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ABSTRACT

Big Data advancements motivate researchers to develop and improve intelligent

models to deal efficiently and effectively with data. In this scenario, time series forecasting

obtains even more attention. The literature demonstrated the better performance of

such models in this subject. Forecasting is widely used in strategic planning to support

decision-making, providing competitive differential to organizations. In this work, a novel

rule-based evolving Fuzzy System is proposed for time series forecasting. This is a robust

model able to develop and update its structure in unknown environments, capture dynamics

and changes of streams, and produce accurate results even when dealing with complex

data. The introduced model implements the distance correlation to improve the rules’

quality by reducing their standard deviation. The model is evaluated using two synthetic

datasets: the Mackey-Glass time-series and the nonlinear dynamic system identification.

And finally, the introduced system is implemented to predict the hot spot temperature

using three datasets from a real power transformer. Hot spot monitoring is necessary

to maximize the load capacity and the lifespan of power transformers. The proposed

method is evaluated in terms of root-mean-square error, non-dimensional index error, mean

absolute error, runtime, and the number of final rules. The results are compared with

traditional forecasting models and with some related state-of-the-art rule-based evolving

Fuzzy Systems. The new evolving Fuzzy System outperformed the compared models

for the Mackey-Glass time-series and the power transformers datasets concerning the

errors. A statistical test comprised the superior performance of the introduced model.

The algorithm also obtained a competitive execution time and number of final rules. The

results demonstrate the high level of autonomy and adaptation of the model to predict

accurately complex and non-stationary data. Seeing the importance of accurate models to

deal with data to support decision-making, the results suggest the model’s implementation

as a forecasting tool in strategic planning.

Keywords: Time series forecasting. evolving Fuzzy Systems. Artificial Intelligence.



RESUMO

Os avanços em Big Data motivaram pesquisadores a desenvolver e aprimorar

modelos inteligentes para lidar de forma eficiente e eficaz com os dados. Nesse cenário, a

previsão de séries temporais vem ganhando ainda mais atenção. A literatura científica

demonstra o melhor desempenho de tais modelos nesse assunto. A previsão de séries

temporais é amplamente utilizada no planejamento estratégico para apoiar a tomada

de decisões, proporcionando diferencial competitivo às organizações. Neste trabalho,

um novo sistema nebuloso evolutivos baseado em regras é proposto para a previsão

de séries temporais. Este é um modelo robusto capaz de desenvolver e atualizar sua

estrutura em ambientes desconhecidos, capturar dinâmicas e mudanças de fluxo em dados

e produzir resultados precisos mesmo quando se trata de dados complexos. O modelo

introduzido implementa a correlação para melhorar a qualidade dos clusters, reduzindo

seu desvio padrão. O modelo é avaliado usando dois conjuntos de dados sintéticos: a série

temporal Mackey-Glass e a identificação do sistema dinâmico não linear. E, finalmente, o

sistema introduzido é implementado para prever a temperatura do ponto quente, usando

três conjuntos de dados de um transformador de potência real. O monitoramento de

pontos quentes é necessário para maximizar a capacidade de carga e a vida útil dos

transformadores. O método proposto é avaliado em termos de erro quadrático médio, erro

de índice adimensional, erro absoluto médio, tempo de execução e número de regras finais.

Os resultados são comparados com modelos de previsão tradicionais e com alguns sistemas

nebuloso evolutivo baseados em regras. O novo sistema nebuloso evolutivos superou os

modelos comparados para a série temporal Mackey-Glass e os conjuntos de dados de

transformadores de potência, considerando as métricas de erro. Um teste estatístico

comprovou o desempenho superior do modelo introduzido. O algoritmo também obteve

um tempo de execução e número de regras finais competitivo. Os resultados demonstram

o alto nível de autonomia e adaptação do modelo para prever dados complexos e não

estacionários com precisão. Vendo a importância de modelos precisos para lidar com dados

no apoio à tomada de decisão, os resultados sugerem a implementação do modelo como

ferramenta de previsão favorecendo planejamento estratégico.

Palavras-chave: Previsão de séries temporais. Sistemas nebulosos evolutivos.

Inteligência Artificial.
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1 INTRODUCTION

The world is experiencing an era in which technological advances have substantially

changed how data is collected, driving expressive Big Data advancements. Data are usually

produced at high speed and presents complicated structures [1]. Such challenges increase

the requirements for robust tools to deal with data and extract useful information of

them [2]. In this scenario, artificial intelligence (AI) is gaining much visibility and is

attracting even more researchers’ interests [3, 4]. As data usually assume a stream form,

time series forecasting using accurate models can be implemented to support management,

planning, and decision-making, improving the competitive performance of organizations

[5, 6, 7]. The capability to analyze data streams is based on the premise that a data’s

portion carries information that explains the nature of the underlying system [8]. In this

sense, evolving Fuzzy Systems (eFSs) emerge as a powerful AI technique in time series

forecasting. They can extract knowledge from a data stream and simultaneously adapt its

functionality and structure [9, 10]. Furthermore, eFSs usually have self-learning for some

of their parameters [1, 11]. The fuzzy concept is an essential pillar of the eFSs. Fuzzy

operators are implemented to define the interdependency of fuzzy input and form fuzzy

rules from them [12]. These rules consist of clusters formed from the input space and are

used to compute the model’s output. Three noticeable characteristics of the eFS models

can be highlighted: i) their self-ability to develop and update its structure in unknown

environments; ii) their ability to capture dynamics and changes of streams; and iii) their

capacity to produce accurate results even when dealing with nonlinear data [13, 14].

This work introduces a novel rule-based eFS model, so-called evolving Partici-

patory Learning with Kernel Recursive Least Square and Distance Correlation (ePL-

KRLS-DISCO), for time series forecasting. This model has its origins in the evolving

Takagi-Sugeno (eTS), proposed by Angelov and Filev [15, 16], a model with a small

number of parameters. The eTS algorithm computes the consequent parameters using

the recursive least square (RLS) method. RLS usually requires less data to adjust the

model parameters and is computationally efficient. However, RLS is a linear regression

that performs inaccurate outputs when dealing with nonlinear data [17, 18]. Angelov

and Filev also presented a simplified version of eTS, called Simpl_eTS [19]. Simpl_eTS

uses the scatter concept instead of potential and the Cauchy type function instead of the

Gaussian exponential membership functions to reduce the computational cost and improve

the model’s errors concerning the eTS. Angelov and Zhou [20] proposed the evolving

extended Takagi-Sugeno (exTS). This model has a mechanism to update the spread of the

membership functions recursively. Angelov and Filev introduced an enhanced version of

eTS, the eTS+ [21], a model that uses the utility measure to remove underused rules. Lima

et al. [22] introduced the evolving Participatory Learning (ePL), a model that combines

the eTS structure with the participatory learning (PL) concept to control the creation or
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updating of the rules. PL is a recursive unsupervised clustering algorithm that implements

convex combinations between input data and the closest cluster center. This clustering

mechanism avoids the curse of dimensionality. The ePL model also implements the RLS

method to calculate consequent parameters in the same way as eTS and, consequently,

presents the same limitation when dealing with nonlinear data. Maciel et al. [23] proposed

the enhanced evolving Participatory Learning (ePL+), which adds the concepts of clusters

quality measurement and adaptation of the zone of influence as same as eTS+.

Lemos et al. [9] implemented the evolving Multivariable Gaussian (eMG), a model

that inherits the ePL structure. The main novelty of eMG is that it forms the fuzzy

sets using multivariable Gaussian membership functions to prevent waste of knowledge

concerning the inputs. However, this model needs a great number of rules to make accurate

estimations [24]. Shafieezadeh-Abadeh and Kalhor [25, 26] addressed the evolving Takagi-

Sugeno with Kernel Recursive Least Square (eTS-KRLS), and Maciel et al. [27] proposed

the evolving Participatory Learning with Kernel Recursive Least Square (ePL-KRLS).

Both models use the Kernel Recursive Least Square (KRLS) to update the consequent

parameters. KRLS consists in to perform an inner product between two samples in the

high-dimensional Hilbert space. Moreover, the kernel function maps all the features in the

high-dimensional space so that the nonlinear relationship of them is linearly separable in

the high-dimensional space [28]. Then, these models easier cope with data manipulating

them in the new space [29]. The benefit of using this approach is that Kernel-based

methods are more sensitive to variations in the input data and can approximate nonlinear

systems accurately and efficiently with a moderate computational cost [10]. Vieira et al.

[30] implemented the enhanced ePL-KRLS (ePL-KRLS+), which implements the same

mechanisms of eTS+ and ePL+ concerning the removal of rules and the adaptation of the

zone of influence.

The ePL-KRLS-DISCO model intends to overcome the following limitations of

ePL-KRLS: i) ePL-KRLS computes the global output using local outputs of all rules.

