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RESUMO

Em geral, a tarefa de agrupar objetos em imagens pode ser simples e varios
algoritmos foram desenvolvidos para esse fim. No entanto, o desempenho de tais algoritmos
precisa ser entendido nos ambientes especificos da aplicagdo e, adicionamente, quando
se trata de identificagdo de eventos raros, com baixa relagao sinal-ruido, torna-se ainda
mais necessario o estudo e, eventualmente, a otimizacao desses algoritmos considerando
as particularidades do problema enfrentado, como no caso do experimento CYGNO que
estd desenvolvendo um novo sistema de deteccao de particulas baseado em TPC com
uma Triple-GEM acoplada a um sensor CMOS de baixo ruido e alta resolucao espacial.
Neste contexto, dois dos algoritmos de agrupamento mais citados na literatura cientifica
conhecidos como Density-Based Spatial Clustering of Applications with Noise (DBSCAN) e
Nearest Neighbor Clustering (NNC) foram avaliados no ambiente do CYGNO. Fazendo-se
uso deste estudo, este trabalho de tese oferece uma proposta de adaptacao do algoritmo do
DBSCAN, denominada intensidade-DBSCAN (iDBSCAN), e faz um estudo comparativo
entre os métodos estudados. Uma descricao do algoritmo iDBSCAN, incluindo teste
e validacao de seus parametros, e uma comparacao com o proprio DBSCAN e o NNC
utilizando-se de dados adquiridos com um dos protétipos do detector CYGNO serao
apresentadas. Os resultados mostram que a versao adaptada do DBSCAN é capaz de
fornecer eficiéncia de deteccao similar aos algoritmos classicos avaliados e, ao mesmo

tempo, melhorar a resolucao de energia e a rejeicao de fundo do detector.

Palavras-chave: Processamento de Imagens. DBSCAN. Analise de Images. Experimento

de Fisica de Particulas.



ABSTRACT

In general, the task of clustering objects in images might be simple and several
algorithms have been developed for this purpose. However, the performance of such
algorithms needs to be understood in the specific environments of the application and,
additionally, when it comes to the identification of rare events, with low signal-to-noise
ratio, it becomes even more necessary to study and, eventually, optimization of these
algorithms considering the particularities of the problem faced, as in the case of the
CYGNO experiment that is developing a new detection system based on a TPC Triple
GEM detector coupled to a low noise and high spatial resolution CMOS sensor. In
this context, two of the most commonly mentioned clustering algorithms in the scientific
literature known as Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
and Nearest Neighbor Clustering (NNC) were evaluated in the CYGNO environment.
Using this study, this thesis work offers a proposal to adapt the DBSCAN algorithm, called
intensity-DBSCAN (iDBSCAN), and makes a comparative study between the methods
studied. A description of the iDBSCAN algorithm, including testing and validating its
parameters, and a comparison with the DBSCAN itself and the NNC using data acquired
with one of the CYGNO detector prototypes will be presented. The achieved results show
that the adapted version of DBSCAN is capable of providing a detection efficiency as good
as those obtained with the classical algorithms and, at the same time, improve the energy

resolution and background rejection of the detector.

Keywords: Preprocessing. Image Analysis. DBSCAN.Particle physics experiment.
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1 INTRODUCTION

One of the most important tasks in the big data world is the classification of a
large amount of information generated by many sources. Particle physics experiments are
contributing a lot with the production of more and more data that needs to be analyzed,
understood and presented in a clear way. However, when dealing with raw data it is usual
to have a long path to go through until reaching the classification task and these steps are
as crucial as the classification itself. Consequently, they have received a lot of attention
by researchers and many tools were developed and are still being developed to fit in and

solve different scenarios.

In this context, algorithms that are able to search for similar groups of pixels in an
image, called clustering algorithms, are being deeply studied in the last years. In general
the signal clustering in images is simple, and there are several algorithms developed for
this purpose (1). However, when it comes to the identification of rare events with low
signal-to-noise ratio there is a requirement for high efficiency and high background rejection.
Therefore, the search for a tool that best fits the reality of a given experiment requires
further and specific studies which may eventually lead to proposals of new methods or of

improvements on already known algorithms, like (2, 3, 4, 5).

Clustering algorithms are normally developed to look for underlying patterns in a
data set with the intention of grouping correlated samples. Usually, this search proceeds
without constraints and completely unsupervised (6, 7). However, the addition of some
prior information on the cluster discovery process had been widely discussed (8), since its
use concedes the possibility to insert expertise knowledge about the subject; for example
by specifying some expected attributes or even not possible features (9) leading to a better

performance of the algorithm in that particular environment.

This work offers a performance study of two widely used clustering algorithms,
known as Nearest Neighbor Clustering (NNC) and Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) (10), applied to an experiment called CYGNO
(11), that aims to find evidences of dark matter, and proposes an adapted version of the
DBSCAN algorithm with the intention of improving its performance in such environment.
The impact of these algorithms on the detector was assessed in detail using three different
databases: one for electronic noise, another for environment noise and another for a signal
generated by a radioactive source that produces low energy photons (5.9 keV), in the

detector’s region of interest.

1.1 MOTIVATION

Experiments that seek to unveil dark matter, as is the case with CYGNO, usually

operate at the frontier of knowledge, requiring the use of the best and latest technologies.
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This is true for hardware that builds the detector and also for data analysis algorithms.
In the specific case of the CYGNO experiment, which uses a scientific CMOS (sCMOS)
sensor as a readout system and, consequently, outputs images, where most of the pixels
are activated by electronic noise or natural radioactive events and only a small portion
is expected to be due to the signal of interest, the use of pre-processing and clustering
algorithms are of paramount importance. In particular, the ability of rejecting background
events is one of the most important parameters of this type of experiment where it is

essential to maximize the signal-to-noise ratio of its measurement apparatus.

This work proposes a first comparative performance study between two classic
clustering algorithms in the CYGNO environment. Such study led to the development of an
adapted version of the DBSCAN algorithm, called intensity-based DBSCAN (iDBSCAN),
capable of improving the noise background rejection and the energy resolution of the

experiment.

1.2 WHAT WAS DONE

In this work the most important clustering methods were studied, two of them
(NNC and DBSCAN) were evaluated using acquired data from a CYGNO’s detector
and a modification of the DBSCAN algorithm was proposed with the aim of improving
the background rejection of the experiment’s clustering stage. Also, this thesis proposes
a comparative study on the impact of NNC, DBSCAN and iDBSCAN on two crucial
detector’s parameters: background rejection and energy resolution, measured in the energy
range of a few keV. For such, low energy particles (5.9 keV photons) produced by a *Fe

radiation source, natural radioactive events and noise acquisition data were employed.

1.3 TEXT STRUCTURE

This document will be organized as follows: chapter 2 will present a literature review
about clustering algorithms and dark matter detection and chapter 3 gives a introduction
of the CYGNO experiment and the detector; chapter 4 will present the experimental setup
and chapter 5 will describe the usual CYGNO’s data analysis procedure, giving a main
focus on the description of iDBSCAN and validation of its in-use parameters; chapter
6 will be used to compare the iDBSCAN algorithm to the NNC and DBSCAN ones by
assessing their impact on the detector’s performance; and, finally, chapter 7 will offer the

work’s final conclusions.
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2 LITERATURE REVIEW

In this chapter, the recent history and review of two subjects that are central
to the development of this thesis will be presented: (1) clustering methods focusing on
density-based methods; and (2) direct dark matter detection with an emphasis on the
Micro Pattern Gas Detector (MPGD) technology.

2.1 CLUSTERING ALGORITHMS

Data Clustering or Cluster Analysis is a multivariate data mining technique that,
using numerical methods and only the information of the available variables, aims to
automatically group the n cases of the database into k groups by unsupervised learning,
generally called clusters or groupings. In Literature, cluster analysis can also be called

Clustering, Q-analysis, Typology, Classification Analysis or Numerical Taxonomy.

Unlike the concept of classification, clustering technique is more “primitive”, in
which no assumptions are made regarding groups. Unlike classification, clustering does
not have predefined classes and examples of labeled training classes, and thus performs a

form of unsupervised learning.

The first published record on a Clustering method was made in 1948, with the
work of (12) on the Hierarchical Method of Complete Liaison. Since then, more than
a hundred different clustering algorithms have been defined. Any clustering method is
defined by a specific algorithm that determines how the cases will be divided into different
clusters. All the proposed methods are based on the idea of distance or similarity between
the observations. They also define the relevance of the objects for each cluster according

to the similarity between each element and the other ones that belong to the group.

The basic idea is that elements that make up the same cluster must be highly
similar, but must be very dissimilar from objects in other clusters. In other words, all
clustering is done with the objective of maximizing homogeneity within each cluster and
maximizing heterogeneity between clusters. As examples of areas interested in the problem
of clustering, we can mention: data mining, statistics, engineering, machine learning (13),
medicine, marketing, administration and biology. Inside the commented areas we can
mention that clustering methods can be helpful in problems of pattern recognition, data
analysis, image processing, market research, purchase pattern, physical and chemical
specifications of oils, analysis of disease symptoms, characteristics of living things, gene
functionality, the composition of soils, aspects of the personality of individuals, customer
profiles, marketing, image segmentation, document grouping, information technology,
workforce management and planning, genome data studies in biology, particle physics,
among many others. During the past decades, thousands of clustering algorithms have

been proposed in the literature from many different fields (14, 13). These clustering
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algorithms can be roughly classified into different groups, including;:

o hierarchical clustering algorithms, such as Single-Link, Average-Link and Complete-
Link methods, etc. (14);

o partitional clustering algorithms such as k-Means, k-Medoids, EM clustering, k-

Harmonic Means, etc. (15);

 density-based clustering algorithms such as DBSCAN, DENCLUE, OPTICS, etc.
(14), which will be the focus of this thesis;

o grid-based clustering algorithms such as STING, WaveCluster, etc. (14);
« spectral clustering algorithms (16);

 and many other clustering algorithms such as Affinity Propagation (AP) (17).

