM (right) illumination

estimation, along with reflected environment in light probe (inset) (12) 25

Figure 14 - Visual representation of Ray Tracing 28

Figure 15 - U-DiVE’s pipeline components. 32

Figure 16 - Render Streaming overview . 35

Figure 17 - Global Illumination configuration inside Unity 35

Figure 18 - Pincushion distortion generated when using lenses. 36

Figure 19 - Resulting image generated compensating the Pincushion distortion using Barrel

distortion. 36

Figure 20 - Stereo image generated through the modified media stream function. . . 37

Figure 21 - Grid scene without Ray Tracing. 40

Figure 22 - Scenes without Ray Tracing on the left and with Ray Tracing on the right. 41

Figure 23 - Test scene and its details. In 23a and 23b we have the full image in two

different points of view, 23c the corner chair with the highlighted shadows,

23d aquarium with refractions and shadows, 23e mirror reflecting parts of the

scene containing reflections, refractions, and shadows and 23f the corner sofa

which has hard shadows, soft shadows, and reflections on the glass wall. 42

Figure 24 - Cornell box. 43

Figure 25 - Image including all reflection, refraction and shadow elements discussed. 43

Figure 26 - Mobile device being recorded with repeated and constant movements. . 44

Figure 27 - Line Chart of Table 2. Each labeled column corresponds to a test of each

scene and each row represents the value obtained in these tests. 46

LISTA DE TABELAS

Tabela 1 – Comparison of our requirements with related work. 26

Tabela 2 – Latency comparison table. 45

LISTA DE ABREVIATURAS E SIGLAS

AR Augmented Reality

HMD Head-mounted Display

FPS Frames Per Second

CE Consumer Electronics

QoE Quality of Experience

IPTV Internet Protocol Television

P2P Peer to peer

RTP Real-Time Transport Protocol

UDP User Datagram Protocol

CDN Content Delivery Network

HTTP Hypertext Transfer Protocol

NAT Network Address Translator

SDP Session Description Protocol

ICE Interactive Connectivity Establishment

HDRP High Definition Render Pipeline

DXR DirectX Ray Tracing

VR Virtual Reality

SUMÁRIO

1 INTRODUCTION . 14

1.1 PROBLEM DEFINITION . 15

1.2 OBJECTIVES . 16

1.3 OUTLINE . 16

2 RELATED WORK . 17

2.1 RELATED FRAMEWORKS . 23

3 THEORETICAL FOUNDATION 27

3.1 PHOTOREALISM . 27

3.2 MEDIA STREAMING . 28

3.3 LATENCY MEASUREMENT . 30

4 U-DiVE FRAMEWORK . 32

4.1 DEVELOPMENT . 34

4.2 USAGE SCENARIO . 38

5 EVALUATION . 39

5.1 RECORDING AND DEVICES SETUP 39

5.2 SCENES AND VISUAL RESULTS . 39

5.3 TEST RESULTS AND DISCUSSIONS 41

6 CONCLUSIONS AND FUTURE WORK 47

REFERÊNCIAS . 49

14

1 INTRODUCTION

Virtual reality is a branch of computer graphics defined by an experience in which a

user is effectively immersed in a responsive virtual world (13). Virtual reality applications

need to be stable so that the user does not lose the feeling of being in a virtual world. Four

technologies are crucial for immersive virtual reality: an immersive display, rendering at

least 20 frames per second (FPS), a tracking system that continuously reports the user’s

position and orientation, and a realistic environment (13).

There are several virtual reality displays on the market; these are known as HMD

(Head-mounted display). Some technologies embedded in expensive HMDs, responsible for

presenting and interacting with the virtual world, may be replaced by smartphones and

take advantage of their sensors, creating an affordable option.

The main sensors used on smartphones to represent and interact with virtual

worlds are accelerometer and gyroscope. The accelerometer is capable of measuring the

acceleration of a body in relation to gravity, in other words, it is capable of measuring the

acceleration exerted on an object in which it is embedded. The gyroscope does not have a

different functionality, it is a sensor that uses the force of gravity to indicate the position

of an object in space, which can identify whether the object rotates on its own axis or

whether it is pointing towards up or down.

However, mobile devices still have a limited graphical processing capacity, which

means that many applications cannot be rendered with a stable temporal resolution (frame

rate) (3). For example, real-time photorealistic VR rendering (3) is currently unfeasible to

be processed in mobile devices.

Photorealism is a realistic representation of computer images that, in addition to

geometry, accurately simulate the physics of materials and light (14). These produced

images may be indistinguishable from a photograph taken from the real world. To achieve

photorealism, it is necessary to use some methods to render the scene like Ray Tracing

and Path Tracing. These methods perform calculations based on camera position, object

position, and light source, which may be direct, bounced, reflected and refracted. These

methods use similar techniques, by shooting a ray from the camera’s position, passing

through the pixel mesh and hitting an object. When reaching a point on the object, a

color calculation is performed considering the strength of the light exerted.

Streaming techniques can be combined with virtual reality to create a stable

and immersive photorealistic environment for low-cost devices. Streaming is a form of

continuous media delivery, commonly supported by well-known standardized protocols.

Instead of a complete and previous transfer of the whole media content to the client

application, streaming techniques usually deliver the content continuously, while it is being

presented to the end user. Streaming may be even a requirement for some applications,

15

due to the amount of media data to be transferred or the real-time characteristics of the

media itself (15). In this work we separate virtual reality processing and rendering from

its visualization and interaction, using real-time streaming with interactive control of the

virtual reality camera.

Unity is a game engine that supports 3D scene streaming, photorealism based

on methods such as Ray Tracing and Path Tracing, and virtual reality environment.

Unity provides a package, called Unity Render Streaming, still in alpha state, capable

of transmitting, in real time, the image of a camera from inside the engine to a web

browser. This package is built around Unity’s new rendering pipeline. The new pipeline,

called HDRP, has built-in Ray Tracing and Path Tracing algorithms with configurable

parameters. Although the mobile virtual reality package no longer has support for the

latest versions, it still has the features so that a virtual reality camera and its features

can be built. With these tools it is possible to create a photorealistic scene that can be

presented on a low-cost device and that makes Unity a great choice to use in this work.

1.1 PROBLEM DEFINITION

Photorealism algorithms were introduced in the previous century (16), but only in

the last few years and with video cards evolution it was possible to create and execute

complex and detailed scenes. To mobile devices, photorealism is still too far to execute

with the required quality and fluidity.

Besides the lack of graphics processing power of mobile devices in general, another

problem is the cost for building a computer with enough power to execute photorealism.

If a powerful computer is on the server side, which can belong to a third party, we can

reduce the cost to the client side.

To make photorealism applications more popular, while providing the desirable

quality of experience, a solution may gather the best features of computers and mobile

devices together. By decoupling the intensive processing tasks of photorealism from the

scene presentation environment, a client-server approach becomes viable and capable of

bringing more users with their affordable mobile devices.

Our work discusses the possibility of creating a framework capable of executing

photorealistic virtual reality environments involving low-cost devices. To build this

framework a streaming-based system can be used as an intermediary technology between

a server with powerful hardware and a client with a low-cost mobile device. Thus, client

and server may exchange information such as user orientation and video rendered scenes.

16

1.2 OBJECTIVES

The main objective of this work is to propose a framework, which allows low-cost

devices to present complex scenes with a high level of realism, and a quantitative analysis

to assess its latency. In this framework, we take advantage of streaming to make all the

expensive processing on the server-side, and the mobile device executes the video stream

player and sends the user’s head orientation back to the server (Figure 1).

Figure 1 - Framework overview.

As a secondary objective, we intend to evaluate the framework. We divided the

evaluation tests into two points of analysis: (i) checking if the frame rate reached by both

server and mobile device is greater than 30 FPS for a fluid experience, and (ii) check the

delay of images and user movement between the server and the mobile device.