Consequently, the local output of unlike rules disturbs the global output; ii) ePL-KRLS

only considers the Euclidean distance to create/update the rules. So, if the input is

very close to an existing cluster, it probably will be included in that rule, even if the

spatial distribution is different [31]; and iii) the updating of the threshold that defines

the inclusion of new inputs into the dictionaries is slow. So, the model may discard some

relevant characteristics of the observations. Therefore, the proposed model introduces the

following improvements to overcome such shortcomings: i) ePL-KRLS-DISCO calculates

the global output using only the most compatible rule; ii) ePL-KRLS-DISCO adds the

distance correlation (DISCO) to form the clusters; and iii) ePL-KRLS-DISCO implements

a new mechanism to update the kernel size as an error function as same as [1, 32, 33].

These improvements make ePL-KRLS-DISCO a robust forecasting model. As the DISCO

is a measure of dependence between vectors [34, 35], this mechanism avoids grouping two



10

different structure vectors, even if these data are close to one another [36, 37]. Then,

the DISCO forms rules with a reduced standard deviation, improving the quality of the

clusters. So, the rules are composed of inputs with very like characteristics. Every cluster

becomes specialized in similar inputs, holding in dictionaries relevant information about

the past entries. When a new observation enters the system, KRLS computes the output

using the more suitable rule. As the DISCO improves the rules’ quality, and the model’s

performance is directly related to the quality of the clusters and its capacity of learning,

the introduced model has a substantially superior performance compared to the previous

models and performs precise simulations even with complex data.

The introduced model is evaluated using two benchmark for time series. And

finally, ePL-KRLS-DISCO is applied in the thermal modeling of power transformers. The

aim is to predict the hot spot temperature using data from a real power transformer.

The hot spot, which is the highest temperature near the top of the windings, directly

impacts the insulation’s aging [38]. Power transformers are one of the most expensive

equipment in power distribution, and the insulation defect may determine its end life. For

this reason, hot spot monitoring is necessary to define the load capacity that maximizes

the cost-benefit [39]. The most precise method to capture the hot spot temperature adopts

sensors set near the high-voltage (HV)/low-voltage (LV) windings. However, this method

is costly and hard to maintain in practice restricting to test transformers [40]. A classical

model based on the IEEE Standard C57.91-2011 consists of differential equations [41].

Unfortunately, this model assumes a series of simplifications, making the transformers’

capacity underutilized [11, 42]. Thus, intelligent models arise as a modeling tool of power

transformers, aiming to optimize the transformers’ life and load capacity [43]. Daponte et

al. and Galdi et al. [42, 44] proposed neural networks to estimate the hot spot temperature.

Ipolito [45] implemented fuzzy sets, Hell et al. [46, 47] used neuro-fuzzy systems, and

Alves et al., Souza et al., and Rocha et al. [11, 24, 43] applied eFS models for this task.

The model’s performance is shown in terms of errors, runtime, and the number of final

rules. And finally, the results are compared with traditional forecasting models and some

related state-of-the-art evolving fuzzy modeling approaches.

The main contributions of this work are summarized as follows:

• This work introduces a novel rule-based eFS model, so-called evolving Participatory

Learning with Kernel Recursive Least Square and Distance Correlation (ePL-KRLS-

DISCO), for time series forecasting.

• The ePL-KRLS-DISCO introduces the distance correlation (DISCO) to compute

the compatibility measure, the calculation of the global output as the local output

of the most compatible rule, and a new mechanism to update the kernel size.

• The model’s performance is evaluated using error metrics, runtime, and the number
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of final rules. Additionally, the ePL-KRLS-DISCO performance is compared with

other eFS models using synthetic data and data collected from an experimental

power transformer.

The remainder of this work is organized as follows: Section 2 presents a valuable

literature review on evolving Fuzzy Systems. Section 3 detailed explains the ePL-KRLS-

DISCO. Section 4 shows and discusses the model’s results. And finally, Section 5 concludes

this work and suggests future researches.
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2 LITERATURE REVIEW ON EVOLVING FUZZY SYSTEMS

The eFS models have three main classes: i) neural; ii) rule-based; and iii) tree.

Neural networks started the discussion of the evolving systems paradigm, see Fritzke [48],

Williamson [49], and Kwok and Yeung [50]. Juang and Lin proposed the neural fuzzy

inference network (SONFIN) [51], a model based on the Takagi-Sugeno-Kang (TSK).

SONFIN produces small networks and is proper to fast online learning. This approach

has three main sensitive parameters that perform an essential role: i) the initial weights

of the nodes; ii) the width of each fuzzy set; and iii) the number of fuzzy rules in the

online phase [52]. Juang and Lin also introduced the recurrent self-organizing neural

fuzzy inference network (RSONFIN) [53, 54]. RSONFIN employs internal memories called

context elements to deal with temporal problems. This model has a flexible structure where

the number of rules is not predefined, reducing the design effort. Kasabov [55] proposed a

model with a fast adaptive local learning that is robust against catastrophic forgetting

called evolving fuzzy neural network (EFuNN). EFuNN is a five-layer architecture with

adaptive and incremental evolving capability, making the learning more effective [56].

Kasabov and Song [57] introduced a neural-fuzzy hybrid termed dynamic evolving neural

fuzzy inference system (DENFIS), which produces the output comparing the position

of the input vector with the created rules. DENFIS has the advantage of being a fast

algorithm in the training and test phase, learn new features at any stage in an incremental

way, define parameters to scale the attributes of the input space and provide explainable

results [58].

Rubio [59] explored the self-organizing fuzzy modified least-square (SOFMLS)

network. SOFMLS has a reduced number of parameters due to the implementation of

the unidimensional membership functions and is a stable model able to reorganize its

structure according to the changes in the data [60]. Soleimani-B et al. [61, 62] developed

the evolving neuro-fuzzy model (ENFM), which uses a recursive extension of Gath–Geva

to construct elliptical clusters. ENFM produces accurate results with a few neurons due to

the implementation of general structures for covariance matrices. Leite et al. [63] depicted

the evolving granular neural network (eGNN). The eGNN model can process online data

streams searching for results that combine precision and interpretability. Pratama et

al. [64] exposed a model termed parsimonious network based on fuzzy inference system

(PANFIS). PANFIS forms ellipsoidal clusters from the input space to construct the

antecedent parts, improving its ability to cope with nonlinear data. The consequent

parameters use the extended recursive least square (ERLS). Unfortunately, it presents high

complexity concerning the parameters selection, and programming language [65]. Pratama

et al. also proposed the Generic Evolving Neuro-Fuzzy Inference System (GENEFIS) [66],

the recurrent classifier (rClass) [67], and the GENERIC-Classifier (gClass) [68]. GENEFIS

is an algorithm able to make accurate predictions with a few rules. And rClass and gClass
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are two meta-cognitive classifiers. Silva et al. [69] developed a variation of the EFuNN to

detect high impedance faults in distribution systems. Artificial neural network approaches

perform parallel processing and identify and generalize patterns in datasets. Unfortunately,

neural networks usually demand high-quality training data and time-consuming offline

learning. Generally speaking, this class of model gives black box results, nontransparent

and hard to interpret [63]. The black-box property limits its usage from applying in

high-stake areas [70].

Angelov and Buswell [71] introduced the evolving fuzzy rule-based model. As

compared to pure neural networks, a notorious advantage of rule-based systems is their

evident and explainable results [21, 72]. Rong et al. [73] discussed a Sequential Adaptive

Fuzzy Inference System that uses an extended Kalman filter to update the fuzzy rules

called SAFIS. SAFIS has two main shortcomings: i) the complex calculation of the rule’s

influence, defined through statistical means; and ii) difficulty to cope with high-dimensional

input spaces. Rong et al. [74] proposed the extended version of SAFIS, termed ESAFIS, to

overcome those limitations. Rubio and Bouchachia [75] introduced the modified sequential

adaptive fuzzy inference system (MSAFIS). The difference is that MSAFIS uses the stable

gradient descent algorithm (SGD) for the parameters’ updating instead of the Kalman

filter used in SAFIS. SGD improves learning performance. Lughofer [76] depicted the

flexible fuzzy inference systems (FLEXFIS), which uses a linear polynomial to exploits

the Takagi-Sugeno model. FLEXFIS demands low computational cost and is adequate for

on-line operations [77]. Lughofer et al. presented the FLEXFIS+, an enhanced version

of the FLEXFIS with mechanisms to detect and eliminate redundancies [78]. Lughofer

and Kindermann [79] presented the sparse fuzzy inference systems (SparseFIS), a model

that optimizes the consequent parameters and sparses out unimportant rules. SparseFis

uses a numerical optimization mechanism to define a compact ruleset [80]. Leite et al. [8]

exploited the fuzzy set based evolving modeling (FBeM), a framework that employs fuzzy

granular models to provide a more intelligible exhibition of the data. FBeM provides a

transparent and interpretable description of the input data due to the fuzzy hyperboles that

form the antecedent part. Angelov and Yager [81] contributed with the AnYa, a simplified

model that constructs the antecedent part implicitly. AnYa implements a non-parametric

vectorized antecedent part [82].

