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RESUMO

Em fisiologia card́ıaca, alternans elétrica é um fenômeno caracterizado pela alternância

entre potenciais de ação longos e curtos que dá origem a complexos comportamentos

espaço-temporais em tecido. Experimentos e medições cĺınicas indicam que alternans

pode ser um precursor de perigosas arritmias, como fibrilação ventricular ou morte súbita.

Apesar da importância do alternans no estudo de doenças card́ıacas, muitos modelos

matemáticos para a eletrofisiologia de células card́ıacas não são capazes de reproduzir

este fenômeno. Como um potencial remédio para esta deficiência, introduzimos curtos

atrasos de tempo em algumas formulações de modelos preexistentes para células card́ıacas

que são baseados em Equações Diferenciais Ordinárias (EDOs). Vários processos em

células card́ıacas envolvem atrasos de sensibilidade e de resposta a mudanças em variáveis

fisiológicas. Além disso, equações diferenciais com atraso (DDEs) são conhecidas por dar

origem a complexas propriedades dinâmicas em modelos matemáticos. Em modelagem

biológica, DDEs têm sido aplicadas em epidemiologia, dinâmica populacional, imunologia

e redes neurais. Portanto, DDEs podem representar mecanismos que resultam em

dinâmicas complexas tanto no ńıvel celular, quanto no ńıvel do tecido. Nesta tese,

propomos formulações baseadas em DDEs para modelos de canais iônicos descritos pelo

formalismo de Hodgkin-Huxley. Tais formulações são capazes de induzir alternans em

simulações celulares envolvendo vários modelos encontrados na literatura. Nós também

mostramos que essas modificações podem desestabilizar e quebrar ondas espirais em

simulações bidimensionais de propagação elétrica, o que é t́ıpico de fibrilação card́ıaca.

Entretanto, as formulações propostas introduzem novos desafios computacionais devido

à necessidade de armazenar e recuperar valores passados de variáveis. Deste modo, nós

apresentamos novos métodos numéricos para superar tais desafios e permitir a eficiente

simulação de modelos baseados em DDEs no ńıvel do tecido card́ıaco. Os métodos

propostos foram capazes de diminuir o uso de memória em até 95% em comparação aos

algoritmos largamente utilizados na solução numérica de DDEs. Assim, os novos modelos

baseados em DDEs e os eficientes métodos numericos propostos nesta tese contribuem



para o estudo de arritmias card́ıacas fatais através de modelagem computacional.

Palavras-chave: Modelagem Card́ıaca. Mecanismos de Arritmia Card́ıaca. Equações

Diferenciais com Atraso. Alternans Elétrica.



ABSTRACT

In cardiac physiology, electrical alternans is a phenomenon characterized by long-short

alternations in the action potential duration of cardiac myocytes that give rise to complex

spatiotemporal dynamics in tissue. Experiments and clinical measurements indicate that

alternans can be a precursor of life-threatening arrhythmias, such as cardiac fibrillation.

Despite the importance of alternans in the study of cardiac disease, many mathematical

models developed to describe cardiac electrophysiology at the cellular level are not able

to produce this phenomenon. As a potential remedy to this deficiency, we introduce

short time-delays in some formulations of existing cardiac cell models that are based on

Ordinary Differential Equations (ODEs). Many processes within cardiac cells involve

delays in sensing and responding to changes. In addition, delay differential equations

(DDEs) are known to give rise to complex dynamical properties in mathematical models.

In biological modeling, DDEs have been applied to epidemiology, population dynamics,

immunology, and neural networks. Therefore, DDEs can potentially represent mechanisms

that result in complex dynamics both at the cellular level and at the tissue level. In

this thesis, we propose DDE-based formulations for ion channel models based on the

Hodgkin-Huxley formalism that can induce alternans in single-cell simulations in many

models found in the literature. We also show that these modifications can destabilize

spiral waves and produce spiral breakups in two-dimensional simulations, which is a

typical model of cardiac fibrillation. However, the new DDE-based formulations introduce

new computational challenges due to the need for storing and retrieving past values of

variables. Therefore, we present novel numerical methods to overcome these challenges

and enable efficient DDE-based studies at the tissue level in standard computational

environments. We find that the proposed methods decrease memory usage by up to 95%

in cardiac tissue simulations compared to straightforward history management algorithms

available in widely used DDE solvers.

