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Resumo

Nanocristais semicondutores (NCs), ı́ons metálicos contidos em materiais à base de vidro,

podem ter aplicações em projetos de engenharia e resolver muitos problemas tecnológicos.

Composições de vidro à base de P2O5 constituem uma classe importante de materiais

para diversas aplicações, especialmente para aplicações de laser de alta potência. Recen-

temente, a produção de materiais de vidro fosfato à base de NCs semicondutores tem se

mostrado de fundamental importância para aplicações em várias áreas tais como, foto-

voltaica, LEDs, lasers e spintrônica. Os principais desafios são a inserção intencional de

dopantes nos NCs semicondutores de forma a expandir suas funcionalidades intŕınsecas

e a incorporação de NCs em hospedeiros livres de hidroxila e espécies orgânicas para

estabilizar e integrar seus desempenhos. Por outro lado, o ı́ndice de refração pequeno

dos vidros fosfato pode ser ajustado pela adição de TeO2 que possui alto ı́ndice de re-

fração, permitindo assim o controle da dispersão cromática que é útil para projetos de

materiais fotônicos. O foco da tese é a caracterização de semicondutores ZnNiTe cresci-

dos em materiais vitro-cerâmicos transparentes a base de fosfato e o efeito de TeO2 em

vidro fosfatos dopados com Nd3+ para aplicações optoeletrônicas e de lasers de estado

sólido. As caracteŕısticas estruturais desses materiais foram determinadas por técnicas

espectroscópicas de XRD, FT-IR e Raman. As propriedades ópticas foram caracterizadas

pelo uso de técnicas espectroscópicas de absorção de UV-Vis-NIR e fluorescência. Os

resultados foram usados para estimar parâmetros de interação de cristal, estado de coor-

denação de ı́ons Ni2+, parâmetros de Judd-Ofelt para ı́ons Nd3+ e propriedades radiativas

de ı́ons metálicos em vidros. A difusividade térmica (D) e a condutividade térmica (K)

dos NCs de ZnNiTe em vidros foram determinadas pelas técnicas de lente térmica (TL)

e de relaxamento térmico (TR). Os resultados revelaram que os comportamentos de D

e K nas amostras estudadas são semelhantes. As propriedades ópticas não lineares de

NCs de ZnNiTe em vidros também foram estudadas usando a técnica de Z-scan. A pro-

priedade de refração não linear foi observada apenas em amostras contendo 5% de Ni.



Outras amostras, contendo de 1,0% a 10% de Ni apresentaram natureza de absorção não

linear. Isto sugere que o coeficiente de absorção, não muda significativamente em função

do comprimento de onda, mas sim devido ao aumento da concentração de Ni, efeitos de

confinamento eletrônico e processos de absorção de dois fótons (TPA).

Palavras-chave: Nanocristais semicondutores, ı́ons metálicos, vidros fosfatos, fotolumi-

nescência, propriedades não lineares, propriedades termo-ópticas.
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Abstract

Semiconductor nanocrystals (NCs), metal ions containing glass based materials have ap-

plications in design engineering, and may solve many technological problems. P2O5 based

glasses are an important class of materials for several applications, especially for high

power laser. Recently, the construction of semiconductor NCs-based phosphate glass

materials has been shown to be of high importance for various applications, like in photo-

voltaics, LEDs, lasers and spintronics. The major challenges are the intentional insertion

of dopants into semiconductor NCs aiming expanding their intrinsic functionalities and

the scalable incorporation of NCs into host free of hydroxyl and organic species for stabi-

lizing and integrating their performances. On the other hand, the low refractive index of

phosphate glass can be adjusted by the addition of a high index of TeO2 content. These

hybrid materials fulfil the requirement of refractive index contrast for chromatic disper-

sion control and are useful for the design of photonic materials. The thesis focus on the

design of ZnNiTe semiconductors in transparent phosphate glass-ceramics, and the effect

of TeO2 environment in Nd3+ doped phosphate glass for optoelectronic and solid-state

laser applications. The structural features of these materials have been determined by

XRD, FT-IR and Raman spectroscopic techniques. Optical properties were characterized

by using UV-Vis-NIR absorption and fluorescence spectroscopic techniques. The findings

were used to estimate crystal field interaction parameters, coordinate state of Ni2+ ions,

Judd-Ofelt intensity parameters for Nd3+ ions and radiative properties of metal ions in

glasses. Thermal diffusivity (D) and thermal conductivity (K) of ZnNiTe NCs in glasses

were determined using thermal lens (TL) and thermal relaxation (TR) techniques. The

results revealed that the behaviors of D and K for the studied samples are similar. Non-

linear optical properties of ZnNiTe NCs glasses were also studied using Z-scan technique.

The nonlinear refractive property is observed only in the sample containing 5% Ni. Other

samples with 1.0% to 10% of Ni content presented nonlinear absorption nature. This sug-

gests that the absorption coefficient, β does not change significantly with the wavelength,



but increase with Ni concentration, with confinement effects and two-photon absorption

(TPA).

Keywords: Semiconductor, nanocrystals, metal ions, phosphate glass, photolumines-

cence, non linear properties, thermal-optical properties.
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1 Introduction

1.1 Motivation

A central theme in photonics is the design and fabrication of optical materials with con-

trolled optical properties and new functionalities. Semiconductor nanocrystals (NCs),

metal (Transition metals (TM) and rare-earth (RE)) ions contain materials that are a

growing class of functional materials that have attracted considerable attention in pho-

tonics due to their unique optical properties. Impurity doping plays a crucial role in

defining the optical properties of a particular material. For instance, glasses containing

nanocrystals, transition metals and rare earth ions are important materials in optoelec-

tronic devices such as light emitting diodes (LEDs), solid-state lasers, display technology

and photovoltaics [1, 2, 3, 4]. Special attention should be paid to the incorporation of

active dopants, like Ni2+, Mn2+, Cr2+, and In3+ into semiconducting NCs which can ef-

fectively tune their luminescence while simultaneously reducing the toxic problems due

to the use of cadmium and lead in the materials [1, 2].

An intentional introduction of carriers into semiconductor nanocrystals may lead

to the reduction of the lasing threshold, thus greatly enhancing their optical behavior [5].

Growing semiconductor NCs still remains a great challenge during the nano-crystallization

process, as the host matrix on the nanoscale, energetically drives the dopants towards

the surface through the commonly assumed “intrinsic self-purification” mechanism [6].

Since the discovery of nanocrystals embedded in glasses in the early 1980s, their growth

in several host glassy materials have been extensively studied for sustainable increasing

energy demand and environmental concerns. Additionally, quantum confinement effects

at nanoscale in semiconductor helps effectively the materials control of their optical and

electrical properties [6].

On the other hand, rare earth (RE) doped glasses are well suited for solid state

lasers due to the f-shell electrons shield by the outer 5s and 5p electrons which avoid in-

teraction with the environment surrounding the ions. In spectroscopic terms, this leads to
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exceptionally narrow homogeneous linewidths and correspondingly long coherence times

for transitions between states of the 4fN configuration. Among the RE doping, the Nd3+

ion was chosen because is one of the most important activators for crystalline and bulk

glass lasers, thanks to the power and efficiency available from the transition around 1.06

µm (4F3/2 → 4I11/2). Upon 800 nm excitation, Nd3+ doped laser operation behaves like

a four-level laser system. Nevertheless, a positive internal gain is possible even for very

small pump power, which allows that a very low threshold can be achieved. Recently,

three Nd:phosphate laser glasses, LHG-8 (Hoya), LG-770 (Schott), and N31 (Shanghai

Institute of Optics and Fine Mechanics, SIOM), have been developed for high power laser

inertial confinement fusion (ICF) technology demonstration and application and are cur-

rently used by National Ignition Facility (NIF) in the United States, Laser Megajoule

(LMJ) in France, and Shen Guang in China, respectively [7].

Figure 1.1: Grand Engineering challenges for 21st century (Adapted from [9]).

Recently, National Academy of Engineering (NAE, Washington, DC) identified

that glasses and glasses-ceramics played an important role to many of the engineering

achievements of the 20th century, as development of solid-state lasers, optical glass fibers,
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bioimaging technologies, biomaterials, and microelectronic devices. In 2008, NAE also

found that glasses may have a major role in the Grand Engineering challenges for 21st

century [8, 9], as shown in figure 1.1. The reason is that glasses seem to be preferable

for optical devices because of their ease of fabrication in desirable shapes and sizes, high

transparency, good chemical and thermal durability, threshold to optical damage, and so

forth [10]. This confers them as promising matrices for loading different nanocrystals,

transition metal ions and rare earth ions. Glasses, therefore, may fulfil the required

conditions in the modern engineering materials.

The subject of the current thesis is focused on the fabrication and characterization

of Ni2+ ions as an interstitial dopant into ZnTe NCs phosphate glasses; and an influence

of TeO2 as a second glass network former in Nd3+ doped phosphate glass. ZnTe with a

direct bandgap at 2.26 eV (548.67 nm) corresponds to the green wavelength region which

is the maximum sensitivity of the human eye. This makes ZnTe an appealing material

for green LEDs. Here, the results of optical, thermal and nonlinear optical properties

of Ni containing ZnTe NCs phosphate glasses suggest that these materials are potential

candidate for optoelectronics. Moreover, TeO2 based glasses exhibit the higher nonlinear

refractive indexes and the wider transmission window. The typical refractive index of

tellurite glass is ∼ 2.0 near the infrared wavelength, which is really high compared to that

of phosphate glass. By adjusting contents of glass network modifiers, the refractive index

can be tailored in the scale of ∼ 0.1, which is really small compared with the requirement

of refractive index contrast for chromatic dispersion tailoring. Therefore, introducing glass

network formers instead of glass network modifiers can tune the refractive index in larger

scale which greatly influence materials optical properties. We present the optical and

luminescence properties of Nd3+ ions in phosphate glasses with addition of TeO2 content.

1.2 Organisation of the thesis

This thesis is organized as follows:

In Chapter 2, we introduce the basic concepts and physics required to realize this

thesis with amorphous materials, semiconductors, quantum confinement effects, transi-

tion metals, rare earth ions and their significant features. In chapter 3, we give a short
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discussion on required engineering conditions for an amorphous material such as optical,

chemical, mechanical, and thermal properties.

Chapter 4 presents the sample preparation method and characterization tech-

niques used throughout the research work. Preparation of samples by melt-quenching

method is explained. XRD, FT-IR, Raman, optical absorption and emission spectropho-

tometers are used to characterize the studied samples and their used parameters are

reported. Also, Thermal lens (TL), thermal relaxation (TR) and nonlinear spectroscopic

experimental setups are discussed with useful theoretical expressions that are used to

determine the thermal-optical and nonlinear optical properties.

In Chapter 5, we presented our results and discussions. Section 5.1, deals on

ZnNiTe nanocrystals phosphate glasses. Structural and optical properties are reported.

Particularly on thermal diffusivity, thermal conductivity and nonlinear optical properties,

and their comparison with those ones reported in the literature.

In 5.2 section, we presented our results and discussions about the role of TeO2 in

Nd3+ doped phosphate glasses for high power lasers. Optical properties of Nd3+ doped

phosphate glasses are determined using Judd-Ofelt formalism and detailed results are

reported and discussed.

Finally, Chapter 6 holds the concluding remarks of this thesis.
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2 Basic Concepts

The recent research progress in the development and fabrication of amorphous materials

containing semiconductor nanocrystals (NCs), and various types of efficient gain matrix

activated with rare-earth and transition metal ions have been witnessed for usage in

optoelectronics. The reason is anchored in their excellent plasticity, extremely low loss,

and unique tuneable optical properties. In this chapter, we will give a short conceptual

explanation of the physics and chemistry behind the research work presented in this thesis.

To understand the physicochemical properties of the non-crystalline solids, first we define

what noncrystalline solid is and discuss its transformation conditions thermodynamically.

Then we will overview the structure of phosphate glasses which are used as host material

in the present research work. Doping/formation of semiconductor nanocrystals and metal

ions into the phosphate matrix, and their optical properties are, as already explained, the

primary focus of the thesis. Herein, we will give a simple quantum mechanical treatment

of the optical processes and the information of how to treat quantum confinement within

the effective mass approximation. This chapter provides the importance of transition/rare

earth metal ions and discuss the benefits of their electronic transitions, particularly, Nickle

oxide (NiO) and Neodymium Nd2O3 oxide ions. Finally, an overview of the state of art in

semiconductor nanocrystals and metal (transition/rare earth) ions in amorphous materials

is given.

2.1 Glass, an amorphous material

Glass being a non-crystalline solid is widely used in everyday life. In fact it is difficult

to imagine our life without the products arising from glasses. Glass making is not new

and the first glass was made around 5000 BC by Phoenician merchants (from ancient

Roman history). According to the archaeological evidence, the first men made glass

were from Eastern Mesopotamia and Egypt around 3500 BC and the first glass vessels

were made about 1500 BC in Egypt and Mesopotamia. From onwards, glass industry
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increased rapidly and the revolutionary float glass technique was invented by Sir Alastair

Pilkington in 1959 [11]. Today’s 90% of the manufacturing technologies (Corning, Saint-

Gobain, Pilkington, Asahi Glass Co. etc) used float glass techniques for the production

of large quantity of glass windows, shower screens, technological applications, and etc.

2.1.1 Definition of amorphous (or glass) material

Any material, inorganic, organic or metal formed by any processing technique presenting

a glass transition behaviour is a glass. So, there are many definitions proposed by sci-

entists for glassy materials. In 1990, Elliot said that glasses do not present long range

order of atoms in lattice like crystals and are an amorphous solids exhibiting the glass

transition [10]. In 1991, Zarzycki proposed that a glass is a non-crystalline solid exhibiting

the phenomena of glass transition [12]. Recently, in 1997, Shelby said that glass is an

amorphous solid lacking completely long range periodic atomic structure and exhibiting

a region of glass transformation behaviour [13].

Figure 2.1: Atomic structure of crystal (left) and glass (right) natures of SiO2.

Eventually, we also describe glass as an inorganic product of melting which has

been cooled to a solid without crystallization. It means that glass looks like an undercooled

liquid at glass transition zone. According to Zachariasen’s model [14], glass is an extended

network of corner sharing oxygen polyhedra which lacks periodicity and whose energy is

comparable to that of the corresponding ordered crystalline network. Figure 2.1 shows
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compared atomic structure of crystal and amorphous nature of SiO2.

2.1.2 Glass formation: Enthalpy Vs Temperature

Zachariasen [12] proposed that the structure of glass was similar to that of a crystal, but

with a larger lattice energy resulting from the disordered arrangements of polyhedral units,

to possess a random network lacking long-range periodicity. With regard to structure,

the favorable conditions for glass formation are:

(1) an oxygen or anion must not be linked to more than two cations;

(2) the number of oxygens or anions coordinated to the cations must be small,

typically three or four;

(3) the cation-anion polyhedra must share corners rather than edges or faces;

(4) at least three corners must be shared.

These conditions lead to the open structures that can accommodate a distribution

of inter polyhedral bond angles that are associated with the loss of long-range structural

order when a crystal forms a glass. The thermodynamic phase transition graph presented

in Figure 2.2 shows the way of glass or non-crystalline solids differ from their crystalline

counterparts.

Figure 2.2: Effect of temperature on the enthalpy of a glass melt.

The right side of Figure 2.2, for a chemical substance, is constituted of a small
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volume of liquid with temperature well above the melting temperature (represented as

the black path in the figure). As we cool the liquid, the atomic structure of the melt will

gradually change until the exact temperature at which the melt is held. But, there is no

definite temperature for a glassy material at which the liquid transforms into a solid, unless

their viscosity becomes greater as the temperature decreases in a continuous manner. If

the enthalpy decreases abruptly down (red path) and at the melting temperature Tm, they

form a long range, periodic atomic arrangements of crystals. If the liquid can be cooled

below the melting temperature, a supercooled liquid may be obtained (the blue path)

with no abrupt decrease in enthalpy. The continuous decrease of temperature of a liquid

begins to deviate the enthalpy from the equilibrium line (black). This leads to gradually

increase of the viscosity of the melt and arrangements of ions begin to form in the typical

glassy disorder. The process is gradual and at some point the viscosity becomes so great

that the structure of the liquid becomes fixed and no longer is temperature dependent.

Thus, the frozen liquid becomes a glass at a temperature range over which is called glass

transformation region [13].The temperature where the glass start to form is called glass

transition temperature (Tg).

Enthalpy dynamics is strongly composition dependent. The quenching has to be

fast enough to avoid the crystallization of the composition, whereas slow enough not to

generate strains and internal stresses in the glass compound. It is noted that crystals

can also be formed in a glass by the growth and nucleation kinetics during the super-

cooled liquid phase. Decreasing the temperature from Tm the material passes the first

grow process, and then the nucleation one. If the passage is fast enough, nucleation

happens when very little crystals have been formed thereby favouring the glassy state.

The crystallization tendencies vary widely between various glass systems. The difference

between the onset-temperature for crystallization and Tg, ∆T = Tx − Tg, is related to

a stability of a particular glass. The high stability (∆T high) against devitrification of

silicate glasses is one of numerous reasons that they have traditionally dominated glass

technology. In the present research work, phosphate glass is used as host which has lower

stability against devitrification than silicate glass. Therefore, making these glasses for

technological applications poses a greater challenge.
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2.2 Semiconductors

Most of the materials exhibit electrical properties that are directly related to the behaviour

of electrons in crystal lattice. According to quantum mechanical Bohr postulates, the

electrons of an isolated atom occupy atomic orbitals which form a discrete energy levels

(i.e., the electron may occupy one of the orbitals). Whereas, if several atoms are brought

together in a crystal, the interaction between the outermost electrons in neighbouring

atoms causes the atomic orbitals split but with very small energy difference. Thus, in

crystals the levels form a quasi continuum bands of energy rather than the discrete energy

levels of the isolated atoms. However, some intervals of energy contain no orbitals, forming

band gaps. This concept becomes more important in the context of semiconductors and

insulators.

The highest allowed energy band in semiconductor and insulators in which all

energy states are occupied by electrons at 0 K, is called the valence band (bands with

lower energies), EV B. The next band is called the conduction band (or bands with higher

energy), ECB. In the case of metals, the conduction band is the highest half filled band

occupied by electrons at 0 K (the conduction carriers may be electrons or holes). It is by

the relative position of these bands that all solids are divided into three major groups:

conductors, insulators, and semiconductors. In the conductor material where the highest

band is partially filled there is no bandgap and the resistivity is very low. On the contrary,

in an insulator the bands are not overlapped and the energy distance between them is

so large (typically, Eg > 5 eV) that the conduction band is empty at room temperature,

which result in no electric conduction.

We call semiconductors those materials exhibiting the properties between insu-

lators and conductors. In a typical semiconductor, the bands are not overlapped and

the distance between them Eg is in the range from 0.5 to 3 eV. At room temperature,

transfer of electron from valence band into the conduction band requires less energy than

insulators. The width of the “forbidden” band (the energy gap between the valence and

conduction bands) is the key variable in the band theory; it defines the electrical and opti-

cal properties of the material. Elemental semiconductors such as silicon (Si), germanium

(Ge) lie in group IV of periodic table, having the properties intermediate to the metals
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and non-metals. The combination of elemental semiconductors, III–V (GaAs, InP, GaN,

etc.,) and II–VI ( CdSe, ZnTe, HgTe, ZnO, etc.,) can also be formed.

Figure 2.3: Bandgap energies (solid line for direct bandgap/ dash line for indirect
bandgap) of semiconductors as a function of lattice constants [15]

Figure 2.3 shows the direct and indirect band gap energies as a function of lattice

constant [15]. For the electron transition from the valence band edge to conduction

band edge, the energy and momentum conservation should be required. If the electron

at the maximum energy of the valence band has the same crystal momentum as the

hole at the minimum energy of conduction band, the electron could be excited directly

by a photon, and the corresponding semiconductors are direct semiconductors. If the

electron at the maximum energy of the valence band has a different crystal momentum as

the hole at the minimum energy of the conduction band, the electron can only be excited

indirectly by a photon. The assistance of a phonon will be required, and the corresponding

semiconductors are called indirect semiconductors.

Usually, the optical absorption edge is connected with theory of electronic struc-

ture of amorphous materials and can be used to determine the optical band gaps for direct

and indirect transitions. Davis and Mott [16] proposed an expression for the optical ab-
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sorption coefficient (α) as a function of photon energy (hν) as follows,

α(ν) =
B

hν
(hν − Eg)

n (2.1)

where B is a constant and Eg is the band gap energy. n is the power factor of the optical

transition mode, n = 1/2 for allowed direct transition and n = 2 for allowed indirect

transition. Therefore, equation (2.1) can be written as,

(αhν)2 = B(hν − Eg) (Direct allowed transition) (2.2)

(αhν)1/2 = B(hν − Eg) (Indirect allowed transition) (2.3)

One can estimate optical gaps by extrapolation from the linear region of the plots of

(αhν)2 and (αhν)1/2 as a function of hν for the direct and indirect material bandgaps.

2.2.1 Semiconductor nanocrystals (NCS)

Generally, when the size of semiconductor materials is reduced to nanoscale, is defined as

semiconductor nanocrystal (NC) or quantum dot (QD). Physical and chemical properties

of NCs change drastically, resulting in unique properties due to their large surface area

in relation to their volume or quantum size effects. In nanocrystalline materials, the

electrons are confined to regions having one, two or three dimensions, as shown in figure

2.4, when the relative dimension is comparable with the de Broglie wavelength. The

density ρ(E) of electronic states varies with energy as [17],

ρ(E) ∝ E
d
2
−1, d = 1, 2, 3 (2.4)

where d is the dimensionality. As can been in figure 2.4, in the case of 3D material, ρ(E)

is a smooth function of square root of energy. In the case of d = 1 (1D) and d = 2 (2D)

systems, a number of discrete subbands appear due to quantum confinement effect and

the density of states obeys equation 2.4 within every subband. In these cases, the carriers

are confined in one and two-dimensions respectively.

In the (0 D) nanocrystals the carriers are confined in all dimensions. Due to the
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Figure 2.4: Schematic illustration of the density of electrons for various dimensionalities,
1D, 2D and 3D confined materials (adopted from Ref.[19]).