Dovzăn et al. [83] presented a novel evolving fuzzy model (eFuMo) for monitoring

and fault detection of waste-water treatment plants (WWTPs). This model is effective for

the online identification of fuzzy rule-based models [84]. Lughofer et al. [85] constructed

a model derived from the FLEXFIS named Generalized Smart Evolving Fuzzy Systems

(Gen-Smart-EFS). Gen-Smart-EFS can produce accurate outputs with a compact structure

because of its ability to model local correlations by intervals between variables. Two main

limitations of Gen-Smart-EFS can be highlighted: i) it may not capture a slight shift in

the data, making the ellipsoid of a rule increase much; and ii) incorrectly set the parameter
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that defines the rules creation usually makes the model not create enough rules to represent

the input space. Lughofer et al. [14] suggested an incremental rule splitting strategy to

overcome the Gen-Smart-EFS limitations. The model can immediately forget samples after

their processing. S̆krjanc and Dovzăn [86] implemented the evolving Gustafson-Kessel

possibilistic c-Means clustering (eGKPCM), a model indicated to deal with highly noisy

data. Maciel et al. [87] built the evolving possibilistic fuzzy modeling approach (ePFM),

which uses the evolving Gustafson-Kessel-Like algorithm (eGKL) to adapt its structure.

The ePFM modeling approach aggregates the advantages of the Gustafson-Kessel (GK)

clustering algorithm of identifying clusters with different shapes and orientations while

recursively processing data. Such a model also uses utility measure to evaluate the quality

of the current cluster structure. This model is robust to modeling volatility dynamics and

nonlinear volatility forecasting with jumps.

Ge and Zeng [32] detailed the self-evolving fuzzy system (SEFS), a model with

self-learning parameters. SEFS auto-adjust the rule’s adding speed to reduce underfitting

or over-fitting, improving the model’s accuracy. Leite et al. [88] displayed the evolving

optimal granular system (eOGS). An advantage of using eOGS is the possibility of trading

off multiple objectives. Alves et al. [11] implemented the Set-Membership (SM) and the

Enhanced Set-Membership (ESM) to update the rate of change of the arousal index in

the ePL-KRLS. The SM and ESM implementation control the rule creation speed to

enhance the performance of the models. Recently, Ge and Zeng [1] presented the evolving

fuzzy system self-learning/adaptive thresholds (EFS-SLAT), a model with self-learning

thresholds. Lemos et al. [89] presented a fuzzy evolving linear regression trees. The

model creates the tree from the data stream using a statistical model selection test based

on a hypothesis test. The model evolves the tree recursively, replacing the leaves with

subtrees and consequently improving the quality of the model. The parameters of each

leaf are adapted using the conventional least-squares algorithm. The algorithm produces

efficient models robust against over fitting. Hapfelmeier et al. [90] discussed the Guarded

Incremental Pruning (GuIP), which prunes the tree to improve the model’s performance

in the sense of overfitting and overly large structure avoidance.



15

3 THE PROPOSED MODEL

The current section introduces and describes the ePL-KRLS-DISCO. First, it is

presented an overview of the model’s structure. Following, the mechanism implemented to

define the rules is given. After, the correlation coefficient is briefly discussed. Next, the

method to prune underused rules is exploited. Then, it is detailed the method to define

the consequent parameters. Next, it is shown the method to update the kernel size. And

finally, the complete algorithm is presented.

3.1 AN OVERVIEW OF THE PL-KRLS-DISCO

The ePL-KRLS-DISCO model is a fuzzy rule-based system. This model uses

Takagi-Sugeno (TS) fuzzy rules [91, 92], as following expressed:

Ri : IF x is Ai
︸ ︷︷ ︸

Antecedent

THEN yi = fi(x, θi)
︸ ︷︷ ︸

Consequent

(3.1)

where Ri is the i-th fuzzy rule, i = 1, 2, . . . , R, R is the number of fuzzy rules, x =

[x1, . . . , xm]T ∈ R
m is the input, m is the number of attributes in the input vector, Ai is

the fuzzy set of the i-th fuzzy rule, and yi is the output of the i-th rule calculated as a

function of the input and the consequent parameters.

TS fuzzy rules have two main parts, the antecedent part and the consequent one.

The antecedent consists of rules, which are clusters formed from the input space. Each rule

is composed of similar inputs, i.e., ePL-KRLS-DISCO clusters the input space according

to the degree of similarity of the input vectors to form the rules. The proposed model

implements the participatory learning (PL) concept to define the rules. PL uses the inputs

to construct the model’s structure and functionality as part of the learning process when

a new input is available [93]. As a result, learning from new input data depends on what

the system has learned and will impact the learning from future inputs [22]. Furthermore,

ePL-KRLS-DISCO uses the utility measure to avoid underused rules, keep a compact

structure, and maintain a low computational cost [30, 81].

The consequent part of TS fuzzy rules consists of parameters associated with each

rule. The set of parameters associated with a rule is called consequent parameters. The

model computes the output as a function of the input and the consequent parameters.

The proposed model uses the KRLS method to define the consequent parameters. After

the model adds a new input into a rule, it updates the parameters of this rule. When a

new rule is created, the KRLS initializes the consequent parameters of this rule.
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3.2 IDENTIFICATION OF THE ANTECEDENT PART

Each rule is characterized by a center, which is an estimation of the rule’s mean.

When a new input enters the system, the model compares the new vector with the center

of all created rules. If this input is similar enough to the data of the most like cluster, the

model includes the new input into that rule and updates the cluster center. Otherwise,

the model creates a new rule [9, 94]. The model initializes the center of a new rule with

the input vector, i.e., vk
i = xk, where vk

i , is the center of the i-th rule at the k-th iteration,

xk = [x1, . . . , xm]T is the input vector of attributes with m elements. When a rule receives

a new input vector, ePL-KRLS-DISCO updates the cluster center recursively according to

Equation (3.2).

vk
i = vk−1

i + α(ck
i )(1−ak

i
)(xk − vk−1

i ) (3.2)

where α ∈ [0, 1] is the learning rate.

The proposed model defines the rules using the arousal index and the compatibility

measure. When an input enters the system, the model calculates the compatibility measure

of all rules. The ck
i ∈ [0, 1] is the compatibility measure of the i-th rule at the k-th iteration,

calculated as a function of the k-th input vector (xk) and the cluster center of the i-th rule

at the k-th iteration (vk
i ) according to Equation (3.3). It indicates the degree of similarity

between the new input and the cluster. A compatibility measure zero shows no similarity

between the rule and the input, and a value of the compatibility measure equal to one

represents the maximum similarity.

ck
i =



1 −

∥
∥
∥xk − vk

i

∥
∥
∥

m





(
ρxk,vk

i
+ 1

2

)

(3.3)

where ρxk,vk
i

∈ [−1, 1] is the correlation between xk and vk
i . The correlation coefficient is

presented in the next subsection.

On the other hand, ak
i ∈ [0, 1] is the arousal index of the i-th rule at the k-th

iteration, calculated as a function of ak−1
i and ck

i , according to Equation (3.4). The arousal

index can be seen as a complement to the compatibility measure, indicating the needing

to create a new rule and reducing the effect of outliers. The algorithm creates a new rule if

the smallest arousal index is greater than a threshold, i.e., ak
i > τ , where i = arg mini {ak

i }

and τ = β as same as [11] and the model has not excluded any rule. Otherwise, the model

assigns the input vector in the rule with the highest compatibility measure.

ak
i = ak−1

i + β(1 − ck
i − ak−1

i ) (3.4)

where β ∈ [0, 1] controls the growth rate of ak
i .
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3.3 THE CORRELATION COEFFICIENT

The ePL-KRLS model forms the rules based on the Euclidean distance but disre-

gards the spatial distribution of the vectors’ elements. This work introduces the correlation

to construct the rules to overcome that limitation. Thus, the mechanism to define the

clusters uses the DISCO, improving the performance of the clusters. The correlation is a

value in the range [−1, 1], which detects an interdependency between distinct observations

[95, 96]. The stronger the relationship between the variables, the closer to 1 the correlation

is. The closer the correlation is to −1, the stronger is the inverse proportion. Furthermore,

a correlation 0 indicates no association between the two vectors [31, 97]. Given the

two vectors A = [A1, A2, . . . , Am] and B = [B1, B2, . . . , Bm], the correlation coefficient is

computed as follows:

ρ(A, B) =
Cov(A, B)

√

V ar(A)
√

V ar(B)
(3.5)

where Cov(A, B) is the covariance between features A and B, calculated as Equation (3.6),

and V ar(A) and V ar(B) are the variances of A and B respectively, as Equation (3.7).

Cov(A, B) =

∑m
l=1

((

Al − Ā
) (

Bl − B̄
))

m − 1
(3.6)

where m is the number of observations in A and B, and Ā and B̄ are the mean of A and

B respectively.