Keywords: Cardiac Modeling. Cardiac Arrhythmia Mechanisms. Delay Differential

Equations. Electrical Alternans.
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1 Introduction

Computational modeling of the electrical activity of the heart is an important tool for

understanding heart function (Martin, 1968), since the involved mechanisms are highly

complex and span mulpliple scales of space and time. After the publication of the ground-

breaking mathematical model for excitable cells by Hodgkin - Huxley (1952), Noble

(1962) published the first model for the cardiac action potential and pacemaker rhythm of

Purkinje fibers. Since then, models of cardiac electrophysiology have constantly evolved,

both in accuracy and complexity. Those models have been applied to reproduce different

kinds of cardiac disease, e.g. arrhythmias and fibrillation (Fenton et al., 2002; ten Tusscher

- Panfilov, 2006; Göktepe et al., 2009), myocardial fibrosis (Kazbanov et al., 2016) and

ischemia (Dutta et al., 2017). They have also been applied to simulate the effects of drugs

on the myocytes electrophysiology and have aided the development of pharmacological

therapies (Amanfu - Saucerman, 2011). According to the World Health Organization

(WHO), cardiac disorders are the leading cause of death in the world. A considerable

number of them are related to cardiac arrhythmias.

Arrhythmias are often associated with instabilities at the cellular level. A number

of mechanisms in the cardiac cell can produce instabilities that give rise to electrical

alternans, which consists of long-short alternations in action potentials despite a constant

pacing rate. This process is known as a potential precursor of severe arrhythmias that can

lead to ventricular fibrillation (Christini et al., 2006; Echebarria - Karma, 2002; Krogh-

Madsen et al., 2010; Muñoz et al., 2010; Rappel et al., 2009). In cardiac tissue, electrical

alternans might cause a chaotic process of propagation (Garzón et al., 2011) and lead

to spiral breakup (ten Tusscher - Panfilov, 2006; Gani - Ogawa, 2014) or other forms of

ventricular fibrillation.

A number of studies (Fenton et al., 2002; Karma, 1994; Qu et al., 2000; Watanabe

et al., 2001) suggest that the occurence of alternans is directly related to the instability

of fixed points of the restitution relation, which is a map relating the action potential
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duration (APD) with the preceding diastolic interval (Nolasco - Dahlen, 1968). Other

mechanisms for alternans have been observed both numerically and experimentally, e.g.,

in intracellular calcium cycling (Restrepo - Karma, 2009; Sato et al., 2013). Despite its

importance, many cardiac models are not capable of reproducing it and the adaptations

necessary for giving rise to alternans are often not simple or not known.

Delay Differential Equations (DDEs) are known to produce complex dynamics in

many applications of mathematical modeling (Wolfrum et al., 2010), e.g. control theory

(Shampine - Gahinet, 2006) and population dynamics (Ruiz-Herrera, 2012). They have

also been applied to cardiac electrophysiology, either to describe the wave propagation in

an excitable medium with a ring geometry (Courtemanche et al., 1996) or to model the

intracellular calcium dynamics (Thompson, 2013). Most electrophysiological processes

in excitable cells involve delays since ion channels are composed of subunits that are

activated interdependently, which causes latency between changes in voltage and channel

gating. These delayed processes are often modeled by Markov-chain formulations (Rudy

- Silva, 2006). An investigation on the use of DDEs to describe these processes is

promising, specially in studies that are focused on arrhythmias and complex dynamics,

since the genesis of the instabilities responsible for generating alternans is not completely

established.

In the present study we explore the application of DDEs to ion channel formulations

of different cardiac cell models, specifically in terms of the potential for promoting and

modulating electrical alternans. A number of models of different physiological properties

and levels of complexity were modified with DDEs in order to assess the possibility of

inducing alternans and how the restitution instabilities are sensitive to delays. We also

perform DDE-based experiments at the tissue level and assess how the use of delays affects

wave propagation properties and spiral wave dynamics.