1.3 OUTLINE

The reminder of this work is structured as follows. In Chapter 2, we present

related work. Chapter 3 describes a theoretical background concerning photorealism and

streaming. Chapter 4 presents the development of the framework. In Chapter 5, we show

the analysis of the results, and discussions are detailed. Finally, Chapter 6 presents the

conclusions and future work.

17

2 RELATED WORK

In this work, we present a novel framework that combines three main aspects:

virtual reality content consumption through low-cost mobile devices, immersive media

streaming from a server to the mobile device, and photorealistic VR rendering in real-time.

This section describes some relevant works concerning these aspects in recent years.

Virtual Reality has become more accessible since the development of mobile-based

Virtual Reality headsets similar to Google Cardboard (17). Despite their hardware

limitations regarding frame rate and resolution, Papachristos et al. showed in (18) that

these headsets can deliver a satisfactory immersive experience with a lower cost compared

with traditional head-mounted displays.

Yoo and Kay presented in (1) an example of VR application for smartphones,

the exergame VRun, as shown in Figure 2. They developed the game in Unity 5 game

engine with the Google Cardboard SDK and tested it on the HTC One smartphone with

low-cost cardboard. In the game, the player runs from a start zone to a finish line dodging

from obstacles that are thrown in his way, like fire arrows and blobs. The player has a

first-person view of the virtual world. To walk or run inside it, the player walks or runs in

place in the real world. Through data capture of the smartphone’s accelerometer sensor,

the game detects walk-in-place and maps this to walk in the virtual world. The graphics

are simple, in a cartoon style, without photorealistic effects.

Figure 2 - Scene of the VRun App (1)

In (19), He et al. present the Rubiks, a framework for streaming 360◦ videos

for smartphones that is suitable for streaming videos or VR content. It consists of a

server running on a laptop and an Android app on a smartphone. The app captures the

orientation of the smartphone from its sensors and sends it to the server. The server

splits the video spatially into tiles and temporally into layers. Consequently, it is possible

to encode and send video portions with a high probability of viewing, in high quality,

while encoding and sending the remaining with low quality. The server uses orientation

18

data from the smartphone to calculate the field of view and determine the portion with a

higher probability of viewing. In their proposal, it is necessary to decode the video on the

smartphone. However, the authors encourage the streaming of all tiles to avoid missing

parts on the screen, resulting in orientation estimating errors and high network bandwidth

consumption.

One of the main techniques to achieve photorealism in computer graphics is the

Ray Tracing algorithm. However, it has a high computational cost. In recent years,

hardware evolution has enabled its use on VR applications. Lee et al. present in (2)

a stereoscopic rendering technique based on mobile Ray Tracing GPU. Their proposal

focuses on Samsung GPU based on Ray Tracing (SGRT), and its main contribution is

the use of reprojection and tile-based Ray Tracing. Reprojection exploits the coherence

between the left and right images, so it uses the ray-objects intersection from the left

image to avoid a full Ray Tracing on the right image. The tile-based Ray Tracing allows

storing the entire G-buffer into the on-chip memory, considerably reducing the number

of accesses to the external DRAM during reprojection and reusing computations. As a

result, their solution improves performance and energy efficiency, though being proposed

for specific mobile hardware. Their stereoscopic rendering results are shown in Figure 3.

Figure 3 - Lee et al’s (2) Stereoscopic rendering with test scenes: Teapot (15K triangles),
Chess (42K), BMW (55K), Chemical Lab. (98K), Music box (106K), and Provence (600K).
Yellow pixels indicate bad pixels. (2)

Authors in (3) propose an architecture that considers Ray Tracing algorithms being

executed on future mobile devices. However, no real mobile device was used in their

experiments. Although they achieved interesting results, they did not use sophisticated

algorithms for their tests, showing that mobile devices still do not support the latest

algorithms of Ray Tracing with stable frame rate. The tested scenes are shown in Figure

4.

The idea of remote computing to enable photorealism on mobile devices is not new.

Godoy and Teixeira (4) proposes an architecture to promote the use of mobile devices,

named as CE (Consumer Electronics), in interactions with remotely synthesized media.

19

Figure 4 - Lee et al’s tested scenes for real-time ray tracing (3)

They build a proof of concept with two types of media, a virtual architectonic model

as a more latency tolerant, and a game demo based on the Unreal Engine SDK as less

latency tolerant, illustrated in Figure 5. They did not present details about rendering

techniques and algorithms involved, neither its computational cost. The focus was more

on transmission issues. In their work, it was possible to conclude that latency did not

significantly spoil the interaction with neither of the media types.

Figure 5 - Scenes used in Godoy and Teixeira’s experiments (4)

The authors in (20) presented methods for handling multiple data streams with

different latency values associated with each other in a working Augmented Reality (AR)

system. These methods are applied to an AR system for real-time ultrasound visualization

and demonstrate improved registration and visualization. The first method is a technique

to reduce relative latency, adjusting the moment of sampling the incoming data stream. A

compromise that does not increase maximum latency to decrease relative latency is the just-

in-time acquisition of the data while interleaving computation with the data acquisition.

The second method is storing multiple readings and either interpolating or extrapolating

these readings to simulate new readings. The work measured the latency differences,

time-stamp on-host, adjust the moment of sampling, and interpolate or extrapolate data

streams. The visual tests show that the real-world camera video is the lowest latency

stream. For the external device trackers, it is determined relative latency by rendering a

model in the tracker’s coordinate system that should be aligned with the real-world object.

The authors also measured the latency of the camera to the real world. To do this, a LED

blinking at a rate of 5Hz is used as a trigger for an oscilloscope.

20

MmWave communication, edge computing, and proactive caching can be a solu-

tion to achieve an interconnected VR/AR determined by smooth and reliable service,

minimal latency, and seamless support of different network deployments and application

requirements. In (5) to generate a real-like view, a bit rate of up to 1 Gb/s is required,

and this value is not reachable in 4G. To bring end-to-end latency down, it is needed to

understand the various types of delays involved in calculating the pooled computing and

communication latency budget. Delay contributions to the end-to-end wireless/mobile VR

latency include sensor sampling delay, image processing or frame rendering computing

delay, network delay, and display refresh delay. Also, lag spikes and dropouts needed to

be kept to a minimum, or users will feel detached. This work proposes an optimization

framework to maximize the successful high definition frame delivery subject to reliability

and latency constraints. This case study demonstrates the performance gains and the

underlying trade-offs inherent to wireless VR networks. Figure 6 shows the architecture of

an interactive VR gaming arcade with mmWave APs and edge computing network.

Figure 6 - Interactive VR gaming arcade with mmWave APs and edge computing network
architecture (5)

Authors in (6) perform a rigorous analysis of 1300 VR head traces and propose

a multicast DASH-based tiled streaming solution for mobile multicast environments.

This paper weighs video tiles based on user’s viewports, divides users into subgroups

based on their channel conditions and tile weights, and determines each tile’s bitrate in

each subgroup. They compare the proposed solution against the literature’s closest ones

using simulated LTE networks and show that it substantially outperforms them. Three

performance metrics are used to show their results: 1) average viewport bitrate, 2) the

impact of viewport change during the scheduling window, and 3) spectral efficiency. The

results show that it assigns 46% higher video bitrates for the video tiles, allowing them to

21

freely change their view directions while observing much less video quality degradation.

The architecture of the work is showed in Figure 7.

Figure 7 - Ahmadi et al’s architecture of a mobile network for a VR tiled multicast
streaming (6)

The next work covers different aspects of VR content representation, streaming,

and quality assessment that will help establish the basic knowledge of building a VR

streaming system. To (21), the VR streaming problem can be described as “the problem

of panning around a high resolution-video using head movements”. This study advanced

over most recent studies dedicated to streaming VR content and present multiple models

to assess the QoE (Quality of Experience) in a VR streaming system. The focus is on 360

videos, and there has not been much attention in the literature on evaluating the quality

of such content. It is not apparent how to compare different projections of 360 videos at

different bitrates with the original video.