Table 2.1: Density of states for the dimensionality of the materials.

finite size of the NCs, the continuous bands of the bulk crystal transforms into a series

of discrete states resulting in widening of effective bandgap. An overview of density of

states for the dimensionality of the materials is given in table 2.1.

2.2.2 Quantum confinement effects

The effect of quantum confinement on electronic states were investigated theoretically by

Efros and Efros [18]. According to classical quantum model, the energy of particle in a

box can be written as [19],

En =
h2

8m

n2

L2
(2.5)



2.2 Semiconductors 28

where E is the particle energy with quantum number n, h is the Planck constant, m is the

particle mass, and L is the box size. One can define that the smaller the box, the higher

the particle energy. By considering the effective mass approximation, the energy change

for semiconductor nanocrystals was proposed as follows [19],

E = Eg +
n2
~
2π2

8R2

(

1

m∗

e

+
1

m∗

h

)

− 1.8e2

εR
(2.6)

where Eg is bulk semiconductor bandgap, n is interband transition number, R is the

crystal size, m∗

e and m∗

h are the effective mass of the electron and hole, e is the charge of

the electron, and ε is the dielectric constant of the solid. The middle term of the right side

of equation 2.6 describes the quantum confinement, in which the increased kinetic energy

from the localization of the electron-hole pair inside a sphere with radius R and scales as

R−2. The term of the right side of equation 2.6 is the potential energy related to Coulomb

interaction between electron and hole, and scales as R−1. The general trend obeyed by

equation 2.6 is that the decrease of particle size will induce higher energy states.

Efros and Efros [18] theoretically classified the size effects into three regimes:

weak, intermediate and strong, by comparing the radio (R) of the nanocrystal to the

exciton Bohr radius. The Bohr radius is defined as,

aB =
4πε(∞)~

e2

(

1

m∗

e

+
1

m∗

h

)

(2.7)

where, ε(∞) is the optical frequency of dielectric constant. In the case of weak confine-

ment (R > aB), the electron and hole retain their bulk-like character as an electron-hole

pair bound by the Coulomb interaction (an exciton) and are virtually unaffected by the

quantum confinement. In the intermediate regime (ae > R > ah), where ae (ah) are the

electron (hole) Bohr radius. In this case the electron is quantized and as a result, ex-

periences an increase in its energy (confinement energy). The hole is still unaffected by

confinement and remains influenced by the Coulomb attraction to the confined electron.

However, when the confinement is strong (aB > R), both energies are significantly in-

creased due to the quantum confinement. In fact, the energy of the strongly-confined

charge carriers is quite larger than the energy of the Coulomb interaction. In this case,
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Coulomb effects are typically ignored.

Figure 2.5: Variation of the energy gap of nanocrystals with NC size effects due to quan-
tum confinement [20, 21].

The quantum confinement effect increases the excitonic transition energy thus a

blue shift in the absorption and luminescence bandgap energy is observed (Figure 2.5a).

Also, it leads to a collapse of the continuous energy bands of the bulk semiconductor into

discrete, atomic like energy levels (Figure 2.5b). Therefore, the semiconductor nanocrys-

tals in the strong confinement limit have the potential for tuning the optical properties and

motivate the study of semiconductor nanocrystals or quantum dots in this limit[20, 21].

2.2.3 Crystalline structure of ZnTe NCs

The absorption can easily be correlated with the energy states of the system, and generally

the absorption energy of semiconductors varies between 0.5 – 3.0 eV, which is between

the infrared to the ultraviolet range. Among different semiconductor nanocrystals, II–VI

semiconductor (CdTe, ZnTe, CdSe and CdS) nanocrystals types are thoroughly investi-

gated for different applications. The most commonly used Cd based NCs are toxic and

are not environment friendly. Therefore, in this research work, we are going to deal with

ZnTe (II–VI) semiconductor nanocrystals in amorphous materials. ZnTe NCs does not
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contain harmful elements. Unfortunately, very few investigations are found in the liter-

ature on ZnTe NCs because the size controlled synthesis of ZnTe quantum dots is very

difficult, and have poor chemical stability due to Te oxidation.

Figure 2.6: a) Zinc-blende crystal elementary cell for ZnTe semiconductor, b) Bonding
and anti-bonding state arising from the hybridization of s and p orbitals [19].

The crystal structure shows the simple coordination of the Zn and Te atoms,

in which one Zn atom is coordinated to 4 Te atoms with tetragonal environment. On

the other hand, one Te atom is coordinated with 4 Zn atoms with the same symmetry,

as shown in Figure 2.6a. The interatomic distances between the Zn and Te atoms are

very small, around 2.671 Å. Therefore, the structure can have several Zn–Zn and Te–Te

metallic bonds as edge-sharing dimeric units oriented at 180 degrees with respect to their

neighbours. The external orbitals for the cations are s (3d104s2 for Zn) and p for the anion

(4d105s25p4 for Te), and their hybridization form the conduction band and the valence

band of the semiconductor, as shown in figure 2.6b. The lowest band of the bonding levels,

coming from s orbitals, will be filled by two valence electrons. Six will be taken to fill the

three bonding bands of higher energy, formed by the hybridization of p orbitals. Those

bonding states form the valence band. At higher energy, the anti-bonding states form the

conduction band. Since all the available electrons are used to fill the valence band, the

conduction band is empty in the ground state. The lower energy band of the conduction

band is formed by the anti-symmetric combination of the s orbitals. At higher energy, the
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anti-symmetric hybridization of p orbitals form three other bands. The energy needed to

excite one electron from the higher energy state of the valence band to the lower energy

state of the conduction band is the gap. ZnTe is a direct bandgap semiconductor with

a bandgap of 2.26 eV which corresponds to a wavelength of 548.67 nm. So, this is an

important material for optoelectronic devices such as light emitting diodes (LEDs), laser

diodes (LDs) and solar cells [22, 23] .

2.3 Metal ions

Most of the elements of the periodic table as shown in figure 2.7 [24] can be incorporated

in host materials. Few of them have been used as optically active centers and few of

them can be incorporated in ionic form that may gives rise to energy levels within a gap

separated by optical energies. For technological applications, the most useful ions chosen

are those from transition metals and rare earth series of the periodic table. In this work,

we will focus our attention on Nickle (Ni) and Neodymium Oxide (Nd2O3) ions that are

used as dopants in amorphous materials.

Figure 2.7: Periodic table of chemical elements [24].

2.3.1 Nickel oxide (NiO)

Generally, transition metals (TM) ions are formed from atoms in the fourth period of

the periodic table; from beyond the calcium atom (element 20 in the periodic table),
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with electronic configuration (Ar)4s2, up to the zinc atom (element 30), with electronic

configuration (Ar) 4s23d10. TM atoms tend to lose the outer 4s electrons, and in some

Figure 2.8: The crystal structure and band diagram for NiO [25].

cases lose or gain 3d electrons, to form different kinds of stable cations. Thus, TM

ions have an electronic configuration 1s22s22p63s23p63dn, where n = 1 to 10 denotes the

number of 3d electrons. These electrons are responsible for the optical transitions (i.e.,

they are valence electrons). The 3d orbitals in TM ions have a relatively large radius and

are unshielded by outer shells, so that strong ion-lattice coupling tend to occur in TM

ions. As a result, the spectra of TM ions present both broad and sharp optical bands.

Figure 2.9: Absorption spectra of Ni2+: CsCdBr3 [26].

The electronic configuration of nickel is [Ar]4S23d8. Nickel occurs in nature as
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oxide, silicate and sulphide. Nickel exhibits +1 to +4 oxidation states, but divalent state

is the most stable. The 3d band of Ni2+ will be split by the octahedral ligand field to give

eg and t2g subbands, as shown in Figure 2.8. There is no degeneracy for high spin and low

spin states in 3d8, because both of them give e2g t2g
6. Therefore, Ni2+ exhibits three spin

allowed transitions: 3A2g(F) → 3T1g(P),
3A2g(F) → 3T1g(F) and

3A2g(F) → 3T2g(F); and

other are spin forbidden transitions, 3A2g(F) → 1T1g(G), 3A2g(F) → 1T1g(D),
3A2g(F) →

1Eg(D),
3A2g(F) → 1T2g(D) and 3A2g(F) → 1T2g(G) [25]. Figure 2.9 shows absorption

spectra of Ni2+: CsCdBr3 [26].

The free ion states of transition metal ions are governed by the electron-electron

interaction and so are labelled by 2S+1L states, in which S is the total spin and L is the total

angular momentum. The energy separation between the various 2S+1L states is usually

given in terms of the Racah parameters (A, B and C). These parameters describe the

strength of the electrostatic interaction between the electrons [27]. Sugano and Tanabe

have estimated the energy of the states derived from the 3dn ions (from n = 2 to 8) as

a function of the octahedral crystal field strength. These calculations are represented in

the so-called Sugano-Tanabe diagrams, which are extremely useful in the interpretation

of the spectra of TM ions in a variety of host materials. Sugano–Tanabe diagrams show

how the 2S+1L free ion levels split up as the ratio between the crystal-field strength and

the inter-electronic interaction (a ratio measured in units of Dq/B) increases. The crystal

field splitting energy parameter, Dq and the Racah parameter, B for octahedral nickel

ions are given by the following expressions [27],

Dq =
ν1
10

(2.8)

B =
ν3 + ν2 − 3ν1

15
(2.9)

where ν1, ν2 and ν3 are the absorption band positions of octahedral nickel ions.

Figure 2.10 shows the Sugano–Tanabe diagram for a 3d8 transition metal ion,

Ni2+. The free ion energy levels, 3F, 1D, 3P and 1G are shown on the left-hand side the

figure, measured in E/B energy units. The split components (identified by group theory

labels) of each free ion energy level in an increasing octahedral crystal field are shown on
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Figure 2.10: Sugano–Tanabe diagram for a 3d8 configuration [28].

the right-hand side. For instance, it can be seen how the ground state 3F splits into three

energy levels in an octahedral crystal field; the 3A2g ground level and two excited levels,

3T2g and
3T1g. The other excited free ion levels also split into different A, T and E levels.

It is also important to mention that a Sugano-Tanabe diagram is given for a particular

value of C/B, which mainly depends on the specific ion and slightly on the host matrix.

Among the TM free ions, the value of C/B varies from 4.19 for Ti2+ to 4.88 for Ni2+ [28].

Sugano–Tanabe diagrams, such as the one shown in Figure 2.10, allow us to

deduce some useful information about the nature of the optical bands of TM ions. As

can be seen in this figure, the levels, 1Eg is almost independent of the crystal field (close

to zero slopes in the diagram). Additionally, the energy of the 1A1g state is also almost

constant for ∆0/B > 10, where ∆0 = 10Dq. Thus, the spectral positions of the transitions

between the 3A2g ground level and the 1Eg and
1A1g levels are also almost independent of

the crystal field strength. From the dynamic point of view, this means that the transition



2.3 Metal ions 35

energy is practically constant with the configurational coordinate Q. Therefore, these close

to zero slope energy levels give rise to narrow optical bands, with S ≈ 0, as they have

nearly the same electron-lattice coupling behaviour as the ground level (3A2g).

On the other hand, other levels, such as 3T2g,
3T1g,

1T2g,
1T1g,

1Eg and 1A1g,

have a large slope in the diagram, which means that the energy separation of these

levels and the ground level, 3A2g(3F), is strongly dependent on the crystal field strength,

10Dq. Consequently, transitions from the ground level 3A2g(3F) up to these large-slope

energy levels are crystal field dependent, and so the corresponding optical bands appear

at quite different positions in different octahedral environments. In other words, this

means that, for a given 3d8 ion, these optical bands change strongly from one host to

another. From the dynamic point of view, the high sensitivity of these transition energies

to small displacements of the local environment (small changes in 10Dq) indicates that the

transition energy is strongly dependent on the configurational coordinate Q, and so broad

absorption and emission bands are associated with these transitions (large S values). A

rule of thumb for estimating relative values of S is that the larger the magnitude of the

slope in the Sugano–Tanabe diagram, the larger is the value of S.

2.3.2 Neodymium oxide (Nd2O3)

Trivalent rare earth (RE) ions most commonly used for applications as phosphors, lasers,

and amplifiers are the so-called lanthanide ions. Lanthanide ions are formed by ionization

of a number of atoms located in periodic table after lanthanum: from the cerium atom

(atomic number 58) to the ytterbium atom (atomic number 70), which have a common

electron configuration of [Xe]4fn6s2 or [Xe]4fn−15d16s2, where [Xe] represents a Xenon core

and n the number of electrons in the 4f shell of the lanthanide (i.e., lanthanum n = 0 to

lutetium n = 14). These atoms are usually well known for their special optical properties,

which result from the fact that the partially filled 4f-electrons shell are shielded from the

surrounding completely filled 5s and 5p shell, see figure 2.11 [29]. The energy levels of

4f shell have equal parity, and hence electric dipole transitions are forbidden. In a solid,

slightly mixing with odd-parity wave functions makes the transitions slightly allowed.

The absorption and emission cross-sections are therefore small, and the luminescence
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lifetime is quite long, ranging from microseconds to several milliseconds. The influence

of the electric field around the ion removes the degeneracy of the 4f levels, resulting in

a Stark splitting of the energy levels. The energy level splittings across the rare-earths

are generally displayed in what is referred to as a Dieke diagram, as shown in figure 2.12,

which was first compiled for trivalent lanthanide ions in LaCl3 [30].

Figure 2.11: Square of the radial wavefunctions for the 4f, 5s, 5p and 6s energy levels
from Hartree-Fock. It was a calculation for Gd3+ [29]. Picture inset schematically shows
that the 4f orbital is within the 6s, 5p and 5s levels.

In this research work, neodymium rare earth ion is used as dopant with atomic

number 60 and electronic configuration [Xe]4f46s2. When it is incorporated in a glass

it loses three electrons and forms the trivalent state Nd3+ with the ground electronic

configuration 4f3. Energy levels for Nd3+ (see Figure 2.12) originate from the splitting

of the 4f3 configuration under the effect of Coulombic (Hcoul), spin-orbit coupling (HSO)

and crystal field (HCF ) interactions. Since the Hamiltonian operator H for the 4f electron

could be decomposed as [31]:

H = H(H−like) + HCoul + HSO + HCF

the first term is the sums over all n electrons of the individual hydrogen-like kinetic and

potential energy; Hcoul represents the mutual Coloumb repulsion between electrons; HSO

describes the electron-spin and orbital-angular momentum interactions and the last term,

HCF , represents the electron perturbations caused by the surrounding crystal field.

In general, the magnitude of the various interactions in Nd3+ in glass can be
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Figure 2.12: The Dieke diagram for elements of the lanthanide series in LaCl3, based on
theoretical free-ion and crystal-field splittings [30].

written as,

H(H−like) ≫ HCoul > HSO > HCF .

As can be observed in the above expression, the effect of crystal field (HCF ) is

quite small compared to the other interactions, because of the shielding of 4f orbitals by

the filled 5s and 5p outer shells. Therefore, the Nd3+ ion energy level configuration varies

only slightly from one host to another. The magnitude of the crystal field splitting is of

order 100 cm−1 (Figure 2.13) and thus approximates kT value at ambient temperatures

(200 cm−1). Moreover, due to the lack of symmetry in glass material, Nd3+ ions reside

in sites having a slightly different crystal field interaction [31]. The result is that Stark

splitting cannot be individually resolved; in Figure 2.13 they are represented as broad and

shaded bands.
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Figure 2.13: On the left: energy levels for Nd3+ originated from the splitting of the 4f3

configuration under the effect of Coulombic (Hcoul), spin-orbit coupling (HSO) and crystal
field (HCF ) interactions. The laser transition of interest (1053 nm) is from the metastable
4F3/2 state to the 4I11/2 final level. The wavy lines denote rapid non-radiative (multi-
phonon) transitions. On the right: typical Nd-absorption cross-section in metaphosphate
glass host. Relative output intensity for a xenon flash lamp and laser diode pump source
are also shown. The energies reported are relative to the 4I9/2 ground state [31].

The spin-orbit interaction is quite large for Nd and these causes that 4I11/2 state

remains virtually unpopulated at ambient temperatures. This effect together with the

high energy gap between the 4F3/2 state and the terminal 4IJ states (∼ 5500 cm−1),

is the reason why Nd-doped gain media exhibit pure four-level behaviour. The states

above the 4F3/2 level are split by energies of order 1000 cm−1, for comparison, in case of

phosphate glass matrix, the phonon energies of the glass are (∼ 1200 cm−1). Therefore

electrons excited to these levels undergo non-radiatively decay to the 4F3/2 state where

they accumulate. In fact the high energy gap between the 4F3/2 state and the lower-lying

4IJ manifold prevents multiphonon decay from this level and, on the contrary, favors

radiative decay. Although the radiative decay can occur to all the lower lying 4IJ levels,
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the strongest transition is the one to the 4I11/2 level that leads to the emission of light

near 1053 nm in most glass materials.

The Judd-Ofelt [32, 33] theory has been well known for decades and has been

used to estimate quantitatively and qualitatively optical absorption and emission bands of

intra-configurational f-f transitions of several rare earth doped host materials. According

to the Judd-Ofelt (J-O) theory, the oscillator strength, fcal [(S, L)J ; (S
′

, L
′

)J
′

] of an

electronic dipole absorption transition from the initial state |(S, L)J>, to the final state,

|(S′

, L
′

)J
′

>, depends on the three Judd-Ofelt parameters, Ωλ, (λ = 2, 4, 6) as,

fcal[(S, L)J ; (S
′

, L
′

)J
′

] =
8π2mc

3hλ(2J + 1)

(n2 + 1)

9n

∑

λ=2,4,6
Ωλ|<(S, L)J‖Uλ‖(S ′

, L
′

)J
′

>|2

(2.10)

where λ is the mean wavelength of the transition, m is the mass of the electron, c the

velocity of light, n the refractive index, h the Planck constant and ‖Uλ‖ are the doubly

reduced matrix elements of unit tensor operators that are considered to be independent

of the host matrix. The experimental oscillator strengths fexp of the observed absorption

band are determined using the expression [34],

fexp =
mc2

πe2λ2N
×2.303

d

∫

OD(λ)dλ (2.11)

where N is the number of Nd3+ absorbing ions per unit volume, d is the thickness of

the sample and OD (λ) is the optical density as a function of wavelength. Equating fexp

and fcal and using the squared reduced matrix elements, the three characteristic intensity

parameters, Ω2, Ω4 and Ω6 are calculated by standard least square fitting method. The

quality of the fit is obtained by using magnitude of root mean square (δrms) formula [34],

δrms =

√

∑

(fexp − fcal)2

(P − 3)
(2.12)

where P are the number of existing transitions.

The Judd-Ofelt intensity parameters represent the square of the charge displace-

ment due to the induced electric dipole transition. The advantage of Ωλ parameters is that

a set of parameters is needed for describing both the absorption and emission processes.
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The Ωλ parameters are important for the investigation of the local structure and bonding

in the vicinity of the rare earth ions. Ω2 parameter indicates the both asymmetry and

covalency at rare earth sites. Both Ω4 and Ω6 indicates the rigidity or long range effects

of glass hosts [35].

The computed Judd-Ofelt intensity parameters (Ωλ) are used to study certain

radiative properties for the principal fluorescence transitions of rare earth ions in host

matrix. We can estimate (a) radiative transition probabilities or radiative lifetimes of the

excited states (b) branching ratios of all the transitions from the excited states to ground

state and (c) integrated absorption cross-sections. The radiative transition probability

Arad(ΨJ, Ψ
′

J
′

) for emission from an initial excited state ΨJ to a final ground state Ψ
′

J
′

is given in [34],

Arad(J → J
′

) =
64π4e2

3h(2J + 1)λ3

[

n(n2 + 2)2

9
Sed + n3Smd

]

(2.13)

where

Sed(J → J
′

) =
∑

λ=2,4,6

Ωλ|<(S, L)J‖Uλ‖(S ′

, L
′

)J
′

>|2 (2.14)

Smd(J → J
′

) =

(

h2

16π2m2c2

)

|
〈

(S, L)J‖L+ 2S‖(S ′

, L
′

)J
′
〉

|2 (2.15)

In case of electric dipole transition, the radiative transition probability is

Arad(J → J
′

) =
64π4e2

3h(2J + 1)λ3

[

n(n2 + 2)2

9
Sed

]

(2.16)

The factor n(n2+2)2

9
represents the local field correction term for the ion in a medium, ν is

the energy of transition and n is the refractive index of the glass.

The total radiative transition probability, AT (ΨJ) involving all the intermediate

terms between ΨJ and Ψ
′

J
′

is given by

AT (J) =

′

∑

J

Arad(J → J
′

) (2.17)
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The radiative lifetime (τR) of an excited state Ψ
′

J
′

is calculated from

τR(J) =
1

∑′

J AT (J → J ′)
(2.18)

The fluorescence branching ratio, βR, predicts the relative intensity of lines from a given

excited states and characterizes the lasing potency of that particular transition. In order

to choose suitable lasing transition, one has to select the transition having branching ratio

> 0.5 and the energy difference of about 3000 cm−1 between the emitting level and the

next lower level. The fluorescence branching ratio (βR) is given by

βR(J → J
′

) =
Arad(J → J

′

)
∑′

J AT (J → J ′)
(2.19)

In addition to the above radiative properties, the nonradiative transition prob-

abilities involves the mechanisms of multiphonon relaxation as well as two ion energy

transfer rates such as cross-relaxation and upconversion. These nonraditive transition

probabilities must be quantified to the determination of fluorescence states lifetime. No

comprehensive theory has been developed for predicting the ion energy transfer rates.

However, multiphonon relaxation rates for rare earth ions in crystals and glasses follows

the energy gap law by Weber and Moos [36, 37]. These multiphonon relaxation rates

are significantly affected by the kind of host matrices. WMPR are calculated from the

equation,

WMPR = B(1 + neff )
∆E

~ω
exp(α∆E) (2.20)

where neff =
[

exp( ~ω
kT
)− 1

]

−1

. Here, neff is the occupancy of the effective phonon modes

and ∆E the energy gap between the emitting level and adjacent lower level. Also for

the phosphate matrix B = 5.36 × 1012s−1, α = 4.7 × 10−3cm, and ~ω = 1200 cm−1 (for

phosphate glasses) [37]. These non-radiative multiphonon relaxation rates are determined

and are reported in their respective chapters of this thesis.