V ar(A) =

∑m
l=1

(

Al − Ā
)2

m − 1
(3.7)

It is observed that the compatibility measure will be sufficiently great if the

Euclidean distance is small and the correlation is high. So, it is noticeable that higher

correlations between two observations come from higher covariance and reduced variances.

Therefore, the correlation produces rules with reduced standard deviations. As the accuracy

of the output is directly related to the mean and the standard deviation of the clusters,

DISCO improves the model’s performance.

3.4 PRUNING THE RULES

Pruning is implemented to avoid overfitting noisy data. The main idea is to

eliminate complex rules with low coverage that contain irrelevant literals that have only

been created to enclose noisy examples [98]. Unnecessarily large rule structure wastes

time, as it generally slows down instance processing. Complex structures also require more

processing memory, wasting space [59, 90]. The ePL-KRLS-DISCO algorithm removes

underused rules using the utility measure rules at each iteration as presented in Equation
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(3.8). When a utility of a rule gets lower than a threshold (Uk
i < ǫ), the model eliminates

the rule.

Uk
i =

∑k
l=1 λl

i

k − Ii

(3.8)

where λl
i is the normalized activation level of the i-th rule at the l-th iteration calculated

as Equation (3.9), k-th is the current iteration, and Ii is the iteration when the i-th rule

was created.

λk
i =

τi
∑Rk

rule=1 τrule

(3.9)

where τi is the activation level of the i-th rule calculated as Equation (3.10), and Rk is

the number of rules at the current iteration.

τi = µi1 × µi2 × . . . µij (3.10)

where µij is calculated according to Equation (3.11).

µij = e−
‖xk

j
−vk

ij‖
2

2σ2 (3.11)

where vk
ij is the j-th element of the i-th rule center, j = 1, 2, . . . , m, and σ defines the

spread of the antecedent part.

3.5 IDENTIFICATION OF THE CONSEQUENT PART

The model estimates the consequent parameters using the Kernel Recursive Least

Square (KRLS) [29]. KRLS is a mechanism that uses a collection of past inputs to

compute the consequent parameters. Each collection forms the local dictionary, i.e.,

Dk
i = [di1, . . . , dini

] is the local dictionary of the i-th rule at the k-th iteration, ni is

the number of input vectors stored in the dictionary, and dij = [d1, . . . , dm]T is the j-th

input vector of the dictionary. If the dictionaries included all inputs, the computational

cost would increase much and would unviable the simulations. Hence, the model uses a

sparcification procedure to store in the local dictionaries only relevant input vectors. The

algorithm defines the inputs’ importance based on the distance from it and the nearest

element in the local dictionary, as shown in Equation (3.12). This sparcification procedure

is called the novelty criterion (NC), and its implementation is essential to reduce the

computational cost and improve the model’s accuracy [99, 100].

disx = min
∀dij∈Dk

i

∥
∥
∥xk − dk

ij

∥
∥
∥ (3.12)



19

If the distance is greater than a threshold, the model adds the input vector into the

local dictionary, i.e., if disx ≥ 0.1νk
i , where j = arg minj

∥
∥
∥xk − dk

ij

∥
∥
∥, then Dk

i = [Dk−1
i ∪ xk],

νk
i is the kernel size of the dictionary. In this work, νk

i is initialized with σ and updated as

shown in the next subsection. The smaller the value of νk
i , the more inputs will be stored

in the dictionaries.

When the model adds a vector to the dictionary, the consequent parameters are

updated as Equation (3.13).

θk
i =




θk−1

i − zk
i [rk

i ]−1êk

[rk
i ]−1êk



 (3.13)

where θk−1
i = [θk−1

i1 , . . . , θk−1
in1

]T , zk = Qk−1
i gk, Qk

i is updated according to the Equation

(3.14), gk = [κ〈dk
i1, xk〉, . . . , κ〈dk

ini
, xk〉]T , κ〈. , .〉 is the Gaussian-Kernel function calculated

as Equation (3.15) [101], rk = λ + κ〈xk, xk〉 − (zk)T gk, and êk = yk − gkθk−1
i is the error

estimator.

Qk
i = (rk)−1




Qk−1

i rk + zk(zk)T −zk

−(zk)T 1



 (3.14)

κ〈xi, xj〉 = exp



−
‖xi − xj‖

2

2σ2



 (3.15)

where σ is the kernel width and controls the linearity of the model. The greater σ, the

more linear the function will be [102]. Simulations of Fan et al. [103] suggest initial values

of σ between 0.2 and 0.5.

Furthermore, the matrix P is updated as follows:

P k
i =




P k−1

i 0

0T 1



 (3.16)

where P k
i is initialized with one.

Otherwise, if the input isn’t included into the dictionary, the consequent parameters

are updated as Equation (3.17), and the matrix P as Equation (3.20).

θk
i = θk−1

i + Qk
i qk

i êk (3.17)

where Qk
i is obtained from the Equation (3.18), qk

i from Equation (3.19).

Qk
i = Qk−1

i (3.18)

qk
i =

P k−1
i zk

1 + (zk)T P k−1
i (zk)

(3.19)
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P k
i = P k−1

i −
P k−1

i zk(zk)T P k−1
i

1 + (zk)T P k−1
i (zk)

(3.20)

The consequent parameter of a new rule is initialized as follows:

θk
i = [λ + κ〈xk, xk〉]−1yk (3.21)

where λ ∈ [0, 1] is a parameter of regularization and yk is the desired output.

And finally, ePL-KRLS-DISCO computes the output using the most compatible

rule, i.e., ŷ = ŷi|i = arg maxi {ck
i }. The calculation of the output is as follows:

ŷi =
ni∑

j=1

θk
ij × κ〈xk, dk

ij〉 (3.22)

3.6 UPDATING THE KERNEL SIZE

The model updates the kernel size of the rule according to papers [1, 32, 33]. When

the model updates an existing rule, the kernel size is updated as follows:

νk
i =

√
√
√
√
√

(

νk−1
i

)2
+

∥
∥
∥xk − vk

i

∥
∥
∥

2
−

(

νk−1
i

)2

Nk
i

+

(

Nk
i − 1

) ∥
∥
∥vk

i − vk−1
i

∥
∥
∥

2

Nk
i

(3.23)

where Nk
i is the number of inputs in the i-th rule at the k-th iteration.

Otherwise, if a new rule is created, the model initializes the kernel size of the rule

as follows:

νk
R+1 =

∥
∥
∥xk − vk

i

∥
∥
∥

√

−2 log (ηmax)
(3.24)

where ηmax is the maximum value of ηi, for i = 1, 2, . . . , k, k is the current iteration, and

η is calculated recursively as Equation (3.25).

ηk = e−0.5
(

2

1 + e−ẽk − 1
)

(3.25)

where ẽk = 0.8ẽk−1 +
∥
∥
∥yk − ŷk

∥
∥
∥ and ẽ1 = 0.

As noted above, the model updates the kernel size based on the error. It improves

the model’s performance, seeing that higher errors will make the model store more input

data into the dictionary.

3.7 THE EPL-KRLS-DISCO ALGORITHM

The Algorithm 1 presents ePL-KRLS-DISCO.
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Algorithm 1: ePL-KRLS-DISCO
Input: x, y, α, β, λ, τ, ω, σ, ǫ
Output: ŷ

1 Initialization:

v1
1 = x1,D1

1 = x1, ν1
1 = σ, P 1

1 = 1, θ1
1 = [λ + κ〈x1, x1〉]−1y1, a1

1 = 0,

Excluded_Rule = false
2 for k = 2, 3, . . . , n do

3 for i = 1, 2, . . . , R do

4 Compute the compatibility measure: Equation (3.3)
5 Compute the arousal index: ak

i = ak−1
i + β(1 − ck

i − ak−1
i )

6 if
(

ak
i

)

> τ |i = arg mini {ak
i } and Excluded_Rule == false then

7 Create a new rule: R = R + 1
8 Initialize vk

R,Dk
R, θk

i : vk
R = [xk], Dk

R = xk, θk
R = [λ + κ〈xk, xk〉]−1yk

9 Initialize νk
R: Equation (3.24)

10 else

11 Find the most compatible rule: i = arg maxi {ck
i }

12 Update the rule center: vk
i = vk−1

i + α(ck
i )(1−ak

i
)(xk − vk−1

i )

13 Compute g, z, and r: gk = [κ〈dk
i1, xk〉, . . . , κ〈dk

ini
, xk〉]T , zk = Qk−1

i gk,
rk = λ + κ〈xk, xk〉 − (zk)T gk

14 if min(∀dij∈Dk
i

)

∥
∥
∥xk − dk

ij

∥
∥
∥ ≥ 0.1νk

ij then

15 Include xk into the dictionary: Dk
i = Dk

i ∪ xk

16 Compute Qk
i , P k

i , θk
i , νk

i : Equations (3.14), (3.16), (3.13), (3.23)
17 else

18 Compute Qk
i , P k

i , qk
i , and θk

i : Equations (3.18), (3.20), (3.19),
(3.17)

19 for i = 1, 2, . . . , R do

20 if Uk
i < ǫ then

21 Remove underused rules: Remove (i)
22 Excluded_Rule = true

23 Compute the output: ŷ =
∑ni

j=1 θijκ〈dk
ij, xk〉|i = arg maxi {ck

i }

The first line shows the initialization of the cluster center, the dictionary, the kernel

size, the matrix P , the consequent parameters, and the arousal index. In the second

line, it is started a loop for all input vectors in the training phase. The compatibility

measure and the arousal index are calculated in lines 4 and 5 for all rules. After the model

calculates the arousal index for all rules, it compares the smallest arousal index with τ ,

as expressed in line 6. When the smallest arousal index is greater than τ and none rule

was excluded, the model creates a new rule (line 7). The model initializes the cluster

center, the dictionary, and the consequent parameters, as shown in line 8 and the kernel

size according to line 9.