In (7), the required throughput of VR applications is computed for an eye-like

experience and a case study of running different VR applications is presented on an open

source remote VR display characterizing their traffic statistics. This study calculates the

number of bits per second to represent an image in the Oculus Quest display. In the case

study, VR traffic between client and server is collected by periodically synchronizing the

clock and rendering the frame on the edge server fragmenting into small MAC layer packet

data units, traverse over the networks, and reassembling at the HMD, Figure 8. The video

coding used in this paper is H.264 and H.265, and the performance is compared. This

work shows that rendering VR applications can be offloaded to an edge server, reducing

the energy consumption and production cost of the VR HMD.

In (8) a web-based framework for the creation and evaluation of social and shared

VR experiences is presented. They elaborate on three multi-user VR cases: watching

TV in VR, social collaboration in VR, and social VR conferencing in mixed reality.

Node.js/Express, Angular.js, and A-Frame are the development base of the framework.

22

Figure 8 - VR communications with edge and cloud servers as proposed by Salehi et al.
(7)

A-Frame is a web framework for building 3D/AR/VR experiences that allows participants

to be placed in a photo-realistic 360-degree panoramic room. TogetherVR, as the authors

named the framework, consists of a frontend component, which runs in the web browser,

and a backend component, which hosts the VR applications, and facilitates inter-user

communication and media playback control. The authors manage to create three scenarios:

Social VR TV experience, which allows two VR participants to watch TV together remotely;

Interactive Social VR experience, which supports shared interaction with objects in the

VR space next to conversing with each other, Figure 9; Social VR conferencing in a mixed

reality setting, which explore to what extent a VR can be used to bring a remote user

into a meeting room. They collected feedback from the participants through a short

questionnaire evaluating the quality of the experience and the sense of presence. On

a 5-point Likert scale, participants appreciated the overall quality (77% scored four or

higher) of the experience. They also felt involved in the virtual environment experience

(72% scored four or higher).

Figure 9 - Embedding non-browser applications via WebRTC screen share functionality in
TogetherVR (8)

23

Authors in (9) develop a photorealistic algorithm to run directly on mobile devices.

In this paper, they present a novel distributed illumination approach for AR with consistent

illumination direct light, indirect light, and shadows of primary and strong secondary

lights. They split the illumination into two parts: capture the existing radiance values by

HDR video cameras placed at different locations in the scene, and display augmentations

with consistent illumination at interactive frame rate on the mobile device, Figure 10.

This acquisition process reduces the amount of transferred data between a stationary PC

and the participating mobile device. Their goal is to achieve a consistent illumination of

virtual objects on mobile devices in a real environment and interaction of the real world

with photorealistic augmentations with multiple users.

Figure 10 - The tablet with augmented virtual objects with consistent illumination as
proposed by Rohmer et al. (9)

Authors in (10) present VRComm, a web-based social VR framework for enabling

remote communications via video conferencing, Figure 11. Authors have three main

contributions: a new VR communication framework, a novel approach for real-time depth

data transmitting as a 2D grayscale for 3D user representation, including a central multi-

point control unit approach for this new format, and a technical evaluation of the system

with respect to processing delay, CPU and GPU usage. Their evaluation shows that

the proposed capture and depth to grayscale conversion is suitable for real-time video

transmission but other solutions might result in better visual quality if the bitrate is below

1.5 Mbit or above 3 Mbit, as well as pre-encoded content.

2.1 RELATED FRAMEWORKS

To find an equivalent framework to compare with, we used the main search engines

(IEEE Xplore, Scopus, Science Direct, ACM, and Web of Science) and found 378 papers.

24

Figure 11 - 16 user streams in a VRComm Virtual Experience (left) and RGBD user
transmission of RGB-part (middle) and depth-part (right) (10)

After the removal of duplicated and not related works, focusing on papers regarding

photorealism and mobile devices as display we end up with 14 papers. In these 14 papers,

most discuss augmented reality.

In (11), the main goal is to create highly realistic graphics for Augmented Reality

on mobile phones. Their approach is based on Ray Tracing, perform distributed rendering

to address the limited mobile GPU capabilities, and use image-based lighting from a

pre-captured panorama to incorporate real-world lighting. They use one marker for object

tracking and one for registering the panorama. This work still needs to be validated

in human subject studies, especially regarding the trade-off between latency of remote

rendering and visual quality. The prototypes’ results are shown in Figure 12.

Figure 12 - Prototypes’ results for global illumination effects for Augmented Reality on
mobile phones, proposed by Csongei et al. (11)

GLEAM is a framework that provides robust illumination estimation in real-time

by integrating physical light probe estimation with current mobile AR systems (12). The

main contribution of this work is a solution for integrating traditional image-based lighting

estimation on mobile systems, situation-driven system trade-offs to optimize for specific

quality factors, and a user study to evaluate the effect of illumination estimation methods

on human perception and situational quality preference. GLEAM can network multiple

devices to sense illumination from different viewpoints to enhance realism and fidelity. The

difference between ARKit and the result of the GLEAM framework is shown in Figure 13

The work of (22) presents a middleware streaming engine that can implement exis-

ting OpenGL-based 3D network games onto heterogeneous platforms. The engine consists

25

Figure 13 - AR scene illuminated with ARKit (left) and GLEAM (right) illumination
estimation, along with reflected environment in light probe (inset) (12)

of capturing OpenGL command stream, scene graph reconstruction, data simplification,

and compression and transmission. The development of the system is on WLAN and

consists of a game server and game clients on a PC, and clients on heterogeneous devices.

As (22) describe the overview, a client on a mobile device is connected to invocation

manager on the PC, the manager executes the 3D game server, the game server and client

makes a connection, and every mobile client is connected to a game client through the

invocation manager. By appending a middleware the system can extend the PC-based 3D

games onto mobile platforms without modification of the source code. In their results, 3D

streaming is possible in 4 5 frames/second in spite of a dynamic game environment under

software rendering.

We did not find a work condensing all elements presented in our proposal. Our

work differs from those exactly for the combination of multiple techniques in a more

versatile way, allowing us to reach a vast number of hardware configurations while keeping

the low cost of the solution. Table 1 shows the comparison of requirements for the works

presented in this section and the related works section.

26

Tabela 1 – Comparison of our requirements with related work.

Work Requirements

Photorealism Mobile Device Virtual Reality Augmented Reality Low Cost Streaming

(1), (8) NO YES YES NO YES NO

(19), (10) NO YES YES NO YES YES

(2) YES YES YES NO NO NO

(3) YES YES NO NO NO NO

(4) YES YES NO NO YES NO

(20) NO YES NO YES NO YES

(5) NO YES YES YES YES YES

(6) NO YES YES NO NO YES

(21), (7) NO NO YES NO NO YES

(9), (11), (12) YES YES NO YES YES NO

(22) NO YES NO NO YES YES

This work YES YES YES NO YES YES

27

3 THEORETICAL FOUNDATION

This section presents a theoretical foundation over concepts applied in our fra-

mework.

3.1 PHOTOREALISM

There are a few techniques capable of promoting photorealism in image rendering.

Unity has two of the main photorealism algorithms in its rendering pipeline: Ray Tracing,

and Path Tracing. In this section, we will present the Ray Tracing technique used in our

project and a brief explanation about Path Tracing.