Total transition probability of the state includes both radiative and non-radiative

rates. In the absence of other nonradiative mechanisms such as upconversion or cross-

relaxation, the non-radiative relaxation rate is simply the multiphonon relaxation rate.
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The total transition probability is the reciprocal of the fluorescence lifetime of the state

and is represented as follows

τ−1 =
∑

A+WMPR (2.21)

where the summation is the total radiative transition probability and WMPR is the mul-

tiphonon relaxation rate, which strongly depends on the maximum phonon energy and

energy gap between two excited states. The estimated fluorescence lifetimes of the state

of rare earth ions are reported in their respective chapters.

The stimulated emission cross-section is an important parameter and its value

means the rate of energy extraction from the optical material. The efficiency of a laser

transition is evaluated by considering the stimulated emission cross-section and it is related

to the radiative transition probability. It was obtained from the emission spectra using

Fuchtbauer-Ladenburg method [34],

σP =
λ4
P

8πcn2∆λeff

(2.22)

where λP is peak wavelength and λeff is the effective linewidth. The effective linewidth

λeff is obtained from

∆λeff =

∫

I(λ)

Imax

dλ (2.23)

where I(λ) is the integrated fluorescence intensity and Imax is the peak fluorescence inten-

sity.

Equation 2.22 implies that σP depends on the intensity parameters Ωλ, the band-

width, ∆λeff and refractive index n. The bandwidth is a measure of the overall extent

of the Stark splitting of the J manifold and inhomogeneous broadening due to site-to-site

variation in the local field seen by the rare earth ions. Both Ωλ and ∆λeff are affected

by the compositional change in the glass matrix.
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2.4 Host material used in this work: Phosphate glasses

and their structure

Generally, the identity of glass former components usually serves as the basis for the

generic name used for the glass. The primary glass formers in commercial oxide glasses

are silica (SiO2), boric oxide (B2O3) and phosphoric oxide (P2O5), in addition to other

compounds GeO2, Bi2O3, As2O3, Sb2O3, TeO2, Al2O3, Ga2O3 and V2O5 which act as glass

formers under certain circumstances. The glass-forming oxides are sometimes classified

as network modifiers or intermediate oxides, depending on their structural roles. Oxides

with large coordination numbers and relatively weak bonds are called network modifiers

and they alter the glass-forming network by replacing stronger bridging oxygen (BO)

bonds between glass-forming polyhedra with weaker, nonbridging oxygen (NBO) bonds.

The network modifiers are important constituents in most technological glasses because

they lower the melting temperature and control many useful properties. The intermediate

oxides have coordination numbers and bond strengths between the network formers and

network modifiers and tend to have an intermediate effect on glass properties [13].

Figure 2.14: The basic structure of tetrahedral PO3−
4 and SiO4−

4 .

In this research, phosphate glasses are used as host matrices. P2O5 based glasses

are being one of the four classic Zachariasen glass forming oxides (SiO2, GeO2 and B2O3)

and have been researched for over one hundred and fifty years. Van Wazer [38], Abe

[39], Martin [40] and Brow [41], Knowles [42] and Abou Neel et al. [43] give an account

of phosphate systems with respect to technological applications. Phosphate glasses are

formed from the tetrahedral phosphate anions, PO3−
4 , consisting of one phosphorous atom

bonded to four oxygen atoms by sp3 hybridization, analogous to the SiO4−
4 as shown in
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figure 2.14. The main structural difference between them is the extra valency electron

in the phosphorus atom which is doubly bonded to one of the oxygen atoms. The other

three are singly bonded and carry one negative charge. In vitreous P2O5 each unit is

connected to three others via bridging oxygen (BO) atoms. The fourth oxygen atom

must balance the valence for the unit and is therefore unable to form connections to other

tetrahedral units since phosphorus has a valence of +5. This is known as a non-bridging

oxygen (NBO). Different phosphate groups are formed by the tetrahedral linked to the co-

valent bridging oxygens and are classified using Qn terminology, where n is the number of

bridging oxygens per tetrahedron. The formation of particular Q species is dependent on

cation added as a modifier content to P2O5. Thus, the groups starts from ultraphosphate

Figure 2.15: Phosphate based glass tetrahedral in Qn terminology.

(Q3), metaphosphate (Q2), pyrophosphate (Q1) and then orthophosphate (Q0), with cre-

ating non bridging oxygens (NBOs), as shown in figure 2.15. According to overview of

phosphate glass by Van Wazer [38], without any cation additions to phosphorous pen-

toxide, Q3 species are the only phosphate group present forming a highly cross-linked

phosphate network. With addition of metal cations, so that the concentrations [M2O] =

[P2O5] (where M is any mono-valent cation, e.g. Na+, K+ or Li+), will make Q2 the only

species present, hence producing non-branched phosphate chains with infinite phosphate

chain lengths which are named as metaphosphates. The addition of any more M2O will

introduce terminating Q1 species, decreasing the phosphate chain length. If the concen-

tration of M2O is twice that of P2O5, the terminating Q1 species is dominant that leads

to producing only phosphate dimers, or pyrophosphates. If the concentration of M2O is

at least three times higher than that of P2O5 then the non-bridging Q0 species form the

dominant orthophosphate chains. In fact, concentrations of metallic cations between these

limits would create a distribution of Q species, and can be diagrammatically depicted in
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Figure 2.16: Schematic phosphate structures as a function of composition, note that linear
phosphates are also known as polyphosphates [43].

figure 2.16. It is noted that phosphate polymerisation, as the number of bridging oxygens

available per phosphate anion, decrease due to addition (low or higher concentration) of

metal cations.

2.5 State of the art of semiconductor nanocrystals

(NCs) in glasses

The first evidences of semiconductor nanocrystals (NCs) doped glasses undergone through

thermal annealing were given by Rocksby at about 1930’s [44]. In 1964 Bret and Gires

were the first to use semiconductor doped glasses (SDGs) in nonlinear optics [45]. They

introduced a commercial semiconductor nanocrystals doped glass filter into a ruby laser

cavity. In this way, they exploited the saturable absorption of semiconductor nanocrystals

doped glasses for passive Q-switching, and nanosecond laser pulses could be obtained. The

starting point of the optical study of semiconductor nanocrystals doped glasses was, how-

ever, the publication of degenerate four-wave mixing results by Jain and Lind in 1983 [46].

This was the first time that the high optical third-order nonlinearities of semiconductor
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nanocrystals doped glasses were observed. It is worth noticing that the main reason they

investigated semiconductor nanocrystals doped glasses was not the search for new, highly

nonlinear materials, but problems they encountered in elaborating suitable bulk semicon-

ductor samples. In fact, at that time, it was quite difficult to grow semiconductor crystals

of appropriate dimensions with the desired band edge, absorption coefficient, and overall

optical quality. Bányai and Koch (1993) [47], Woggon (1997) [44], and Gaponenko (1998)

[48] reported interesting results in the physical properties of semiconductor nanocrystals

doped glasses, and its optical transitions of electrons in quantum confinement regime.

Since the second half of 20th century, companies like Corning Glass Industries, Schott

Optical Glass, Hoya, and Toshiba, have been using quantum dot-doped glasses [48].

Figure 2.17: Commission Internationale de l’Eclairage (CIE) color coordinates of LEDs
mounted with CdSe/CdS QDs-embedded silicate glasses of various thickness heat-treated
for 5, 10, 15, and 20 h at 500 ◦C. The inset presents the electroluminescence and PL spectra
of the wLED, which had coordinates of (0.3277, 0.3458) and a CRI (Color Rendering
Index) of 90. Actual photos of the LEDs with CdSe/CdS QDs-embedded silicate glasses
of the same thickness (1.2 mm) with varying heat treatment duration are presented at
the right of the figure. (Adapted from Ref.[1]).

There are different growth techniques such as QD suspension in colloids, sol-gel

porous glasses, rf magnetron sputtering and laser ablation, isolated or combined were

developed, as well as different materials such as GaAs, CuCl, CdTe, PbTe, and etc.,

were extensively studied by several groups [49, 50, 51, 52, 53, 54]. An optical device
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working at 250 gbits/s was demonstrated by Tsunetomo et al. [55] using a CdTe QD

glass produced by rf magnetron sputtering combined with laser ablation. Recently Han

et al., combining II-VI NCs-embedded glass (Yellow light emission) with a blue LED chip

resulted in obtaining a composite wLED device for the first time [56]. Due to the strong

nonradiative recombination loss of CdSe or CdS NCs in glasses, the photoluminescence

quantum yield (PLQY) of NCs-embedded glasses is lower than 5%, which fails to meet

the application requirements. Later, they made wLED device using CdSe/CdS core–shell

structural QDs-embedded glasses [1], as shown in Figure 2.17. The highest PLQY was

increased to 20% profiting from the enhanced intrinsic emission of CdSe QDs.

CdSe/Cd1−xZnxSe and CdS/Cd1−xZnxS core-shell QDs synthesized in situ in

glasses by two-step heat-treatment were studied by Xia et al. [57] and Hall et al. [58].

The defects emission can be nearly completely passivated and the highest PLQY of II-VI

NCs in glass increased from 3% to more than 50%. The results laid the foundation for

the development of highly luminescent QDs-embedded glasses and emitting devices. It

should be noted that other efforts have been made in order to enhance the luminescence

of II-VI NCs-embedded glasses as well. It can be enhanced by energy transfer between

the NCs and transition metal ions or rare earth ions [2, 3]. Therefore, the advantage of

NCs in glasses is their stability compared to NCs without packaging material, and the

exploration of NCs-based devices become possible.

ZnTe and PbTe nanocrystals with average radii of 2.42 and 4.25 nm, respectively,

were grown in a fluorophosphate glass host by Donya and Taha [59]. They observed

a strong quantum confinement effect through the blue shifted optical absorption due

to the ZnTe and PbTe nanocrystals. Thermal properties of a phosphate glass matrix

(PZABP) doped with ZnTe and co-doped with Yb3+ ions were studied by Freitas et

al. [60]. Many applications focus on improving the performance of NCs after they are

stabilized. Utilizing their continuously tunable absorption cutoff edges in the visible range,

II-VI NCs-embedded glasses can be used in optical filters [61]. Since amplified spontaneous

emission was first reported in CdSe NCs, applications of II-VI NCs-embedded glasses in

the field of optical amplifiers, such as Raman amplifiers, have soon become one of the

most popular studies of NCs-embedded glasses for their ultrastability [62]. In addition,
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the QDs-embedded glasses have large nonlinear optical polarizability and can produce

response at the time level of picosecond under strong excitation, making them attractive

for all-optical switches [63]. Meanwhile, some studies on the relationship between the

nonlinear refractive index and the absorptivity of II-VI QDs-embedded glasses provided

precondition for the application in nonlinear optics [64, 65].

2.6 State of the art of metal (TM/RE) ions in glasses

Broadly tunable lasers are useful for basic spectroscopy studies, as well as a wide range

of applications from optical communications to biomedical imaging. Transition metal

or rare earth-ions doped solid-state gain media are eminently suitable for generating

broadband emissions due to the strong interaction of the electronic states with lattice

phonons. The interaction leads to a strong homogeneous broadening of the transition and

thus results in a broad gain bandwidth. The broad gain bandwidth,however, inherently

exhibits small product of emission cross-section and fluorescent lifetime. As a result,

one major limitation for metal ions doped lasers has been the high pump-power density

required for efficient lasing.

Since the invention of laser by Maiman in 1960, among the broadly tunable laser

gain media, Ti3+: sapphire crystal was first demonstrated as a widely tunable laser gain

medium at the Lincoln Laboratory [66]. The Ti3+: sapphire crystals used in the initial

experiments exhibited significant scattering and an unidentified absorption at the laser

wavelength. These losses affected the efficiency of the laser, and only pulsed operation was

possible. As high-quality crystals became available, a series of tunable lasers based upon

Ti3+: sapphire appeared, and a 235 nm tuning bandwidth was demonstrated with one

mirror set [67]. For waveguide Ti3+: sapphire lasers, continuous-wave channel waveguide

lasers were demonstrated and the emission wavelength was tuned over a 170 nm range by

using a birefringent filter in an external cavity [68].

Among all the Cr4+ doped gain media, Cr4+: YAG has been shown high con-

centration of tetrahedrally coordinated Cr4+ ions and high emission cross section in fiber

communication bands. Cr4+: YAG tunable laser has been developed for thirty years, and

the first operated in gain-switched mode with a tuning range from 1.35 to 1.45 µm [69].
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Then, there tunable lasers in continuous-wave mode had been demonstrated [70]. These

systems used high power solid-state laser as pumping source, which was massive and high

cost. Although laser diode could reduce the cost and volume, the threshold was still in

the Watt level [71]. Another issue was the thermal loading in crystal with bulk structure.

The lifetime suffer from the thermal loading and the thermal lensing effect in the crystal

[72].To overcome the thermal problem and poor pump/signal beam overlapping in bulk

crystal, a 120 µm diameter Cr4+: YAG crystal fiber was developed with a tuning range

of 180 nm at a threshold pump power above 2 W [73].

Decades later, silica glass fiber has revolutionised their use in broadband optical

telecommunications, due to exceptional low loss of <1 dB/km at 1.55 µm. This makes it

by far the best material for long distance communication. Nevertheless, its low refractive

index and the inability to transmit radiation above 2 µm makes silica fiber unsuitable for

active and mid infra-red (MIR) optical devices [4]. A key component for telecommunica-

tions networks, the erbium-doped fibre amplifier (EDFA) is the most widely used optical

amplifier and has allowed transmission of large data volumes using a number of channels

at different wavelengths through dense wavelength division multiplexing (DWDM). How-

ever, due to the limited gain bandwidth of the EDFA only a small fraction of the low-loss

window of silica optical fibre is used in current telecommunication systems. Doping sil-

ica optical fibres with other rare earths could overcome this though problems associated

with the vibrational structure of silica. The effective use as an amplifier medium may be

reached when doping silica with ions such as praseodymium (Pr3+), thulium (Tm3+) and

dysprosium (Dy3+) [74]. Another approach to access more of the low loss silica window

is through using glasses doped with transition metals which have characteristically broad

absorption and emission bands. However, the high phonon energy of silica glass results

in emission being quenched and leads to low quantum efficiencies.

In recent years, phosphate glasses have demonstrated to be a promising alterna-

tive to silicate glasses as a host material, especially for high-power applications. In fact,

they allow extremely high doping levels of RE ions and thus the fabrication of more com-

pact and active devices [75]. The phosphate glasses are very well known for their suitable

mechanical and chemical properties, homogeneity, good thermal stability and excellent
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optical properties. Three Nd3+ doped phosphate laser glasses, LHG-8 (Hoya), LG-7705

(Schott), and N31 (Shanghai Institute of Optics and Fine Mechanics, SIOM), have been

developed for high power laser inertial confinement fusion (ICF) technology. Application

of this technology is currently used by National Ignition Facility (NIF) in the United

States, Laser Megajoule (LMJ) in France, and Shen Guang in China, respectively [7].

Table 2.2 summarizes the major properties of Nd: phosphate glasses from Hoya, Schott,

and SIOM.

Table 2.2: Key parameters of Nd doped commercial laser glasses [7].

Another important feature of phosphate glasses is their thermal and mechanical

strength, which allow the production of optical fibers that can be cleaved and fusion-

spliced with commercial optical fiber components based on silicate glasses, thus allowing

an easier integration of these fibers in commercial systems [76]. Nevertheless, doping of

transition metals, rare earth ions and semiconductor nanocrystals in glasses may open new

kind of materials for example, Diluted Magnetic Semiconductors (DMS) in glasses. This

composite may be obtained when nonmagnetic constituents of a compound semiconductor

are randomly substituted by a magnetic ion. These materials may significantly enhance

magneto-optic (MO) effects for MO sensors applications [77, 78, 79].
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3 Engineering properties of amorphous

materials

Glass as “an amorphous solid that lacks long range crystalline structure”. Since its first

discovery, the key advantages of amorphous materials that makes them highly suitable

for a broad range of applications are counterless. Generally, the interaction of light with

matter is an interesting area in science that has led to many photo-chemical/physical

processes in our daily lives. The following section focus on required engineering properties

such as optical, mechanical, chemical and thermal, for glasses using literature [80, 81, 82,

83, 84].

3.1 Optical properties

By virtue of electron energy band structures of glasses, they may be transparent to visible

light. Therefore, not only reflection and absorption but also refraction and transmission

phenomena need to be considered.

3.1.1 Refractive index

Light that is transmitted into the interior of materials experiences a decrease in velocity,

and, as a result, is bent at the interface; this phenomenon is termed refraction. The index

of refraction (n) will depend on the wavelength of light (λν = c/n) and is proportional to

the dielectric constant of a solid (∼=
√
ε). Generally, glass is an optically homogeneous, non-

magnetic, and isotropic material. The behavior of an electromagnetic wave propagation

through glass can be described by a complex refractive index, n-ik or equivalently a

complex dielectric constant, ε
′ − iε”, which are related through,

(n-ik)2 = (ε
′ − iε”)

or equivalently,
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ε
′

= n2-k2 and ε” = 2nk

Figure 3.1: a) Complex refractive index (n, k), b) absorption coefficient, c) reflection coef-
ficient as a function of wavelength for a silica SiO2; and d) reflection (R) and transmission
(T) coefficients for a normal incidence of light from one medium to another medium as a
function of the refractive index. Figures adapted from ref. [80].

Figure 3.1a shows how the refractive index beahves as a function of the wavelength for

silica glass. The key features are, i) a broad region where n is almost (but not quite)

wavelength-independent (the transmittance “window” of the glass), ii) a sharp rise in k

at short wavelengths (the “uv edge”), and iii) a sharp rise in k at longer wavelengths (the

IR edge). The abrupt rise in k at the two edges is due to the rise of absorption coefficient

at that frequencies for a silica glass, as shown in figure 3.1b. The sharp rise in k also

contributes to strong reflections from glass surfaces at the window boundaries, shown in

figure 3.1c. For normal incidence, the intensity reflection coefficient from an air–glass

interface is given by [81],

R =
[(n− 1)2 + k2

(n+ 1)2 + k2

]

(3.1)
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In the window of transparency, the complex refractive index of glasses is dom-

inated by the real part. Thus, the reflection and transmission coefficients for normal

incidence at the interface between two glass media are readily calculated from Equation

3.1 using the relative refractive index m = n2/n1 (for silicate glass, m = 1.5) for the

refractive indices for light in the medium of incidence (n1) and transmission (n2); the

resultant spectra is shown in figure 3.1d. There are angles of incidence (Brewster and

critical angles) at the interface of glass which play an important role in many applica-

tions. For example, most gas lasers use windows cut at the Brewster angle to eliminate

reflection losses for one polarization. The critical angle is the defining parameter for the

propagation of guided waves in fiber optic cables (strictly for cables whose diameter is

much greater than the wavelength of light).

3.1.2 Absorption

The optical transparency for glasses is directly linked to the absorption of the glass for

different wavelengths. The intensity of the net absorbed radiation is dependent on the

character of the medium as well as the path length within. Let’s consider an incident light

passing through the glass. Its coefficient of absorption is given by the Lambert- Beer law

as,

I = I0e
−αl (3.2)

where I is the light transmitted, I0 is the initial incident light. α is the absorption

coefficient while l is the length of the sample and can written as,

α = −1

l
ln
( I

I0

)

(3.3)

In principle, when an incident light in the visible range is absorbed by the glass

material, an electron is excited from the nearly filled valence band, cross the band gap,

and fall into an empty state within the conduction band. Thus, a free electron in the

conduction band and a hole in the valence band are created. For semiconducting materials

that have band gap energies less than about 1.8 eV (λmax = 0.7 µm) all visible light is

absorbed resulting into a valence band to conduction band electron transitions; in this
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case the material is opaque. No visible light is absorbed by nonmetallic materials having

band gap energies greater than about 3.1 eV (λmax = 0.4 µm); these materials, if have

high purity, will appear transparent and colorless. Only a portion of the visible spectrum

is absorbed by materials having band gap energies between 1.8 and 3.1 eV; consequently,

these materials appear colored.

If impurities (TM/RE ions) are present in the glass material, light radiation of

specific wavelengths may be emitted as a result of electron transitions involving these

levels within the band gap. The absorption spectra for the impurities (Ni or Nd ions) in

amorphous materials were presented in our previous chapter. In those spectra observed

electronic transition band are within the bandgap of the host material.

3.1.3 Color

Glasses may appear colored in transmitted light due to a variety of mechanisms, including

absorption by transition metal/rare earth ions, colloidal precipitates, and band-edge cut-

off. Band edge coloration simply implies that the fundamental edge for absorption has

moved into the visible region of the spectrum. Many glasses based on anions other than

oxygen, such as sulfur, selenium, tellurium, phosphate and etc present this property.

Moreover, it is well known that the addition of metals such as Cu, Ag, and Au to a glass

gives rise to strong coloration under certain preparation conditions. For example, “ruby

glass” which is a silicate glass containing colloidal gold. The red color of ruby glass is due

to a plasma resonance of gold particles in the blue-green portion of the visible spectrum.

A great number of glasses can be produced by engineering the concentration and

alloying nature and size of the semiconducting particles with sharp cut-off characteristics

in their transparency at a range of wavelengths. These have practical applications in the

fabrication of the well-known colored edge-filters used in optical spectroscopy. Transition

metal ion doping by elements from the 3d series with their open valence shell electrons

results in absorption bands in the visible and infrared regions arising from 3d-3d electronic

transitions. In principle, rare-earth ion doping can also give rise to coloration, but the

absorption per ion for the usual 4f-4f transitions is much weaker and narrower than that

for 3d-3d transitions.
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3.2 Chemical properties

Chemical durability or corrosion resistance of optical glasses is a special problem. The

chemical composition of many such glasses make then quite sensitive to the environment.