The great advantage of using Clustering techniques is that, by grouping similar
data, the peculiar characteristics of each of the identified groups can be described more
efficiently and effectively. This provides a greater understanding of the original data set, in
addition to enabling the development of classification schemes for new data and discovering
interesting correlations between data attributes that would not be easily visualized without
the use of such techniques. Alternatively, Clustering can be used as a pre-processing step
for other algorithms, such as characterization and classification, that would work on the

identified clusters.

However, it is important to note that the data clustering field has evolved very far
beyond the capability of any text books or surveys proposed in the literature. Therefore,
more and more research efforts are still constantly required in order to provide more

systematic and comprehensive surveys about the field.
2.1.1 Clustering algorithm requirements
An ideal Clustering method should meet the following requirements (10, 18, 19):
1. discover clusters with arbitrary shape - the shape of the clusters, considering the

Euclidean space, can be spherical, linear, elongated, elliptical, cylindrical, spiral,

etc.;
2. identify clusters of varying sizes;

3. accept the various types of possible variables - the methods need to be able to handle
the variables of the types: scaled at intervals, binary, nominal (categorical), ordinal,

scaled in proportion, or at combinations of these types of variables;
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4. the order in which objects are presented is insensitive - the same set of objects when

presented with different orderings must provide the same results;

5. work with objects with any number of attributes (dimensions) - human eyes are
good at judging the quality of Clustering with up to three dimensions, so methods
must efficiently handle objects with high dimensions and provide intelligible results

where human visualization is impossible.

6. be scalable to handle any number of objects - a large data base can contain millions
of objects. The method must be fast and scalable with the number of dimensions

and the number of objects to be clustered;

7. provide interpretable and usable results - the descriptions of the clusters must be
easily assimilated. Users expect the results of the Clusters to be interpretable,

understandable and usable, therefore it is important to have simple representations;

8. be robust in the presence of noise - most databases in the real world contain noises
or missing, unknown or wrong data. Their existence should not affect the quality of

the clusters obtained;

9. require minimal knowledge to determine the input parameters - the appropriate
values are often unknown and difficult to determine, especially for sets of high
dimensional objects and large numbers of objects. In some methods, the results of

Clustering are quite sensitive to the input parameters;

10. accept restrictions - real-world applications may need to group objects according to
various types of restrictions. The method must find groups of data with behavior

that satisfies the specified restrictions;

11. number of clusters - finding the natural number of clusters in a set of objects is a

difficult task. Many methods need a reference value.

However, no Clustering technique is able to adequately addresses all of these points,
although considerable work has been done to address each point separately. Thus, there
are methods suitable for large quantities of objects and others for small quantities; methods
in which the number of clusters has to be provided by the user and others in which there
is no such requirement; methods more suitable for clusters of spherical or convex shape

and others that the shape of the cluster is not relevant; etc.

2.1.2 Density-based clustering

In density-based Clustering methods, clusters are defined as dense regions, separated

by less dense regions that represent noise. Dense regions can be arbitrarily shaped and
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points within a region can also be arbitrarily distributed. So density-based methods are
suitable for discovering arbitrarily shaped clusters, such as elliptical, cylindrical, spiral,
etc. even those completely surrounded by another “cluster” and also they are experts in
identifying and filtering noise (19). Density-based methods differ by the way the clusters
grow: some determine the clusters according to the density of the objects’ surroundings,

others work according to some density function.

Another advantage of density-based clustering compared with other traditional
clustering techniques is that density-based clustering algorithms do not need the number
of clusters k to be specified beforehand. It is a significant advantage when dealing with
complex datasets where determining the number of clusters beforehand is a non-trivial
task.

Since the first density-based clustering algorithm DBSCAN (20) was proposed,
density-based clustering algorithms have attracted considerable research efforts due to their
many attractive benefits, e.g., robustness again noise and the ability to detect arbitrarily-
shaped clusters described above. There are in the literature many density-based clustering
algorithms following different density notions, e.g., the cardinality of neighborhood of an
object (20), the influence of an object in its neighborhood (21), and different research
directions, e.g., subspace clustering (22), network clustering (23), data stream clustering
(24). Among them, the density-based notion of DBSCAN is perhaps one of the most
successful paradigms. In the literature, there are many algorithms that have been proposed
based on the DBSCAN paradigm, e.g., GDBSCAN (25), SUBCLU (22).

2.1.2.1 DBSCAN

In density-based clustering, clusters are regarded as areas of high object density
in the data space separated by areas of lower object density. The algorithm DBSCAN,
short for 'Density Based Spatial Clustering of Application with Noise’, is a non-parametric
density-based clustering method proposed by (20) that formalizes a density notion for
clustering using two parameters: € denoting a volume and N,,;, denoting a minimal
number of objects. An object belongs to a cluster if it has at least INV,,;, objects inside its

€ neighborhood.
(20) wrote that the notion of clusters in the DBSCAN algorithm is applied to

Euclidean spaces of two and three dimensions, as for any characteristic space of high
dimension. The DBSCAN method is applicable to any database containing data from
a metric space (26) and this approach works with any distance function, so that an

appropriate function can be chosen for any given application.

The key idea of the DBSCAN method is that, for each point in a cluster, the
neighborhood for a given radius contains at least a certain number of points, that is, the
density in the neighborhood must exceed a threshold. Figure 1 illustrate how DBSCAN
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works. The red points are core points, because the area surrounding these points in an €
radius contains at least N,,;, points (including the point itself). In this particular case
they form a single cluster because they are all reachable from one to another. The blue
point is a border point that can be reachable from one core point and thus belong to the
cluster as well. At last, the gray points are noise points that are neither a core points nor

directly-reachables.

Figura 1 — Illustrative image on how DBSCAN works

: .
L@ I e” L
.. LS L. @ Corepoint
‘. ® Border point
: ® Noise point
IR € Search radius
&

Source: Prepared by the author (2020).

According to explanations above, DBSCAN is designed to discover clusters and
noise in a spatial database. This qualifies the method in directly classifying noise, which
by other clustering methods, such as k-means, hierarchical, CLARANS, etc., would be

mandatory placed in some cluster, not necessarily formed only by noise.

Ideally, it is necessary to know the appropriate parameters ¢ and N,,;,, as it is
possible to recover all the points that are reachable by density from a given point using
the correct parameters; the DBSCAN algorithm is thus very sensitive to the parameters
defined by the user (19).

The DBSCAN algorithm has attracted much research interest during the last
decades with many extensions and applications in various fields, e.g., (27, 22, 28, 29, 30,
31, 32).
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2.1.2.2 DBSCAN extensions

Among many different extensions of DBSCAN, density-based clustering algorithms
for complex data have become an emerging research topic with many proposed techniques
in the literature, e.g., (33, 28, 31, 23, 34, 35, 29, 36). However, the rapid growth of
advanced data acquisition methods in many fields, e.g., medicine, biology and environment,
has continuously produced a large amount of data with increasing volume and complexity,
e.g., stream, time-series, graph or uncertain data. As a consequence, many challenges have
been constantly arisen in order to provide efficient and effective data mining algorithms to

extract knowledge from these data, in particular density-based clustering algorithms.

Recently, interactive exploring of data has become a significant feature in many
data mining algorithms, especially for complex data, e.g., (37, 38), since it allows domain
experts to be involved into the clustering process to improve the performance and outcome.
However, throughout the literature review, all the existing extensions of DBSCAN only
work in a batch scheme. They produce a single result at the end and do not allow user
interaction during their runtime. Providing an interactive extension of DBSCAN;, therefore,
is another challenge and is extremely useful for many applications, e.g., the segmentation
of white matter structure in human brain (39), characters recognition (40) or image

clustering (38).

2.1.3 Comparing different clustering algorithms on toy dataset

Many clustering algorithms have been developed over the years, each one having its
advantages and disadvantages. In (41) there is a qualitative comparison between DBSCAN

and some of the most well-known clustering algorithms in the literature:

« MiniBatchKMeans (42) is a cluster method that tries to separate samples in n groups
of equal variance and uses the number of clusters as an input parameter; its uses is
indicated for general-purpose and its performance tends to decrease if the sample

has too many clusters.

» MeanShift (43) is a centroid based algorithm that aims to discover blobs in a smooth
density of samples; works well for a sample with many clusters and uses the distances

between points as a metric.

« OPTICS (44) algorithm are very similar to the DBSCAN method and can be
considered a generalization of DBSCAN; the main difference is the fact that OPTICS
uses a reachability graph to choose different values of eps allowing the extraction of

clusters with variable density within a single data set.
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« Birch (45) is indicated to large dataset and dataset with outlier; this method uses the
Euclidean distance between points and builds a tree data structure, called Clustering
Feature Tree (CFT), with the cluster centroids being read off the leaf.

The example shown in Figure 2 is a comparison between different clustering
algorithms in order to illustrate some of their different characteristics. The parameters of

each of these dataset-algorithm pairs has been tuned to produce good clustering results.

Figura 2 — Comparison between some clustering techniques on
toy datasets

MiniBatchKMeans MeanShift DBSCAN OPTICS

Source: Extracted from (41).