Tissue level simulations are computationally expensive, since they involve the

numerical solution of highly nonlinear reaction-diffusion models. The computation of

DDEs requires the storage of a history for the delayed variables. The size of the history

for a given variable is proportional to the magnitude of the associated delay, so the use
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of delays in a spatio-temporal simulation with a large number of nodes might demand a

considerable amount of memory. In a ventricle simulation the use of a single delay variable

could require a considerably high amount of additional memory. Therefore, another main

goal of this project is the development of efficient techniques for performing simulations

of this nature, especially when stability requirements limit the size of the simulation time

step.

1.1 Objectives

There are many possible applications for the use of DDEs in cardiac modeling, considering

the number of physiological elements that involve delayed processes within the cell. The

first objective of this work is to explore possible applications of DDEs to the ion channel

models based on the Hodgkin-Huxley formulation and assess their potential for producing

proarrhythmic instabilities, such as electrical alternans at the cellular-level and spiral wave

breakup at the tissue-level.

Secondly, this work aims to provide a numerical framework for the efficient simulation

of DDE-based experiments in cardiac models, specially at the tissue level, where memory

and computational performance requirements play a significant role. We also intend to

provide sufficiently general adaptive algorithms that could possibly be applied to other

fields of study involving DDEs.

1.2 Summary

A total of four articles were developed during this Ph.D. research, three of which were

already published. The first two papers show that DDEs are able to restore/enhance

alternans in models of cardiac cells based on the Hodgkin-Huxley formalism (Eastman

et al., 2016; Gomes et al., 2017). Our third manuscript extends these results to tissue-

level cardiac simulations (Gomes et al., 2019a), showing that DDEs can reproduce the

transition from tachycardia to fibrillation. The most recently submitted paper is focused

on numerical methods for stiff models based on the Markov formalism for ion channels
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(Gomes et al., 2019b).

In Chapter 2 we present background information about the basics of cardiac

electrophysiology, action potentials, models of ion channels and calcium handling,

restitution analysis, cardiac alternans and mathematical modeling of wave propagation in

cardiac tissue.

Chapter 3 presents the existing numerical methods that were applied during

this project, alongside with the numerical techniques that we developed for efficient

simulation of stiff models and DDE-based experiments. The chapter also describes the

phenomenological modifications that we applied to different cardiac models in order to

assess the dynamics produced by DDEs in ion channel formulations.

The results of this research are presented and discussed in chapter 4. The chapter

starts with the results from single-cell experiments involving DDE-based modifications

applied to a number of different cardiac models. The following section includes

experiments performed at the tissue-level, aiming for computational performance and

memory management efficiency. We also discuss how the wave propagation dynamics is

affected by the use of delays.

The fifth chapter of this document contains a discussion about the obtained results

and limitations of the present work. The sixth chapter presents the conclusions and final

remarks.
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2 Cardiac Electrophysiology

The heart is composed of two separate pumps: the right heart, which pumps blood through

the lungs, and the left heart, which pumps the blood through the rest of the body (Hall

- Guyton, 2006). Each pump is composed of two chambers: the atrium and the ventricle,

as shown in Fig. 2.1.

Figure 2.1: Basic structure of the heart: chambers and blood flow. Adapted from Hall -
Guyton (2006).

The muscle fibers - or cardiac myocytes - within an atrium or ventricle must contract

synchronously so the blood can be propelled properly. This synchronization is provided by

the electrical signals that arise from the sinoatrial node and are conducted by specialized

cells called Purkinje fibers. These electrical signals are propagated to the other cardiac

myocytes, which undergo a process of electrical excitation that leads to mechanical

contraction.
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2.1 Electrophysiology of Cardiac Cells

A membrane potential is the difference of electrical potential between the intracellular

and the extracellular media of a cell. Virtually all cells of the body exhibit a membrane

potential of a few millivolts (Hall - Guyton, 2006), but some cells - known as excitable cells

- are able produce dynamic changes in the membrane potential in response to external

electrical signaling.