Under certain exposure conditions, glass optical properties, chemistry and structural prop-

erties varied by different corrosion process. Generally, Corrosion occurs in one or in a

combination of ways. These include: (1) leaching, which usually involves the selective re-

moval of the soluble components of a glass by an ion exchange reaction, leaving a porous

surface layer and resulting in a surface that exhibits interference effects commonly de-

scribed as tarnish, stain, or aoyake; (2) etching, or total dissolution of the glass structure,

continuously exposing fresh glass; and (3) deposition of insoluble materials that adhere

to the surface as a result of either (1) or (2) above, sometimes referred to as shiroyake.

Problems with optical devices usually involve leaching or deposition of insoluble materials

[82].

Leaching or etching process depend on the relative solubilities of the various

glass components. In the case of silica glass, leaching occurs, but in the case of many

optical glasses, etching thus dissolution occurs. High silica glasses, the normal commercial

varieties used for windows, bottles, etc., are quite acid resistant. However, optical glasses

which are often low in silica (or other stable glass formers) may be extremely vulnerable

to acid attack.

Figure 3.2: Variation of chemical resistance between commercial silicate glasses and op-
tical glasses [81]

The primary determinant factor of chemical durability in glass is an ion-exchange
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reaction, in which alkali ions in the glass are exchanged with hydrogen atoms or hydronium

ions present in atmospheric humidity or water. The alkali ions involving leaching process

further react with carbon dioxide and water in the atmosphere to produce alkali carbonates

and bicarbonates. These are seen as the white deposits that form on a glassy surface

in dishwashing tests or after extended humidity exposure (often called weathering). It

means that total glass structure is destroyed. The chemical resistance of silicate and

optical glasses is shown in figure 3.2. In general, glasses that are low in alkali offer

increased weathering resistance. Vitreous silica is the most resistant, but borosilicates

and aluminosilicates also offer excellent weathering resistance.

On the other hand, a dissolution of the entire network may occur when glasses are

attacked by caustic alkalis and by hydrofluoric, phosphoric, and chloric acids. The general

approach to improve the chemical durability of glass is to make the surface as silica-rich

as possible. This can be accomplished by two methods: fire polishing, a procedure that

removes alkali ions by volatilization; or surface treatment with a mixture of sulfuric dioxide

and steam, which extracts alkali by leaching and converting to washable alkali sulfate.

Other methods of improving chemical durability involve limiting the access of water or

humidity to the glass surface. Polymeric barrier coatings are effective in this way. For

example, small amounts of allumina in the glass composition (on the order of 2 to 3%)

work well to improve the chemical durability of containers. Some high aluminosilicates

resist even hot sodium-metal vapours.

3.3 Mechanical properties

3.3.1 Elasticity

Generally, in glasses, there is no quick and complete recovery of the shape after the

stress is removed. Such permanent shape change is known as plastic deformation. In

the glass there is a stress induced flow which may happen in the range of temperatures

between annealing and softening. The isotropic behaviour of glass is most evident in

their elastic properties, particularly, only two independent elastic moduli are normally

measured: Young’s modulus (E), which measures the ability of a solid to recover its
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original dimensions after being subjected to lengthwise tension or compression; and shear

modulus (G), which measures its ability to recover from transverse stress. The effect of a

particular cation on the Young’s modulus depends on the structural role (whether it takes

network forming or interstitial positions) and the nature of the cation-oxygen bond. In

the case of cations taking only interstitial positions, a proportionality has been observed

between the logarithm of cation field strength and Young’s modulus. For cations which

take network forming as well as interstitial positions, this relation seems not to be valid.

3.3.2 Hardness

The hardness of a glass is measured by a diamond microindenter. Application of this

instrument to a glassy surface leaves clear evidence of plastic deformation (or) a perma-

nent change in dimension. Plastic deformation of glass (or ductility), which is generally

observed in strength tests as the necking of a specimen placed under tension, is not ob-

served generally in a glass. Whereas, instead of plastic deformation, glass failure is brittle

which means the glass object fractures suddenly and completely. This behaviour can be

explained by the atomic structure of a glassy solid. Since the atoms in molten glass are

essentially frozen in their amorphous order upon cooling, they do not orient themselves

into the sheets or planes that are typical of growing crystalline grains. The absence of

such a growth pattern means that no grain boundaries arise between planes of different

orientation, and therefore there are no barriers that might prevent defects such as cracks

from extending quickly through the material. The absence of dislocations causes glass

not to display ductility, the property of yielding and bending like metal.

Glass is exceptionally strong, much stronger than most metals, when tested in

the pristine state. Under pure compression, glass may undergo a more or less reversible

compression but not fracture. Its theoretical strength in tension is estimated to be 14 to

35 gigapascals (2 to 5 million pounds per square inch); glass fibres produced under very

careful drawing conditions have approached 11.5 gigapascals in strength. The strength of

most commercial glass products, ranges between only 14 and 175 megapascals (2,000 and

25,000 pounds per square inch), owing to the presence of scratches and microscopic flaws,

generally on the surface. Apparently, surface flaws are produced in glass by abrasion



3.4 Thermal properties 58

with most solids -even by the touch of a finger and particularly by another piece of glass

that rubs against it during manufacture. Flaws have a stress-concerning effect; that is,

the effective stress at the tip of a flaw can be easily 100 to 1,000 times greater than

that applied. Eventually, depending on the applied stress, the shape of the flaw, the

temperature, and even the corrosiveness of the environment, the growth velocity of the

crack approaches its terminal limit, and failure becomes imminent. Thus, under a tensile

loaded condition, all glasses experiences static fatigue and eventually fails. The crack

growth velocities are higher with higher magnitudes of tensile stress, sharper flaws (where

the tip radius is much smaller than the length), higher temperatures, and higher humidity.

3.4 Thermal properties

3.4.1 Viscosity

As can be seen in the above Figure 3.3 , the viscosity of glass, as measured in centimetre-

gram-second units known as poise, decreases with rising temperature. The figure also

indicates the temperatures at which certain glasses reach standard viscosity reference

points that are important in glassmaking. For instance, the working point, the tempera-

ture at which a gob of molten glass may be delivered to a forming machine, is equivalent

to the temperature at which viscosity is 104 poise. The softening point, at which the glass

may slump under its own weight, is defined by a viscosity of 107.65 poise, the annealing

point by 1013 poise, and finally the strain point by 1014.5 poise. Upon further cooling,

viscosity increases rapidly to well beyond 1018 poise, where it can no longer be measured

meaningfully. The annealing point and the strain point lie in the glass transformation

range shown in Figure 3.3; often, the glass transition temperature (Tg) and the annealing

point are used synonymously, and the strain point marks the low-temperature end of the

range. The Tg may also be considered the maximum temperature for intermittent service.

It is evident from figure that the Tg of vitreous silica is the highest of the commercial

glasses and that increasing the amount of alkali additions (and therefore the concentration

of network modifier ions) lowers Tg. Of all the various factors affecting viscosity, water,

in the form of hydroxyl ions or molecular water, lowers viscosity the most.



3.4 Thermal properties 59

Figure 3.3: The effect of temperature on the viscosity of glass [82] • Melting point (at
10 Pa.s): At this point the glass becomes fluid enough to be considered as a liquid. •
Working point (at 103 Pa.s): Glass is easily deformed at this viscosity and this is the
reason why the glass fabrication operations are carried out at this point. • Softening
point (4 × 106 Pa.s): Represents the maximum temperature at which a glass piece may
be handled without resulting in significant dimensional changes. At this point the glass
can flow under its own weight.

3.4.2 Thermal Expansion

The thermal expansion is defined as the relative change in size as a response to a tem-

perature change. As is evident from the above (Figure 3.3), glass normally expands when

heated and shrinks when cooled. This thermal expansion of glass is critical to its ther-

mal shock performance, i.e., its performance when subjected suddenly to a temperature

change. When a hot specimen of glass is suddenly cooled by plunging it in iced water,

develop great tension in the outside layers owing to their shrinking relative to the inner

layers. This tension may lead to cracking. Resistance to such thermal shock is known as

the thermal endurance of a glass. Therefore, it is inversely related to the thermal- expan-

sion coefficient and the thickness of the piece. Soda-lime-silicates and alkali-lead-silicates,

which typically have high expansion coefficients, are quite susceptible to shocking.
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3.4.3 Heat Transfer

The thermal conductivity of oxide glass due to atomic vibrations (the so-called phonon

mechanism) does not increase appreciably with temperature. On the other hand, the

radiation conductivity (thermal conductivity due to photon transport) increases greatly

with temperature. Radiation conductivity is also inversely proportional to the absorption

coefficient of a glass for specific photon wavelengths. Thus, the rather high radiation con-

ductivity of molten clear glass enables melting to depths of almost two meters, or five feet,

in continuous glass tanks without a serious risk of frozen glass at the bottom. Coloured

glasses, on the other hand, have a high photon absorption coefficient and therefore need

to be melted either to shallow depths or with electric boosting from the bottom of the

tank.
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4 Materials and characterization techniques

This chapter describes materials used in this research work and their method of prepara-

tion; and the technical details of spectroscopic experiments used for materials character-

ization. There is also a short theoretical discussions where relevant with respect to the

techniques used.

4.1 Preparation of glass materials

In this work, the two set of samples used are prepared at: 1) Institute of Physics,

Laboratório de Novos materias Isolantes e Semiconductores, from Federal University of

Uberlândia, and 2) LPM- Laboratório de Produção de Materiais at Group of Engineering

and Spectroscopy Materials (GE2M), Department of Physics – UFJF, Brazil by using

melt-quenching technique. One can chose the materials compositions in mol% (or) wt%.

Therefore, the prepared glass compositions are in mol%. It is also worth to note that for

the conversion of mol% to wt%, each calculated composition weight (= mol% × Molecular

weight) is divided by the total composition of calculated weight.

SET I

Composition: 65P2O5+14ZnO+10Al2O3+10BaO+10PbO (mol %) (PZABP)

Dopants: 5wt% Ni and 1 wt% Te and x = 0.5, 0.1, 5 and 10 wt% Ni at an

expense of Zn.

Glass notation Composition (mol%) : Ion dopant (Wt%)

G 65P2O5+14ZnO+10Al2O3+10BaO+10PbO : 5Ni

GC1 65P2O5+14ZnO+10Al2O3+10BaO+10PbO : Zn0.995Ni0.005Te

GC2 65P2O5+14ZnO+10Al2O3+10BaO+10PbO : Zn0.99Ni0.01Te

GC3 65P2O5+14ZnO+10Al2O3+10BaO+10PbO : Zn0.95Ni0.05Te

GC4 65P2O5+14ZnO+10Al2O3+10BaO+10PbO : Zn0.9Ni0.1Te

SET II
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Composition: 29 P2O5 + (60-x) ZnO + 10 Na2O + x TeO2 + 1.0 Nd2O3 (x =

5 10, 20, 30 & 40 mol%)

Glass notation Composition (mol%)

x = 5 29 P2O5 + 55 ZnO,+ 10 Na2O + 5 TeO2 + 1.0 Nd2O3

x = 10 29 P2O5 + 50 ZnO,+ 10 Na2O + 10 TeO2 + 1.0 Nd2O3

x = 20 29 P2O5 + 40 ZnO,+ 10 Na2O + 20 TeO2 + 1.0 Nd2O3

x = 30 29 P2O5 + 30 ZnO,+ 10 Na2O + 30 TeO2 + 1.0 Nd2O3

x = 40 29 P2O5 + 20 ZnO,+ 10 Na2O + 40 TeO2 + 1.0 Nd2O3

The high purity of P2O5 (Sigma-Aldrich, 99.9%), TeO2 (Sigma-Aldrich, 99.9%),

ZnO (Sigma-Aldrich, 99.9%), BaO (Sigma-Aldrich, 99.9%), PbO (Sigma-Aldrich, 99%),

Al2O3 (Sigma-Aldrich, 99.9%), Na2O (Sigma-Aldrich, 99.99%), Nd2O3 (Sigma-Aldrich,

99.9%), NiO (Sigma-Aldrich, 99.9%), and Te (Sigma-Aldrich, 99%) of starting materials

are used to prepare above glasses. About 10 g batches of pre-weighed specific quantities

of P2O5, TeO2, ZnO, BaO, PbO, Al2O3, Na2O and Nd2O3, NiO, Te dried powders are

thoroughly ground in an agate mortar to homogenize the chemical constituents. The

powder mixture was melted at at 1300 ◦C for 30 min (for Set I), and at 1100 ◦C for

3h 30 min (for Set II), with four stirring sessions, in order to reach a sufficiently good

homogeneity of the final glasses, and quenched quickly into a pre heated brass mould.

For Set I samples, a subsequent heat treatment was done at 500 ◦C for 10 h in order to

obtain glass matrix with ZnTe nanocrystals and the diffusion of Zn2+, Ni2+ and Te2− ions.

For set II samples, all the samples were annealed at 400 ◦C below their glass transition

temperature (Tg = 400 ◦C) for 3 h in order to release the internal stresses resulting from

the quenching.

4.2 Physical parameters

In our optical system, thickness, refractive index, density and concentration of dopant

ions were varied independently to optimize the spectroscopic parameters.

Thickness(l):

The thickness (l) for all transition metal/rare earth ions doped glasses were mea-



4.3 Characterization techniques and specifications 63

sured using a screw gauge of least count 0.01mm.

Refractive index(n):

The refractive indices were measured using an Abbe refractometer with sodium

vapour lamp and using 1-monobromonapthalene as an adhesive coating with an accuracy

of ±0.001.

Density(d):

Density measurements were carried out with an accuracy of ±0.02 (g/cm3) using

the Archemedis principle and using the formula

d(g/cm3) =
a

(a− b)
× ρ (4.1)

where a is the weight of the glass sample in the air, b is the weight of the glass sample

in the buoyant medium and ρ is the density of the buoyant medium (distilled water, 1

g/cm3).

Concentration of ions(N):

The above values are used to obtain concentration values using the formula

N(ions/cm3) =
xNAd

M
(4.2)

where x is the mole fraction of rare earth ions, NA is the Avagadro’s number, d is the

density, and M is the average molecular weight. In the present work, sample thickness,

refractive index, density and concentration of ions doped to the glass matrices are given

in respective chapters.

4.3 Characterization techniques and specifications

Structural, optical, thermal and nolinear-optical properties studied in the present work are

obtained using the X-ray diffraction, IR absorption, Raman, optical absorption, emission,

thermal lens, thermal relaxation and z-scan spectroscopic techniques. The experimental

conditions are given in this section. Results and discussions are given in their respective

chapters.
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4.3.1 X-ray diffraction spectrometer

Figure 4.1: Photograph of D8 ADVANCE BRUKER x-ray diffractometer.

X-ray diffraction (XRD) is a non-invasive method for determining many types

of structural features in both crystalline and amorphous materials. XRD patterns were

recorded for the solid samples with D8 ADVANCE BRUKER powder X-ray diffractome-

ter, as shown in the photograph of Figure 4.1, operated at 40 kV and 20 mA, using CuKα

(λ = 1.5406Å) radiation source. The scan were controlled by the DIFFRAC.SUIT soft-

ware module, and the data was taken in step mode with an intervals of 0.02 degrees, over

a 2θ in the angular range of 15 - 60 degrees using a dwell time of 2 seconds.

4.3.2 Fourier Transform Infrared spectrometer

Figure 4.2: Photograph of FT-IR VERTEX 70 (BRUKER) spectrometer.

Infrared spectroscopy was performed using FTIR-ATR, VERTEX 70 (BRUKER)

spectrophotometer, as shown in the photograph of Figure 4.2, operated in reflectance

mode. The spectra were recorded in the region 400 - 1600 cm−1, with OPUS Software

module and spectrophotometer submitted to 64 scans and 0.4 cm−1 of spectral resolution.



4.3 Characterization techniques and specifications 65

4.3.3 Micro-Raman spectrometer

Figure 4.3: Micro-Raman HORIBA JOBIN IVON T64000 spectrometer.

Raman spectra with Stokes shift energy range from 200-1500 cm−1 were recorded

at room temperature with Micro-Raman (HORIBA JOBIN IVON T64000), as shown in

figure 4.3, operating in the double subtractive mode with a 488 nm Argon laser (Melles

Griot 543-AP-01) as excitation source. The spectrometer was operated under the following

adjustments: pinhole set to 300 µm, first slit aperture width 100 µm, second slit width

100 µm, third slit width 26.9 µm and acquisition time of 120 s with 5 scans.

4.3.4 UV-Vis-NIR absorption spectrometer

Optical absorption spectra of transition metal/rare earth ions doped glass samples were

recorded using double beam UV-Vis UV-2550 absorption spectrometer (SHIMADZU).

The spectrophotometer is shown in left side photograph of Figure 4.4. The UV-Vis

UV 2550 spectrophotometer is capable of recording the absorption/transmittance spectra

in the wavelength region of 190 to 1100 nm. The sample spectra and measurement

parameters were controlled by Spectra Manager Software with ± 0.002/0.004 sensitivity

and with 0.1 nm of spectral resolution.

MPA FT-NIR BRUKERMulti-Purpose spectrophotometer (see Figure 4.4(Right))

is capable of recording the spectra in transmittance/reflectance mode in the wavenum-

ber range 12500 - 4000 cm−1. The key advantage of these techniques is that it enables
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Figure 4.4: Photographs shows UV-Vis-NIR absorption spectrometers (Left: UV 2550
and Right: MPA-FT-NIR).

analysis of strongly scattering and absorbing samples unlike transmission measurements

and equally has high signal intensity. Sample scanning and data acquisition were carried

using OPUS LAB software version 5.5 with 32 scans and 0.4 cm−1 spectral resolution.

4.3.5 Emission spectral analysis

UV-Visible emission measurement with FLS920 spectrofluorimeter:

Figure 4.5 shows an FLS920 (EDINBURG PHOTONICS) spectrofluorometer.

Usually, an Edinburg FLSP920 Series is a series of modular software-controlled spectrom-

eters for the acquisition of steady state and time resolved photoluminescence. They can

measure, fluorescence and phosphorescence, and their lifetime. Data can be obtained in

a wide spectral range, from the ultraviolet to near-infrared, with single photon count-

ing sensitivity. The spectrometer series combines extremely high sensitivity with high

spectral and temporal resolution. FLSP920 Series of fluorescence spectrometers has at

Figure 4.5: FLS920 spectrofluorimeter for visible emission with Hydrogen lamp as an
excitation source (EDINBURG PHOTONICS).
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least two monochromators: an excitation monochromator and an emission monochroma-

tor. These can be either single-grating or double-grating monochromators, depending on

configuration. The F900 software application controls the FLSP920 Series of Fluores-

cence Spectrometers. It is used to set up measurement modes and parameters, configure

spectrometer components, run scans and display and manipulate scan results. It can also

import and export scan data to a variety of other standard applications. In this work,

the excitation, emission and decay lifetime measurements were recorded at room temper-

ature using Edinburgh Instruments FLS920 spectrophotometer under Hydrogen lamp as

an excitation source.

NIR Emission Measurements with Self-Mounted Lab Set-up:

Figure 4.6: Emission experimental setup. Lens (LA, LB, L1, L2, L3); Gratings (G1, G2,
G3).

Figure 4.6 shows self-mounted emission experimental set-up at LEM (Laboratório

de Espectroscopia de Materiais) of GE2M, Physics Department-UFJF. NIR emission spec-

tra were measured using an excitation source of 808 nm (Class 3B Laser Products) laser.

The NIR luminescence signals are dispersed into a monochromator (0.5 m, DK480 Spec-

tral Products), detected with an InGaAs detector (IGA-030-H, Electro-Optical Systems
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- USA) with a lock-in amplifier (Model SR530, Stanford Research Systems - CA). Decay

curves at 1.06 µm were measured by exciting the samples at 808 nm using optical chopper

(Model SR540, Stanford Research Systems - CA), with the same single monochromator

(0.5 m, DK480 spectral products) and InGaAs detector (IGA-001-H, Electro-Optical Sys-

tems - USA) and 350 MHz preamplifier (Model SR445A, Stanford Research Systems -

CA). A digital oscilloscope (Minipa MFG-4201A) was used to record the decay curves.

4.3.6 Thermal Lens (TL) Technique

Gordon et al. [85] was the first reported thermal lens spectrometry (TLS), which can

be used to measure thermal diffusivity for the very low optical absorption coefficients of

transparent samples (Glasses and liquids). There are very good review papers on the

subject [86, 87, 88]. Generally, it is important to know the thermo-optical properties for

evaluating the figures of merit of optical glasses. Especially, the thermal diffusivity, D, and

the thermal conductivity, K, related to the thermalization time within a given material.

For an amorphous materials, it is well known that D and K are quite dependent upon

the compositional and microstructural variables, as well as on the thermal processing

conditions [89]. On the other hand, ds/dT describes the thermally induced distortion of

a laser beam during its passing through a solid sample [90].

Figure 4.7: (a) Schematic diagram of the mode-mismatched thermal lens experimental
apparatus, where M1, M2 and M3 are mirrors, and P1 and P2 are detectors; (b) geometric
position of excitation and probe beams.

The first TL experiments were performed in the single-beam configuration or
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with two beams (excitation and probe) with the same beam waist at the sample position.

It was later observed that sensitivity was improved by the mode-mismatched dual-beam

configuration, where the two beams have different waists [87]. Usually, the pump or

excitation beam is focused at the sample and the probe beam is arranged to be at a

distance Z1 ∼1.7Zcp, where Zcp (cm) is the confocal distance of the probe beam. The

aberrant model was generalized for the mode-mismatched case by Shen et al. [86] and

the following expression for the intensity at the detector was obtained:

I(t) = I(0)

[

1− θ

2
tan−1(

2mV

[(1 + 2m)2 + V 2] tc
2t
+ 1 + 2m+ V 2

)

]2

(4.3)

where I(0 or t) is the intensity at time, t = 0 or t. m is the ratio of probe-pump beam

area at the sample and V is the ratio between the focal and confocal probe beam distance,

can be written as follows,

m =
(

ωP

ωe

)2
and V = Z1

Zcp

where, ωP is the probe beam radius at the sample, Z1 (cm) the distance between the probe

beam waist and the sample, Z2 (cm) the distance between the sample and the detector and

I(0) = I(t) when the transient time t or θ is 0. The probe beam propagation results in an

induced phase shift of its wave front producing a lens like effect (convergent or divergent).