As can be seen, KMeans, MeanShift and Birch do not perform well when the
populations to be clustered are not well separated. Another important point to comment
on is the last dataset, which is a case of null hypothesis, where the population is uniformly
distributed and should not be clustered. However, using the same parameters for the
clustering algorithms of the previous line, it is observed that all algorithms found one or

more clusters.

In these particular cases, the biggest difference between the DBSCAN and OPTICS
algorithms is in relation to the processing time. DBSCAN was on average 110 times faster
than OPTICS, in addition DBSCAN has presented processing times as good as the other

algorithms tested in this example.
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2.2 DARK MATTER DIRECT DETECTION

Since the seventies, particle physicists have described the fundamental structure of
matter using an elegant series of equations called Standard Model. The model tries to
describe everything that can be observed in the universe from some basic blocks called

fundamental particles (46).

However, there are some observational facts that the Standard Model in its original
form cannot explain. One of this observations is that astrophysicists have noticed that
galaxies appear to have much more mass than can be seen with the telescope (five times
more, to be exact). This extra mass is invisible, but it is noticeable through the gravity it
exerts and it is called by now Dark Matter (DM). Then, the need arises to understand
the characteristics and how this new type of matter interacts with the usual matter. In
this way, a new path is needed, since the known Standard Model does not include such
material and also new technologies capable of taking the science further to the frontier of

knowledge.
Therefore, for the experimental proof of the theories related to the Dark Matter

particles, equipments that are capable of detecting particles at very low energies have been
built in the last years, recreating an environment where it could be possible to observe the

interaction processes of the DM.

Several astronomical observations points to the existence of dark matter, such as
the high speed of rotation of galaxies, anisotropy of cosmic background radiation and
the study of the effect of gravitational lenses (47, 48). Many models try to explain the
nature of dark matter and there is a vast literature on candidates for it (49, 50, 51, 52, 53).
One of the most accepted candidates by scientists for dark matter is known as Weakly
Interacting Massive Particles (WIMP). In general, they are presented in extension theories
of the Standard Model and provide the correct value for the abundance of DM density.
Calculations show that WIMPs may have remained since the first moments of the universe
in a sufficient number to present a significant fraction of the relic density of dark matter.
Since then, there has been hope in detecting WIMPs directly by observing their elastic

scattering on targets, such as atomic nuclei.

There is a convenient classification for candidates of dark matter. They can be
classified into hot, warm or cold dark matter. These names reflect their typical speeds
at the beginning of the universe, more precisely at the time of recombination, that is,
the higher the speed, the more "hot"the matter would be. Light neutrinos are the best
candidates for hot dark matter and are the only candidates that have proven existence
so far. Supersymmetric particles as WIMPs (50, 54) or axions (52) appears as possible
candidates for cold dark matter. Sterile neutrinos (53, 55) are candidates for warm dark

matter.
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This thesis is developed in the context of the direct detection of WIMPs, assuming
the premise that they are one of the most promising candidates for dark matter, since
this is the approach of the CYGNO Experiment, which will be discussed in more detail in

section 3.1.

Physical existence beyond the standard model is based, among others, on numerous
indirect observations of the existence of dark matter. Therefore, in order to observe and
study this phenomenon, several experiments for direct detection of dark matter began
in recent years (56). The indirect detection of dark matter is possible by astrophysical
and cosmological observations, such as its self-interacting strength from colliding galaxy
clusters (57, 58, 59) or the Universe’s ionization history (60).

In the other hand, the direct detection of these kind of particle, in order to measure
its properties (mass, coupling and interaction cross section), can be divided today in three

different approaches:

o detecting the dark matter particles produced in hadron colliders, like Large Hadron
Collider (LHC) (61);

o by detecting the decay of dark matter via annihilation processes in regions that

contain a high density of dark matter (62).

o and by direct detection of WIMP through the scattering process in ultra sensitive
experiments with very low levels of background, like CYGNO (63).

The possibility of direct detection of dark matter particles by observing the in-
teraction of WIMPs was first discussed in 1985 (64). Since WIMPs carries no electric
charge, a low probability of interaction of these particles with atomic electrons is expected.
However, it is possible that elastic scattering occurs with the atomic nucleus. That is, a
nuclear recoil can be generated by the momentum transfer, which is detectable (65). The

total energy loss of recoil in a WIMP detector can be described by Equation 2.2.

i\ (i) (i o
dx tot a dx elec dx nucl '

In the interaction between a WIMP particle and a nucleus, most of the energy is
dissipated in the form of heat, which can lead to an atomic motion. And the rest are
electronic energy losses, which can excite or ionize atoms. This atomic excitation can
cause scintillation light, and its detection is possible using photosensors. However, since a
very small portion of the signal is generated, the number of photons available for detection

is low.
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2.2.1 Detectors for WIMP Searches

The direct detection experiments seek to obtain information through the interaction
between the known particles and the Dark Matter through collision, schematized in Figure 3,
which is the spreading between the DM particle and the atomic nucleus of the target
material, measuring the energy released in the process. After the ionization of the material,
when the electron fills the gap in the atomic electrosphere, the emitted photon is detected
by a photosensor or the ejected electron can be accelerated by an external field and at the
end it interacts with other material emitting photons that are detected, such as the case

of the Xenon experiment (66).

Figura 3 — Simplified diagram of direct
detection. DM particles interact with
one Standard Model Particle (SMP), re-
sulting in another particle of DM and
another of the standard model
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Source: Prepared by the author (2020).

Taking into account the selection criteria for the events attributed to the DM,
there are some uncertainties that strongly influence the characteristics of the experimental
apparatus. Some of these apparatus assume possible DM characteristics necessary for
signal filtering. The main examples are the DAMA (67) and GoGeNT (68) experiments,
which deal with the measurement of a signal that varies over the year, called annual
modulation, due to the variation in the speed of the planet along its rotation around the

Sun and the movement in the galaxy, as illustrated in Figure 4.

Knowing that, the collision between the DM particles and the target material, in
that laboratory, would detect a more energetic event at one time of the year, since the
detector on our planet would be moving along the solar system with a higher speed, so
that the relative speed between the target material and the DM particles would be added,
increasing the energy deposited in the collision, whereas, the opposite would happen in
the other part of the year. This effect was detected by DAMA researchers, but as no other

direct detector experiment found a similar signal, there are still some objections about
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Figura 4 — Simplified diagram of the seasonal search of dark matter
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their discovery and many other experiments are being developed in order to search for

signals of dark matter.

Numerous detectors around the world have been developed with different designs

aiming to detect WIMP particles. We can categorize them as follows:

Inorganic Crystal Detectors This type of detector works with the idea of using a high
purity crystal in order to detect dark matter-induced charge signals with a very good
resolution. The first experiment attempt to directly detect WIMPs used a 0.72kg
Germanium crystal (69). After that, other experiments designed their detectors
using Silicon crystals, which is the case of DAMIC (70) and SENSEI (71), that was
able to improve their sensitivity to WIMPs at lower masses. Following the same
principle, DAMA /LIBRA has published its results showing an annual modulation
signature (72) using an array of high-purity Nal(T1) scintillator crystals. The same
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type of crystal was also used by COSINE-100 experiment (73).

Cryogenic Detectors This type of detector aims to detect dark matter measuring the
temperature after a particle interaction, knowing that most of the energy is released
in the form of phonons. A particularity of this kind of detector is the necessity to

operate at cryogenic temperatures, typically < 50 mK. Some experiments that uses
this technology are EDELWEISS (74) and CDMS (75).

Noble Liquid Detectors Detectors using liquid noble gases (argon or xenon) as WIMP
target either measures only the primary scintillation signal (single phase detectors) or
detects the primary scintillation light as well as the ionization signal in a dual-phase
Time Projection Chamber (TPC) using Photomultiplier Tube (PMT). Examples of
experiments using this approach are DarkSide-50 (76), DEAP (77), LUX (78) and
XENONI10 (79).

Bubble Chambers This approach works using superheated liquids (e.g. CF3l, C3Fg,
C4F1, etc) as WIMP targets. When the particle interacts inside the liquid, kept
at a temperature just below its boiling point, energy deposition leads to a phase
transition starting the bubble formation. This effect is typically read out by means
of cameras, which allows 3d-reconstruction of the event tracks, and make use of
acoustic sensor, which can help in the particle detection and discrimination. After
each event, it is necessary to remove the bubble by a compressing and decompressed
process, which implies a long detector deadtime. Bubble chamber experiments
are PICASSO (80, 81), PICO-2L (82) that reached a threshold down to 3.3 keV,
PICO-60 (83) and COUPP (84)

Directional Detectors This last method aims to construct a detector capable of iden-
tifying the directionality of the WIMP particle, which in principle would allow the
discrimination of a WIMP signal from the background with just 30 WIMP collected
events (85). The operation principle of this approach is a TPC gas detector readout
by a high-granularity sensor. The WIMP particle interacts with the gas, producing
electrons that are drifted by the electric field until reaching the anode where they
are collected. Typically the threshold of this detector is around 20 keV.,., but the
MIMAC prototype (86) had already achieved 2keV... DRIFT-II is one of the most

sensitive direction detectors, with 1m3-scale (87).

A summarized table with a list of the leading direct detection experiments on
WIMP interactions extract from (56) and updated with CYGNO experiment is showed
in Table 1, together with the specification of type, target, mass and the most relevant

publication for each experiment.