Otherwise, if the smallest arousal index doesn’t exceed τ , the model searches the

rule with the greater compatibility measure as shown in line 11, and updates the center
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of this rule. The model also calculates the g, z, and r of the updated rule. If the input

vector is distant enough to all past inputs in the dictionary (line 14), the model adds the

input into the dictionary and updates Q, P , θ, and ν according to line 16. On the other

hand, if the input doesn’t attend the expression presented in line 14, the model does not

include the input into the dictionary and updates Q, P , θ, and ν as expressed in line 18.

Furthermore, the model computes the utility measure for all rules to eliminate

underused rules. When the algorithm gets the utility measure smaller than ǫ, the model

removes this rule, as written in lines 19, 20, and 21. And finally, the model computes the

output using the most compatible rule according to line 22. For the test phase, the model

only executes the commands shown in lines 3, 4, and 22.
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4 EXPERIMENTAL RESULTS AND DISCUSSIONS

The model’s performance is evaluated using two benchmark time series: the

Mackey-Glass chaotic time series (widely used as a benchmark for online models) and

the nonlinear system identification. These examples are applied to demonstrate that

ePL-KRLS-DISCO can accurately solve online regression problems. These series are

largely used in the literature of eFSs to test the model’s performance, especially the

Mackey-Glass. It is possible to observe the adoption of these two datasets in papers

[1, 9, 10, 16, 20, 21, 22, 23, 25, 26, 33, 43, 51, 52, 55, 57, 59, 61, 62, 66, 73, 75, 76, 83, 88].

Moreover, the model is applied to predict the hot spot temperature using three datasets

from a real power transformer. These data are the same used in [9, 11, 43, 44, 46, 47]. The

root-mean-square error (RMSE), non-dimensional index error (NDEI), and mean absolute

error (MAE) measures the precision of the models, calculated according to Equations

(4.1), (4.2), and (4.3), respectively.

RMSE =

√
√
√
√

1

T

T∑

k=1

(yk − ŷk)2 (4.1)

NDEI =
RMSE

std([y1, ..., yT ])
(4.2)

MAE =
1

T

T∑

k=1

|yk − ŷk| (4.3)

where yk is the k−th actual value, ŷk is the k-th predicted value, T is the sample size, and

std() is the standard deviation function.

Another relevant measure is computational complexity, which means predicting the

resources the algorithm requires. The complexity estimation usually uses time [104, 105].

Practical usability and faster computational speed of the models increase the acceptability

and applicability of evolving systems in the applications of real-world problems [72]. Thus,

the models’ execution time is estimated in seconds, computing the mean runtime and the

standard deviation of thirty simulations. Furthermore, the number of final rules/neurons of

each model is presented. The results of ePL-KRLS-DISCO are compared with traditional

forecasting models such as ARIMA [106], adaptive-network-based fuzzy inference system

(ANFIS) [107], Multi-Layer Perceptron (MLP) [108] trained by backpropagation, and

Support Vector Machine (SVM) [109] and with the state-of-the-art of the evolving fuzzy

modeling approaches, such as eTS [16], ePL [22], eMG [9], ePL+ [23], ePL-KRLS [27],

and ePL-KRLS+ [30]. Additionally, a statistical test validates the obtained results. All

codes were executed using Matlab 2018a in a PC device that has Intel Core i7-8565U,

1.99 GHz Turbo, and 8 GB RAM. The hyper-parameters are heuristically defined by

computational experiments aiming to produce the lowest RMSE, NDEI, and MAE. The
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following guidelines were implemented: β = τ , α ≤ 0.1, λ ≤ 10−2, r ≤ 0.5, ω = 1,

ǫ ∈ [0.03, 0.05].

4.1 MACKEY–GLASS TIME-SERIES FORECASTING

Mackey and Glass [110] introduced a long-term time-series, proposed as a model of

white blood cell production, obtained through the following differential equation:

dx(t)

dt
=

0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t − 1) (4.4)

where x(0) = 1.2 and τ = 17.

The goal is to predict xk+85 using as input vector [xk, xk+6, xk+12, xk+18] for any k

value. The simulations were trained using 3000 data samples, for k ∈ [201, 3200], and then,

500 data samples were collected to test the model for k ∈ [5001, 5500]. Table 1 shows the

parameter values.

Table 1 – Models’ parameters for the Mackey-Glass time-series

Model Parameters
ARIMA [106] p = 1, d = 0 and q = 0
ANFIS [107] 10 epochs
MLP [108] a hidden layer with three neurons
SVM [109] C = 1, γ = 1
eTS [16] r = 0.1 and ω = 1000
ePL [22] β = 0.3, τ = 0.1, alpha = 0.1, λ = 0.8, r = 0.25,

and ω = 1000
eMG [9] α = 0.01, λ = 0.1, w = 10, and Σinit = 10−3I4

ePL+ [23] β = 0.3, τ = 0.1, alpha = 0.1, λ = 0.8, ω = 1000,
ǫ = 0.07, and π = 0.4

ePL-KRLS [27] β = 0.2, τ = 0.09, γ = 0.91, alpha = 0.1, λ =
0.0001, r = 0.5, and ω = 1

ePL-KRLS+ [30] β = 0.16, τ = 0.16, γ = 0.84, alpha = 0.1, λ =
10−10, r = 0.5, ω = 1, and ǫ = 0.07

ePL-KRLS-DISCO β = 0.06, τ = 0.06, α = 0.001, λ = 10−7, σ = 0.3,
ω = 1, and ǫ = 0.05

Source: Prepared by the author (2021)

Table 2 shows the models’ results. The PL-KRLS-DISCO model obtained the

RMSE of 0.0013, the NDEI of 0.0057, the MAE of 0.0008, the runtime of 3.00 ± 0.08

seconds, and 14 final rules, achieving the lowest errors among all the models. This

model reached errors approximately 92% smaller than ePL-KRLS+, which performed

the second-best results concerning the errors and the smallest number of final rules, and

ePL-KRLS-DISCO performed shorter runtime than MLP, eMG, ePL-KRLS, and ePL-

KRLS+. The eMG model has the third-best errors but achieved a runtime of 34.52 ± 0.82

seconds and 89 final rules, the greatest among all models. Among the eFS models, eTS
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performed the shortest execution time and the highest errors. ANFIS obtained the lowest

errors and the highest number of final rules among the traditional forecasting models,

achieving similar errors of eMG with much inferior runtime and number of final rules.

SVM performed the predictions with the shortest runtime, and MLP had the highest error

values. The results suggest that ePL-KRLS-DISCO is a robust algorithm able to treat

complex data with high accuracy. Figure 1 shows the graphic with the predictions of

ePL-KRLS-DISCO.

Table 2 – Simulations’ results of Mackey-Glass time-series

Model RMSE NDEI MAE Runtime Rules/Neurons

ARIMA [106] 0.0918243 0.4076627 0.0736333 0.50 ± 0.07 -
ANFIS [107] 0.0259086 0.1150235 0.0209717 1.33 ± 0.05 16
MLP [108] 0.1043437 0.4632439 0.0832548 15.86 ± 1.05 8
SVM [109] 0.0948219 0.4209707 0.0750996 0.15 ± 0.02 -
eTS [16] 0.0848845 0.3768529 0.0684699 0.25 ± 0.06 8
ePL [22] 0.0922248 0.4094407 0.0744546 0.49 ± 0.13 7
eMG [9] 0.0188697 0.0837737 0.0122970 34.52 ± 0.82 89
ePL+ [23] 0.0924519 0.4104489 0.0746511 0.44 ± 0.09 6
ePL-KRLS [27] 0.0227922 0.1011883 0.0188428 9.12 ± 0.73 1
ePL-KRLS+ [30] 0.0145419 0.0645604 0.0111955 8.24 ± 0.41 1

ePL-KRLS-DISCO 0.0012738 0.0056551 0.0008272 3.00 ± 0.08 14
Source: Prepared by the author (2021)

Figure 1 – Predictions of ePL-KRLS-DISCO for the Mackey–Glass time-series
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The modified Morgan-Granger-Newbold test (MGN) [111] is implemented to va-

lidate the results. MGN is a Diebold-Mariano (DM) Test proposed to overcome the

limitations of the original MGN test [112]. Considering two sets of samples G1 and G2, the

MGN test allows us to infer assumptions from two independent data samples and to verify

their statistical validity. The hypothesis is given as follows:







H0 : G1 = G2

H1 : G1 Ó= G2

(4.5)

Given a significance level α, usually around 0.05, the p-value represents the lowest

value of α to reject the null hypothesis H0. Thus, values of the p-value below α means

that the null hypothesis is not true. The sets of samples G1 and G2 are the outputs of the

models, where G1 refers to ePL-KRLS-DISCO and G2 to the compared model. Table 3

list the results of the MGN test performed for the test accuracy metric in Table 2. The

rejection of the null hypothesis is described by letters ‘W’ and ‘L’ meaning respectively

win and loss of the method tested, and the non-rejection of the null hypothesis is expressed

by ‘E’ which means equality of the tested methods. The results of the statistical tests

show that ePL-KRLS-DISCO yields better performance for the Mackey-Glass time-series

concerning all compared models, with a 95% confidence level.