The intensity of the probe beam center can be expressed with the interpretation of Fresnel

diffraction theory, i.e, the phase difference of the probe beam at r = 0 and r =
√
2ω2

induced by TL, is given by,

θ = − Pabs

Kλp

ϕ
ds

dT
(4.4)

and

tc =
ω2
e

4D
(4.5)

in which, θ is proportional to the probe beam phase shift induced by the thermal lens, ωp

is the probe beam wavelength and Pabs is the absorbed pump power, tc is the characteristic

TL response time while D is the thermal diffusivity of the sample.

In the present work, an Ar+ laser at 488 nm as excitation beam and a He-Ne

laser as a probe bean at 632.8 nm, have been used in the mode-mismatched thermal
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lens experimental setup, as shown in figure 4.7a. In a typical experimental setup the

excitation beam is focused by a 20 cm focal length and the sample is positioned at its

focal plane. A mechanical shutter or a chopper controls the exposure of the sample to

the excitation beam. The probe beam is focused by a 20 cm focal length and it is aligned

at an angle smaller than 1.5o with respect to the excitation beam. An iris is put in

front of the photodiode (P2) to select only the probe beam central part. 4.7b shows the

sample position relative to excitation and probe beams focuses, where ωe = 40.78 µm ;

ωp = 208.87 ωp; Zc = 6.08 cm, Z1 = 9.73 cm, Z2 ∼ 2 m (typical values). From these

values, we obtained m = 26.24 and V = 1.6, respectively. Then, the optical absorption

coefficients were determined using the same experimental configuration applied for the

TL measurements. The Pabs = PexAeL, where Pex is the excitation beam power, L is

the sample thickness, and Ae is the optical absorption coefficient of the sample. The

transmittance (P) and incident (P0) laser powers in terms of absorption coefficient can

be expressed as [91], P = P0(1-R)
2exp(-AeL), where R = (n−1)2

(n+1)2
is the reflectance. The

obtained experimental results for the studied systems are reported in their respective

chapters.

4.3.7 Thermal Relaxation (TR) Technique

The temperature relaxation technique offers the advantages of an inexpensive and rel-

atively simple experimental setup for the measurement of specific heat of solid samples

at room temperature. The property of heat capacity is defined as a product of the spe-

cific heat, c, and the density, ρ, and expresses the amount of heat developed per mass

unit in a sample of unit volume when its temperature is varied by 1 K. Its knowledge is

of great importance in solid-state physics because it provides us with a direct means to

test theoretical models of a given physical system and because of its sensitivity to phase

transitions, etc.

Usually, thermal relaxation method is based on first disturbing an adiabatically

isolated sample from its state of equilibrium by light irradiation, and then measuring the

time changes in its absolute temperature, T. If the deviation of the system from the state

of equilibrium is small, the relaxation is described by the equation T(t) = T0exp(-t/τ),
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where T0 is the initial value of the temperature and τ is the relaxation time of the system

which is related to the sample’s specific heat.

This method was first proposed by Bachmann et al. [92] for low-temperature

(1-35 K) measurements; it was later extended to measurements below 1K by Schutz [93]

and successfully used, with appropriate modifications, and by several authors in higher

temperature range too. Djurek and Baturic-Rubidic [94] have modified the Bachmann

method for measurements above 35 K. Experiments on tungsten in the range 2400 - 3600

K were performed by Zinovev and Lebedev [95]. Hatta [96] has designed a relaxation

calorimeter, employing for the first time light heating for measurements on small sam-

ples in the temperature range around room temperature. Mansanares et al. [97] have

later developed Hatta’s approach for simple measurements of specific heat capacity at

room temperature. Recently, the temperature relaxation method, designed by the last

mentioned authors as the temperature rise method under continuous illumination, has

been used for characterization of different materials such as semiconductors, foods, wood,

zeolites, clays, and ferroelectric ceramics, among others.

Figure 4.8: Schematic illustrations for thermal relaxation method.

In this work, the heat capacity of amorphous samples was measured by the ther-

mal relaxation method. Figure 4.8 shows schematic representation of thermal relaxation

experimental setup. This methodology records the thermal heating (thermal relaxation)

of a sample over time in the presence (absence) of illumination. In the thermal equi-

librium, the illuminated (front) and non-illuminated (back) faces of the samples reach

saturation temperatures, Ti,max and Tn,max. Therefore, heat capacity depends on how
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long the sample takes to heat or cool, and is expressed by the relation [98, 99],

∆T = T0 − Tm =
(T 4

m − T 4
0 )

4T 4
0

exp

[

1− exp(
t

τd
)

]

(4.6)

where two considerations are used: i) only radiation losses are taken into account and

(ii) the temperature changes induced by the illumination are small compared to the sur-

rounding environment temperature. In equation 4.6, Tm is the equilibrium temperature

of the sample, T0 is the initial temperature of the sample and the mean relaxation time

is given by

τd =
ρcls
8σT 3

0

(4.7)

where ρc is the specific heat capacity, ls is the thickness of the sample and σ is the

Stefan-Boltzmann constant.

Figure 4.9: Cooling curve data for specific heat measurement using a) Sensor and b)
Thermocouple as a data acquisition, c) and d) are the variation of heat capacity (ρc) as
a function of thickness of sample, and laser power (λ = 488 nm) (b).
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In order to testify the calibration accuracy of our experimental setup, different

thickness of phosphate glasses chosen as reference; infrared sensor and thermocouple are

used for data collection. The measurement for the each thickness of sample was per-

formed by illuminating laser powers in between 30 - 80 mW. The average heat capacity

to the three laser powers as a function of sample thickness while using infrared sensor and

thermocouple, is shown in Figure 4.9a. It is observed that there is no significant change

in heat capacity with sample thickness while using infrared sensor, and those values are

lower (average of 0.843 J/cm3.K) than those reported in phosphate glasses (average value

of 2.19 J/cm3.K). Whereas, using thermocouple, the heat capacity decrease with decrease

of sample thickness, but at 574 µm thickness the heat capacity is around 2.243 J/cm3.K

which is good agreement with reported ones (average value of 2.19 J/cm3.K) are shown

in Figure 4.9c. In addition, we also calibrate heat capacity with increase of power for the

optimized thickness (574 µm) of sample, as shown in figure 4.9b. It is observed that at

powers <60 and <65 mW the heat capacity value doesn’t meet the standard data, but at

>60 mW and >65 mW laser power the heat capacity of the sample is around 2.243 and

2.19 J/cm3.K, respectively. Therefore, we conclude that the data collecting with thermo-

couple, laser power operating at 60 mW, and between 500 - 600 µm thicknesses of glass

sample is best suit conditions for the calibration of heat capacity of the glass matrices.

The present studied glass samples were also used to calibrate heat capacity with the above

considerations and those results are discussed in their respective chapters.

4.3.8 Nonlinear optical spectroscopy (Z-scan)

Since the advent of the laser in the 1960s, the nonlinear optical properties of materials has

become extensively studied using different techniques. The Z-scan is amongst the simplest

and most sensitive of these techniques. The basic z-scan technique has been described

by Mansoor Sheik-Bahae et al. [100, 101]. In this section, we present our experimental

procedure and theoretical expressions used for determine the nonlinear refraction (n2) and

nonlinear absorption (β).

In this work, we used Z-scan experimental setup as shown in Figure 4.10. A

mode-locked Ti: sapphire laser (Mai Tai) was used with 750 to 850 nm wavelength range
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with a repetition rate of 80 MHz. Then the laser beam is focused by lens with 15 cm focal

length and the sample is moved along the z-axis during the measurement of transmittance

(T) of light through the sample. The transmittance is performed in two ways, i) open-

aperture Z- scan and ii) closed-aperture Z-scan. In the case of open-aperture Z-scan, the

Figure 4.10: Single beam Z-scan experimental setup.

transmitted light is collected by just passing through the sample (i.e., without aperture).

Whereas, in the case of closed-aperture, the transmitted light is collected after passing

through a finite aperture (S = 0.50) in the far field. The complete experimental procedure

and setup is similar to our previous literature [102][96].

The third-order nonlinear properties of the samples are obtained by fitting the

obtained experimental data with the following equations [100][94]:

T (Z) = 1− 1
√

2(x2 + 1)
∆Ψ (OpenAperture) (4.8)

T (Z) = 1 +
4x

(x2 + 9)(x2 + 1)
(CloseAperture) (4.9)

where x is the relative distance, x = Z/Z0 = 2Z/(kω2
0) . In the latter equation, Z, Z0,

k and ω0 are the distance from the focus point, the diffraction length of the beam, the

wavenumber of the light and the beam waist at the focal plane, respectively. The trans-

mittance changes ∆Tv and ∆TP−v can be obtained from the fitting curves by using the

relationships, ∆Tv = ∆Ψ0 and ∆Tp−v = 0.406(1-S)0.25 | Φ0 |, where S is the closed aper-

ture parameter. Then, nonlinear refractive index (n2) and nonlinear absorption coefficient

(β) are determined from the following formulas [100],

n2 =
λ∆Tp−v

I0Leff

(4.10)
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β =
2∆Tv

(x2 + 9)(x2 + 1)
(4.11)

where λ is the wavelength and I0 is the power density of the pump laser. Leff is the effec-

tive length of the sample defined as, Leff = (1− exp(αL))/α, α is the linear absorption

coefficient at a given wavelength and L is the thickness of the sample, respectively. The

complete experimental results are presented in their respective chapters.
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5 Results and Discussions

This chapter details how the structural and optical properties are influenced by the varia-

tion of Ni2+ ions concentration as an interstitial dopant into ZnTe NCs present in PZABP

phosphate glass/glass-ceramics; and the variation of TeO2 content in Nd3+ doped PZN

phosphate glasses. The structural, optical absorption and emission spectra of all the

glasses are also presented.

5.1 ZnNiTe semiconductor NCs in PZABP phosphate

glasses for optoelectronics

As discussed in chapter 2, semiconductor materials with combination of III-V type (GaAs,

InAs and SiN), II-VI type (ZnO, ZnTe, CdTe, ZnS), IV-VI type (TiO2 and SnO2) and IV

(Si, Sn and Ge) have attracted much attention since they provide practical applications

in the field of optoelectronics and diluted magnetic semiconductors (DMS). Concerning

DMS for spintronic applications, the addition of magnetic transition metals and/or rare

earth ions to the II-VI semiconductors have been extensively studied due to their greater

solubility limit and lower defect concentration. The magnetic transition metal ions (for

instance Nickle) incorporated into the semiconductors lead to a strong s-d interaction

between the carriers and the local magnetic ions that may affect spin splitting and the

spin polarization of the materials. Such modification control may lead to a promising

application in spintronics. ZnTe is an important II-VI semiconductor with a wide and

direct band gap of ∼2.26 eV at room temperature with applications in optoelectronic and

thermoelectric devices. ZnTe as well as ZnNiTe based are key materials, operating in the

deep UV frequency range, which could be used, in the near future, for transparent single-

electron field-effect transistors, lithography and surface modification. In recent decades,

ZnTe together with magnectic material, in various forms (bulk, thin film and nanostruc-

tured), have paid much attention in the investigation of their structural, electrical and
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magnetic behavior. It is worth to note that ZnNiTe based nanocristals synthesized by fu-

sion in a glass template allowing control of optical, morphological and magnetic properties

as a function of magnetic (Ni) ion concentration. Currently, magneto-optical properties

in phosphate glasses doped with magnetic transition ions and semiconductor nanocrys-

tals shows to be promising. Nevertheless, there are very few reports on DMSs grown in

glasses and their characterization has been limited to structural and magnetic properties

[103, 104, 105, 106]. Moreover, so far the thermo-optical properties of ZnTe based DMS

in phosphate glass are not reported yet.

In this section, effect of Ni2+ ions in structural, optical (absorption and emission)

and thermal, nonlinear properties of transparent P2O5-ZnO-Al2O3-BaO-PbO (PZABP)

glass (G) and glass ceramic (GC) containing ZnTe semiconductor nanocrystals were stud-

ied through XRD, IR absorption and Raman spectroscopy, visible and near-infrared ab-

sorption, thermal-lens, thermal relaxation and z-scan techniques, which provides a definite

contribution to the understanding of this material characteristics .

The samples are named as PZABP:5%Ni (G), PZABP: 0.5%ZnNiTe (GC1), PZ-

ABP: 1% ZnNiTe (GC2), PZABP: 5% ZnNiTe (GC3), and PZABP: 10% ZnNiTe (GC4),

respectively, and their significant physical parameters are listed in Table 5.1.

Table 5.1: Physical properties of Ni2+ ions in samples
Sample Ni ions Thickness l (mm) Density Refracrive index

x wt% l±0.001 (mm) d±0.001 (g/cm3) n±0.001
G 5 1.850 3.178 1.548

GC1 0.5 1.847 3.271 1.541
GC2 1 1.858 3.404 1.545
GC3 5 1.887 3.315 1.534
GC4 10 1.881 3.459 1.539

5.1.1 Structural analysis: XRD, FT-IR, Raman spectra

Figure 5.1a shows the XRD pattern of the Ni2+ ions doped glass (G) and glass-ceramic

(GC2) samples. It can be seen that two broad humps at around 15<2θ<30 and 35<2θ<55

degrees indicate the amorphous nature of the host glass. The G sample clearly exhibit

glassy characteristic by the diffuse hump and absence of sharp peaks corresponding to

crystalline phase. Whereas the GC2 sample exhibit not only the amorphous halo, but
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also appear sharp diffraction peaks (see figure 5.1b) that could be attributed to the growth

of quantum dots (QDs) or nanocrystals (NCs). The peaks related to reflections from (111),

(200), (220) and (311) planes of cubic zinc blende structure matched with the standard

card of ZnTe, JCPDS: 15-0746 [103]. The additional peak at approximately 30.78 degree

is related to the tetragonal structure of TeO2 (JCPDS: 11-0693) [103]; and the peaks at

around 47.07 and 56.88 degrees are the hexagonal structure of ZnO (JCPDS: 36-1451)

[107, 104]. The observed crystalline phases of TeO2 and ZnO are formed by the ther-

Figure 5.1: XRD pattern of samples. a) Glass (G) and glass-ceramic (GC2) samples.
TEM image of sample contain ZnTe NCs, which is adapted from our collaborative research
group [105].

malization processs. The phase related to the nickel oxide has not appeared due to the

incorporation of Ni2+ ions into ZnTe lattice as interstitial atoms. According to the liter-

ature [107, 104, 105, 106, 108], the doping of several concentrations of various transition

metals (Ni, Mn and Co, etc.) into ZnTe host lattice shows constant position of phase

lattices of ZnTe NCs and were confirmed by the transmission electron microscopy (TEM)

[105]. The TEM image for the thermally annealed (for 10 h at 500 ◦C) sample contain

Zn1−xNixTe NCs (ZnTe sample (x = 0.00), see figure 5.1b) exhibit average diameter of

4.25 nm and 13.35 nm for the QD and bulk NCs, respectively.
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Due to lack of long range order in glasses, x-ray diffraction analysis is limited to

analyze their structural features regarding local structure and vibrational unit arrange-

ment of the nearest neighbors. Such structural features were determined by the use of

Raman and MIR measurements in the studied samples. The observed main structural

features and their assignments are listed in Table 5.2.

Table 5.2: Raman and Infrared vibrational bands with assignments.
Raman (cm−1) Infrared (cm−1) Assignment

106 Second order TO
215 First order LO
326 PO4

431 446 Second order LO (ZnTe) and
Bending of O-P-O units in PO3−

4 groups
523 539 Cation oxygen polyhedral and

bending of O-P-O units in (P2O7)
4− groups

653, 669, 667, 688 Bending of P=O bonds
707 717, 735, 728, 785 νs(P-O-P) in Q1 group
790 νas (P-O-P) in Q2 group

841 νs(P-O-P) in Q0 group
862 - 864, 918 νas(P-O-P) in Q0 group

989 νs(PO
3−
4 ) in Q0 group

1080 1058 νs(P-O-P) nonbridging oxygen (Q1) and
νs(PO

3−
4 ) in Q0 group

1165 1153, 1203 - 1213 νas(P-O-P) nonbridging oxygen in (Q1) and
νs(PO

−

2 ) in Q2 and Q1 groups
1250 1273 νas(P-O-P) nonbridging oxygen in (Q2) and

νs (PO
−

2 ) in Q1 groups

Figure 5.2 shows Raman spectra for the Ni2+ ions doped glass and glass-ceramic

samples. The spectra are similar and two new narrow bands appeared in the range 90 –

250 cm−1 and at around 430 cm−1 (except in Ni doped). Generally, characteristics of ZnTe

consists of two vibrational modes such as longitudinal optical (LO) and transverse optical

(TO) phonon modes. The band at ∼106, ∼215 cm−1 and ∼430 cm−1 are attributed to the

second order TO and first order LO and second order LO phonon modes [107, 109, 110].

The band between 215 and 430 cm−1 (∼326 cm−1) is associated to the glass structure

resulting from the bending of (PO4) units. The band at ∼ 523 cm−1 is due to the bending

mode related to the cation motion and chain structure. The middle frequency region

bands at ∼707 cm−1 and 790 cm−1 are due to the symmetric stretching mode of P-O-P

bending in Q1 group (from pyrophosphate) and asymmetric stretching of P-O-P bending
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Figure 5.2: Raman spectra of Ni2+ doped glass and glass-ceramics.

in Q2 group (from metaphosphate), respectively. In the higher frequency region, ∼1080

cm−1 is related to the symmetric stretching mode of P-O-P non-bridging oxygen bond

in Q1 groups; ∼1165 is due to the symmetric stretching mode of P-O-P non-bridging

oxygen bond in Q2 groups; ∼1250 cm−1 is due to the asymmetric stretching of P-O-P

non-bridging oxygen bond in Q2 groups [38, 39, 40, 41, 42, 43].

Figure 5.3 shows ATR-FTIR spectra for the Ni2+ ions doped glass and glass-

ceramic samples. As seen in figure 5.3a, the IR absorption bands are broader than Raman

bands (see figure 5.2) and the visually identified bands reveals the following features:

In the case of glass (G), a) A broad band between 1175 cm−1 and 1350 cm−1; b)

doublets in the region between 1020 and 1175 cm−1; c) A strong intense band at ∼873

cm−1; d) A weak intense band at ∼714 cm−1. Whereas in the case of GCs, a) A weak

band at ∼1158 cm−1; b) An intense band at ∼854 cm−1; c) A broad band between 625

and 795 cm−1; and observed changes regarding intensity (decrease) and position (toward

lower wavenumber side) of bands compared with G sample. The characteristic ZnTe

vibrational modes at very low frequency (∼220 cm−1) region did not show due to beyond

the measuring range of spectrophotometer used in this work.

In order to extract new information if the phosphate glasses contain different

structural groups, a quantitative analysis was performed by the deconvolution of the IR
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Figure 5.3: IR absorption spectra of Ni2+ doped glass and glass-ceramics.

absorption of Ni2+ doped G (see figure 5.3b) and GC1 (see figure 5.3c). The deconvoluted

spectra reveal a number of absorption bands that are attributed to various vibrational

modes of phosphate structural groups. From the figure. 5.3b (G sample), the band at 446

cm−1 is attributed to the bending vibration O-P-O units in PO3−
4 groups (Q0 units) [38].

The 531 cm−1 band is related to the O-P-O bending vibrations in (P2O7)
4− (Q1 units).

The bands 678, 728 and 785 cm−1 are associated to the symmetric stretching vibration

of P-O-P groups in Q1 units [28]. The 862 cm−1 and 918 cm−1 bands are related to the

asymmetric stretching vibration of P-O-P units in PO3−
4 groups (Q0 units). The 989 and

1058 cm−1 bands are attributed to the symmetric and asymmetric stretching vibrations

of PO3−
4 groups (Q0 units) [38]. The bands at 1138 and 1155 cm−1 are due to symmetric

stretching vibration of PO2−
3 groups (Q1 units) and PO−

2 groups (Q2 units). The bands

1213 and 1273 cm−1 are associated to symmetric and asymmetric stretching vibration of

PO−

2 groups (Q1 units) [43].

As seen from the figure 5.3c (GC samples), the appearance of a new weak intense

band at 616 cm−1 is due to a change in in-chain P-O-P groups by the effect of network

modifier on phosphate glass structure [38]. The important feature of the band between



5.1 ZnNiTe semiconductor NCs in PZABP phosphate glasses for optoelectronics 82

623 and 700 cm−1 (P-O-P groups in Q1 units) is drastically changed and is resolving in

to four bands. It is interesting to note that the relative area of the bands decreased from

0.12 (688 cm−1) – 0.02 (669 cm−1), which suggested that the 653, 669, 677 and 688 cm−1

bands are associated to the bending vibration of P=O bonds, but not to the P-O-P groups

[38]. The 717 and 735 cm−1 bands are related to the metaphosphate units, Q1 (P-O-P)

[38]. The bands 841 and 864 cm−1 are due to the symmetric and asymmetric stretching

vibration of P-O-P groups (Q0 units) [40]. The 1153 and 1203 cm−1 bands are related

to the symmetric stretching vibration of PO−

2 groups in Q2 and Q1 units [43]. Moreover,

the intensity of 717 and 737 cm−1 bands increase with the 1058 cm−1 band disappearance

by varying Ni content in GCs. This means a decrease content of the pyrophosphate units

with increase of metaphosphate units.

5.1.2 Optical absorption spectra

UV-Vis-NIR absorption spectra of Ni2+ doped glass and glass-ceramics are shown in

figure 5.4a. The nature and position of the bands resembles to the Ni2+ ion octahedral

symmetry and bulk-like ZnTe NCs [109][103]. According to the energy level scheme of

Ni2+ ions, the observed bands around 1366, 822 and 434 nm are spin allowed which

arise from the ground state, 3A2g(F) to the excited states, 3T2g(F),
3T1g(F) and

3T1g(P),

respectively. The absorption band of 533 nm is closer to the band gap of bulk ZnTe

(2.33 eV) thus the samples may exhibit Ni-doped ZnTe NCs nature in GCs (except in

G). The increasing intensity of absorption band at around 1352 nm (3A2g(F) → 3T2g(F))

in GCs with increasing Ni2+ ions are associated to the 6Ni2+ coordination, which also is

an indicative of large fraction of Ni2+ ions that participate as an interstitial atom in the

(ZnTe) nanocrystal GCs even though ZnTe exhibit self-intrinsic purification mechanism

[6]. On the basis of color of samples one can clearly expect coordinate state of Ni2+, for

instance (see inset of figure 5.1.4a), the appearance of light brown color of GC1 and GC2

samples are an indicative of 5Ni2+ and 4Ni2+ coordinate states; and the light green and

blue color of GC3 and GC4 samples are related to 6Ni2+ coordination.