Over the past years, direct DM experimental programs has been focused on WIMPs,
mostly above 10 GeV mass. Figure 5 shows the limits for Spin-Independent (SI) WIMP



Tabela 1 — Alphabetical list of some of the leading direct detection
experiments that published results on WIMP interactions

Experiment Type Target Mass [kg] | Laboratory | Ref.
ANAIS-112 Crystal Nal 112 Canfranc (88)
CDEX-10 Crystal Ge 10 CJPL (89)
CDMSLite Cryogenic Ge 1.4 Soudan (90)
COSINE-100 Crystal Nal 106 YangYang (91)
CRESST-II Cryogenic CaWOy 5 LNGS (92)
CRESST-III Cryogenic CaWO; | 0.024 | LNGS (93)
CYGNO Phase-I Directional HeCF4 1.6 LNGS (63)
DAMA /LIBRA-II | Crystal Nal 250 LNGS (72)
DarkSide-50 TPC Ar 46 LNGS (94)
DEAP-3600 SinglePhase Ar 3300 SNOLAB | (95)
DRIFT-II Directional CF4 0.14 Boulby (87)
EDELWEISS Cryogenic Ge 20 LSM (96)
LUX TPC Xe 250 SURF (97)
NEWS-G Gas Counter Ne 0.283 SNOLAB (98)
PandaX-II TPC Xe 580 CJPL (99)
PICASSO Superheated Droplet | CsF1g 3.0 SNOLAB (100)
PICO-60 Bubble Chamber CsFs 52 SNOLAB (101)
SENSEIL CCD Si 9.5 x 107° | FNAL (102)
SuperCDMS Cryogenic Si 9.3 x 10~* | SNOLAB (103)
XENON100 TPC Xe 62 LNGS (104)
XENON1T TPC Xe 1995 LNGS (105)
XMASS Single phase Xe 832 Kamioka (106)

Source: Extract from (56).

nucleon coupling depending on WIMP mass for many experiments. These experiments
searches for nuclear recoils due to the elastic scattering of WIMPs inside the active volume
of the detector that have low energy (10-100 keV). However, due to the rarity of the
expected interactions, it is necessary to control, minimise or even reject any source of

background that are indistinguishable from the DM signal in the data analysis part.

Figura 5 — WIMP cross section limits (normalized to a single
nucleon) for Spin-Independent coupling versus mass
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2.2.2 Time projection chamber (TPC)

Introduced in 1976 by D.R. Nygren (108, 109), the TPC idea was possible thanks
to the development of the Multi-Wire Proportional Chamber (MWPC). As shown in
Figure 6, the TPC consists of a field cage filled with gas, which is the sensitive volume of
the detector. The endcaps of the field cage are usually called anode (positive terminal) and
cathode (negative terminal), used to create an electric potential difference strong enough
to, in case of ionization of the gas atoms, drift the ions to the cathode and the electrons
to the anode, where the readout system is placed. Other cathode/anode configurations
are possible as the one which uses two anodes as endcaps with a central cathode that
divides the volume into two identical halves. The working principle of the TPC is the
following: if the particle that passes through the gas has enough energy to ionize it, a
track of electrons and ions is produced. Due to the electric field, electrons migrate towards
the anode and ions towards the cathode. The charge measured at the anode terminal is
supposed to be proportional to the energy of the particle (110). For optimum operation.
the amplification and readout stage of a TPC is, nowadays, based on Micro-Pattern Gas
Detectors, replacing the classic MWPC.

Figura 6 — The TPC working principle
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The TPC is one of the main detectors used in problems where it is important to
reconstruct the traces of the particles, for the direction search, as it allows a complete 3D
picture of the ionization deposited in a gas volume. The x-y coordinates are reconstructed
directly by the readout plane by making use of its segmentation, usually with a resolution
of few pm, while the z coordinate might be estimated if the drift velocity (vg) of the

electrons in the gas volume is known.

z = Ud(tl — to)
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where t; is the arrival time at the anode and t; is the interaction time. If ¢y is not known,
the exact position of the track can not be known but it is still possible to reconstruct
its z-profile if time resolution is good enough to discriminate the time of arrival of the

electrons produced by a single track.

Additionally, the charge collected by the anode (or cathode) tends to be proportional
to the ionization energy loss (dE/dx) produced by the incident particle and its measurement

offers an important parameter to be used for particle identification.

Finally, a magnetic (B) field might be applied parallel to the electrical (E) field to
bend the trajectory of charged particles. The resulting curvature allows for measurement
of particle momenta. In addition, a magnetic field reduces the diffusion of the electrons on
its way to the anode, which ensures a better x-y resolution. In order to ensure reliable
operation conditions, like a constant drift velocity and constant gain, a good homogeneity

of E and B fields is required and should, therefore, be monitored.

2.2.3 Micro-pattern gas detectors (MPGD)

CYGNO makes use of the Micro-Pattern Gas Detectors (MPGD) technology to
amplify the signal generated by a TPC. In particle physics, a MPGD is a high-granularity
gaseous detectors with small (below 1 mm) distances between its anode and cathode
electrodes that can reveal the presence of particles. Before the invention of the MPGD
technology, TPC was readout by MWPC, developed in 1968 by the physicist Georges
Charpak (111). Such technology represented a revolution in the field of particle detection,
inserting it in the electronics era, replacing technologies such as cloud and bubble chambers.

Its invention has earned Georges Charpak a Nobel Prize in Physics in 1992.

Along the past years, several types of electric field patterns have been developed,
such as multiwire, single wire, strips, holes, parallel plate and grooves (112), in order
to produce an enhanced field region, which is where multiplication takes place. The use
of strip patterns was very popular and the detectors that use this structure were called
Microstrip Gas Chamber (MSGC) (113). Due to the narrower spacing between the anode
strips this technology was able to increase the capacity rate of the detectors by two orders
of magnitude, which made it a very attractive technology for many applications. However,
the stability of the detector remained a problem, since there were still discharges capable
of modifying the field shape locally. Such discharges are mainly induced by strongly
ionizing particles or high particle rates, which can damage anode strips. This problem
was overcome with the introduction of the Gas Electron Multiplier (GEM) technology
(114), which was used as a pre-amplification stage for such detectors. When the GEM
was coupled to an MSGC or MWPC, the additional gain provided by the GEM allowed
the operation of the combined detector at reduced voltages, reducing the probability of

discharge and increasing reliability.
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2.2.3.1 Gas Electron Multiplier (GEM):

In 1997 an amplification device was introduced and started to be used in gas
detectors, this equipment was named GEM (114). It consists of a very thin insulating
sheet, typically Kapton, covered on both sides with a thin metallic layer perforated by an
array of small holes, in the case of CYGNO, spaced by 140 pm and with 70 gm diameter
each. When a potential difference is applied between the two metallic layers of the GEM,
an intense electric field is created inside each hole, illustrated in Figure 7. This electric
field, once immersed in a suitable gas solution, is strong enough to promote an avalanche of
electrons. The gain achieved with a single-GEM is proportional to the potential difference
applied to it. Besides that, the GEM is able to avoid the distortion of the electric field
caused by positive ions once they are collected on the GEM copper cladding. The output
of the GEM is usually acquired in two ways: reading the signals induced on electrodes
or, in the case of CYGNO, using an optical sensor to record the light emitted by the

de-excitation of the gas molecules.

Figura 7 — Schematics and fields of the gas electron
multiplier
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In order to obtain greater gains even and, at the same time, work with lower
voltage values, it is possible to cascade modules of GEMs. Two or more GEM layers can
be used in sequence, forming what is called double-GEM, triple-GEM, quad-GEM, etc.
In multi-GEM detectors, the gain is distributed among its layers, and each of them can
provide gains in the order of 100. Therefore, a triple-GEM detector can achieve gains in
the order of 10° (116). In fact, the use of three cascading GEMs (triple-GEM) has become
a standard in many applications (117, 118, 119), as used by the CYGNO experiment.
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3 CYGNO

This section is dedicated to set and provide an overview about what the object
of study is and where this study is carried out, that is, a brief explanation will be made
about the CYGNO experiment.

3.1 CYGNO EXPERIMENT

In experiments related to the direct detection of dark matter, it is essential to know
the background radiation, both internal to the used detectors, and of the environment,
since signals produced by them could be confused with signals generated by WIMPs in the
energy scale of interest (below 30 keV) (120). Thus, it is important to develop techniques
whose objective is to separate the signals generated in the detectors due to nuclear recoils
(possibly generated by WIMPs) from the signals due to electronic recoils (in general,
generated by the background radiation). Therefore, in order to suppress cosmogencic
backgrounds, these kind of experiments are typically located underground and also are
manufactured using excellent radio-purity materials, some of them with the capability to

discriminate a nuclear recoil from other interactions.

3.2 DM SEARCHES WITH CYGNO

The Milky Way presents a rotation movement around the galactic center in a
clockwise direction (from the galactic north pole). This movement presents, like other
spiral galaxies, irregularities in relation to what is predicted based on the total visible
mass (formed by stars, gases and other components) and what is actually measured. It is
noted that the regions furthest from the galaxy rotate at higher speeds than would be
predicted by Kepler’s Laws. Therefore, it is concluded that the rotation speed does not

necessarily decrease with distance, but remains practically constant from the disk (121).

The rotation curve describes the rotation speed of the stars in the galaxy as a
function of their distance from the center. This speed is directly related to the amount
of matter that is found inside this orbit, being possible, therefore, to infer the mass
of the galaxy through the movement of its components. As the rotation curve of the
Milky Way reveals, the speed in its outer parts is greater than expected, which implies
that a large amount of matter exists beyond the disk, far beyond from what can be
observed. Consequently, it is believed that the anomaly is caused by dark matter, directly

undetectable and whose nature is unknown (122).