2.1.1 The action potential (AP)

Cardiac muscle cells are considered excitable because of their ability to produce action

potentials in response to electrical stimuli. The action potential (AP) is a trajectory

undergone by the membrane electrical potential, which consists of a rapid depolarization of

the cell membrane (rise of the membrane potential) followed by a process of repolarization

(membrane potential decreases to the resting value). The depolarization is caused by

a rapid influx of sodium to the intracellular media, while the repolarization is mainly

promoted by potassium eflux. The ion fluxes through the membrane are controlled by

protein structures called ion channels, as shown in Fig. 2.2.

Figure 2.2: Basic structure of a cell membrane and a voltage-gated ion channel. Adapted
from Campos (2008).

Figure 2.3 shows the main phases of a typical cardiac action potential. The

repolarization is divided into phases 1, 2 and 3. The phase 2 - or plateau - is mainly

sustained by calcium influx, and it is the phase that most contributes to the action

potential duration (APD). Phase 3 is mainly characterized by outward potassium currents

that lead the membrane potential back to its resting value. It is also worth noting that

different types of potassium and calcium channels operate distinctively during the action
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potential. That happens because each type of ion channel has a gating structure that

responds differently to changes in voltage or ion concentration.

Figure 2.3: Phases of the action potential from a typical nonpacemaker heart cell (Saad
et al., 2015).

2.1.1.1 Threshold potential

The action potential of an excitable cell is initiated when the membrane is depolarized

beyond a threshold, which usually corresponds to a membrane potential of a few tens of

milivolts above the resting value, which varies with species and cell type. As an example,

a typical human ventricular epicardial cell has a resting potential of about −87 mV and

a threshold potential of −55 mV approximately (ten Tusscher et al., 2004). If a stimulus

current is not strong enough to drive the potential beyond the threshold, the membrane

will rapidly repolarize to its resting state after the stimulus ceases. Otherwise, the sodium

channels will be activated, and a massive influx of sodium will depolarize the membrane,

initiating an action potential.

2.1.1.2 Refractory period

The cardiac refractory period is an interval of time after the initiation of an action

potential in which it is impossible to initiate a subsequent action potential. Figure 2.4

illustrates this property of an excitable cell, where stimuli that would normally drive the
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membrane potential above the threshold and initiate an action potential fail to produce

a second AP during the refractory period. This period is slightly shorter than the

action potential duration under normal conditions and it is essential to ensure the proper

contraction of the heart through synchronous wave propagation across the cardiac fibers.

Figure 2.4: Plot of a membrane potential recording where stimulus currents fail to initiate
a second action potential during the refractory period, which is highlighted by a gray
dashed line (adapted from Commons (2007)).

Despite the refractory period being responsible for maintaining the proper functioning

of the heart, it also plays an important role in the genesis of reentrant waves in cardiac

tissue. Reentry is a phenomenon where an electrical wave continuously circulates a
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specific region of cardiac tissue, generally associated with tachycardia and other types

of arrhythmia (Hall - Guyton, 2006). Figure 2.5 illustrates the mechanism of reentry in

a media with a fast conduction path on the left, an obstacle in the middle, and a slow

conduction path on the right. The preexisting refractory period in the cells located at the

right path blocks the signal coming from the top but allows a reentrant wave from the

left path to travel in the retrograde direction and promote a continuous circulating wave

of electrical excitation.

Figure 2.5: Schematic of the mechanism of reentry in a heterogeneous media with an
obstacle (adapted from Timour et al. (2012)).

2.1.2 Modeling the membrane

The first model describing the action potential of an excitable cell was proposed by

Hodgkin - Huxley (1952). Their model is capable of reproducing the action potential

of the squid giant axon with a system of four ODEs. A decade of after its publication,

Noble (1962) adapted the Hodgkin-Huxley model to develop the first model for the action

potential of cardiac Purkinje cells. Nearly all modern cardiac cell models are somehow

derived from the Hodgkin-Huxley neural model.

The Hodgkin-Huxley model describes the membrane as the circuit shown in Fig. 2.6,

where V is the membrane potential, Cm is the membrane capacitance, INa is the sodium

current, IK is the potassium current and IL is a leak current (composed by other ion
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species that are not considered in the model). Each ion current computes all ion charges

crossing through the corresponding population of ion channels in the membrane.

Figure 2.6: Representation of the neuron membrane as an electrical circuit.