Ray Tracing is a technique for image synthesis by creating a 2D picture of a 3D

world (23). The concept behind Ray Tracing algorithm was introduced by Albrecht Dürer

in 1525, proposing the creation of an image using a grid (24). In May 1968, Arthur Appel

published the first use of ray-casting for visualization (25). Arthur Appel projected light at

a 3D computer model and displayed the results on a plotter using a form of tone mapping

to create dark and light areas (26). In 1980, Turner Whitted created the Ray Tracing

algorithm following the path of a ray beyond the initial surface it hits. After a ray hits an

object, it produces three new rays, a reflection, refraction, and shadow, which can also

improve realism when cast. It is necessary to know the amount of light of each pixel to

contribute to global illumination information. This information is stored in a “tree of

rays”, starting from the viewer to the first surface encountered, bouncing in other surfaces

and light sources (27).

Representing materials from nature as diffuse, specular, reflective, or emissive is

a difficult task, as these materials have complex behavior. A material may additionally

manifest transparency causing light refraction, absorption, and scattering. These effects can

be described with a bi-directional reflectance distribution function (BRDF) that produces

reflection and transmission dependent on both incident and outgoing light direction (26).

Determining radiation transfer in thermal analysis problems and stray light analysis,

was one of the first uses of Ray Tracing. To solve these problems, the Monte Carlo

method for the propagation of light from one surface to another in a physical system was

implemented. The Monte Carlo method refers to any calculation that handles the problem

as a stochastic process and uses random numbers to generate sample points (28).

As shown in Figure 14, the primary rays are cast from the camera and pass through

the pixel until it hits a 3D object or a defined limit. Once the intersecting object is defined

for a given ray, additional rays are cast from that point depending on the type of surface.

There are two types of surface: reflexive and refractive. If the object is reflexive, the rays

continue their path in the reflective direction, and if the object is refractive, it maintains

its way in the refracted direction (27). From each hit point, shadow rays are cast toward

28

the light source, and if these rays do not reach the light source, it creates shadows at that

point.

Figure 14 - Visual representation of Ray Tracing1

Rays are not only white, but they can also take on many colors, and their colors

influence the color of a pixel. To define the color of a pixel, we also need to know the

ray color that hits the pixel. Colors from multiple light rays can mix and generate a new

color. For example, if a green and red ray intersects themselves at the same point, the

colors combine and form a more yellowish pixel. The more the light travels through the

environment, the weaker the strength of its color when it hits a surface (23).

Path Tracing was introduced as an algorithm to find a numerical solution to the

integral of the rendering equation in (29). In the real world, objects and surfaces are

visible because they are reflecting light and this reflected light illuminates other objects

around. In Path Tracing, all objects must contribute illumination to every other object.

Path Tracing simulates various effects that have to be additionally created in the Ray

Tracing algorithm, such as soft shadows, depth of field, motion blur, caustics, ambient

occlusion, and indirect lighting.

3.2 MEDIA STREAMING

Internet audio/video delivery may be implemented over push- or pull-mode proto-

cols, some of them specifically designed for media streaming. Historically, many applications

such as IPTV (Internet Protocol Television) and VoIP (Voice over Internet Protocol)

1 https://cutt.ly/ap8WIvD; Online, accessed in 28/06/2020

29

have used protocols such as RTP (Real-Time Transport Protocol) (30), which is primarily

a push-mode application-level protocol over UDP (User Datagram Protocol) (31). An

RTP packet transfers a given media sample (some milliseconds of audio and/or video)

accompanied with relevant information like the media type and a timestamp for an easier

decoding process.

However, due to UDP traffic’s difficulties on traversing firewalls and with the rapid

growth of CDNs (content delivery networks) for Web applications, the robust HTTP

(Hypertext Transfer Protocol) has been used in an adapted way for most media streaming

traffic on the Internet. HTTP-based schemes like HLS (HTTP Live Streaming) (31) and

MPEG-DASH (Dynamic Adaptive Streaming over HTTP) (32) allow for adapting the

media delivery bit rate according to the always-changing congestion conditions of the

best-effort Internet. Such schemes do not require modifications on the HTTP servers. They

operate in pull mode and thus require the client to continuously request the appropriate

media segments, one by one, to the server, while monitoring its buffer status for possible

bit rate adaptations. Each media segment is delivered as a downloaded file.

In the photorealistic virtual reality environment for low-cost mobile devices, we

have the need for using the available APIs and possibly converge to a web-based solution.

However, HTTP streaming introduces a noticeable latency (to generate a downloadable

file with a media segment in real time) and client processing (to request each media

segment) that would result in a poor interactive experience. If we reduce the segment size,

the number of HTTP requests from the client increases, together with upstream traffic

and power consumption. If we want to reduce the number of HTTP requests, the media

segments must be increased, resulting in longer latency.

In our tests we employed WebRTC (Web Real-Time Communication) API (33).

This API allows us to use RTP, with its much lower overhead in terms of latency, processing

and traffic, in a local setup or over the Internet.

With WebRTC, one can enable real-time communication capabilities combining

open standards, protocols, and JavaScript APIs (34). This technology is available on

all modern browsers, like Chrome, Safari, Opera, Edge, and their mobile versions. The

functionality of WebRTC enables a peer to peer (P2P), browser to browser communication.

However, it may need client-server communication to exchange metadata to coordinate

communication and to cope with network address translators (NATs) and firewalls. For

two endpoints to start talking to each other, some information exchange must be done:

• Session control information used to initialize, close, modify communications, and

report error messages;

• Media metadata in common between callers such as codecs and codec settings,

bandwidth, and media types;

30

• Network data, such as a host’s IP address and port.

Interestingly, the Unity Engine Version 2019.2 introduced experimental support for

WebRTC. It remains experimental in its current 2020.2 Alpha version.

3.3 LATENCY MEASUREMENT

Latency in interactive real-time graphics simulations comes from various sources.

The authors in (35) present these sources in:

• sensor reading and computation

• sensor data communication

• application computation

• rendering computation

• display refresh

In streaming, other latency sources are generated, such as package delivery and distance

between computers on the network.

Measuring the latency between the movement of an object in the real world and

the correspondent action in a virtual world may be challenging. (36) proposes latency

estimation with a regular video camera, and the estimation is automatic once the video

is captured. The method uses a tracked pendulum and a small light attached to it and

then record the pendulum and a screen behind it which shows a simulated image whose

position is driven by the tracking information.

The authors in (37) deduce the latency by recording tracking data via a video

image at 60Hz. A tracker is attached to a moving pendulum, and when the pendulum

passes the vertical axis, they can count frames. This method requires reconfiguration of

the tracker space, which is impractical in some situations. The authors in (38) manage to

determine the frame offset of a motion automatically using a motion detection algorithm,

but the latency is detected in multiples of the frame rate.

In (39) different methods were used, such as Sine-Fitting Method and Di Luca’s,

to measure the latency of several interactive systems that may be of interest to the

virtual environments engineer, with a significant level of confidence. They develop a new

latency measurement technique called Automated Frame Counting to assess latency using

high-speed video. This technique uses image processing techniques to extract the tracked

object’s position, resulting in a set of samples that characterizes the motion of the object.

The algorithm guides selecting the threshold for binarising the frames and identifying

salient object’s locations to track. Once tracking is complete, the user selects the feature

31

scale, then extracts the features and subtracts the locations providing the number of

frames. The average of these frames is returned as the latency estimated for that capture.

Like other authors, (40) describes an end-to-end latency measurement method for

virtual environments. In this method, a video camera records a physical controller and

the corresponding virtual cursor simultaneously and analyzes the playback to determine

the lag between wand motion and the motion of the virtual image of the wand.