The Sun describes an orbit around the galactic center at a speed of about 220
kilometers per second and its velocity vector points to the Cygnus constellation. The signal
due to the WIMP scattering expected in the CYGNO detector is due to Earth’s relative
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motion with respect to the galactic halo and the DM wind is apparently coming from
the Cygnus constellation, which is expected to be observable on our planet. Determining
the dark matter particle direction coming from space (123) can provide a correlation
with an astrophysical source that does not resemble any background noise and therefore
provide the necessary information for an unambiguous identification of the dark matter
signal. In addition, measuring the directionality of these particles can help discriminate
between different models of dark matter (124, 125) and provide more information about

the properties of WIMPs, which would not be possible with non-directional detectors.

With this in mind, the CYGNO collaboration proposes a differentiated approach
to tackle this problem. The detector will use a high-resolution TPC with a low density
light nuclei target, such as Helium and Fluorine gases, to increase the sensitivity to WIMP
masses, while at the same time maintaining directionality information and an good ability
to reject background noise, even at low energies. With the use of Helium, it is possible to
work at atmospheric pressure, which in addition to reducing costs with the production
of equipment that withstand different pressures, also guarantees a reasonable volume to
target mass ratio. The characteristics described above enables CYGNO to explore new
particle physics cases that need a high capacity to discriminate nuclear recoils from other
particles, in addition to the need to know their direction of arrival, which is the case of
elastic scattering of sub-GeV DM (123) and of solar neutrinos (126, 127).

3.3 CYGNO DETECTOR

CYGNO is a project that aims to develop a MPGD detector based on TPC with a
triple Gas Electron Multipliers (GEM) and a sCMOS optical readout that delivers a high
precision 3D tracking capabilities, sensitive to the direction of the recoiling nuclei and
electrons for Dark Matter searches at low (1-10GeV) WIMP masses down to the Neutrino
Floor. Figure 8 shows a 3D drawing of the CYGNO detector.

In order to reach the final objective, this project should go trough several develop-

ment phases that can be divided as follows:

PHASE-0 is the current one and it is focus on the detector development, using prototypes
as a test platform to understand the detector’s characteristics; during this phase,
many tools are under development in order to simulate and analyse the acquired
data;

PHASE-1 aims to built the 1 m® demonstrator;

PHASE-2 is expected to develop a 30-100 m? detector.

In recent years, the CYGNO collaboration has been testing different prototypes
(NITEC (128), ORANGE (129, 130), LEMOn (11, 131, 132, 133)), varying the radioactive
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Figura 8 — 3D Drawing of the CYGNO detector

Source: Extracted from CYGNO Collaboration (2019).

sources (electron beam test facility, neutron beams) and some of the general operating
conditions in order to understand the nuances of the project in order to develop the final

detector.

The main idea of all prototypes is basically the same: an acrylic box filled with
gas and with at least one transparent side to allow the camera to look inside the sensitive
area. A drift field is implemented to lead the electrons to the camera side of the box where
a Triple-GEM (134) is placed in order to amplify the signal produced in the ionization
process. The camera is placed outside the box to take pictures of the light signal produced

by the avalanche process of the GEM stage.

By now, there are four prototypes: ORANGE, MANGO, LEMOn and LIME.
ORANGE and MANGO have a small drift volume, LEMOn is a 7 liter active drift volume
and is better described in 4.1 as it is the detector used in this work, and the most recent
one, LIME which represents exactly 1/9 of the CYGNO demonstrator of 1 m3.

3.3.1 Expected recoil’s signature in the detector

The detector was designed so that the main expected signal signatures come from
nuclear and electron recoils. In the case of nuclear recoil, it is necessary that a neutral
particle elastically scatters in a gas nuclei, which will cause its movement and consequent
release of energy within the detector. The arrival direction of the particle that causes the

scattering can be measured using the direction information of the particles that have left
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signals in the detector. This measurement provides relevant information to identify the

following particles:

o WIMP-like Dark Matter;
o Environmental fast neutrons;

Sub-GeV DM produced in Supernova;

« Solar neutrinos via Coeherent Scattering.

Figure 9 shows examples of nuclear recoils produced by a AmBe source placed near
to the LEMOn detector.

Figura 9 — Examples of nuclear recoils inside LEMOn detector
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However, due to the fact that electrons participate in both weak and electromagnetic
iterations, electron recoils can be induced by several types of particles and can be mistakenly
identified as nuclear recoil. The particle released energy and direction information can
be exploit in order to identify the signals and reject possible background noise. Some

examples of relevant electron recoils signatures are:

o non-WIMP sub-GeV Dark Matter;
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e Solar neutrinos via Elastic Scattering.

3.3.2 Energy Calibration of the detector

The CYGNO detector readout concept is a sSCMOS camera that will take pictures
of the interaction inside the detector. The camera will register the light (photons) produced
by the electron scattering. To know the conversion factor between the amount of collected
photons and the energy released by an interacting particle, a calibration is needed and
one way to achieve it is by inducing well-known signals in the detector using radioactive

sources.

As explained by (135), a calibration source need to fulfill few requirements: uniform
coverage of the sensitive region, emitted particle in the region of interest of the detector,
generated tracks need to be fully contained inside the detector sensitive area, and last, the
radioactive isotope source needs to have a proper half-life. Examples of commonly used

radioactive sources are: %°Co, 5°Fe, #™Kr and '92Ir.

In this thesis one of the data sets analyzed was taken using a ®Fe source. This
radioactive source is commonly used in low energy calibrations (136, 137) due to the fact
that it emits particles in the order of few keV with low background events. The *Fe decays
via electron capture to *Mn and this process has a half-life of 2.737 years (138). The *°Fe
decay process consists mainly of Auger electrons (5.19 keV with a probability of 60.7%)
and X-Rays (5.89 keV with a probability of 27.8%). The first one is generated when the
photons produced by the transition of the internal electrons ionize the external shells
electrons while the second when the photons escape from the atom as X-ray radiation.
It is important to notice that because of the penetration power of X-ray, those 5.89 keV
photons are the ones expected to interact inside the detector. Figure 10 shows examples

of electrons recoils produced by a ®>Fe source placed near to the LEMOn detector.
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Figura 10 — Examples of electrons recoils due to **Fe source inside LEMOn
detector
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4 EXPERIMENTAL SETUP

41 LEMON DETECTOR

One of the most recent CYGNO Experiment’s prototype is Large Elliptical MOdule
(LEMOn) and it was used to take all the data used in this thesis. The LEMOn detector,
as shown in Figure 11, is composed of an elliptical field cage (20 x 20 x 24 ¢m?) inside a 7
liter active drift volume and closed by a 20 x 24 em? Triple GEM structure that amplifies
the signal coming from the sensitive volume. Then, the photons produced in the GEM
are readout by an Orca Flash 4 CMOS-based camera! placed at a distance of 52.5¢m
(i.e. 21 Focal Length, FL). In order to operate the detector a He/CF, gas mixture in
the proportion of 60/40 was used to fill the LEMOn drift chamber and electric fields are
applied to the TPC drift volume and between the GEMs. They are called drift field (Ey)
and transfer field (E;) respectively. More details are described in (139, 11, 131, 140). The
regular running settings of the detector, as used in this work, are: E; = 500 V/cm, E;, =
2.5 kV/cm, and a voltage difference across the GEM sides (Vigga) of 460V.

Figura 11 — Drawing of the experimental setup. In particular, the elliptical field
cage close on one side by the triple-GEM structure and on the other side by the

semitransparent cathode (A), the PMT (B), the adaptable bellow (C) and the CMOS
camera with its lens (D) are visible

23cm -l- 0

*Fe source

Source: Extracted from (139).

4.2 DATASETS

All the data used in this work were collected using auto-trigger mode. Three
different datasets were acquired and used in order to conduce the intended study, as listed

below:

1 For more details visit the site www.hamamatsu.com
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« Electronic noise (EN) dataset: formed by lowering down Vigas to a value where
there is no multiplication process, in order to recorded only electronic noise (6478

images registered);

« Natural radioactivity (NRAD) dataset (composed of cosmic rays and environmental
radioactivity): produced by turning on the detector to the regular running settings
(see Sec. 4.1) allowing charge multiplication and secondary light emission during this

process (864 images registered);

o Electron Recoils (ER) dataset: equal to the anterior item but placing a **Fe source

next to the detector drift volume, as shown in Figure 11 (864 images registered).

4.3 EXPECTED DETECTOR’S SIGNALS

The expected detector’s signals for the acquisition datasets defined in section 4.2
are shown in Fig. 12. In the left top image it is possible to observe three interactions of
%Fe photons that are coming from the *Fe source placed near the detector, which releases
5.9 keV round spots on the image. And the other particles interaction expected in the
detector are due to the natural radioactivity and cosmic rays muons, as it can be see in
the examples: two low-energy electrons in the left bottom image and two high-energy

particles in the right image.

Figura 12 — Examples of signals that can occur using the described
configuration
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Source: Prepared by the author (2020).
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The signals of interest for this thesis are the spots generated by the *>Fe source,
which can be used to calibrate the conversion factor between the measured photons and the
energy in keV, as it is known that the % Fe produces monochromatic tracks at about 5.9 keV
(see section 3.3.2). And also they are in the energy rang of few keV, which is the expected
energy region of the DM particles. Therefore they are used to evaluate the impact of the
considered clustering algorithms on the detector characteristics, concentrating mostly on

its energy resolution and background-events rejection performance.

Figure 13 was taken using an exposure time of 10s in the sSCMOS sensor in order
to show the region within the field cage, region where the detector are sensible to tracks.
Also, it is possible to observe the high NRAD signals occupancy when the detector is

placed at the surface.