The crystal field (Dq) and Racah (B) parameters were calculated based on ob-

served absorption energies by fit to the Tanabe–Sugano diagram for d8 ions, as shown
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Figure 5.4: (a) Optical absorption spectra of Ni2+ ions doped glass and glass-ceramics;
(b) Energy level diagram for octahedral of Ni2+ ions.

Table 5.3: Absorption band energies (ν), crystal field splitting (Dq), Racah parameter
(B), nephelauxetic ratio (β) and optical band gaps (Eopt) of our glasses.

Parameter G GC1 GC2 GC3 GC4
Wavenumber (νcm−1)
3A2(F) → 3T2(F) 7294 7289 7283 7283 7273
3A2(F) → 3T1(F) 12195 12255 12255 12255 12077
3A2(F) → 3T1(P) 23041 23809 23364 23148 23041
Dq (cm

−1) 729 729 728 728 727
B (cm−1) 890 974 916 902 887
β 0.824 0.876 0.848 0.835 0.821
Eopt (Direct) 4.55±0.21 4.13±0.28 4.15±0.35 4.16±0.24 4.14±0.18
Eopt (Indirect) 3.81±0.11 3.75±0.24 3.77±0.19 3.72±0.16 3.72±0.20
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in figure 5.4. Table 5.3 shows band energies, Dq and B parameters. The splitting field

strength does not change significantly with increase of Ni2+ ions in GCs suggesting that

ligand field of Ni2+ ions occupy regular octahedral site of the molecules. Moreover, Dq is

more sensitive to change in the metal ligand distance. Thus the distortion of the ligands

induces a negligible effect on the crystal field strength of the central ion in GCs [111]. The

decrease of B is ascribed to the decrease of interelectronic repulsion within the d-orbitals,

which lead to increase of the covalent nature between metal-ligand bonds. Using the

interelectronic repulsion parameter B, the nephelauxetic ratio (β = B(complex)/B(freeion))

has been also determined and found to decrease in GCs with increase of Ni2+ ions (see

Table 5.3), which indicates higher delocalization effect between metals and ligands.

Figure 5.5: Plots of (αhν)2 and (αhν)1/2 as a function of photon energy (hν) for Ni2+

doped glass and glass-ceramics.

The fundamental absorption edge in UV region of G is at around 262 nm and

is shift to longer wavelength (∼ 300 nm) in GCs. The optical transitions such as direct

and indirect transitions occur at the fundamental absorption edges of crystalline and non-

crystalline materials. According to Davis and Mott [16] theory and expressions, 2.2 and

2.3 for the direct and indirect allowed transitions, the optical band gap (Eopt) values are

estimated by plotting (αhν)2 and (αhν)1/2 as a function of photon energy (hν) that are
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shown in figure 5.5a and figure 5.5b. The Eopt is obtained by a linear extrapolation of the

curve to the hν axis and are reported in Table 5.3. The Eopt values are 4.55 eV (direct)

and 3.81 eV (indirect) for G sample; whereas in the case of GCs show negligible variation

in their Eopt values, ∼4.14 eV (direct) and ∼3.74 eV (indirect) with increasing Ni2+ ions,

respectively. In addition, the decreasing of Eopt for G to GCs indicate that there is an

increase of non-bridging oxygens (NBOs).

5.1.3 Emission spectra and cross-sections

The Ni2+ ions of excited levels are varied with the change of host glass composition

and emission could be related to d-d optical transitions due to existance of octahedral

and tetrahedral coordination sites within the glass matrix. The excitation and emission

spectra of 5% Ni (G) doped and GCs is shown in Figure 5.6(a). Figure 5.6(b) shows

possible emission levels of Ni2+ ions in ZnTe NCs GCs samples. The excitation spectrum

for the Ni doped glass was recorded by monitoring the emission at 620 nm. Under 240 nm

excitation, the broad emission band between 525 – 700 nm wavelength is attributed to

1T2g(D) → 3T2g(F) transition. The emission profile are similar for the G and GCs but the

intensity has decreased with the increase of the concentration of Ni2+ ions (x = 5 and 10

wt%) in GCs, which can be observed in figure 5.7. By introducing Ni2+ into ZnTe NCs as

substitutional ions, they act as electron trapping centers, which results into non-radiative

Figure 5.6: a) UV-excitation and Visible emission spectra for Ni2+ ions, and b) schematic
representation of emission levels of Ni2+ ions in ZnTe NCs contain system.
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recombination. Therefore, the luminescence quenching is due to the photo-electrons that

are transferred to nickel ion induced trapping centers instead of an anion vacancy defect

center. However, we could not neglect the energy transfer from QDs and bulk NCs

to Ni2+ ions because of the superposition of exciton emission of QDs and electron-hole

recombination from bulk-NCs that occur with the substitutional incorporation of Ni2+

ions [112]. The quenching of luminescence was also observed Ni2+ and Cd2+ ions doped

ZnS colloidal particles [113, 114, 115]. The full width at half maxima (FWHM) is found

to be higher in GC2 (82 nm) and decreasing with increasing of Ni concentration in GCs,

as shown in Figure 5.7.

Figure 5.7: Variation of emission intensity and FWHM with Ni2+ ions in GC samples.

Figure 5.8 shows emission decay curves for the visible emission transition, 1T2g(D)

→ 3T2g(F) at 240 nm wavelength excitation. The curves showed good fit to bi-exponential

decay (G and GC2) and tri-exponential decay (for GC1, GC3 and GC4) due to inhomo-

geneous distribution of doping ions in host glasses. The average lifetimes are calculated

using the following expressions [116]:

〈

τ
〉

=
A1τ

2
1 + A2τ

2
2

A1τ1 + A2τ2
and

〈

τ
〉

=
A1τ

2
1 + A2τ

2
2 + A3τ

2
3

A1τ1 + A2τ2 + A3τ3
(5.1)

Inset of Fig. 5.8 shows variation of lifetimes with Ni content in glasses. The

lifetime is saturated at 1.0% Ni2+ ions (GC2) with subsequent decrease for higher doping
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Figure 5.8: Decay curves for Ni2+ ions doped glass and glass-ceramics. Inset figure shows
a variation of lifetime with Ni2+ ions.

concentration in GCs. This result could be the effects of change of environment around the

Ni2+ ions or multi-polar non-radiative interactions among Ni2+ ions [117]. The lifetime for

the GC3 (117 ns) has decreased compared with the G (188 ns). The variation in emission

intensity, FWHM and decay lifetimes followed similar trend with increasing Ni2+ ions in

GCs that are strong evidence to the change of environment surrounding Ni2+ ions in host

glasses.

Table 5.4: Emission properties of samples (* from McCumber’s theory).
Sample n 1T2g(D) → 3T2g(F)

FWHM ∆λeff τmeas σemi FOM
nm (nm) (ns) (× 10−18cm2) (× 10−25 cm2.sec)

G 1.515 90±1 90.38±1 189±10 5.01±1.02 9.48±1.55
GC1 1.526 79±1 78.94±1 125±9 8.57±0.89 10.70±1.89
GC2 1.531 82±1 83.54±1 127±15 7.94±0.74 10.04±1.74
GC3 1.543 77±1 76.39±1 117±13 9.24±0.85 10.81±1.21
GC4 1.535 75±1 75.45±1 93±10 11.88±1.21 11.06±1.22

Sample 1T2g(D) → 3T2g(F)
FWHM∗ (nm) σ∗

emi × 10−20 (cm2)
G 256±1 1.29±0.75
GC1 169±1 0.24±0.29
GC2 204±1 0.41±0.28
GC3 252±1 0.75±0.15
GC4 278±1 0.87±0.22

The peak emission cross-section (σemi) is calculated using the equation, 2.22, and
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are listed in table 5.4 along with τmeas, FWHM, ∆λeff parameters. The effective line

width (∆λeff ) was estimated using equation 2.23. The emission cross-section is higher

for GC4. The σemi of 5 wt% Ni2+ doped G (5.01 × 10−18 cm2) to GC (9.25 × 10−18

cm2) is significantly improved. The figure of merit (FOM) is an important parameter to

characterize the laser materials and is calculated by the product of σemi and τmeas since it

is inversely proportional to the laser threshold and proportional to the gain amplification.

The FOM is higher in GC4 (11.06 × 10−24 cm2.sec) among the GCs. Finally, we expect

that the GC4 sample may be useful for visible-RED emission light conversion in LED

technology.

It is known that i) the near infrared emission positions of Ni2+ ions are very

sensitive to the crystal field strength, which might form structurally asymmetric shape

of emission; ii) the Ni2+ ions occupy regular crystal lattices with strong crystal field

strength when Ni2+ is incorporated into GCs and they exhibit broad absorption and

emission (3A2(F) → 3T2(F)) in near infrared region with small Stokes shift. Therefore,

the NIR emission of Ni2+ is reabsorbed by the neighboring Ni2+ ions. In the present work,

the lower value of Dq/B (see figure 5.4b) might be the result of a smaller energy interval

and longer wavelength emissions. The emission cross-sections for near-infrared 3T2(F) →
3A2(F) emission transition has been also calculated from the absorption spectra by using

McCumber’s reciprocity (RE) method [118][111] and are listed in table 5.4. The FWHM

and emission cross-sections (σemi) are found to increase with Ni2+ ions in GCs and it does

not change significantly from G to GC3. The higher FWHM and σemi of
3T2(F) → 3A2(F)

emission transition in GC4 sample is most suitable for broadband optical amplification in

telecommunication operating at 1.1-1.8 µm region.

5.1.4 Photo-thermal spectroscopy

In this work, the D and ds/dT of Ni2+ ions doped G and GCs were measured using

thermal lens (TL) experiment which is based on the two-beam mismatched mode and its

configuration details can be found in chapter 4. The observed excitation and probe beam

radius at sample are ωe = 40.78 µm and ωp = 208.87 µm, respectively. Figure 5.9 shows

TL transient signal of the 5 wt% Ni-doped glass with the excitation power of 50 mW.
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The observed shape of probe beam intensity indicates dS/dT>0. The solid line represents

theoretical fit using the expression 4.3, and it results in θ = - (0.0655) and tc = 1.9652

ms. Similar measurements were performed for the other glasses and are not presented.

Using expression, 4.5 the thermal diffusivity (D) is calculated from the average of five

measurements for all samples and are listed in table 5.5.

Figure 5.9: Typical normalized TL signal for ZnNiTe contain samples.

Table 5.5: Thermo-optical properties of samples.
Sample Ae tc D×10−3 ρc K×10−3 dS/dT×10−6

(cm−1) (ms) (cm2/sec) (J/cm3.K) (W/cm.K) K−1

G 1.16 1.852 2.267±0.2 2.27±0.3 5.15±0.6 1.675±0.5
GC1 2.59 2.067 2.022±0.1 2.24±0.3 4.53±0.6 1.015±0.6
GC2 3.07 2.013 2.069±0.3 2.24±0.3 4.63±0.6 0.846±0.5
GC3 3.81 2.042 2.039±0.2 2.24±0.3 4.57±0.6 0.903±0.5
GC4 3.28 1.514 2.754±0.4 2.44±0.3 6.72±0.6 1.219±0.5

According to the literature [119, 120], the D and K of the semiconductor nanocrys-

tals (NCs) are dependent on their crystal size. The change of crystal size in semiconductor

NCs lead to an influence on thermal transport due to the effect of interface scattering in
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nanoparticles and phonon transport at the interfaces. Needless to say that the higher

probability of diffusive scattering from the rougher surface can result lower the diffusiv-

ity (D) since it is very sensitive to the crystalline imperfections. As seen from the table

5.5, the D for the GCs decrease (except in GC4) when compared with the G sample

which means that the host glass dominates heat transportation due to the expected low

concentration of semiconductor NCs and dominating crystal imperfection in these GCs.

The higher D of GC4 indicate a decrease in crystal imperfections that lead to reduce the

interface and surface scatterings. In addition, the D does not change significantly with

increase of Ni2+ ions in GCs (x = 0.5, 1.0 and 5 wt%).

Figure 5.10: Cooling curve of the specific heat capacity measurements for for 5% Ni.

The relation between D and K is, K = ρcD, where ρc is the specific heat capac-

ity. In the following, we consider that the heat transmitted in material is composed by

several independent factors. In metals, heat is carried by both electrons and phonons

among where phonons contributions are predominant. In the case of semiconductors and

insulators, heat is transmitted entirely through phonons. Thus, the main contribution

to the specific heat capacity of the solids is the amount of heat excited by the lattice

vibrations, which depend on the phonon density of states. The specific heat capacity (ρc)

of the samples were determined using the thermal relaxation technique [96], in which 488

nm of Ar+ laser (60 mW) was used as heating source to the sample at a given temper-
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ature. The specific heat capacity measurement of the sample is presented in figure 5.10.

We believe that the decreasing temperature experimental data is more reliable than the

increasing temperature data due to the external noise that may interfere in the measure-

ments. Therefore, the calculated specific heat values of the samples correspond to the

data of the decreasing temperature experiment. As seen in figure 5.10, the solid line in-

dicates theoretical fit to the equation 4.6, resulting thermal relaxation time, τ in seconds.

Using the tau parameter, the ρc is determined from equation, 4.7, and are presented in

table 5.5 including thermal conductivity, K of all the samples.

Figure 5.11: Variation of D and K with Ni2+ ions in samples

According to Ghoneim and Halawa [121], the thermal conductivity for the Na2O

- B2O3 - SiO2 glasses were higher and are increased with the increase of B2O3 and SiO2

content, indicating that the formation of a network structure consisting of BO4 and SiO4

tetrahedral units results in a longer phonon mean free path and consequently in a higher

thermal conductivity. Similarly, the observed increase K (except GC3) with increase Ni

content in GCs is due to the increase in the ordering of the glass network structure by the

formation of PO4 tetrahedral units which results in longer phonon mean-free-path. The

phonon mean free path were determined from, D=l.νs⁄3, where l is the sample width,

D is the thermal diffusivity at room temperature and νs is the average sound velocity
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[96]. The similar trend of D and K (see figure 5.11) shows strong evidence to the above

discussions. Table 5.6 shows D and K values for some of glass hosts. From the data, one

may depict that our glasses has comparable D and K of similar phosphate ones, and lower

than silicate and tellurite glasses.

Table 5.6: Thermal diffusivity (D) and thermal conductivity (K) of materials.

Host glasses D × 10−3 (cm2/sec) K × 10−3 (W/cm.K)
Silicate [122, 123, 124]
Soda-lime 4.9±5% 10.10±10%
LSCAS 5.7±9% 15.5±10%
SCA 5.5±0.05
SCA:Nd 5.8±0.05
SCA: Er 5.76±0.01
Silica 9.0±5%
SNAB 3.75
SNAB: CdS 2.5
Phosphate [60, 122]
LHG-8 2.7±5% 5.8±10%
LG-750 2.9±5% 6.0±10%
LG-760 4.3±5% 8.4±10%
Q-88 (Kigre) 3.8±5% 8.4±10%
Q-98 (Kigre) 2.2±5% 5.5±10%
Q-100 (Kigre) 2.1±5% 5.4±10%
PZABP:ZnTe 2.5±0.2% 3.3±0.4%
Tellurite [91, 124, 125]
TeLi 2.7±0.1% 6.4±0.5%
TeLi-10 2.9±0.1% 6.5±0.5%
TWNN: Er 3.1±0.2% 8.0 %
TWNN: Tm 3.2±0.4% 8.4
TeLiNb-5 3.4±0.1% 6.6±0.3%
TeLiNb-15 3.1±0.1% 6.4±0.4%
Chalcogenide [122]
InSbZnGdN 3.2±5% 10.2±10%
Ga:La:S 2.7±5% 5.9±10%
PbI2-Sb2S3-As2S3 1.3±5% []
ISZn 3.1±5% 9.9±10%

As already stated, dS/dT is the temperature dependent variation of optical path.

It is another important parameter for operating devices in practical temperatures where

it should be required low dS/dT. This parameter is generally difficult to control by the

glass composition since dS/dT = n.α + dn/dT. From TL experiments, one can estimate

dS/dT with the known TL-induced phase shift using the expression, 4.4, where ϕ (the

fraction of absorbed energy converted into heat) is considered to be 1, and are reported
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in table 5.5. The lower dS/dT of G and GCs is attributed to the occurrence of laser beam

deviation inside the samples. It is worth mentioning that our samples are not completely

homogeneous thus reported values were average of five measurements. The GC2 shows

lower dS/dT among the studied glasses and it would present better working conditions in

optoelectronic device applications.

5.1.5 Nonlinear optical spectroscopy: Z-scan

Generally, the nonlinear optical properties of the material varied by the excitation of

wavelength, peak intensity, pulse width and excited state lifetime [126]. In this work,

the third-order nonlinear optical (NLO) parameters such as the nonlinear refraction (n2)

(close-aperture, CA) and nonlinear absorption coefficient (β) (open-aperture, OA) were

measured using femtosecond Z-scan experiment at an excitation wavelength ranges, 750,

800 and 850 nm.

Figure 5.12: Z-scan results in the close-aperture mode for the sample 5% Ni at 800 nm.

Figure 5.12 shows CA traces that allowed us to find the sign and magnitude

of n2 in 5% Ni doped glass. It is observed that the peak following valley configuration

indicates the self-focusing behavior under high laser irradiance, namely positive sign of

n2 which can be calculated from the transmittance gap between the peak and valley by

fitting the CA Z-scan using equations 4.9 and 4.10. The calculated n2 is 3.54 × 10−14
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cm2/W, which is higher than borate [124-126] and tellurite glasses [127], but lower than

silicate glasses containing semiconductor nanocrystals [121, 122] (see table 5.7). The

measurement of n2 using CA Z-scan technique did not give detectable changes of post-

/pre-focal transmittance intensity within the measurement sensitivity and intensity range

for the Ni doped glass-ceramics.

Figure 5.13: Z-scan results in the open-aperture mode for sample 1.0% and 10% Ni at
750 nm, 800 and 850 nm.

Two glass-ceramic samples showed nonlinear absorption using OA Z-scan tech-

nique for GC2 (1.0% Ni) at wavelengths 800 & 850 nm, and GC4 (10.0% Ni) at wavelength

750 & 800 nm. Figure 5.13 shows OA Z-scan traces for the 1.0% (λ = 800 & 850 nm)

and 10.0% (λ = 750 & 800 nm) Ni doped GCs. An inverted-bell shaped transmittance
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Table 5.7: Laser excitation (λ), nolinear absorption (β) and nolinear refractive index (n2)
in materials.

Host glasses λ (nm) n2 (cm2/W) β (cm/W)
PZABP: 5% Ni (G) 800 3.54 × 10−14

PZABP: 1%ZnNiTe (GC2) 800 2.53 × 10−10

850 2.76 × 10−10

PZABP: 10%ZnNiTe (GC4) 750 7.98 × 10−10

800 7.35 × 10−10

Borosilicate: CdS NCs [127] 770 -2.16 × 10−12 63.2 × 10−10

Vycore: InP NCs [128] 850 3 × 10−12

Silicate: Cu [129] 770 5 × 10−11

Silicate: Ni [129] 770 17 × 10−11

Silicate: CuNi [129] 770 68 × 10−11

Phosphate [130] 532 -9.9 × 10−15 3.9 × 10−10

Borate (SNBE) [131] 700 0.23 × 10−14 1.9 × 10−10

Borate (SNBEA-31) [131] 800 1.19 × 10−14 0.3 × 10−10

Borate (BZB) [131] 800 0.15 × 10−15 10.4 × 10−10

Borate (BBW) [132] 780 0.786 × 10−14 2.54 × 10−10

Borate (BBW-4) [132] 780 1.099 × 10−14 3.27 × 10−10

Oxyfluoroborate [133] 700 2.5 × 10−15 0.3 × 10−10

Tellurite: 5Nb2O5 [134] 532 1.92 × 10−15 6.0 × 10−10

Tellurite: 5CdO [134] 532 4.0 × 10−15 8.0 × 10−10

Tellurite: 5WO3 [134] 532 3.23 × 10−15 7.9 × 10−10

Phospho-tellurite: ZnTe NCs [135] 800 0.23 × 10−10

with a minimum at focus, Z = 0 supports the reverse saturation absorption. The trans-

mittance data was theoretically fitted to the nonlinear transmittance equation, 4.8 for the

two-photon absorption (TPA) process. The calculated TPA coefficient (β) for the GC2 is

2.53 × 10−10 cm/W (λ = 800 nm) and 2.76 × 10−10 cm/W (λ = 850 nm); and for GC4

is 7.98 × 10−10 cm/W (λ = 750 nm) and 7.35 × 10−10 cm/W (λ = 800 nm), respectively.

It is noted that β does not change significantly with wavelength, but increase with Ni

concentration due to the bound electronic effects and TPA. The laser energy (~ω) used

in this work meet the TPA condition, Eg <2 ~ω <2Eg, where Eg is the energy bandgap.

Therefore, the small decrease of Eg (3.77 to 3.72 eV) lead to significant increase of β

for samples, GC2 to GC4. This supports the Dinu’s theoretical model for semiconductor

glasses (i.e, β ∝ 1/(Eg)
3) [136]. However, we could not neglect the quantum confinement

effects because the existence of intraband transition around 533 nm (see figure 5.4a) at-

tributed to the semiconductor (ZnTe) NCs in GC2 and GC4 samples. The increase of

the nonlinear absorption coefficient is the result of the increase of the oscillator strength
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caused by the confinement-induced localization of excitations. In fact, the exciton Bohr

radius (a0) decreases with the decrease of the size of ZnTe NCs thus the third-order

nonlinear optical property increases proportionally to (1/a0) [137]. On comparison, the

obtained β values are higher than the values of zinc phospho-tellurite glass contain ZnTe

quantum dots [135].