Table 3 – MGN test for the results of the Mackey-Glass time-series

G1 G2 MGN p-value Null hypothesis
ePL-KRLS-DISCO ARIMA -17.0195868 1.5 × 10−51 W
ePL-KRLS-DISCO ANFIS -17.0386727 1.2 × 10−51 W
ePL-KRLS-DISCO MLP -16.7557232 2.5 × 10−50 W
ePL-KRLS-DISCO SVM -15.7203781 1.6 × 10−45 W
ePL-KRLS-DISCO eTS -17.7545414 5.0 × 10−55 W
ePL-KRLS-DISCO ePL -17.4031165 2.3 × 10−53 W
ePL-KRLS-DISCO eMG -6.2260174 1.0 × 10−9 W
ePL-KRLS-DISCO ePL+ -17.40286747 2.3 × 10−53 W
ePL-KRLS-DISCO ePL-KRLS -18.4851863 1.7 × 10−58 W
ePL-KRLS-DISCO ePL-KRLS+ -13.7731833 8.3 × 10−37 W

Source: Prepared by the author (2021)
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4.2 NONLINEAR DYNAMIC SYSTEM IDENTIFICATION

The classic nonlinear dynamic system identification, described in [113], is obtained

through the following difference equation [114]:

yk =
yk−1yk−2(yk−1 − 0.5)

1 + (yk−1)2 + (yk−2)2
− uk−1 (4.6)

where uk = sin(2πk
25

) and y0 = y1 = 0.

The goal is to predict yk using as input vector [yk−2, yk−1, uk−1] for any k value.

The k value is set as k ∈ [2, 5201], where the first 5000 data samples trained the models,

and the last 200 data samples tested them. Table 4 presents the models’ parameters.

Table 4 – Models’ parameters for the nonlinear dynamic system identification

Model Parameters
ARIMA [106] p = 2, d = 1 and q = 0
ANFIS [107] 10 epochs
MLP [108] a hidden layer with five neurons
SVM [109] C = 0.01, γ = 1
eTS [16] r = 0.4 and ω = 750
ePL [22] β = 0.3, τ = 0.1, alpha = 0.1, λ = 0.8, r = 0.25,

and ω = 1000
eMG [9] α = 0.01, λ = 0.1, w = 10, and Σinit = 10−5I3

ePL+ [23] β = 0.3, τ = 0.1, alpha = 0.1, λ = 0.8, ω = 1000,
ǫ = 0.07, and π = 0.4

ePL-KRLS [27] β = 0.24, τ = 0.24, γ = 0.76, alpha = 0.1, λ =
10−10, r = 0.5, and ω = 1

ePL-KRLS+ [30] β = 0.3, τ = 0.3, γ = 0.7, alpha = 0.1, λ = 10−10,
r = 0.5, ω = 1, and ǫ = 0.07

ePL-KRLS-DISCO β = 0.1, τ = 0.1, α = 0.1, λ = 10−16, σ = 0.5,
ω = 1, and ǫ = 0.05

Source: Prepared by the author (2021)

Table 5 shows the results of the simulations. The ePL-KRLS-DISCO model achieved

the second-best accuracy among all the models, obtaining the RMSE of 9.0 × 10−10, the

NDEI of 8.2 × 10−10, and the MAE of 2.3 × 10−10. These error results correspond to a

reduction of more than 99.99% compared to the ePL-KRLS and ePL-KRLS+. This model

simulated the nonlinear in 1.88 ± 0.08 seconds and obtained seventeen final rules. The

eMG algorithm reached the best error results but performed simulations in 11.09 seconds

and achieved 26 final rules, the greatest among all models. The proposed model performed

simulations in about a sixth of eMG runtime and half of its final rules. The ePL-KRLS

and ePL-KRLS+ approaches obtained the smallest number of final rules and achieved

inferior errors than ARIMA, MLP, SVM, eTS, ePL, and ePL+. The eTS algorithm had

the shortest runtime among the eFS models, but it performed predictions with the highest

errors among all the models. The shortest runtime is performed by the SVM. Considering
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only the traditional forecasting models, MLP obtained the highest errors, and ANFIS

performed the smallest one, getting errors inferior to ePL-KRLS and ePL-KRLS+. These

results indicate the superiority of the proposed model to deal with nonlinear data. Figure

2 shows the graphic of the predictions of ePL-KRLS-DISCO.

Table 5 – Simulations’ results of nonlinear dynamic system identification

Model RMSE NDEI MAE Runtime (s) Rules/Neurons

ARIMA [106] 0.0717446 0.0656251 0.0575244 0.74 ± 0.06 -
ANFIS [107] 0.0000309 0.0000283 0.0000208 0.49 ± 0.02 8
MLP [108] 0.1937605 0.1772336 0.1443096 29.66 ± 62.14 9
SVM [109] 0.1024126 0.0936773 0.0929539 0.10 ± 0.02 -
eTS [16] 0.2857880 0.2614116 0.2527342 0.23 ± 0.02 5
ePL [22] 0.0486007 0.0444553 0.0338808 0.39 ± 0.04 6
eMG [9] 9.0 × 10

−11
8.2 × 10

−11
1.8 × 10

−11 11.09 ± 1.16 26
ePL+ [23] 0.0486047 0.0444589 0.0338827 0.43 ± 0.03 5
ePL-KRLS [27] 0.0000904 0.0000827 0.0000465 0.96 ± 0.16 1

ePL-KRLS+ [30] 0.0000904 0.0000827 0.0000465 0.88 ± 0.03 1

ePL-KRLS-DISCO 9.0 × 10−10 8.2 × 10−10 2.3 × 10−10 1.88 ± 0.08 17

Source: Prepared by the author (2021)

Figure 2 – Predictions of ePL-KRLS-DISCO for the nonlinear dynamic system identification

0 50 100 150 200

Samples

-2

-1.5

-1

-0.5

0

0.5

1

1.5

O
u
tp

u
t

Actual Value

ePL-KRLS-DISCO

Source: Prepared by the author (2021)

Table 6 shows the results of the MGN test, supporting that ePL-KRLS-DISCO

yields better performance for the nonlinear system identification concerning all models,

except for eMG.
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Table 6 – MGN test for the results of the nonlinear dynamic system

G1 G2 MGN p-value Null hypothesis
ePL-KRLS-DISCO ARIMA -12.6121967 3.5 × 10−27 W
ePL-KRLS-DISCO ANFIS -8.5998942 2.4 × 10−15 W
ePL-KRLS-DISCO MLP -19.3042450 1.8 × 10−47 W
ePL-KRLS-DISCO SVM -24.2009144 3.4 × 10−61 W
ePL-KRLS-DISCO eTS -15.1368173 6.0 × 10−35 W
ePL-KRLS-DISCO ePL -6.1845240 3.5 × 10−9 W
ePL-KRLS-DISCO eMG 3.2378872 0.0014109 L
ePL-KRLS-DISCO ePL+ -6.1843327 3.5 × 10−9 W
ePL-KRLS-DISCO ePL-KRLS -5.6952260 4.4 × 10−8 W
ePL-KRLS-DISCO ePL-KRLS+ -5.6952260 4.4 × 10−8 W

Source: Prepared by the author (2021)

4.3 HOT SPOT TEMPERATURE FORECASTING

And finally, the model is applied in the thermal modeling of the power transformer.

Table 7 presents the characteristics of the transformer.