Figura 13 — Example of an image taken with 10 seconds
of exposure time
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5 DATA ANALYSIS ALGORITHM

5.1 DATA STRUCTURE

The output of readout system are images with 2048 x 2048 pixels captured by the
Orca Flash 4 CMOS sensor, as illustrated by Figure 14, that shows the full resolution

image where it is possible to see some very fainted tracks and 3 high density spots.

Figura 14 — The original image in full resolution
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The photo sensor has an sensitive area of 13312 pum? and each pixel has a size of
6.5um x 6.5um. The camera comprises an area of 26 x 26 cm? in relation to the plane
of the last layer of the GEM detector and its exposure time was set to 40ms. Each one
of the camera’s pixel gives a response, here called intensity, which is proportional to the
number of collected photons (129) combined with a baseline. The latter is also known
as pedestal and can be interpreted as the intensity value corresponding to zero photons.
Another relevant parameter to take into account is the pixel noise level that can vary from
one pixel to another. Figure 15 shows the mean and standard deviation distributions of
the noise for each pixel, as it was computed with the EN dataset, which illustrate that
the pedestal average value of the sensor is about 99 counts, however it can differ from 90
to 110 for each pixel and the noise level average value is about 2.5, but as the mean, it
also can fluctuate between 0 to about 10. Consequently, to run the event reconstruction

procedure and measure the number of photons that were collected by the camera coming
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from the particles interactions it is required to calculate beforehand the pixel baseline (1;)

and its average noise (o).

Figura 15 — Mean and standard deviation distributions of the sensor’s pixels noise
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5.2 OVERVIEW OF THE EVENT RECONSTRUCTION PROCEDURE

The current CYGNO’s event-reconstruction algorithm is pictured in the flowchart

shown in Figure 16 and its description is enumerated right below.

Figura 16 — Flowchart of the CYGNQ'’s event-reconstruction algorithm
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Source: Prepared by the author (2020).

1. First, each pixel original intensity value is subtracted from its previous calculated
pedestal (1), producing new intensity values defined as I;, this process is called here

Pedestal subtraction.
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2. Then, in the Noise thresholding phase the upper limit is set to 100 counts, while
the lower limit is set to 1.3 times o;, both of them are applied to ;. The pixel
intensity for the ones that are outside those limits are then reset to zero. The upper
limit allows to discard pixels with a intensity much higher than the expected from
particles, those intensities could be produced by leakage currents that go into sensor
wells - also known as hot-pixels. On the other hand the lower limit was optimized to
remove the fluctuation due to electronic noise and set to be just above it in order to
provide a good detection efficiency, but at the same time reducing the amount of
noise pixels that go to the event-reconstruction algorithm. Figure 17 illustrates the
image after passing through the described process and now the tracks are easier to
find by eye but it is also possible to note the noise environment where the signals of

interest are immerse.

Figura 17 — Rebinned image after passing through the
pedestal subtraction and noise thresholding
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3. Images are then rescaled to 512 x 512 pixels, for CPU reasons, so that each 4 x 4
matrix, called macro-pixel, is assigned an intensity value corresponding to the
average of the intensities I; of the 16 pixels occupying the same area of the sensor.
The rescale process is necessary because the CPU time needed to run clustering
algorithms increases when the number of pixels that are sent to them grows. As the

example in Figure 18 shows, in the hypothesis that the preprocessing step removes
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approximately 88% of the pixels from the image (rebined or not), the full resolution
image would take about 10* times longer to be analyzed.

Figura 18 - DBSCAN CPU time consumption in rela-
tion of the number of pixels to be analysed
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Source: Prepared by the author (2020).

4. A 4 x 4 median filter is applied to the rescaled image, replacing a given macro-pixel
intensity by the median of all macro-pixels in its neighborhood w, g(z,y), as given

by Equation 5.1 (141), where f(x,y) is the intensity of the macro-pixel (x,y).

9(x,y) = median{f(z,y), (x,y) € w} (5.1)

The choice by such filter is justified by its effective noise suppression capability
and high computational efficiency (142), which makes it very attractive for various
applications. Tests performed on the EN dataset (see section 4.2) showed that this
filter is able to reduce the number of noise pixels sent to the clustering algorithm by
a factor of 3.07 & 0.02, which is illustrated qualitatively in Figure 19.

5. Lastly, the clustering algorithm receives as input the coordinates (X, Y) and respective
intensities (Z) of the pixels with non-zero I; values, then the output of those algorithms
is used to extract clusters’ features such as integrated light, length and width. All the
features are computed over the full-resolution image after the Pedestal subtraction,

as indicated by the flowchart.

The event-reconstruction algorithm computes more than 20 different features from
each cluster, however, for the scope of this work, it will be important to know only three

of them, described as follow:
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Figura 19 — Image after applying the median filter
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Length and width: defined as the full length of the major and minor axes along the
two eigenvectors of the (X,Y) pixel matrix in the context of Principal Component

Analysis (PCA) (143) are assigned as the length and width of the cluster, respectively.

Cluster light: calculated as the sum of all the pixel /; intensities belonging to the cluster.

The CYGNO collaboration has presented in (139) a detector performance study
using a clustering algorithm based on the widely employed NNC method. In order to
observe the advantages of using iDBSCAN;, it was compared to NNC and the DBSCAN one,
all of them passing through the same preprocessing steps to guarantee a fair comparison

between them.
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5.3 THE CYGNO’S DENSITY-BASED CLUSTERING ALGORITHM

5.3.1 iDBSCAN

The search to improve and optimize most of the technological tasks in physics
experiments, in order to achieve even better results, opens space to try different approaches.
In the particle physics area, like in several others, a priori knowledge about the detection
system and its data can be used to improve the performance of the clustering task (9).
Hereupon, to fit in a finer way the experimental conditions and data of the LEMOn

detector, an adaptation of DBSCAN (41) clustering algorithm was carried out.
As explained in section 2.1.2.1, DBSCAN has only two parameters: € and N,,;,.

The search for clusters starts from a random pixel, where it is open a hyper-sphere of
radius e, if the number of neighboring components inside it reaches the N,,;, value that
pixel is set as a core point. Then, the same process is repeated to all the neighboring
components trying to gather together more points in order to form the final cluster. After
closed the first clusters the algorithm keep looking for more clusters until all the data

components are analyzed.

However, to better match the CYGNO conditions, rather than just counting the
number of components inside a hyper-sphere to decide if it will be member of a cluster, the
intensity value of each pixel are also taking into account. In other words, the iDBSCAN
approach look to the density of pixels and the N,,;, turn into a parameter associated to the
total intensity within a hyper-sphere instead of to the number of elements. Consequently,
whenever the total intensity inside a hyper-sphere reaches the N,,;, value, they are treated
as belonging to a cluster. In the course of the development of the iDBSCAN algorithm,
an effort was made in order to test many € and N,,;, values, which has pointed to values
around 5.8 and 30, respectively, however a validation of these parameters will be presented

in section 5.3.2.

Also, for all the three clustering methods analyzed in this work, it is required for a
cluster to have more than two macro-pixels, otherwise it is discarded. In this way it is

possible to increase their abilities to reject electronic noise and intensity spikes.

Figure 20 shows an example of two °Fe spots with different values of light, 3000
(left) and 1865 (right) photons. They have almost the same number of pixels, length and
width, but a quiet difference on the mean intensity of each pixel. Therefore as DBSCAN
inputs are only the coordinates (X,Y) that passed through the preprocessing phase, the
algorithm sees barely no difference between these two clusters and it also could happen
with an even fainter track. This behavior could lead to an increase in the number of fake
clusters that the algorithm finds. In the other hand, as iDBSCAN also takes in to account
the intensity of each pixel, it is able to better reject fake clusters, begin one of the reasons
why the CYGNO Collaboration is currently using iDBSCAN for the clustering method in
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its event-reconstruction.

Figura 20 — Example of two **Fe spots with 3000 (left) and 1865 (right) photons
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5.3.2 Validation of the iDBSCAN parameters

The iDBSCAN performance for signals originated by the interactions of photons
from ®5Fe has been investigated as a function of different values of its parameters: e and
Nyin- A test on the detector efficiency and background rejection was realized to inspect
those values: a scan over the two iDBSCAN parameters. Although the € (V,,;,) parameter
will be fixed to a value of 5.8 (30), the other parameter’s value will be swept from 5 to 50
(4 to 10). Figure 21 (left) shows the total number of clusters encountered as a function of €
for two different datasets: ER and NRAD. For low € values, the number of NRAD clusters
leans to rise, which could suggest an increase of background contamination. Nevertheless,
for € values between 5 and 7, this contamination rate tends to keep in steady around a
minimum value. Figure 21 (right) shows a similar behavior, while counting only clusters
with an integral in the range 2000-4000 photons, characteristic of **Fe deposits. This
region are analyzed because it refers to the energy region of the **Fe produced electron

recoils (see Fig. 27).

Correspondingly, a scan over the N,,;, parameter has been performed as shown
in Fig. 22. Using the same logic for the € parameter, the plot on the left indicates a low
contamination region for N,,;, values between 20 and 40, and the right plot to a region for
Npin < 30. In both of the cases, when stable, its possible to estimate the number of °°Fe

clusters by the difference between the results, which gives a total number of about 280.