32

4 U-DiVE FRAMEWORK

Unity already has Ray tracing technology and a package to develop streaming

applications, so this engine is the best choice for expediting the instantiation of U-DiVE

framework. The first version of U-DiVE framework was developed using the Unity Engine

2019.3.12f version with the HDRP (High Definition Render Pipeline) that contains the Ray

Tracing algorithm. Based on DXR (DirectX Ray Tracing), this Ray Tracing algorithm is a

feature of Microsoft’s DirectX capable of producing real-time scenes with Ray Tracing. In

short, U-DiVE’s main task is to stream the output color buffer to the mobile device and

present it to the user, while capturing orientation data from the user’s mobile device and

sending it back to the server to control the camera. U-DiVE sets up one virtual reality

camera (composed of two cameras, one for each eye) and a scene, in which we apply the

Ray Tracing algorithm. The rendered images are then captured and distortion shaders are

applied. These two images are merged to form a single stereo image, which is streamed

to the mobile device to be displayed to the user. Finally, U-DiVE extracts the device

orientation and sends it back to the Unity’s camera, forming a loop shown in Figure 15.

Figure 15 - U-DiVE’s pipeline components.

U-DiVE’s pipeline components are described as follows:

Start - To start U-DiVE, firstly a Node.js server is initiated. Unity is configured

to connect to the address provided by the server. From that server, Unity is started.

Then the user may open the web browser on his mobile device and type the same server

address to be accessed. Thus, the browser connects to Unity via the Node.js scripts and

the exchange of information is now enabled to occur.

Extract device orientation - After U-DiVE starting process, the next step comes

from the mobile web browser. The client-side script delivered to the browser periodically

33

extracts the mobile device’s orientation in a quaternion format 1. The relative orientation

is extracted at a frequency of 60 times per second and referenced to the screen frame.

Each quaternion value occupies 4 bytes of memory and an input event flag occupies 1

byte totaling a 17-byte buffer array. This buffer array is sent to the server to be processed

internally by Unity.

Process orientation - The internal processing of the orientation quaternion

depends on the flag that was sent in the first position of the buffer array. The signal can

take the value of a click, a key press, device sensors, etc. Unity recognizes the data type

being received from this information. Values are stored in Unity by the input system in

global variables and can be used in any object in the environment.

Set VR camera - The virtual reality camera object is constructed with an empty

parent object. Below this object two cameras are placed, one for each eye. Thus, the

coordinate received by Unity’s input system is applied to that parent object. With

this operation, the internal cameras will move accordingly, whenever this information is

updated.

Scene, Ray Tracing, Rendered image - When starting Unity, the scene is

rendered by HDRP using its native Ray Tracing algorithm. The Ray Tracing works like

post-processing and is applied as global post-processing, that is, it will be applied to all

the existing cameras in the scene (right and left eyes).

Apply distortion shaders - In addition to Ray Tracing, image distortion sha-

ders are applied to bring out the virtual reality view. This distortion is based on the

Brown–Conrady barrel distortion model. This distortion is applied after the image has

been generated using Ray Tracing and then stored to be sent to the mobile device’s

browser.

Create stereo image - Unity has a rendered texture object that can be used to

store camera images. Since the cameras were created occupying half the resolution at the

X coordinate, when applying the two cameras to the same render texture, the image fits

perfectly. That object then generates a single, stereo image with both cameras, producing

a virtual reality view.

Receive rendered image, Present VR image - Once the image is rendered

and stored in the texture, it is streamed to the client-side script running on the mobile

browser. The client-side script receives the image and applies it to its instantiated video

player. The flow continues, with the periodic extraction of new orientation of the mobile

device.

1 Quaternions are defined by four components x, y, z, w and used to represent rotations.

34

4.1 DEVELOPMENT

We have three major steps to build the U-DiVE framework: (i) WebRTC connection

for streaming; (ii) scene processing for virtual reality; and (iii) management of the

orientation captured by the mobile devices.

(i) WebRTC connection for streaming

Our approach for WebRTC streaming is to use Unity’s Render Streaming, which

provides Unity’s high definition rendering abilities via a browser. This streaming technology

takes advantage of WebRTC and makes it possible to send and receive data from the client

and the server.

The Render Streaming system consists of 3 components: Unity (Editor or Ap-

plication), Web server, and Web browser (Figure 16). In Render Streaming, a P2P

communication is created between Unity and the Web browser, exchanging data via

UDP/IP. The Web server enables a signaling communication between the Web browser

and Unity. Signaling is the exchange of information between involved points in the network.

In Unity, signaling follows eight steps: Web browser sends Session Description Protocol

(SDP) Offer to the Web server; Unity checks the Web server for unprocessed SDP Offers

and receives any found; Unity sends SDP Answer to the Web server; web browser checks

the Web server for unprocessed SDP Answers and receives any found; web browser sends

Interactive Connectivity Establishment (ICE) Candidate to the Web server; Unity checks

the Web server for unprocessed ICE Candidates and receives any found; Unity sends ICE

Candidate to the Web server; and Web browser checks the Web server for unprocessed

ICE Candidate and receives any found.

To provide high-fidelity graphics and a solid streaming frame rate for high-quality

user experience, the Render Streaming framework tackle two problems: performance and

latency. This framework broadcasts applications to the browser using the NVIDIA Video

Codec SDK to perform GPU hardware encoding on the frame buffer, reducing latency.

The image sent to the client is fixed to a 1280x720 pixels resolution and video bit rate

starts at 16.000kbps and tops at 160.000kbps.

(ii) Scene processing for virtual reality

To explain the scene processing for virtual virtual reality, let us consider a sample

scene with three graphical features: reflection, refraction, and shadows. The items added

to the scene are a mirror (reflection), an aquarium (refraction), and some random objects

generating shadow.

In Unity, Ray Tracing parameters for the test scene are configured as follows (see

Figure 17): Ray Length with a value of 25; Clamp Value with a value of 1; performance

mode; active Denoise with active Half Resolution Denoiser; and Second Denoiser Pass.

2 https://cutt.ly/cp8Wlq0; Online, accessed in 28/06/2020

35

Figure 16 - Render Streaming overview2

After finished, the scene is ready to be sent to our virtual camera.

Figure 17 - Global Illumination configuration inside Unity

In the global illumination configuration, when Ray Tracing option is active, HDRP

uses Ray Tracing to evaluate indirect diffuse lighting. LayerMask defines the layers that

HDRP processes this ray-traced effect. Ray Length is the maximum distance a ray can

travel. Clamp Value controls the threshold that HDRP uses to clamp the pre-exposed

value and makes the global illumination more stable to denoise, but reduces quality. The

choice for HDRP to evaluate the effect between performance and quality is set in the Mode

property. In performance mode, used in this work, the options of Upscale Radius and

Full Resolution are available, responsible for controlling the radius of the up-scaler that

HDRP uses to build the global lighting and increasing the budget radius to one radius per

pixel, per frame. The Denoise parameter enables the Spatio-temporal filter that HDRP

uses to remove noise from the Ray-Traced Global Illumination. Half Resolution Denoiser

decreases the resource intensity of denoising, but reduces quality. Denoiser Radius set the

radius of the Spatio-temporal filter. Second Denoiser Pass option helps to remove noise

from the effect. The second Denoiser Radius set the radius of the Spatio-temporal filter

36

for the second denoiser pass3.

As shown in Figure 18, lenses like the ones used in Google Cardboard distort a

planar image when trying to zoom. The lines of the pixel grid bend inward to the center

of the image resulting in a pincushion distortion. The Google Cardboard SDK for Unity4

was discontinued, so we had to rebuild the mobile virtual reality system from scratch.

To compensate for this distortion, an inverse pre-distortion must be applied to the

image. The inverse distortion for a pincushion distortion is the barrel distortion. Figure

19 shows the process of inversely distorting an image with an already applied pincushion

distortion. Usually, this type of pre-distortion is performed with the help of shaders in the

frame buffer after image generation (41).

Figure 18 - Pincushion distortion generated when using lenses.

Figure 19 - Resulting image generated compensating the Pincushion distortion using Barrel
distortion.

Render Streaming package does not support Virtual reality cameras, and it was

necessary to modify the media stream function to accept two cameras, one for each eye.