Table 7 – Characteristics of the experimental power transformer

Copper losses 776 W
Factory year MACE/1987
Iron losses 195 W
Nameplate rating 25 kVA
Tank dimensions 64 × 16 × 80 cm3

Top oil temperature rise at full load 73.1 ◦C
Type of cooling ONAN
Vprimary/Vsecondary 10 kV / 380 kV
Weight of core and coil assembly 136 kg
Weight of oil 62 kg

Source: [46]

The aim is to predict the hot spot temperature using as inputs the load current (K),

the top oil temperature (ΘT O), and one step delayed load current (q−1K, where q−1 is the

delay operator). Three datasets were implemented in the simulations. Each one consists

of measurements taken every 5 minutes for 24 hours. The firsts two datasets have no

overload conditions (dataset 1 and 2), and the last one is with overload conditions (dataset

3). The Augmented Dickey-Fuller (ADF) test [115] for a unit root is implemented to verify

the stationarity of the datasets. For a p-value smaller than 0.05, the test rejects the null

hypothesis of a unit root against the autoregressive alternative, with a 95% confidence

level. Table 8 shows the tests’ results. All tests fail to reject the null hypothesis, indicating

that all databases are non-stationary.

Furthermore, the Tsay test [116] is performed to verify the linearity of the datasets.

For a p-value smaller than 0.05, the test rejects the null hypothesis that the true model is
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Table 8 – ADF test for the transformers datasets

Dataset 1 Dataset 2 Dataset 3

p-value 0.62 0.65 0.62
Source: Prepared by the author (2021)

an autoregressive (AR) process, with a 95% level of confidence. Table 9 shows the results.

All tests fail to reject the null hypothesis, indicating that all databases output variable

depends linearly on its previous values.

Table 9 – Tsay test for the transformers datasets

Dataset 1 Dataset 2 Dataset 3

p-value 0.79 0.75 0.84
Source: Prepared by the author (2021)

For the dataset 1, ARIMA has p = 2, d = 1, and q = 5; ANFIS considers 10

epochs; MLP has a hidden layer with three neurons; SVM has C = 1, and γ = 1; eTS

has r = 0.9 and ω = 1000; ePL has β = 0.04, τ = 0.04, alpha = 0.1, λ = 0.9, r = 0.08,

and ω = 1000; ePL+ has β = 0.3, τ = 0.3, alpha = 0.01, λ = 0.0001, ω = 1000, ǫ = 0.03,

and π = 0.3; eMG has α = 0.05, λ = 0.3, w = 10, and Σinit = 3 × 10−2I3; ePL-KRLS has

β = 0.1, τ = 0.1, γ = 0.99, alpha = 0.1, λ = 0.0001, r = 0.9, and ω = 1; ePL-KRLS+

has β = 0.09, τ = 0.09, γ = 0.91, alpha = 0.1, λ = 10−10, r = 0.1, ω = 1, and ǫ = 0.07;

ePL-KRLS-DISCO has β = 0.04, τ = 0.04, α = 0.05, λ = 10−10, σ = 0.5, ω = 1, and

ǫ = 0.05.

For the dataset 2, ARIMA has p = 1, d = 1, and q = 4; ANFIS considers 10

epochs; MLP has a hidden layer with three neurons; SVM has C = 1, and γ = 1; eTS

has r = 0.4 and ω = 1000; ePL has β = 0.08, τ = 0.08, alpha = 0.1, λ = 0.8, r = 0.2,

and ω = 1000; ePL+ has β = 0.1, τ = 0.1, alpha = 0.1, λ = 0.6, ω = 1000, ǫ = 0.07, and

π = 0.4; eMG has α = 0.01, λ = 0.7, w = 10, and Σinit = 6 × 10−2I3; ePL-KRLS has

β = 0.14, τ = 0.14, γ = 0.86, alpha = 0.1, λ = 0.0001, r = 0.5, and ω = 1; ePL-KRLS+

has β = 0.16, τ = 0.16, γ = 0.84, alpha = 0.1, λ = 10−10, r = 0.5, ω = 1, and ǫ = 0.07;

ePL-KRLS-DISCO has β = 0.6, τ = 0.6, α = 0.15, λ = 10−10, σ = 0.5, ω = 1, and

ǫ = 0.03.

For the dataset 3, ARIMA has p = 2, d = 2, and q = 2; ANFIS considers 10

epochs; MLP has a hidden layer with three neurons; SVM has C = 1, and γ = 1; eTS has

r = 0.7 and ω = 1000; ePL has β = 0.001, τ = 0.003, alpha = 0.1, λ = 0.72, r = 0.2, and

ω = 1000; ePL+ has β = 0.001, τ = 0.003, alpha = 0.1, λ = 0.8, ω = 1000, ǫ = 0.07, and

π = 0.4; eMG has α = 0.2, λ = 0.05, w = 30, and Σinit = I4; ePL-KRLS has β = 0.005,

τ = 0.005, γ = 0.995, alpha = 0.9, λ = 0.00001, r = 0.37, and ω = 1; ePL-KRLS+ has
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β = 0.18, τ = 0.18, γ = 0.82, alpha = 0.1, λ = 10−10, r = 0.5, ω = 1, and ǫ = 0.07;

ePL-KRLS-DISCO has β = 0.1, τ = 0.1, α = 0.1, λ = 10−8, σ = 0.5, ω = 1, and ǫ = 0.04.

Table 10 presents the performance of the models for dataset 1. The ePL-KRLS-

DISCO model obtained the RMSE of 0.0015, the NDEI of 0.0118, the MAE of 0.0006, the

runtime of 0.08 ± 0.01 seconds, and seventeen final rules. The proposed model reached

the smallest error values, obtaining errors approximately 54% lower than ePL-KRLS+ and

more than 92% lower than ePL-KRLS. The ePL-KRLS+ performed the second-best error

values with just one final rule, the same number of final rules as ePL+ and ePL-KRLS. The

eTS and ePL algorithms performed the simulations with the shortest runtime among the

eFSs, and eTS achieved the highest number of final rules. MLP obtained the worst error

values, and ARIMA performed the best error values among the traditional forecasting

models.

Table 10 – Simulations’ results for the dataset 1 of the power transformer

Model RMSE NDEI MAE Runtime Rules/Neurons

ARIMA [106] 0.0075217 0.0610153 0.0039499 0.50 ± 0.07 -
ANFIS [107] 0.0147961 0.1200251 0.0113695 0.04 ± 0.01 8
MLP [108] 0.0377404 0.3061469 0.0305381 8.25 ± 1.00 7
SVM [109] 0.0231634 0.1878998 0.0174993 0.01 ± 0.02 -
eTS [16] 0.0174631 0.1416590 0.0112957 0.02 ± 0.00 16
ePL [22] 0.0126353 0.1024968 0.0091833 0.02 ± 0.00 5
eMG [9] 0.0156586 0.1270215 0.0117626 0.07 ± 0.01 3
ePL+ [23] 0.0195684 0.1587369 0.0151500 0.01 ± 0.00 1

ePL-KRLS [27] 0.0190857 0.1548216 0.0139502 0.06 ± 0.01 1

ePL-KRLS+ [30] 0.0031561 0.0256019 0.0013618 0.22 ± 0.01 1

ePL-KRLS-DISCO 0.0014586 0.0118321 0.0006085 0.08 ± 0.01 17
Source: Prepared by the author (2021)

Table 11 shows the performance of the models for dataset 2. The ePL-KRLS-DISCO

model obtained the RMSE of 0.0003, the NDEI of 0.0048, the MAE of 8.1−5, the runtime

of 0.10 ± 0.02 seconds, and two final rules, achieving the smallest error values, about

85% inferior concerning the ePL-KRLS+ and approximately 96% lower than ePL-KRLS

with less runtime. It also reached shorter runtime than ARIMA and MLP. The ePL+,

ePL-KRLS, and ePL-KRLS+ approaches obtained just one final rule, and eTS achieved

the highest number of final rules. MLP performed the highest runtime, SVM, eTS, and

ePL the shortest one, and ANFIS obtained the third-best error values with a shorter

runtime.

Table 12 presents the results of the simulations for dataset 3, which has overload

conditions. The ePL-KRLS-DISCO model reached the RMSE of 0.0007, NDEI of 0.0036,

MAE of 0.0002, the runtime of 0.07 ± 0.01 seconds, and eight final rules, obtaining the

smallest errors. The ePL-KRLS-DISCO model achieved error values approximately 80%

smaller than the ePL-KRLS+ and performed simulations faster than ePL-KRLS and ePL-
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Table 11 – Simulations’ results for the dataset 2 of the power transformer

Model RMSE NDEI MAE Runtime Rules/Neurons

ARIMA [106] 0.0067408 0.1059581 0.0049175 0.16 ± 0.04 -
ANFIS [107] 0.0026448 0.0415743 0.0017017 0.04 ± 0.01 8
MLP [108] 0.0194530 0.3057816 0.0168367 42.32 ± 3.34 7
SVM [109] 0.0118426 0.1861537 0.0087845 0.01 ± 0.02 -
eTS [16] 0.0082422 0.1295587 0.0052521 0.01 ± 0.00 9
ePL [22] 0.0069890 0.1098594 0.0049435 0.01 ± 0.00 2
eMG [9] 0.0069270 0.1088853 0.0047034 0.09 ± 0.01 4
ePL+ [23] 0.0075628 0.1188787 0.0048492 0.02 ± 0.01 1

ePL-KRLS [27] 0.0069614 0.1094266 0.0029991 0.14 ± 0.01 1

ePL-KRLS+ [30] 0.0020022 0.0314721 0.0009663 0.12 ± 0.01 1

ePL-KRLS-DISCO 0.0003078 0.0048386 0.0000811 0.10 ± 0.02 2
Source: Prepared by the author (2021)

KRLS+. The ePL-KRLS+ algorithm performed the second-best results concerning the

errors, reaching just one final rule, the smallest number of final rules among all simulations,

and eTS performed the highest number of final rules. The ePL model performed the

shortest runtime, and MLP the longest one. ANFIS reached the third-best errors with a

short runtime. Figures 3 4 and 5 show the graphics of the predictions of ePL-KRLS-DISCO

for datasets 1, 2, and 3, respectively.