Lastly, energy resolution for all the tested iDBSCAN parameters has also been

measured. The results shows a negligible variation in the energy resolution as a function
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Figura 21 — Total number of reconstructed clusters using iDBSCAN (left) and
Number of clusters in the *Fe peak region (right) as a function of € for ER and
NRAD runs and also a line for the **Fe, which means ER-NRAD
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Figura 22 — Total number of reconstructed clusters using iDBSCAN (left) and
Number of clusters in the **Fe peak region (right) as a function of N, for ER
and NRAD runs and also a line for the *Fe, which means ER-NRAD
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of € and N,,;,, while the mean value was found to be around 12.2%. More details about

the energy resolution measurement are provided in Section 6.3.

5.3.3 Validation of the DBSCAN parameters

The same method performed to choose iDBSCAN parameters was also utilized
for DBSCAN. The resulting values for the DBSCAN parameters were 6 for € and 20 for
Npin- 1t is evident that the value of € for DBSCAN is very close to the 5.8 found by
iDBSCAN, and that shows consistency, since the two-dimensional space is the same for
both algorithms. The DBSCAN graphs are shown in the Figs. 23 and 24 and it is possible

to observe that they have characteristics similar to those presented in Figs. 21 and 22.



Figura 23 — Total number of reconstructed clusters using DBSCAN (left) and
Number of clusters in the *°Fe peak region (right) as a function of € for ER and
NRAD runs and also a line for the **Fe, which means ER-NRAD
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Figura 24 — Total number of reconstructed clusters using DBSCAN (left) and
Number of clusters in the °Fe peak region (right) as a function of N,,;, for ER
and NRAD runs and also a line for the *>Fe, which means ER-NRAD
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6 IDBSCAN COMPARED TO DBSCAN AND NNC

In this chapter, a comparison will be shown between the two clustering algorithms
discussed in this work on three different data sets and also in terms of slimness cut and

energy resolution.

6.1 ELECTRONIC NOISE, NATURAL RADIOACTIVITY AND % FE ENERGY SPEC-
TRA

In order to evaluate the detection efficiency and background rejection of both
methods, the well-known energy deposition signature of 5.9 keV photons coming out from
the % Fe source is exploited. The ER dataset will be used for signal characterization,
while the background rejection measurements will be done by analyzing the EN and
NRAD datasets. The EN acquired data provides low energy clusters with a distribution
compressed in the region below 500 photons as shown in Fig. 25, NRAD provides an
energy distribution widely spread by a heavy tail component as shown in Fig. 26 while
ER forms an additional narrow distribution centered at around 3000 photons as shown
in Fig. 27. In this last case, the energy spectrum is composed of background and %°Fe
induced deposits. Consequently, to remake the *°Fe energy distribution, the background
distribution should be subtracted. All the distributions were generated with 864 images,
the same amount for each one of them, except for the iDBSCAN distributions of Fig.
25 which used 6478 images to collect enough EN-clusters, which occurs at a low rate.
Additionally, the cluster aspect ratio, called slimness, enhances the signal purity. Slimness
is defined here as the ratio between the minor axis (width) and major axis (length) of each

cluster.

Figure 25 compares the energy spectrum of clusters generated by NNC and DBS-
CAN with those generated by iDBSCAN for EN events with and without a selection based
on the slimness parameter, considering only clusters with slimness greater than 0.4 for
the latter case. The computed numbers of EN-clusters per image for NNC, DBSCAN
and iDBSCAN were 4.61 +0.17, 3.17 4 0.12 and (9 &= 4) x 10~%, respectively. Regarding
NNC and DBSCAN, EN-clusters dominate the background rate for energies below 500
photons which can be noticed by comparing the EN energy distribution of Fig. 25 with
that of the NRAD shown in Fig. 26. Selection on slimness variable decreases the number
of clusters per image to 3.80 + 0.14, 2.17 £ 0.09 and (5 £ 3) x 10~* for NNC, DBSCAN
and iDBSCAN, respectively. Thus, when compared to NNC and DBSCAN, iDBSCAN is
able to reduce the number of EN-clusters per image by a factor of (3 =+ 7) x 103

Figure 26 shows the energy distributions for the NNC, DBSCAN and iDBSCAN
clusters using the NRAD dataset without (left) and with (right) a selection on slimness.
iDBSCAN presents a clear peak evolution of around 300 photons. At the same time, NNC



o0

Figura 25 — Clusters energy distribution for NNC and iDSBSCAN applied to the EN
dataset, without (left) and with (right) a cut on the slimness
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and DBSCAN accumulate clusters with lower energies due to EN-clusters. iDBSCAN
and DBSCAN reduce the number of background events in the region between 2000 and
4000 photons when compared to NNC, which is the region where the % Fe events are
expected to be, as mentioned before, providing better background rejection for low energy
events as for the 5.9 keV photons. On the right of Fig. 26, the distribution of light, only
considering clusters with slimness greater than 0.4 is shown. This selection reduces, even
more, the number of background events in the °®Fe region. It brings NNC closer to the
other methods. Nonetheless, the number of fake clusters is only reduced on a small scale
for the lower energy region, and that causes iDBSCAN to maintain a better background
rejection efficiency when compared to NNC and DBSCAN.

Figure 27 shows the results of the same analysis performed on the ER dataset. The
sum of the distribution obtained in the NRAD sample and the one from 5Fe interactions
are expected in this case. As explained before, all three clustering algorithms are sensitive
to the 5.9 keV photon events. Yet a higher purity level is achieved using iDBSCAN. As
shown in the right plot of Fig. 27, after applying the slimness threshold, the distributions
around the %°Fe peak of NNC, DBSCAN, and iDBSCAN get closer, indicating that the
three methods have similar detection efficiency considering that the number of *Fe spots

found by each method is basically the same.

6.2 SLIMNESS SELECTION OPTIMIZATION

Figure 28 shows the slimness cumulative distribution of clusters for an interval
between 0 and 1, applied to the NRAD and ER datasets for NNC, DBSCAN, and
iDBSCAN. As shown, in all cases °Fe spots tend to have slimness higher than about 0.4.



o1

Figura 26 — Clusters energy distribution for NNC and iDSBSCAN applied to the NR
dataset, without (left) and with (right) a cut on the slimness
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Figura 27 — Clusters energy distribution for NNC and iDSBSCAN applied to the *°Fe
dataset, without (left) and with (right) a cut on the slimness
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This variable can be used in conjunction with energy measurement to segregate *°Fe spots
from background clusters. The value of slimness will be swept in this section so that it will
be possible to determine the most relevant value for its use as an event selection parameter

as well as to evaluate its impact when applied together with the energy measurement.

The number of clusters within the selected *>Fe energy region (from 1500 to 4500
photons) was measured for various slimness threshold values (X > x) as shown in Fig. 29
for the NNC, DBSCAN, and iDBSCAN algorithms to evaluate the signal efficiency and
purity as a function of the slimness selection for the two algorithms. This figure also shows
that DBSCAN and iDBSCAN can find a similar number of clusters in the *>Fe region
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Figura 28 — Cumulative distribution of the slimness for NRAD and ER data, for NNC,
DBSCAN and iDSBSCAN
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Source: Prepared by the author (2020).

when compared to NNC for slimness below 0.4, given by the difference between the ER

and NRAD curves, but with lesser contamination (NRAD curves).

Considering that the *>Fe clusters develop an intensity that follows a Gaussian
distribution with an average value of about 3000 photons and standard deviations of 550,
385 and 371, for NNC, DBSCAN, and iDBSCAN respectively (see Fig. 30), then more
than 99% of the *Fe clusters are selected between 1500 and 4500 photons. Differently,
for the same region, the subtraction of the natural radioactivity events between the ER
and NRAD acquisition runs has a mean value equal to zero but a fluctuation of about 23
(14), 10 (7) and 11 (7) clusters for slimness equal to 0.0 (0.4), for NNC, DBSCAN and
iDBSCAN respectively. Consequently, the dashed line of Fig. 29 is made primarily of °Fe
events plus a few background events produced by the statistical fluctuation that occurs in
the process of subtracting natural radioactivity. As can be noticed by observing Fig. 26,
DBSCAN and iDBSCAN tend to have less background contamination than NNC, which
reduces the statistical uncertainty related to the background subtraction. This effect can
also be shown by the shaded band drawn around the dashed lines of Fig. 29.
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Figura 29 — Scan in the number of clusters on the ®> Fe peak region (between 1500 and
4500 photons) when changing the threshold on the slimness for NRAD and ER data, for
NNC, DBSCAN and iDSBSCAN
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The impact of the slimness parameter, based on the measurements of Fig. 29, can
be assessed by measuring the relative efficiency (£4¢) concerning the bin with the highest

content in the *Fe curve (so that for such a bin, g, = 100%), and fake events (Fly), as
defined below:

o &4: number of clusters found in the ER dataset (nF'e) subtracted by the number of
clusters found in the NRAD dataset (nRd) divided by the maximum value of the

nFe — nRd subtraction among all slimness values (see Equation 6.1);

nFe —nRd
sel — 1
Sl <max (nFe — an)) (6.1)

o F.,s: ratio between the number of clusters found in the NRAD dataset (nRd) and
the number of clusters found in the ER dataset (nF'e) (see Equation 6.2a). This

measure can also be understood in terms of background rejection (B,;) as shown by
Equation 6.2b;

Fevts - (Z?Z) (CL) 5 Brj =1- Fevts (b) (62)

Figure 28 shows that the efficiency for background events is low for slimness below
0.4, while most of the **Fe events are retained. Tables 2 and 3 shows, respectively,
the computed e, and F..;s for both clustering methods and different thresholds on the
slimness variable ranging from 0.0 to 0.8. The errors presented in these tables were
computed considering a confidence interval of 95% for a binomial proportion (144). For
the high-efficiency region (> 0.94), occurring for slimness values from 0.0 to 0.4, iDBSCAN
and DBSCAN achieved a lower fake event probability, always about 3 times less than
NNC. For slimness greater than or equal to 0.6 all methods begin to lose efficiency. More

specifically, for a slimness threshold of 0.4, the efficiency is still close to 100% compared to
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not using slimness, but the number of fake events is reduced by a factor of about 2 for all
the methods.