5.1.6 Conclusions

The structural and thermo-optical properties of glass (G) and glass ceramics (GCs) have

been studied. From XRD measurements, the G sample clearly exhibit glassy characteris-

tic and the GC2 exhibit not only the amorphous halo, but also appeared sharp diffraction

peaks that could be attributed to the growth of ZnTe quantum dots (QDs) or nanocrys-

tals (NCs). The distribution of phosphate groups, PO−

2 , PO
2−
3 , PO3−

4 and (P2O7)
4− are

determined from the infrared absorbance and Raman spectra. The observed broad in-

frared absorption bands of G and GCs consist of different structural groups, which are

identified through deconvolution of the IR absorption spectrum of G and GC1 samples.

The observed longitudinal optical (LO) and transverse optical (TO) phonon modes of

ZnTe in GCs are strong evinced by the XRD pattern. The average diameter of 4.25 nm

and 13.35 nm for the QD and bulk NCs were observed for the thermally annealed (for 10

h at 500 ◦C) GC sample (0 wt% of Ni2+ ions doped) through TEM analysis.

The spin allowed and bulk ZnTe crystal electronic transitions were observed at

around 1366, 822, 434 nm and 533 nm. The crystal field splitting (Dq) and Racah (B)

and the nephelauxetic ratio (β) parameters for G and GCs were reported. The band gap

energy (Eopt) for direct and indirect transitions were estimated from optical absorption

edges. The observed decrease of Eopt for the G sample to GCs indicate increase of non-

bridging oxygens (NBOs). Under 240 nm excitation, the emission and decay lifetime

measurements were reported. The trend of emission intensity, FWHM and decay lifetimes

were similar in GCs, which is a strong evidence to the change of environment surrounding

Ni2+ ions in GCs. The σemi is increased with increase of Ni2+ content in GCs and it is

significantly improved compared with the G sample. The higher value of FOM is observed

in GC4 (11.06 × 10−14 cm2.sec) among the GCs.
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Time-resolved thermal lens (TL) and thermal relaxation (TR) methods have been

applied to determine the thermal diffusivity (D), variation of optical path length with

temperature (ds/dT) and thermal conductivity (K) of glass samples. D for the GCs have

decreased (except in 10%Ni doped GC) when compared with the G sample which means

that the host glass dominates heat transportation due the expectation of low fromation of

semiconductor NCs and the dominating crystal imperfections in these GCs. In addition,

the D and K do not change significantly with increase of Ni2+ (0.5 – 5.0 wt%) content

in GCs. Z-scan measurement shows that GC4 glass showed higher nonlinear absorption

coefficient (7.98×10−10 cm/W) among the studied samples. Therefore, the lower dS/dT,

high emission cross-section and FOM of the GC4 sample could be useful for optoelectronic

device applications.

5.2 Effect of TeO2 environment in Nd3+ doped PZN

phosphate glasses for high power lasers

The numerous known Nd3+ doped inorganic glass systems have been deployed for solid

state lasers operating around 1.06 µm for several decades now. In particular, scientists

have witnessed considerable efforts in the development of Nd-doped phosphate glass as

laser gain medium in high power and high energy laser systems since the phosphate based

compositional high power laser glass explored at Osaka University in 1967 [138]. In gen-

eral, phosphate glasses have several advantageous unique characteristics over conventional

silicate and borate glasses [139]. The high strength and low thermal expansion coefficient

with acceptable athermal behaviour of phosphate glasses can increase the thermal loading

capability that lead to limit the failure of laser action in glass [140]. However, the poor

chemical durability of these systems limit their practical utilization. Thus, inclusion of

metal oxides (like ZnO, PbO, Nb2O5, TeO2, GeO2, etc.) can improve the thermal stability

and chemical durability. Recently, phosphotellurite glass received significant attention as

a promising candidate for hybrid micro-structured optical fibers (HMOFs) with tailored

dispersion [141]. In fact, the inclusion of mixed glass network formers along with network

modifiers in glassy system can favours the refractive index change which is dependent on
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compositional adjustment [142]. The compositional dependent phosphotellurite glasses

also exhibit coloration from clear to dark-red-brown that are used as optical filters [143].

Tellurite glass as a host material for rare earth ions is a favourable media for optical fiber

amplifiers because of their wide transmission window, high linear and nonlinear indices,

good stability and low phonon energy [118]. The low phonon energy and high refractive in-

dex of these glasses can enhance the radiative transition rates, which is an advantageous

for optically functional glasses. TeO2 – rich glasses contain TeO4 trigonal bipyramids

(tpb) structural units that are connected by shared corners. These structural units are

converted to TeO3 trigonal pyramidal (tp) units through the formation of intermediate,

TeO3+1 polyhedron units by the addition of modifiers or network glass formers.

However, TeO2 rich glasses possess large nonlinear refractive index and dispersion

characteristics that could restrict their use in high-power laser systems where self-focusing

is an important consideration factor [144]. Therefore, in this work, we systematically

analysed optical and luminescence properties of Nd3+ ions with addition of TeO2 at an

expense of ZnO in phosphate glasses. The glass chemical composition is, 29 P2O5 + (60-x)

ZnO + 10 Na2O + x TeO2 + 1.0 Nd2O3, (x = 5 10, 20, 30 & 40 mol%).

The sample are named as x = 5, x = 10, x = 20, x = 30, and x = 40 mol%,

respectively, and their significant physical parameters are listed in the following table.

Table 5.8: Physical properties of Nd3+ doped glasses
Sample Thickness Density Refracrive index Ion concentration

l±0.001 (mm) d±0.001 (g/cm3) n±0.001 N±0.01 (× 1020 ions/cm3)
x = 5 1.901 3.232 2.14 1.855
x = 10 2.129 3.542 2.18 1.896
x = 20 2.344 3.723 2.23 1.875
x = 30 2.247 3.768 2.24 1.781
x = 40 2.166 3.894 2.26 1.734

5.2.1 Structural analysis: XRD, FT-IR and Raman spectra

XRD pattern of Nd3+ doped glasses are presented in Figure 5.14. The observed two broad

humps in the 17-35 and 35-60 degrees with an absence of crystalline peak shows that the

prepared glasses are in amorphous nature.

In order to know the topology information of the studied glasses, Raman and
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Figure 5.14: XRD patterns of Nd3+ doped glasses

infrared spectroscopic measurements are effective and its spectra are shown in figure 5.15a

and 5.15b. The observed significant Raman scattering and IR absorption peak positions

and their assignments are presented in Table 5.9.

Table 5.9: Raman and Infrared vibrational bands with assignments.
Raman (cm−1) Infrared (cm−1) Assignment

303 PO4

478 O-Te-O / Te-O-Te linkages
536 P-O bonds in IN PO4 UNITS

640, 650 446 P-O bonds in P-O-P groups
νS (Te-O) in TeO4/Te-O-Te chain

539 νS(Te-O) in TeO4

760 750 Te-O in TeO3 or TeO3+1

870 - 1300 νs(P-O-P) in Q0 group
885 νas (P-O-P) in Q0 group
1075 νAs(PO

3
4−) in Q0 group

Figure 5.15a shows Raman scattering spectra with 488 nm laser excitation, The

Raman scattering peak positions and their structural groups were assigned by considering

the phosphate (P2O5 + ZnO + Na2O) [138] and phospho-tellurite (50TeO2 + 20P2O5 +

20Na2O + 5ZnO + 5ZnF2) [139] glasses. The band at low frequency (∼ 400 cm−1) is due

to the stretching vibrations of O–P–O [138]. The band around 478 cm−1 is symmetric

stretching O–Te–O or Te–O–Te linkages [139][132]. The broadband nature around 380
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Figure 5.15: Raman and IR absorption spectra of Nd3+ doped glasses.

– 690 cm−1 is due to overlapping of symmetric stretching vibration of P–O bonds in

P–O–P linkages (Q2) (640 cm−1), and symmetric stretching of Te–O in TeO4 trigonal

bipyramidal units and/or Te–O–Te chain between two four-fold coordinated Te atoms

(650 cm−1) [138, 139]. The intensity increase of bands around 485 and 638 cm−1 with

TeO2 content is clear indicative of the formation of P–O–Te linkages due to the equal

electronegativity of P2O5 (2.19) and TeO2 (2.1) thus the bonding of oxygen atoms with

change of composition [3].The ∼760 cm−1 is associated to the stretching vibrations of

Te–O in TeO3 trigonal pyramidal units (or TeO3+1 units) [139][139]. The broadband

of higher frequency region (870 – 1300 cm−1) is ascribed to stretching vibrations (PO2

and PO4) of nonbridging oxygens connected to phosphorus (P–O–P) in metaphosphate

groups [139]. Note that Raman scattering maxima (1010 – 1093 cm−1) is situated at

lower frequency side compared with P2O5 + ZnO + Na2O phosphate glass (1164 cm−1).

In general, the highest Raman scattered peak indicate the phonon energy of an optical

material. For instant, the highest intensity is ∼ 1010 cm−1 for x = 5 and 10 mol% TeO2,

and equal intense intensity of bands (760 cm−1, Te–O) and (1063, 1076 and 1098 cm−1,

P–O–P ) for the x = 20, 30 and 40 mol% TeO2 in glasses. In fact, increasing of TeO2

content can replace the stronger P–O bonds by Te–O bonds which alters significantly
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the phonon energy of the studied system forming a majority P–O–Te linkages beside of

isolated tetrahedral PO4 . The lower phonon energy and higher refractive index of the

present glass systems compared with phosphate ones, indicate that these material can be

efficient for enhancing Near-IR laser amplification.

Figure 5.15b shows the compositional dependence of IR absorption spectra of

glasses. Generally, the absorption bands between 650 - 800 cm−1 wavenumbers were

already reported in TeO2 containing materials and are attributed to stretching vibrations

of Te-O bonds in TeO3+1 and TeO3 units respectively, suggesting a progressive conversion

of TeO4 to TeO3 tellurite polyhedra in the glass network [145]. The observed absorption

band between 650 - 780 cm−1 is shifted from 700 cm−1 to 745 cm−1 with TeO2 content

(greater than 5 mol%) in phosphate glasses. In addition, an another band at 637 cm−1

is active with TeO2 content (greater than 5 mol%) in phosphate glasses, due to TeO2

units. Therefore, we suggest that the our systems exhibit both TeO3 and TeO4 units.

The band between 400 – 600 cm−1 (∼536 cm−1) is attributed to the deformation P-O

bonds in PO4 terahedral units. A broadband is observed for high phosphate content of

glass (5 mol% TeO2) is associated to the symmetric and asymmetric stretching modes

of PO3 groups. With increasing TeO2, 1075 cm−1 band is attributed to the asymmetric

stretching vibration of P-O-P groups and asymmetric stretching vibration P=O (or O-

P-O) bond in PO3 group. The observed clear splitting and intensity variation at high

frequency region is with increasing of TeO2 content, suggesting a depolymerization of the

metaphosphate chains with a possible insertion of TeOn units through P-O-Te bonds.

5.2.2 Optical absorption spectra

Figure 5.16 shows the room temperature UV-Visible and near-infrared absorption spectra

of Nd3+ doped glasses. The absorption edges not sharply defined is an indicative of

amorphous nature which is also confirmed by the occurrence of a broad diffraction halo

(2θ ∼= 15 - 40◦) and absence of sharp Bragg peaks (Figure 5.14). The broad diffuse

scattering at lower angles exemplifies the presence of short-range order in studied samples.

The observed sharp peaks are associated to the ground state energies of Nd3+: 4f3 – 4f3

intra-electronic transitions, which are 4I9/2 → 4F3/2,
4I9/2 → 4F5/2 + 2H9/2,

4I9/2 → 4F7/2
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Figure 5.16: Optical absorption spectra of Nd3+ doped glasses.

+ 4S3/2,
4I9/2 → 4F9/2,

4I9/2 → 2H11/2,
4I9/2 → 4G5/2 + 2G7/2,

4I9/2 → 2K13/2 + 4G7/2,

4I9/2 → 4G9/2,
4I9/2 → 2K15/2 +

2G9/2 +
2D3/2,

4I9/2 → 4G11/2,
4I9/2 → 2P1/2 and

4I9/2 →
4I11/2 + 4D3/2 + 4D5/2, centered at 875, 805, 749, 684, 628, 587, 527, 514, 478, 461, 431

nm, respectively. The red shifted absorption edge (300 – 360 nm) with increasing TeO2

content is due to the electron transition transfer in between valance and conduction (V

– C) bands. The cut-off wavelength can determine the energy gap between V – C bands,

thus the optical band gap energies (Eopt) are estimated from Davis and Mott theory [16]

and plots of (αhν)2 and (αhν)1/2 as a function of photon energy (hν) that are shown in

figure 5.17a and 5.17b. According to Tauc’s relation [146], the indirect allowed transitions

are valid for amorphous materials because their absorption coefficients are very high in

the range of 104-105 cm−1. Therefore, it is observed that Eopt for the indirect allowed

transitions with x mol% of TeO2 decreases monotonically from 4.16 to 3.56 eV, as shown

in Figure 5.18a . In general, the band gap of crystalline P2O5 is ∼ 8 eV. The crystalline

TeO2 exhibits three crystalline polymorphs of tellurium dioxides, α - TeO2, β - TeO2 and

γ - TeO2. The α - TeO2 crystalline lattice is the first to form compared with β - TeO2and

γ - TeO2 in vitreous state. The band gap of α - TeO2 is ∼ 2.78 – 3.50 eV [147]. In addition,

ZnO also possess a band gap of 3.40 eV. The Eopt values of the present systems are close

with crystalline α - TeO2 and ZnO. In fact, the ZnO and TeO2 content is about 40 – 60%
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Figure 5.17: Plots of (αhν)2 and (αhν)1/2 as a function of photon energy (hν) for Nd3+

doped glasses

of the studied glass composition thus greatly influencing the electronic property of the

phosphates. In Nd3+: P2O5 + ZnO + Na2O + TeO2 glass, the fundamental transitions

from the electronic bands are expected to be 2p(O) → 3p(P) in P – O bond, 2p(O) →

5s(Te) in Te – O bond and 2p(O) → 3d(Zn) in Zn-O bond. Considering the band energies

and separation between cation (P, Te, Zn) and oxygen (O) states, the decrease of Eopt with

increase of TeO2 content in glass can be explained as follows: the amount of non-bridging

oxygens are increased with the reduction of ZnO content due to the increase of 2p oxygen

energy levels. The raise of 2p oxygen levels shorten the separation between the 5s(Te)

and 2p(O) levels leading to the broadening of the valance band, and thus diminishing

the Eopt. The observed decrease trend of Eopt with increase TeO2 is in accordance with

the theoretical prediction that a increase of the covalent character of the bonds causes a

decrease in the absorption edge energy. A similar decrease of Eopt has been observed in

lead-containing borate and silicate glasses [148]. The increase of the molar volume (Vm)

with x mol%, as shown in figure 5.18b, is an indicative of expanding network structure of

the studied glasses through formation of non-bridging oxygens (NBOs).

Using Eopt values, the refractive index (n) and electronic polarizability of oxide

ions (αO2−) were determined from the following equations [149]:
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Figure 5.18: Plots of (a) optical band gap, and b) density and molar volume as a function
of x mol% TeO2 in glasses.
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where, Vm is the molar volume and NO2− is the number of oxide ions in chemical com-

position. αcat is the molar cation polarizability and are 0.021, 0.283, 0.175, 0.242 and

1.25 Å
3
for P+, Zn+, Na+, Te6+ and Nd3+ ions [150, 151]. Figure 5.19a and 5.19b shows

the compositional dependence of refractive index (n) and polarizability of oxide ions αO2−

with x mol% in glasses. n increased from 2.14 to 2.26, which is consistent with molar vol-

ume. It also increases from 2.96 to 3.18 with x. The addition of TeO2 as second network

glass former to phosphate glass lead to enhancing the electron density around oxide ions.

The obtained αO2− is rather large and correspond to P2O5-SiO2, P2O5-Bi2O3, La2O3 –

Ga2O3 and TeO2 - ZnO glasses [150, 152]. The average polarizability of cations does not

change which may due to nearly equal polarizabilities of Te6+ and Zn+. Nevertheless, the

molecular polarization should also be increased and dominated by oxide ions in glasses

because polarizability of cations are lower than those of oxide ions. The observed increase

of optical basicity (Λ = 1.62 (1 - 1/αO2−)) with x results from the increase of negative
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Figure 5.19: (a) Refractive index (n), (b) oxygen polarizability αO2− , (c) oxygen packing
density PO2− and (d) ion concentration (N) as a function of x mol% TeO2 in glass.

Table 5.10: Molar volume, cation polarizability, αcat., (b) number of oxide ions, NO2− , (c)
oxygen polarizability, αO2− , (c) oxygen packing density, PO2− , and optical basicity (Λ) in
glasses.

Glass Vm αcat. NO2− αO2− PO2− Λ
mol% TeO2 (cm3/mol%) Å3 Å3 Å3 Å3

x = 5 32.46±0.11 0.02±0.01 2.23±0.03 3.03±0.01 68.69±0.21 1.12±0.05
x = 10 31.46±0.25 0.28±0.04 2.28±0.02 2.96±0.06 71.79±0.28 1.11±0.02
x = 20 32.12±0.18 0.18±0.02 2.33±0.06 3.01±0.04 72.53±0.19 1.12±0.04
x = 30 33.82±0.21 0.25±0.07 2.38±0.04 3.13±0.08 70.38±0.25 1.14±0.08
x = 40 34.73±0.24 1.25±0.05 2.43±0.02 3.18±0.05 69.96±0.16 1.15±0.05

charge on the oxygen atom increases the covalency between cation and oxygen bond. The

oxygen packing density PO2− was determined from molar volume and number of oxide

ions using the expression, PO2− = 1000 × NO2−⁄Vm [151]. Figure 5.19c shows variation

of PO2− with x. The decrease PO2− at higher TeO2 content (>x = 20 mol%) reveals that

the structure of the glass is loosely packed. The trend of rare earth ion concentration (N)

with x is followed with PO2− (see figure 5.19d), since it is related with Vm and ρ of the
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glasses. The detailed estimated data is given in Table 5.10.

The radiative transitions within the 4f configuration of Nd3+ ions can be anal-

ysed from the Judd-Ofelt theory [32, 33] using absorption spectra of Nd3+ doped glasses.

The experimental oscillator strengths (fexp) for the observed absorption transitions are

estimated by using the equation, 2.11, and are listed in Table 5.11 along with r.m.s (using

equation 2.12) deviation. The low r.m.s (0.40 – 1.15 × 10−6) deviation between exper-

imental and calculated oscillator strengths indicates the validity of Judd-Ofelt theory.

It worth to note the most intense absorption band at 17185 cm−1 is due to the 4I9/2 →
4G5/2 +

2G7/2 hypersensitive transition (HST) and is followed by the quadrupole selection

rule,∆L≤2, ∆J≤2, ∆L≤0 [26]. It is observed that the oscillator strength of the HST is

comparatively higher than other transitions of Nd3+ due to large value of ‖ U2 ‖ double

reduced matrix element which indicates the high crystal field asymmetry at the sites of

Nd3+ ions.

Table 5.11: The wavenumber (ν, cm−1) and experimental oscillator strength (fexp × 10−6)
for the absorption transition of Nd3+.

Transition ν x = 5 x = 10 x = 20 x = 30 x = 40
from 4I9/2 (cm−1)
4F3/2 11428 1.27 2.49 2.57 3.12 3.51
4F5/2 + 2H9/2 12453 5.63 11.56 11.78 13.54 14.71
4S3/2+

4F7/2 +4F7/2 13405 5.58 11.42 11.49 12.81 14.35
4F9/2 14684 0.53 1.27 1.02 1.11 1.34
4G5/2 +2G7/2 17182 15.42 29.57 32.25 37.48 41.55
2K13/2 + 4G7/2 + 4G7/2 19048 5.01 10.15 11.17 12.52 13.89
+ 4G9/2 + 4G9/2
2K15/2 + 2G9/2 21008 1.27 2.66 2.52 2.83 2.73
+ 2D3/2 + 4G11/2
2P1/2 23310 0.347 1.04 1.14 1.29 0.75
4D3/2 + 4D5/2 28011 5.98 13.08 14.23 15.71 19.82
+ 2I11/2 + 4D1/2

δrms× 10−6 ±0.41 ±0.97 ±1.16 ±0.84 ±1.14

The best set of Judd-Ofelt intensity parameters, Ω2, Ω4 and Ω6 for the studied

glasses are presented in Table 5.12 along with other hosts. Ω2 parameter is sensitive to

the local structure, is an indicator of covalence (or ionicity) of Nd-O bond and asymmetry

around the Nd3+ ion. Ω4and Ω6 are related to the rigidity of host matrix, while Ω4/Ω6

determine the spectroscopic quality factor (χ) for the host glass laser materials. With

increase of TeO2 at an expense of ZnO, increase covalency bond between Nd – O and
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asymmetry around Nd3+ ions which can be explained by electronegativity theory [108][42].

Table 5.12: J-O parameters (Ωλ)(× 10−20 cm2) and spectroscopic quality factor (χ) in
Nd3+ doped glasses.