To build a virtual reality camera, we rely on previous versions of Google Cardboard SDK

3 https://cutt.ly/ETtCMlB; Online, accessed in 01/11/2021
4 https://developers.google.com/vr/develop/unity/get-started-android; Online,

accessed in 15/12/2021

37

for Unity. U-DiVE creates two cameras representing the human eyes with a distance of

0.06 in Unity coordinates between them to create a parallax effect. Then, a fragment

shader is applied to distort the image and provide a lens correction. We base our fragment

shader on the Brown–Conrady model (42) that changes the position of each point by using

the formula:

Xd = Xu(Koffset + K0r
0 + K1r

1 + ... + K6r
6)

Yd = Yu(Koffset + K0r
0 + K1r

1 + ... + K6r
6)

where (Xd, Yd) is the distorted image point as projected on image plane using

specified lens, (Xu, Yu) is the undistorted image point as projected by an ideal pin-hole

camera, Kn = nth is the radial distorted coefficient, r is the radial distance from center

defined by the formula:

r =
√

(Xu − centerx)2 + (Yu − centery)2

The Koffset coefficient must be set to 1 and the rest of the K coefficients can refer

to Google Cardboard SDK parameters. The value of K depends on the effect we want to

achieve. The final stereo view for the considered sample scene is presented in Figure 20.

Figure 20 - Stereo image generated through the modified media stream function.

(iii) Device orientation management

For the third step, we focus on the device orientation. The client-side script running

on the mobile browser collects the orientation data from the mobile device, in quaternion

format, saves it in an array buffer, and sends it to the server. Every time the user moves

the head, the values are updated, so no unnecessary data is sent to the server. Inside

38

Unity, the data is received and applied to the main camera properties. For Unity to accept

data from the client-side, a function that assigns the quaternion values received in the

Unity control system is added. Thus, coordinates can be used in variables and assigned to

the main camera object. The main camera object consists of an empty object and two

cameras. If the superior object rotates in any direction the inner cameras representing the

eyes follow the movement. When receiving the orientation data, the object coordinates

consider that the front of the environment is on the Y-axis. The scene was projected based

on this information.

4.2 USAGE SCENARIO

The intended use of the U-DiVE framework is the same as that of Google Stadia

(43). Google Stadia is the new ambition of Google rooted in the fundamental components

of gaming: players, watchers, and developers. The goal of Google is to allow anyone

to start playing a game without installation, downloads, and third-party software. The

core of Stadia is cloud-computing using the Google Data Center to create a cloud-based

gaming experience. This approach means that instead of purchasing a game, the game

is executed on a compute node and streamed to the player’s device. Our framework is

intended to follow Stadia’s path, focusing on virtual reality and photorealism without

affording expensive hardware. As in Stadia, the data is bidirectional, with inputs flowing

from the player and the provider streaming audiovisual data that results from these inputs.

Also, as Stadia, U-DiVE is cross-platform, requiring support to browsers only.

Another usage scenario is the Facebook Metaverse , which consists of a virtual

world that tries to replicate reality with social interactivity through digital devices. With

photorealism, virtual reality and accessibility, the framework meets several requirements

that may help Metaverse-like environments possible and immersive with low-cost devices.

4 https://about.facebook.com/br/meta/; Online, accessed in 22/12/2021

39

5 EVALUATION

This section presents the quantitative analysis of our work. We divide the mea-

surement in two tests: the first test is focused on the rendered frame rate and we use

only two scenes, the Cornell box and the living room; The second test we focus on the

delay, using all scenes showed in Figure 22 and the grid scene. To extract this analysis

we videorecorded the four scenes created and measured latency between movement of the

mobile device and reaction response of the scene.

5.1 RECORDING AND DEVICES SETUP

As a low-cost device, we defined, for the client side, that the smartphone must be

at least below R$ 1,000 plus the value of cardboard, which can be found for the value of

R$ 50. Our setup for U-DiVE evaluation, includes, on the server side, a desktop PC with

an Intel i5-9400f processor, a GTX 1660 super video card, 8GB RAM, Gigabit Ethernet.

The client side was deployed in a Xiaomi Redmi Note 4 with 4GB RAM, Snapdragon

625 Qualcomm MSM8953 processor, IEEE 802.11 b/g/n/ac WLAN and Google Chrome

browser. This device costs around R$ 900 in 2021/2022. The wireless router in the tested

was an EchoLife HG8145V5 with frequency range of 5Ghz, mode 802.11a/n/ac, channel

width of auto 20/40/80 mhz, route WAN mode, and four ports Gigabit 10/100/1000 Mb/s.

To record the scenes, we used an iPhone SE-2 with slow motion video at 240fps.

We were unable to change some of the Unity’s algorithms in our work, so measuring

latency through exchanging messages from the client and server became an issue. To

address this issue we used the approach of recording the movement of the mobile device.

As the physical controller and the virtual screen are on the same device, we record the

mobile device’s movements using a 240 frames per second slow-motion camera. Thus, the

measured latency has a precision of 4ms approximately (inter-frame interval).

The experiments were recorded with the mobile device placed on a table for superior

stability. The movement of the device with the framework was only in the frontal direction

and with similar speeds. Thus, there is no significant variation in pixels between recordings

of the same scene.

5.2 SCENES AND VISUAL RESULTS

To perform our experiments, firstly we built a fullscreen grid scene (Figure 21).

This scene was created to allow measuring with greater precision when counting the frames

of the recordings (Figure 21). Thus, the exact moment when the screen responds to the

movement becomes more noticeable. As the grid is just an object it is not influenced by

40

the colors around it, so the difference between having Ray Tracing and not having it is

almost imperceptible to the eyes.

Figure 21 - Grid scene without Ray Tracing.

For visual evaluation we build three main scenes: a scene with a plane and a cube,

a simple Cornell box, and a more complex scene that explores more realistic features

(Figure 22). We use the same Ray Tracing parameters and virtual reality shaders for both

scenes.

As shown in Figure 22a, the first scene has only a white cube centered on a red

plane with a directional light. This scene was created to be the simplest and lightest test

scene. Using Ray Tracing we can see, in the shaded region of the cube (Figure 22b), a

shade of red accentuated due to the light that reflects from the surface of the shaft.

A Cornell box was created as an intermediate scene. This scene will be the middle

ground between the simplest and most complex scenes. Our Cornell box consists of a box

with the left and right sides colored green and red, respectively. The roof of this box has

a light source and two objects on the floor to reflect the wall colors. In Figure 22d) we

can see the shades in green in the front cube and red in the back cube when using Ray

Tracing.

In the most complex scene (Figures 22e and 22f) we can see a difference in the

shading of the sofa and the painting on the wall when using Ray Tracing. A detailed

view of this scene can be observed in Figure 23. In Figure 23c, we highlighted hard

shadows under the chair and table produced by the lamp. Refractions and shadows are

highlighted in Figure 23d. In Figure 23e, we show a mirror reflecting parts of the scene

containing reflections, refractions, and shadows. Lastly, we showed Figure 23f, which has

hard shadows, soft shadows, and reflections on the glass wall.

41

(a) (b)

(c) (d)

(e) (f)

Figure 22 - Scenes without Ray Tracing on the left and with Ray Tracing on the right.

5.3 TEST RESULTS AND DISCUSSIONS

To perform our first test we use the same Ray Tracing parameters and virtual

reality shaders for the Cornell box and the living room scene that explore more realistic

features. Our Cornell box consists of a box with the left and right sides colored green and

red, respectively (Figure 24). The roof of this box has a light source and two objects on

the floor to reflect the wall colors, as shown in Figure 24. With our setup, the Cornell box

achieved 125 fps inside Unity and 60 fps in our mobile device.