Tabela 2 — £, comparison between iDBSCAN, DBSCAN

and NNC.
Slimness €sel
(width/length) | iDBSCAN | DBSCAN | NNC
0.0 1.00 ;gg% 1.00 $§§§ 0.98 ;ggé
0.2 1.00 e 1.00 oo 1.00 ool
0.6 0.77 oo 0.76 o 0.86 o0
0.8 0.32 0081029 002|041 fHo2

Source: Prepared by the author (2020).

Tabela 3 — F,,;, comparison between iDBSCAN, DBSCAN and NNC.

Slimness Fots iDBSCAN B, ; variation (%)

(width/length) | iDBSCAN | DBSCAN | NNC DBSCAN | NNC
0.0 018 00 T0.15 003048 50T 34 TIL 57.0 1133
0.2 0.16 951013 *904 1045 00| -35  fO9 517 H10T
0.4 0.08 1093 10.08 003025 T 01 3 | 226 F8
0.6 0.08 001007 501011 M 04 F0d 4.0
0.8 0.09 007|011 % | 0.08 T 1.8 %2 -1.0 7

Source: Prepared by the author (2020).

The last column of Table 3 shows the iDBSCAN background-rejection improvement
compared to NNC. For slimness equal to 0.4, for example, iDBSCAN has 92% of background
rejection efficiency while NNC has 75%, leading to a relative improvement of (92-75)/75
~ 23%. Finally, The second-last column of this same table shows that iDBSCAN and

DBSCAN present similar background-rejection performances.

6.3 LIGHT YIELD RESOLUTION

The detector energy resolution was estimated by a fit to the clusters energy
distributions accounting for natural radioactivity and the **Fe events. The former was

modeled by an exponential function and the latter by a Polya function (145):

11 /n\* -
P N I .o/t 6.3
()= <bn) ‘ (6.3)
where b is a free parameter and k = 1/b — 1. The distribution has 7 as expected value,

while the variance is governed by m and the b parameter, as follows: 02 = (1 + bn). The

total likelihood is given by the sum of the two functions.
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Figure 30 shows the fit results for NCC, DBSCAN and iDBSCAN clusters without
applying any selection on the slimness parameter. Based on the computed values, energy
resolution were measured to be (18.1 £ 3.9)%, (12.6 £ 2.2)% and (12.2 £ 1.8)% for NNC,
DBSCAN and iDBSCAN respectively, and the energy conversion factor approximately 515
ADC units per keV for all of them. Conversion factor and energy resolution are computed
using the mean and sigma parameters shown in Fig. 30. The former is the mean divided

by 5.9 keV (ER energy), while the latter is given by dividing the sigma by the mean.

Figura 30 — Results of the fit applied to the NNC, DBSCAN and iDBSCAN energy
distributions
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Source: Prepared by the author (2020).

Figure 31 shows the fit results when considering only clusters with slimness greater
than 0.4. The estimated energy resolutions are 13.7 + 2.4%, 12.7 4+ 2.3% and 11.8 + 1.7%
for NNC, DBSCAN and iDBSCAN, respectively, with a conversion factor of about 510
ADC units per keV.

Figura 31 — Results of the fit applied to the NNC, DBSCAN and iDBSCAN energy
distributions for clusters with slimness higher than 0.4
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Lastly, Table 4 shows the resulting energy resolution for NNC, DBSCAN and
iDBSCAN in correspondence of the different thresholds applied to the slimness. The energy
resolution obtained with NNC, due to its higher background contamination, decreases as
the slimness threshold value increases, reaching eventually the energy resolution obtained
with iDBSCAN. The energy resolutions obtained with DBSCAN and iDBSCAN are similar
and much less dependent on the slimness parameter when compared to NNC, indicating a

greater purity in the selection of %Fe clusters for these two methods.



Tabela 4 — Detector resolution comparison between NNC,
DBSCAN and iDBSCAN as a function of slimness.

Slimness Resolution (%)
(width/length) | iDBSCAN | DBSCAN | NNC
0.0 122 +£18 126 +£22 181 +£40
0.2 120 £1.7 126 +£22 173 +£3.7
0.4 11.8 +£1.8 127 £23|13.7 £24
0.6 120 +£20(129 +£28|11.8 £ 18
0.8 123 +£38 104 +£3.1]11.1 =+ 28

Source: Prepared by the author (2020).
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7 CONCLUSIONS

A fundamental task of the CYGNO experiment occurs in the clustering stage
applied to the signals collected by the optical readout of its detector. In this context, this
thesis offered a first study of the impact of two of the most commonly mentioned clustering
algorithms in the scientific literature on the CYGNO experiment, known as NNC and
DBSCAN. This study led to a modified version of the DBSCAN, called intensity-DBSCAN
(iDBSCAN). The impact of this new algorithm has been examined using 5.9 keV photons
from a 5°Fe radioactive source and compared with an outcome obtained with the standard
DBSCAN and NNC algorithms. iDBSCAN has shown to be able to improve the energy

resolution and background rejection of the experiment.

The achieved results showed that the clustering process of the CYGNO'’s event-
reconstruction algorithm can achieve, with iDBSCAN and without any other event-selection
routine, a natural radioactivity background rejection in the energy region around 5.9 keV
(from 3.0 keV to 8.8 keV) of 0.8215:0] and a number of electronic-noise clusters per image
of (94 4) x 107*, occurring predominantly in the region below 1 keV (a 500 photons).
These results represent an enhancement of 57% for the former in comparison to NCC,
and, for the latter, a advancement by a factor of a few thousand. In comparison to
DBSCAN;, iDBSCAN obtained comparable performance regarding background rejection
in the °Fe energy region; yet, iDBSCAN has managed to considerably cut down the
number of electronic noise clusters in comparison to DBSCAN. As a result, DBSCAN was
not as efficient as iDBSCAN in reducing the effects of electronic noise, even though it
accomplishes similar performance concerning iDBSCAN in the rejection of background

radiation.

Lastly, the detector energy resolution using iDBSCAN was measured to be (12.2
+ 1.8)% for 5.9 keV electron recoil events. By requiring spots with slimness larger than
0.4, a rate of electronic-noise clusters per image of (54 3) x 107*, a natural radioactive

background rejection of 0.92735% and an energy resolution of (11.8 + 1.7)% were achieved.
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Lopes G.S.P. et al. (2019) Study of the Impact of Pre-processing Applied
to Images Acquired by the Cygno Experiment. In: Morales A., Fierrez J.,
Sanchez J., Ribeiro B. (eds) Pattern Recognition and Image Analysis. IbPRIA 2019.
Lecture Notes in Computer Science, vol 11868. Springer, Cham.

This work proposes to evaluate the effect of digital filters when applied to images
acquired by the ORANGE prototype of the Cygno experiment. A preliminary
analysis is presented in order to understand if filtering techniques can produce results
that justify investing efforts in the pre-processing stage of those images. Such images
come from a camera sensor based on CMOS technology installed in an appropriate
gas detector. To perform the proposed work, a simulation environment was created
and used to evaluate some of the classical filtering techniques known in the literature.
The results showed that the signal-to-noise ratio of the images can be considerably
improved, which may help in subsequent processing steps such as clustering and

particles identification.

Journal Publication

Costa, I. Abritta, et al. Performance of optically readout GEM-based TPC
with a 55Fe source. Journal of Instrumentation 14.07 (2019): P07011.

Optical readout of large Time Projection Chambers (TPCs) with multiple Gas Elec-
tron Multipliers (GEMs) amplification stages has shown to provide very interesting
performances for high energy particle tracking. Proposed applications for low-energy
and rare event studies, such as Dark Matter search, ask for demanding performance
in the keV energy range. The performance of such a readout was studied in details
as a function of the electric field configuration and GEM gain by using a 55Fe source
within a 7 litre sensitive volume detector developed as a part of the R&D for the
CYGNUS project. Results reported in this paper show that the low noise level of the
sensor allows to operate with a 2 keV threshold while keeping a rate of fake-events
lesser than 10 per year. In this configuration, a detection efficiency well above 95%
along with an energy resolution (o) of 18% is obtained for the 5.9 keV photons

demonstrating the very promising capabilities of this technique.

Accepted Journal Article

Baracchini, Elisabetta, et al. A density-based clustering algorithm for the
CYGNO data analysis. Journal of Instrumentation (2020).

Time Projection Chambers (TPCs) working in combination with Gas Electron

Multipliers (GEMs) produces a very sensitive detector capable of detecting low
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energy events by capturing photons generated during the GEM electron multiplication
process by means of a high-resolution photo camera. The CYGNO Experiment has
recently developed a TPC-Triple GEM detector coupled to a low noise and high
spatial resolution CMOS sensor. For the image analysis, an algorithm based on
an adapted version of the well-known DBSCAN was implemented. In this paper a
description of the CYGNQO’s DBSCAN-based algorithm will be given, including test
and validation of its parameters, and a comparison with a widely used algorithm
known as Nearest Neighbor Clustering (NNC). The results will show that the adapted
version of DBSCAN is capable of providing full signal detection efficiency and very

good energy resolution while improving the detector background rejection.