Table 12 – Simulations’ results for the dataset 3 of the power transformer

Model RMSE NDEI MAE Runtime Rules/Neurons

ARIMA [106] 0.0074403 0.0362909 0.0028487 0.49 ± 0.06 -
ANFIS [107] 0.0110810 0.0540488 0.0068150 0.04 ± 0.01 8
MLP [108] 0.0548766 0.2676667 0.0344566 2.58 ± 0.19 7
SVM [109] 0.0434348 0.2118577 0.0309763 0.02 ± 0.02 -
eTS [16] 0.0244274 0.1191473 0.0129252 0.04 ± 0.01 26
ePL [22] 0.0185969 0.0907086 0.0085326 0.01 ± 0.00 2
eMG [9] 0.0190197 0.0927704 0.0121184 0.05 ± 0.01 3
ePL+ [23] 0.0202123 0.0985875 0.0099453 0.02 ± 0.00 2
ePL-KRLS [27] 0.0171763 0.0837791 0.0080920 0.10 ± 0.01 2
ePL-KRLS+ [30] 0.0035913 0.0175170 0.0018634 0.12 ± 0.01 1

ePL-KRLS-DISCO 0.0007307 0.0035643 0.0002468 0.07 ± 0.01 8
Source: Prepared by the author (2021)

The results of the statistical tests, presented in Tables 13, 14, and 15, show that

ePL-KRLS-DISCO yields better performance for datasets 1, 2, and 3 concerning all

compared models, with a 95% confidence level.
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Figure 3 – Estimation of hot spot temperature without overload condition for all models
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Figure 4 – Estimation of hot spot temperature without overload condition
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Figure 5 – Estimation of hot spot temperature with overload condition
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Table 13 – MGN test for the results of the dataset 1 of the power transformer

G1 G2 MGN p-value Null hypothesis
ePL-KRLS-DISCO ARIMA -2.8681142 0.0044345 W
ePL-KRLS-DISCO ANFIS -10.9625888 1.3 × 10−23 W
ePL-KRLS-DISCO MLP -13.9645529 3.4 × 10−34 W
ePL-KRLS-DISCO SVM -8.5264028 8.7 × 10−16 W
ePL-KRLS-DISCO eTS -5.3536283 1.8 × 10−7 W
ePL-KRLS-DISCO ePL -6.9623190 2.3 × 10−11 W
ePL-KRLS-DISCO eMG -7.5805032 7.6 × 10−13 W
ePL-KRLS-DISCO ePL+ -10.6531145 1.5 × 10−22 W
ePL-KRLS-DISCO ePL-KRLS -5.8677983 1.2 × 10−8 W
ePL-KRLS-DISCO ePL-KRLS+ -3.8743454 0.0001324 W

Source: Prepared by the author (2021)
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Table 14 – MGN test for the results of the dataset 2 of the power transformer

G1 G2 MGN p-value Null hypothesis
ePL-KRLS-DISCO ARIMA -7.1593994 1.9 × 10−12 W
ePL-KRLS-DISCO ANFIS -5.5446575 6.7 × 10−8 W
ePL-KRLS-DISCO MLP -16.5174974 1.4 × 10−43 W
ePL-KRLS-DISCO SVM -7.5779066 4.8 × 10−13 W
ePL-KRLS-DISCO eTS -5.1149601 5.7 × 10−7 W
ePL-KRLS-DISCO ePL -7.8264477 9.6 × 10−14 W
ePL-KRLS-DISCO eMG -7.8967298 6.1 × 10−14 W
ePL-KRLS-DISCO ePL+ -6.4557110 4.6 × 10−10 W
ePL-KRLS-DISCO ePL-KRLS -2.6126780 0.0094552 W
ePL-KRLS-DISCO ePL-KRLS+ -5.1840136 4.1 × 10−7 W

Source: Prepared by the author (2021)

Table 15 – MGN test for the results of the dataset 3 of the power transformer

G1 G2 MGN p-value Null hypothesis
ePL-KRLS-DISCO ARIMA -2.2572225 0.0247433 W
ePL-KRLS-DISCO ANFIS -5.9328417 8.5 × 10−9 W
ePL-KRLS-DISCO MLP -7.4814592 9.0 × 10−13 W
ePL-KRLS-DISCO SVM -8.1805141 9.2 × 10−15 W
ePL-KRLS-DISCO eTS -3.5483855 0.0004524 W
ePL-KRLS-DISCO ePL -3.6012074 0.0003729 W
ePL-KRLS-DISCO eMG -8.1101470 1.4 × 10−14 W
ePL-KRLS-DISCO ePL+ -4.0951969 9.6 × 10−5 W
ePL-KRLS-DISCO ePL-KRLS -3.9570239 0.0094552 W
ePL-KRLS-DISCO ePL-KRLS+ -4.3687168 1.7 × 10−5 W

Source: Prepared by the author (2021)

4.4 DISCUSSIONS

The simulations proved the robustness of the proposed model to predict complex

data. The ePL-KRLS-DISCO model obtained far superior results concerning the error

metrics in the synthetic and power transformers datasets. The proposed model outperfor-

med all compared models concerning the RMSE, NDEI, and MAE for the Mackey-Glass

time-series and the power transformers’ datasets. The MGN test validates the results

statistically, supporting the accuracy of the proposed model. The DISCO implementation

to compute the compatibility measure makes the model create clusters with a smaller

standard deviation. Consequently, the model forms rules with similar characteristics. So,

the algorithm can extract useful information from each cluster and can make accurate

predictions through the KRLS approach. The output is calculated based on the most

similar rule since each one holds similar attributes extracted from inputs. These attributes

are stored in the local dictionaries to don’t lose useful information about past inputs.

Consequently, the proposed model can model complex behaviors from streams, dealing

accurately with non-stationary data.
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And the superior performance of ePL-KRLS-DISCO didn’t impact directly in the

runtime and the number of final rules. The ePL-KRLS-DISCO approach performed a

longer runtime than ePL-KRLS and ePL-KRLS+ in just two simulations. In this sense,

simulations demonstrate that the introduced model performs predictions with competitive

runtime. The small number of rules from ePL-KRLS-DISCO provides explainable and

interpretable results. The small computational cost accrues from the KRLS algorithm.

KRLS makes nonlinear predictions by making linear operations in the kernel space. KRLS

also uses sparcification procedures to keep small the computational cost. The results

demonstrate the high level of autonomy and adaptation of the proposed model to deal

with complex and non-stationary data. The model advances its structure autonomously

during the life span of the system. An accurate estimation of the hot spot temperature

supports defining the load capacity by maximizing the long-term cost-benefit. Thus, the

results support the adoption of ePL-KRLS-DISCO to monitor the hot spot temperature.
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5 CONCLUSIONS

This work introduced a novel rule-based eFS model termed ePL-KRLS-DISCO.

The proposed model is evaluated in terms of errors, runtime, and the number of final rules.

Two benchmark time series are implemented to evaluate the models. Finally, the model

is applied to predict the hot spot temperature using three datasets from a real power

transformer. The simulations’ results are compared with traditional forecasting models

and some related state-of-the-art evolving fuzzy modeling approaches.

The ePL-KRLS-DISCO model outperformed all compared models for the Mackey-

Glass time-series and the power transformers datasets concerning the errors. The MGN

test validates statistically the results, proving the superior performance of the proposed

model. The results demonstrate the ability of ePL-KRLS-DISCO to model the underlying

system of streams, dealing accurately with non-stationary time series. The model also

obtained a competitive runtime and number of final rules, supporting that the models have

a competitive computational complexity. The results support that the ePL-KRLS-DISCO

is a robust model able to adapt its structure and functionality according to the data

change, predicting data precisely and with competitive computational cost.

Considering the importance of accurate models, the results suggest the ePL-KRLS-

DISCO implementation as a time series forecasting tool to support decision-making. As

future work, it is suggested to use optimization algorithms to define the model parameters

to improve its performance in terms of errors.
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