Despite satisfying the requirements for a virtual reality application, depending on

the setup, better performance may be achieved. In the Unity engine, the rendered frame

rate depends on the computer hardware and how complex is the scene. From the mobile

device perspective, a higher WLAN speed, faster video decoders and faster CPUs may

42

(a) (b)

(c) (d)

(e) (f)

Figure 23 - Test scene and its details. In 23a and 23b we have the full image in two
different points of view, 23c the corner chair with the highlighted shadows, 23d aquarium
with refractions and shadows, 23e mirror reflecting parts of the scene containing reflections,
refractions, and shadows and 23f the corner sofa which has hard shadows, soft shadows,
and reflections on the glass wall.

improve image quality and lower the delay. Different wireless routers and locations may

also provide different communication performance.

It is worth noting that 60 fps is the default maximum update rate for the player

used in the client-side script on the mobile web browser.

With this scene we reached an average of 39 fps in Unity, fulfilling one of the crucial

requirements mentioned by (13). For the mobile device, the stream can reach 60 fps due

to the amount of bitrate configured; however, as the scene only reaches 39 fps, the device

was capped to this value.

43

Figure 24 - Cornell box.

Figure 25 - Image including all reflection, refraction and shadow elements discussed.

In the tests, both scenes were executed as expected. User orientation was performed

as if the scene was executing locally and a slight latency was noticed, but nothing hindered

the overall experience.

As the network may suffer some kind of instability, for the latency test, five

experiments were videorecorded for each scene, and we computed the average between

them. Each experiment has the same movement direction and speed of the device so that

44

the results are similar between the recorded experiments. Figure 26 shows two captured

frames from a recorded experiment, illustrating the device movement. After the experiment

is recorded, an analysis is made from the moment the mobile device is moved until the

scene’s visual response expected for that movement. The number of frames between these

moments are counted.

(a) (b)

Figure 26 - Mobile device being recorded with repeated and constant movements.

To achieve latency measurement, we need to take the number of frames from the

device’s response and multiply by 4.1, a value obtained by dividing a second, in millisecond,

by 240 frames. For each video, we perform this process, then we removed the highest and

lowest values and averaged the remaining values.

Table 2 shows the results of the recordings and their average latency. The same

scenes and positions were recorded with and without Ray Tracing. We can observe that,

in each recording, a different scene obtained greater latency. At first it was the cube scene

with Ray Tracing, in the second it was the complex scene with Ray Tracing, in the third

and fourth it was the complex scene but without Ray Tracing and in the fifth it was the

grid scene with Ray Tracing. This shows that the latency is not exclusively dependent

on the server hardware, but in fact on the whole Round Trip Time (RTT). RTT is the

time it takes the orientation leaves the browser and arrives in Unity to generate a new

frame and the frame to leave Unity and arrive in the browser back again. RTT can be

influenced by the distance a signal has to travel, how quickly a request is received by a

server and routed back to a user, the number of network hops, traffic levels and, of course,

the server response time.

If we look at the average of each scene, we can observe that there is no significant

changes between the scene with active and non-active Ray Tracing, Figure 27. With the

measured latency of all recordings, we can see that the difference between the lowest

45

Tabela 2 – Latency comparison table.

VR Scene Time(ms)

1 2 3 4 5 Mean

Cube 184,5 209,1 184,5 176,3 168,1 181,77

Cube with RT 225,5 180,4 159,9 172,2 180,4 177,67

Grid 151,7 155,8 172,2 184,5 176,3 168,10

Grid with RT 155,8 151,7 180,4 188,6 188,6 174,93

Cornell Box 168,1 188,6 176,3 143,5 159,9 168,10

Cornel Box with RT 172,2 176,3 164 147,6 168,1 168,10

Complex Scene 176,3 184,5 213,2 209,1 180,4 191,33

Complex Scene with RT 184,5 221,4 205 172,2 184,5 191,33

latency, 147.6, and the highest latency, 225.5, is 77.9. This shows that latency can vary

widely between different sessions. We can also conclude that the observed mean latency is

around 177 (ms), considering all scenes and sessions.

During recording and testing we observed a problem with pixel loss in the frame.

We notice this problem only in the Grid scene. This loss occurs when the lines that create

the Grid move through the screen and the pixel needs to go from the lightest (white) to

the darkest (black).

46

Figure 27 - Line Chart of Table 2. Each labeled column corresponds to a test of each
scene and each row represents the value obtained in these tests.

47

6 CONCLUSIONS AND FUTURE WORK

This work aimed to create a framework, called U-DiVE, that allows the use of

photorealistic virtual reality scenarios with low-cost mobile devices. This framework was

built over the Unity engine, which has all the support to create a photorealistic virtual

reality environment, a rendering pipeline with native photorealism algorithms, and a

package that allows for performing interactive streaming of the application. The streaming

package is based on WebRTC, allowing the application to perform real-time interactive

streaming.

Besides Unity having all the support needed to build the framework, some parts of

Unity cannot be modified and therefore it was not possible to build a ping test to identify

latency and delay within the software. To work around this problem, we used the approach

of recording the movement of the mobile device. As the physical controller and the virtual

screen are on the same device, we recorded the mobile device’s movements using a 240

frames per second slow-motion camera.

As no framework for comparison was found with the same features, various scenes

to evaluate performance were created. The first scene built is a plane with a cube. This

scene is considered the simplest scene and serves as a basis for comparing the other scenes.

The second scene contains a vertical plane with a grid, and it was created to be more

accurate when recording scenes and tests. The third scene is a replica of the Cornell box.

We created this scene to have a comparison with a scene widely used in literature. Lastly,

a complex scene with reflective, refractive effects and shadows.

We verified that the frame rate on all scenes was above the minimum required for a

virtual reality system, and the latency of the stream on the mobile device maintained high

quality. The performance in the complex scene was below 60 fps, so the stream is limited

to the number of frames generated on the server. We verified that the delay of the scenes

with and without Ray Tracing has a small difference, showing that even a complex scene

does not interfere in the transfer of data between client and server. Although Ray Tracing

is a heavy algorithm, the evaluation of the data showed that using the algorithm has no

relevant impact. Due to the sudden change of color in the grid, from white to black, some

flaws in the images received by the client could be noticed.

In terms of performance, the proposed framework meets the minimum requirements

for a virtual reality system and uses photorealistic techniques in the scenes created. We

can conclude that the results achieved with our synthetic scenes show that, for a low-cost

device, a complex and realistic environment can be executed as expected, depending only

on the server hardware and the WLAN connection.

In future works, we intend to change the distortion shaders to a vertex displacement

based solution that eliminates the need to render a intermediate texture. In this approach,

48

the distortion is in the geometry itself using a custom vertex shader, and no shader pass is

needed saving a step of copying the rendering into a texture. We plan to do a qualitative

test with multiple users to evaluate user experience. These tests were scheduled but

unfortunately they were unable to be executed due to the COVID-19 pandemic. Another

future work is to make the U-DiVE work as an edge technology, which can accompany

the user, through computing capabilities of radio base stations in mobile networks for

example (44). We can create techniques to predict the user’s head movement, so we can

generate the next frame before receiving the actual orientation. Creating an environment

with multiple cameras and avatars for users to have a social interaction as well is the goal

of the metaverse.

49

REFERÊNCIAS

1 Soojeong Yoo and Judy Kay. Vrun: running-in-place virtual reality exergame. In
Proceedings of the 28th Australian Conference on Computer-Human Interaction, pages
562–566, 2016.

2 Won-Jong Lee, Seok Joong Hwang, Youngsam Shin, Jeong-Joon Yoo, and Soojung
Ryu. Fast stereoscopic rendering on mobile ray tracing gpu for virtual reality
applications. In 2017 IEEE International Conference on Consumer Electronics
(ICCE), pages 355–357. IEEE, 2017.

3 Won-Jong Lee, Youngsam Shin, Jaedon Lee, Shihwa Lee, Soojung Ryu, and
Jeongwook Kim. Real-time ray tracing on future mobile computing platform. In
SIGGRAPH Asia 2013 Symposium on Mobile Graphics and Interactive Applications,
pages 1–5, 2013.