Glass Ω2 Ω4 Ω6 χ
mol% of TeO2

x = 5 2.17±0.68 2.35±0.51 2.44±0.49 1.07±0.22
x = 10 3.73±0.71 4.81±0.84 4.80±1.05 0.95±0.08
x = 20 3.91±0.73 5.07±1.08 4.57±0.86 1.08±0.11
x = 30 4.59±0.42 5.73±1.07 5.11±1.04 1.29±0.42
x = 40 4.76±0.91 6.66±1.08 5.45±0.98 0.58±0.02
Phosphate [153] 3.28 3.54 4.67 0.76
Tellurite [154] 2.99 2.82 2.62 1.07
Phosphotellurite [155] 5.93 3.23 4.69 0.69
Silicate [156] 5.01 2.10 4.54 0.46
Borotellurite [157] 10.51 5.36 10.04 0.53

Table 5.13: Emission properties of Nd samples.
Sample 4F3/2 → 4I9/2

AR βexp βcal ∆λeff σemi

(s−1) % % (nm (× 10−20 cm2)
x = 5 1757±10 19±1 42±1 45±1 0.65±0.05
x = 10 3830±18 17±1 43±1 47±1 1.35±0.08
x = 20 4320±22 19±1 46±1 44±1 1.54±0.06
x = 30 4956±18 17±1 45±1 48±1 1.62±0.04
x = 40 5873±28 19±1 46±1 48±1 1.90±0.08

Sample 4F3/2 → 4I11/2
AR βexp βcal ∆λeff σemi

(s−1) % % (nm (× 10−20 cm2)
x = 5 1905±25 58±1 46±1 34±1 2.05±0.12
x = 10 4068±19 61±1 46±1 32±1 4.40±0.14
x = 20 4348±16 60±1 56±1 32±1 4.56±0.12
x = 30 4958±20 61±1 45±1 31±1 5.27±0.19
x = 40 5617±22 58±1 44±1 32±1 5.75±0.16

Sample 4F3/2 → 4I13/2
AR βexp βcal ∆λeff σemi

(s−1) % % (nm (× 10−20 cm2)
x = 5 453±5 23±1 11±1 64±1 0.64±0.06
x = 10 959±1 23±1 11±1 59±1 1.42±0.05
x = 20 815±10 22±1 09±1 57±1 1.24±0.09
x = 30 1132±17 23±1 10±1 57±1 1.63±0.04
x = 40 1250±19 23±1 10±1 59±1 1.73±0.08

In fact, the electronegativity of Oxygen (O), Tellurium (Te) and Znic (Zn) are

about 3.5, 2.1, and 1.65, respectively. The difference of electronegativity of Te-O bond
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is smaller than Zn-O bond, which means that covalence of Te–O bond is stronger than

ZnO. Therefore, the covalency of Nd–O bonding increase together with Te- O bonding by

increasng the number of NBOs with increase of TeO2 content. This is also in agreement

with increase intensity of Nd3+ intra-configurational f-f transitions (Figure 5.17). On the

other hand, the bulk property (Ω4 and Ω6) also increase with TeO2 content, which may

have significant influence on spontaneous emission transition probabilities and branching

ratios of the emission transitions originated from 4F3/2 level. Table 5.13 present emission

properties of certain radiative transitions of Nd3+ ions in glasses.

5.2.3 Emission spectra and radiative properties

Figure 5.20a shows the measured room temperature emission spectra under 808 nm diode

laser excitation. Upon 808 nm excitation wavelength, the excited Nd ions suffer a non-

radiative decay from 4F5/2 to 4F3/2 level and then the populated 4F3/2 radiatively decay

to the lower level emitting light around 900 nm, 1060 and 1330 nm that are correspond to

4F3/2 → 4I9/2,
4F3/2 → 4I11/2, and

4F3/2 → 4I13/2 (see Figure 5.20). From Figure 5.20a, the

Figure 5.20: (a) Emission spectra and (b) schematic energy levels of Nd3+ ions. Inset
shows decay of 4F3/2 level.

emission of 4F3/2 → 4I11/2 transition is more intense than the 4F3/2 → 4I9/2 and 4F3/2 →
4I13/2 transitions, and its emission intensity is maximized at 20 mol%TeO2 contain glass.
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The emission intensity could be explained in terms of spectroscopic quality factor (Ω4/Ω6)

because of the ‖ U2 ‖ = 0 for the transition from 4F3/2 level. The value of (Ω4/Ω6) is

varied in between 0.9 – 1.2 with x, which implies good lasing performance. Nevertheless,

the estimated spontaneous emission probabilities and branching ratios for the emission

transitions, as shown in table 5.13 are consistent with the emission spectra.

Table 5.14: Radiative lifetime (τ), radiative energy transfer rate (WET ) and quantum
efficiency (η) for Nd3+ doped glasses.

Glass τmeas τexp WET η
mol% of TeO2 (µs) (µs) (s−1) (%)
x = 5 65±4 242±12 11329±100 26.70±1
x = 10 64±5 113±9 6818±55 56.57±1
x = 20 63±6 105±11 6409±50 59.82±1
x = 30 60±2 90±7 5535±48 66.68±1
x = 40 59±5 78±9 3729±40 76.25±1

We obtained decay for the 4F3/2 excited level by monitoring the 1057 nm emission

with 808 nm excitation, and as illustrated in inset of figure 5.20a. The experimental

lifetime for the 4F3/2 level is determined by fitting decay profile with single exponential

function, and are summarized in table 5.14. It can be seen that the experimental lifetime

decreases with x and are much smaller than the calculated lifetimes (from J – O theory)

which implies the existence of non-radiative decay from the 4F3/2 level. Usually, the

measured lifetime can be expressed as [37],

1

τexp
=

1

τcal
+WMPR +WCR (5.4)

where, WMPR is the multiphonon-relaxation rate and WCR is the cross-relaxation rate.

In this work, the expected that the WMPR is around 3 s−1 (~ω ∼= 5400 cm−1) due to

large energy gap between the 4F3/2 level to the next lower level 4I15/2, and is lesser than

the Arad (4F3/2 → 4I11/2), (see Table 5.14. Therefore, we believe that the non-radiative

de-excitation process from WMPR is negligible and may significantly attributed to the

cross-relaxation rate (WCR) in the process, (4F3/2,
4I9/2) → (4I15/2,

4I11/2), as shown in

Figure 5.20(b). The non-radiative relaxation rate (WNR) owing to cross-relaxation can

be written as [158],

1

τexp
− 1

τcal
= WNR (5.5)
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Figure 5.21: (a) Nonradiative relaxation rate (WNR), (b) quantum efficiency (η), (c)
emission cross-section (λp @ 1057 nm) and (d) optical gain (λp×exp @ 1057 nm) as a
function of x in glass.

The decrease trend of WNR becomes evident by a significant reduction of the

emission lifetime and of the increase of the quantum efficiency for the 4F3/2 level, =

τexp/τrad, as shown in Figures 5.21a and 5.21b. However, we should not neglect the OH

hydroxyl groups in glasses which influence on spectral properties and laser glass output.

In general, the coupling between Nd and OH ions is possible due to small ionic radius and

high electronegativity of the Nd3+ ions. The formation of Nd–OH bond is responsible

for the structural distortion of Nd3+ sites thus significantly influencing the transfer of

energy from Nd to OH. The observed fluorescence quenching at higher TeO2 (30 and 40

mol%) glasses have proven that excited energy is lost whenever it is transferred to Nd3+

ion coupled to a OH quenching center.

The large stimulated emission cross-section of emitting transitions are favorable



5.2 Effect of TeO2 environment in Nd3+ doped PZN phosphate glasses for high power lasers111

Table 5.15: Effective linewidth (∆λeff ), emission cross-section (σp) and optical gain (σp

× τexp) for the 1057 nm emission of Nd3+ in glasses.
Glass ∆λeff σp × 10−20 σp × τexp
mol% of TeO2 (nm) (cm2) (× 10−25 cm2.sec)
x = 5 34±1 2.05±0.52 13.29±1.55
x = 10 32±1 4.40±0.71 28.03±1.05
x = 20 32±1 4.56±0.55 28.57±1.64
x = 30 31±1 5.27±0.92 31.73±1.28
x = 40 32±1 5.75±0.39 34.30±1.42
Phosphate [147] 29.3 2.78 119.54
Tellurite [148] 28 2.55 46.15
Phosphotellurite [149] 35 3.00 66.30
Silicate [150] 34.8 2.60 80.60
Borotellurite [151] 21.6 8.91 65.04

for low threshold and high gain applications that are significantly used to obtain CW

lasers. The peak stimulated emission cross-section (σp) for the 4F3/2 → 4I9/2,
4F3/2 →

4I11/2, and
4F3/2 → 4I13/2 emission transitions have been estimated using equation 2.22,

and are also listed in table 5.13. Figure 5.21c and 5.21d shows the increase of the peak

of stimulated emission cross-section (σp(λ)) and optical gain (σp × τexp) for the 1057 nm

emission with x content. The large λeff reveals a strong electron-phonon coupling and an

inhomogeneous broadening 4I11/2 emission with ∼ 31 – 34 nm with x. In fact, with increase

TeO2 in glass, a strong electron-phonon coupling lead a greater 4f and 5d opposite parity

state admixture that achieves to increase the electric-dipole strengths, particularly the

HST: 4I9/2 → 4G5/2 and increase asymmetry (Ω2) of [NdO6] octahedron in studied glasses.

The increase of optical gain turn to decrease the saturation intensity of laser material since,

Is = hc/(λσp(λ)τexp) [159]. In comparison, Table 5.15 present laser parameters for the

4F3/2 → 4I11/2 emission of Nd3+ in various glasses. The small fluorescence lifetime of 4F3/2

level compared with that of the other materials, the high stimulated emission and optical

gain/bandwidths are unique among Nd3+ doped glasses. In addition, we have compared

lasing wavelength (λ), effective linewidth (∆λeff ) and stimulated emission cross-section

(σp(λ)) of our glasses with reported commercial phosphate glasses [7], as shown in Figure

5.22. It can be seen that our glasses also provide better lasing properties, especially higher

emission intensity of x = 20 mol% TeO2 sample (see Figure 5.20(a)) which is expected to

perform better lasing operation at 1.06 µm with low threshold power.
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Figure 5.22: Comparative analysis of laser properties: a) Laser emission wavelength, b)
stimulated emission cross-section (σp @ 1057 nm) and (c) effective line width (∆λeff @
1057 nm) in glasses.

5.2.4 Conclusions

It was described detailed optical and luminescence properties of Nd3+ doped phosphate

glass with addition of TeO2 oxide. The decrease of optical energy band gap (Eopt) with x

at an expense of ZnO by increase of 2p oxygen levels with increase amount of non-bridging

oxygens. Using Lorentz–Lorentz relation, refractive index and oxygen polarizability were

estimated and are found to increase with x. The Raman scattering spectra show increase

intensity of scattered peaks that confirms the decrease bridging oxygen ions and an in-

crease of non-bridging oxygen ions due to addition of TeO2. Evaluation using Judd-Ofelt

theory revealed that spectroscopic parameters and radiative transition probabilities are
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increased efficiently with x. Decrease of fluorescent lifetime of 4F3/2 level with TeO2 is

associated to cross-relaxation process, (4F3/2,
4I9/2) → (4F15/2,

4I15/2) since multiphonon

relaxation in Nd3+ doped host matrices is negligible. Increased stimulation cross-section

and optical gain for the 1057 nm emission laser line suggest that these materials might

be potential for usage in high power laser technology.
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6 Summary

Doped glasses containing nanocrystals, transition metals and rare earth ions have been

explored extensively in the last decade, to large extent, motivated by the new possibilities

for tuning and controlling the electronic properties. The intentionally introducing dopants

into semiconductor nanocrystals (NCs) glass has proven possible to manipulate photon

emission of semiconductor NCs to cover the ultra-violet, visible and near-infrared spectral

ranges through simply tuning their inter co-dopants. Rare earth ions, specially, Nd3+

doped glasses/fibers have a lot of potential applications, in which they could replace the

solid state lasers based on crystals, high output power lasers. However, devices that

generate light like LEDs, amplifiers or lasers have been perhaps the most difficult to

affordably fabricate.

In this thesis, Nickle ions are intentionally introduced into ZnTe NCs phosphate

glass; and addition of TeO2 into Nd3+ doped phosphate glass have been considered and

studied. The reason for phosphate glass chosen as a host is due to its higher ion solu-

bility (compared to silicate glass), higher photo-darkening threshold and lower nonlinear

index. The basic concepts on semiconductors and quantum confinement effects; and sig-

nificant electronic features of Nickle and Neodymium ions are described in chapter 2. We

present the most useful theoretical expression based on Judd-Ofelt theory to estimate

the lasing parameters of a system. Also, crystal field parameters determination using

Sugano–Tanabe diagram for a 3d8 configuration was briefly discussed. In chapter 3, we

describe required engineering conditions for an amorphous materials, such as optical prop-

erties (Refractive index, absorption and color); chemical properties (Chemical durability

and corrosion resistance on optical/commertical); mechanical properties (Elasticity and

hardness); and thermal properties (Viscosity, thermal expansion and thermal conductiv-

ity). A detailed method of preparation of samples and used spectroscopic instruments such

as XRD, FT-IR, Raman, UV-Vis-NIR absorption spectrometers, and photoluminescence,

thermal lens and thermal relaxation, and z-scan experimental set-ups to characterize the

samples were used, as a part of the work of this PhD activity.
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ZnNiTe semiconductor nanocrystals in PZABP phosphate glass : All

the samples investigated in this study are the phosphate glass composition: 65 P2O5 + 14

ZnO + 10 Al2O3 + 10 BaO + 10 PbO (mol%) doping with 5 wt% Ni2+ ions and doping of

Te (1 wt%) and x-content of Ni2+ ions varying at an expense of Zn content (x = 0.5, 1, 5

and 10%) for the formation of semiconductor nanocrystals. The prepared samples named

as G (5 wt% Ni2+ ions doped) for glass; GC1, GC2, GC3 and GC4 for the glass-ceramics

(0.5, 1.0, 5.0 and 10.0 wt% Ni2+ ions doped), respectively. A thorough investigation of

these glass and glass-ceramic samples revealed some interesting structural, optical and

thermal features.

X-ray diffraction pattern of the G sample clearly exhibit glassy characteristic and

glass-ceramic samples exhibit not only the amorphous halo, but also appear sharp diffrac-

tion peaks that could be attributed to the growth of quantum dots (QDs) or nanocrystals

(NCs) in the present work. The ZnTe characteristic vibrational (Longitudinal optical (LO)

and transverse optical (TO)) modes are observed at ∼106, ∼ 215 cm−1 and ∼ 430 cm−1

, and frequencies in range 430 – 1300 cm−1 exhibiting various symmetric and asymmet-

ric stretching of P-O-P bridging/non-bridging oxygen bonds observed in Raman spectra.

Due to broadening of IR absorption bands a quantitative analysis was performed by the

deconvolution of the IR absorption of glass and glass-ceramics. A detailed structural

information was given with band assignments.

Optical absorption spectral nature and position of the bands resembles to the Ni2+

ion octahedral symmetry and bulk-like ZnTe NCs. The appearance of studied samples

color from light brown to blue, is an indicative of coordinate states of Ni2+, like related to

6Ni2+, 5Ni2+ and 4Ni2+. The crystal field (Dq) and Racah (B) parameters were reported.

The observed decrease trend of B is related to the decrease of interelectronic repulsion

within the d-orbitals than can increase the covalent nature between metal-ligand bonds. A

broad emission band between 525 – 700 nm (1T2g(D) → 3T2g(F)) wavelength is observed

up on lamp excitation at 240 nm wavelength. The intensity decreased with the increase of

concentration of Ni2+ ions (x = 5 and 10 wt%) in GCs and is due to the photo-electrons

transferred to nickel ion inducing trapp centers instead anion vacancy defect centers.

These results are in good agreement with Ni2+ and Cd2+ ions doped ZnS colloidal particles.
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Decay kinetics for the visible emission and radiative properties such as emission cross-

section, effective line width, full-width at half maxima and figure of merit, are reported

for studied systems. The higher emission cross-section and the FOM is higher for the

visible emission transition 1T2g(D) → 3T2g(F) Ni
2+ in GC4 sample and it may useful for

visible-RED emission light conversion in LED technology.

The time-resolved thermal lens (TL) and thermal relaxation (TR) methods have

been used to testify the thermal diffusivity (D), variation of optical path length with

temperature (ds/dT) and thermal conductivity (K) of the samples. The observed decrease

in D for the GCs (except in GC4) when compared with the G sample. This may be to the

low formation of semiconductor NCs and the domination of crystal imperfection in these

GCs than the G sample. The trend of D and K for the studied samples were observed.

From the dS/dT analysis, the GC2 shows lower value (0.846 × 10−6 K−1) among the

studied samples and it may present better working conditions in optoelectronic to device

applications.

Nonlinear optical properties are also studied using Z-scan technique. The non-

linear refraction property was observed in G sample only. Others, GC2 and GC4 present

nonlinear absorption nature. The absorption coefficient, β does not change significantly

with wavelength. The increase with Ni concentration is due to the bound electronic

effects and two-photon absorption (TPA). However, we could not neglect the quantum

confinement effects because the existence of intraband transition around 533 nm (energy

of ZnTe NCs) in GC2 and GC4 samples. The increase of nonlinear absorption coefficient

is resulting from the increase of the oscillator strength caused by the confinement-induced

localization of excitation. The obtained n2 and β values are compared with host materials

are also listed in tables.

Finally, we conclude that the lower dS/dT, high emission cross-section and FOM

of the GC4 sample provides definite contribution in visible-RED emission light conversion

in LED technology and broadband amplifiers.

Effect of TeO2 environment in Nd3+ doped PZN phosphate glass : All

the samples investigated in this study are based on the chemical composition: 29 P2O5

+ (60-x) ZnO + 10 Na2O + x TeO2 (x = 5 10, 20, 30 and 40 mol%) containing a
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1.0 mol% Nd3+ as active ions dopant. Structural and laser properties are systemati-

cally investigated using XRD, FT-IR, Raman, UV-Vis-NIR absorption spectrometers,

and photo-luminescence spectroscopic techniques.

Amorphous nature is confirmed by the observation of a broad diffraction halo

(2θ ∼ 15-40◦) and absence of sharp Bragg peaks for all samples. Raman and IR absorp-

tion band positions and their structural groups were discussed and listed. In the case

of Raman spectra, The intensity increase of bands around 485 and 638 cm−1 with TeO2

content is clear indicative of the formation of P–O–Te linkages due to the equal electroneg-

ativity of P2O5 (2.19) and TeO2 (2.1) thus the bonding of oxygen atoms with change of

composition.The ∼ 760 cm−1 is associated to the stretching vibrations of Te–O in TeO3

trigonal pyramidal units (or TeO3+1 units). The broadband of higher frequency region

(870 – 1300 cm−1) is ascribed to stretching vibrations (PO2 and PO4) of nonbridging

oxygens connected to phosphorus (P–O–P) in metaphosphate groups. We observed the

stronger P–O bonds replacement by Te–O bonds with increasing of TeO2 content and the

phonon energy of the studied system significantly altered through formation of majority

P–O–Te linkages beside of isolated PO4 tetrahedral. The lower phonon energy and higher

refractive index of the present glass systems compared with phosphate ones, may permit

that these material could be efficient for enhancing Near-IR laser amplification. In the

case of IR absorption spectra, the presented absorption bands between 650 - 800 cm−1

wavenumbers are attributed to stretching vibrations of Te-O bonds in TeO3+1 and TeO3

units respectively, suggesting a progressive conversion of TeO4 to TeO3 tellurite polyhedra

in the glass network in the studied systems. A broadband is observed at high frequency

region for high phosphate content of glass (5 mol% TeO2) is associated to the symmetric

and asymmetric stretching modes of PO3 groups. With increasing TeO2 content, a clear

splitting and intensity variation at high frequency region, suggests a depolymerization of

the metaphosphate chains with a possible insertion of TeOn units through P-O-Te bonds.

Absorption spectra of glasses consist of several sharp peaks that are associated

to the ground state energies of Nd3+: 4f3 – 4f3 intra-electronic transitions, and their

transitions identification and band centers are noted based on literature. The observed

red shifted absorption edge (300 – 360 nm) with increasing TeO2 content is due to the
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electron transition transfer in between valance and conduction (V – C) bands. The optical

band gap energies (Eopt) are estimated from Davis and Mott theory. Eopt for the indirect

allowed transitions with x mol% TeO2 is decreased monotonically from 4.16 to 3.56 eV,

and are close with crystalline α - TeO2 (∼ 2.78 – 3.50 eV) and ZnO (3.40 eV). In this work,

the ZnO and TeO2 content is about 40 – 60% varies which could influence on electronic

properties of the phosphates. Therefore, the observed decrease trend of Eopt with increase

TeO2 is an accordance with the theoretical predictions that increased covalent character of

the bonds causes a decrease in the absorption edge energy. These results are to the lead-

containing borate and silicate glasses. The electronic polarizability of oxide ions (αO2−) for

the glasses were determined from Eopt and n values, are tabled. We observed enhancement

in electron density around oxide ions with addition of TeO2 as second network glass former

to phosphate glass. The optical basicity with x is increased due to increase of negative

charge on the oxygen atom, and it increases the covalency between cation and oxygen

bond.

Judd-Ofelt theory is used to estimate quantitatively and qualitatively assess the

studied Nd3+ systems through their optical absorption and emission bands of intra-

configurational f-f transitions. The oscillator strengths (f) of transitions, Judd-Ofelt in-

tensity (Ωλ, λ = 2, 4 and 6) parameters, radiative properties such as radiative transition

probabilities (AR), branching ratios (β) and emission cross-sections are reported for all

glasses. The covalency of Nd – O bonding increase together with Te - O bonding by

increase number of NBOs with increase of TeO2 content in glasses.

The room temperature emission spectra were measured under 808 nm diode laser

excitation. We observed three emission bands around 900 nm, 1057 and 1330 nm that are

correspond to 4F3/2 → 4I9/2,
4F3/2 → 4I11/2 and

4F3/2 → 4I13/2 transitions. The estimated

spontaneous emission probabilities and branching ratios for the emission transitions are

inconsistent with the emission spectra. The large stimulated emission cross-section of

emitting transitions are favorable for low threshold and high gain applications. There-

fore, we calculated peak stimulated emission cross-sections and effective linewidths for an

observed emission transitions which were compared with reported glasses.

Decay for the 4F3/2 excited level were measured by monitoring the 1057 nm emis-
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sion with 808 nm excitation.). The experimental lifetime for the 4F3/2 level is determined

by fitting decay profile with single exponential function. The observed reduction of emis-

sion lifetime is strong evident to the decreased trend of WNR and an increase of the

quantum efficiency for the 4F3/2 level. The increase peak of stimulated emission cross-

section (σp(λ)) and optical gain (σp(λ) × τexp) is forecast for the 1057 nm emission with

x content.

Finally, we conclude the higher stimulated emission and optical gain/bandwidths

are unique among Nd3+ doped glasses. Especially, the higher emission intensity of x =

20 mol% TeO2 sample which is expected to perform better lasing operation at 1.06 µm

with low threshold power.
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