4 Arthur Pedro Godoy and Cesar AC Teixeira. An architecture to promote the use of
mobile devices on interactions with media synthesized remotely. In Proceedings of the
20th Brazilian Symposium on Multimedia and the Web, pages 143–150, 2014.

5 Mohammed S Elbamby, Cristina Perfecto, Mehdi Bennis, and Klaus Doppler. Toward
low-latency and ultra-reliable virtual reality. IEEE Network, 32(2):78–84, 2018.

6 Hamed Ahmadi, Omar Eltobgy, and Mohamed Hefeeda. Adaptive multicast streaming
of virtual reality content to mobile users. In Proceedings of the on Thematic
Workshops of ACM Multimedia 2017, pages 170–178, 2017.

7 Seyedmohammad Salehi, Abdullah Alnajim, Xiaoqing Zhu, Malcolm Smith,
Chien-Chung Shen, and Leonard Cimini. Traffic characteristics of virtual reality over
edge-enabled wi-fi networks. arXiv preprint arXiv:2011.09035, 2020.

8 Martin J Prins, Simon NB Gunkel, Hans M Stokking, and Omar A Niamut.
Togethervr: A framework for photorealistic shared media experiences in 360-degree vr.
SMPTE Motion Imaging Journal, 127(7):39–44, 2018.

9 Kai Rohmer, Wolfgang Büschel, Raimund Dachselt, and Thorsten Grosch. Interactive
near-field illumination for photorealistic augmented reality on mobile devices. In 2014
IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pages
29–38. IEEE, 2014.

10 Simon NB Gunkel, Rick Hindriks, Karim M El Assal, Hans M Stokking, Sylvie
Dijkstra-Soudarissanane, Frank ter Haar, and Omar Niamut. Vrcomm: an end-to-end
web system for real-time photorealistic social vr communication. In Proceedings of the
12th ACM Multimedia Systems Conference, pages 65–79, 2021.

11 Michael Csongei, Liem Hoang, Christian Sandor, and Yong Beom Lee. Global
illumination for Augmented Reality on mobile phones. IEEE, 2014.

12 Siddhant Prakash, Alireza Bahremand, Linda D Nguyen, and Robert LiKamWa.
Gleam: An illumination estimation framework for real-time photorealistic augmented
reality on mobile devices. In Proceedings of the 17th Annual International Conference
on Mobile Systems, Applications, and Services, pages 142–154, 2019.

50

13 Frederick P Brooks. What’s real about virtual reality? IEEE Computer graphics and
applications, 19(6):16–27, 1999.

14 Bill Fleming. 3D photorealism toolkit / Bill Fleming. John Wiley, New York, 1998.

15 Ze-Nian Li, Mark S Drew, and Jiangchuan Liu. Fundamentals of multimedia. Springer,
2004.

16 Kadi Bouatouch and Christian Bouville. Photorealism in computer graphics. Springer
Science & Business Media, 2013.

17 Google cardboard. https://arvr.google.com/cardboard/. Accessed: 2021-07-30.

18 Nikiforos M Papachristos, Ioannis Vrellis, and Tassos A Mikropoulos. A comparison
between oculus rift and a low-cost smartphone vr headset: immersive user experience
and learning. In 2017 IEEE 17th International Conference on Advanced Learning
Technologies (ICALT), pages 477–481. IEEE, 2017.

19 Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng Li, and Lei Han. Rubiks:
Practical 360-degree streaming for smartphones. In Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services, pages
482–494, 2018.

20 Marco C Jacobs, Mark A Livingston, and Andrei State. Managing latency in complex
augmented reality systems. In Proceedings of the 1997 symposium on Interactive 3D
graphics, pages 49–ff, 1997.

21 Tarek El-Ganainy and Mohamed Hefeeda. Streaming virtual reality content. arXiv
preprint arXiv:1612.08350, 2016.

22 Gi Sook Jung and Soon Ki Jung. A streaming engine for pc-based 3d network games
onto heterogeneous mobile platforms. In International Conference on Technologies for
E-Learning and Digital Entertainment, pages 797–800. Springer, 2006.

23 Andrew S Glassner. An introduction to ray tracing. Elsevier, 1989.

24 Georg Rainer Hofmann. Who invented ray tracing? The Visual Computer,
6(3):120–124, 1990.

25 Arthur Appel. Some techniques for shading machine renderings of solids. In
Proceedings of the April 30–May 2, 1968, spring joint computer conference, pages
37–45, 1968.

26 Jon Peddie. Ray Tracing: A tool for all, volume 5. Springer, 2019.

27 Turner Whitted. An Improved Illumination Model for Shaded Display, page 119–125.
Association for Computing Machinery, New York, NY, USA, 1998.

28 Edward R Freniere and John Tourtellott. Brief history of generalized ray tracing. In
Lens Design, Illumination, and Optomechanical Modeling, volume 3130, pages 170–178.
International Society for Optics and Photonics, 1997.

29 James T Kajiya. The rendering equation. In Proceedings of the 13th annual conference
on Computer graphics and interactive techniques, pages 143–150, 1986.

51

30 Henning Schulzrinne, Stephen Casner, Ron Frederick, Van Jacobson, et al. Rtp: A
transport protocol for real-time applications, 1996.

31 Roger Pantos and William May. Http live streaming, 2017.

32 ISO/IEC 23009-1. Information technology - dynamic adaptive streaming over http
(dash) - part 1: Media presentation description and segment formats, 2014.

33 Adam Bergkvist, Daniel C Burnett, Cullen Jennings, Anant Narayanan, and Bernard
Aboba. Webrtc 1.0: Real-time communication between browsers. Working draft, W3C,
91, 2012.

34 Salvatore Loreto and Simon Pietro Romano. Real-time communications in the web:
Issues, achievements, and ongoing standardization efforts. IEEE Internet Computing,
16(5):68–73, 2012.

35 Mark R Mine. Characterization of end-to-end delays in head-mounted display systems.
The University of North Carolina at Chapel Hill, TR93-001, 1993.

36 Anthony Steed. A simple method for estimating the latency of interactive, real-time
graphics simulations. In Proceedings of the 2008 ACM symposium on Virtual reality
software and technology, pages 123–129, 2008.

37 Jiandong Liang, Chris Shaw, and Mark Green. On temporal-spatial realism in the
virtual reality environment. In Proceedings of the 4th annual ACM symposium on User
interface software and technology, pages 19–25, 1991.

38 Dorian Miller and Gary Bishop. Latency meter: a device for easily monitoring ve
delay. In Proceedings of SPIE, volume 4660, 2002.

39 Sebastian Friston and Anthony Steed. Measuring latency in virtual environments.
IEEE transactions on visualization and computer graphics, 20(4):616–625, 2014.

40 Ding He, Fuhu Liu, Dave Pape, Greg Dawe, and Dan Sandin. Video-based
measurement of system latency. In International Immersive Projection Technology
Workshop, volume 111. Citeseer, 2000.

41 Christoph Anthes, Rubén Jesús García-Hernández, Markus Wiedemann, and Dieter
Kranzlmüller. State of the art of virtual reality technology. In 2016 IEEE Aerospace
Conference, pages 1–19. IEEE, 2016.

42 Duane C Brown. Decentering distortion of lenses. Photogrammetric Engineering and
Remote Sensing, 1966.

43 Adam C Desveaux and Valerie S Courtemanche. The effects of latency in commercial
cloud video gaming services. Worcester Polytechnic Institute, 2020.

44 Alexandre Martins Gama de Deus, Eduardo Pagani Julio, and Marcelo Ferreira
Moreno. Join-me: Uma arquitetura para integração entre operadores de redes móveis
e provedores de serviços. In Anais do XI Workshop de Pesquisa Experimental da
Internet do Futuro, pages 26–31. SBC, 2020.