The equation governing the membrane potential is obtained by the Kirchhoff’s voltage

law and it is given bys

dV

dt
= − 1

Cm
Iion, (2.1)

where Iion is the sum of all ion currents, which are given by

INa = gNa(V − ENa), (2.2)

IK = gK(V − EK), (2.3)

IL = gL(V − EL). (2.4)

The Nernst Potentials ENa, EK and EL are functions of their associated ions’

concentrations, but are considered as constants in this model. The conductances gNa and

gK are determined by the voltage-gated dynamics of the sodium and potassium channels,

respectively.
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2.1.3 Ion channel models

Each sodium channel in the Hodgkin-Huxley model is considered to have three gates

associated with its activation and one gate for its inactivation. Let m and h be the gating

variables for the activation and inactivation gates, respectively. The sodium conductance

is given by

gNa = gNam
3h, (2.5)

dm

dt
=
m∞(V )−m

τm(V )
, (2.6)

dh

dt
=
h∞(V )− h
τh(V )

, (2.7)

where gNa is the maximum sodium conductance (the conductance value when all sodium

gates are fully open). The Equations (2.6) and (2.7) are called the Hodgkin-Huxley

formulations for the gating variables m and h, respectively, where m∞(V ), h∞(V ), τm(V )

and τh(V ) are nonlinear functions of the membrane potential V , formulated to fit the

voltage-clamp experimental data Hodgkin - Huxley (1952).

The potassium channels are assumed to have four identical activation gates,

represented by the gating variable n. The conductance for the potassium current is given

by

gK = gKn
4, (2.8)

dn

dt
=
n∞(V )− n
τn(V )

. (2.9)

Many models for cardiac myocytes have been developed following the Hodgkin-Huxley

formulation for ion kinetics. As an example, the model by ten Tusscher - Panfilov (2006)

describes the electrical activity of the human ventricular cell and includes 12 gating

variables for modeling 5 different types of ion channels.
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2.1.3.1 Markov-based Models

Advances in genetics, molecular biology and electrophysiology experiments have provided

new data and information related to the structure and function of ion channels (Wilde

- Bezzina, 2005; Seo et al., 2006) that cannot be represented using the Hodgkin-Huxley

description. The continuous-time Markov Chain (MC) formalism has been increasingly

used to describe both function and structure of ion channels, enabling the description

of highly detailed physiological processes. MC-based models have enabled simulations

of structural abnormalities due to genetic diseases and drug-binding effects on ion

channels (Clancy - Rudy, 1999; Brennan et al., 2009; Clancy et al., January 2007).

The Hodgkin-Huxley formulation is based on the assumption of independent gating

so it is not able, e.g., to describe the inactivation dependency on the activation of

Na+ channels, which was experimentally verified (Armstrong - Bezanilla, 1977b,a). As

an example, consider a three-state Markov model for a hypothetical ion channel as

represented in Figure 2.7. The model supposes an ion channel can be either open (O),

closed (C) or inactive (I), and inactivation can only occur from the open state. In this case,

a Hodgkin-Huxley formulation would not be applicable and the states must be described

individually by the following equations:

dC

dt
= −αC −+βO, (2.10)

dO

dt
= αC − (β + γ)O + δI, (2.11)

dI

dt
= γO − δI, (2.12)

where C, O and I represent the proportion of channels in each corresponding state. Note

that this system is overdetermined in that the algebraic equation C+O+I = 1 also must

be satisfied.

Markov models for electrophysiology can vary in complexity from simple three-state

models to complex chains containing up to 18 states, like the one for the L-type Ca2+

channel in the model by Bondarenko (2014). Figure 2.8 shows the 9-state Markov scheme

for the Na+ channel from the model by Bondarenko et al. (2004).
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Figure 2.7: Three-state Markov model for a hypothetical ion channel.

Figure 2.8: Markov model for the Na+ channel described in the model for the mouse
ventricular action potential proposed by Bondarenko et al. (2004).

2.1.4 Calcium handling

Intracellular processes mediated by calcium are directly responsible for proper myocyte

contraction. The process of depolarization (excitation) triggers a considerable influx

of calcium ions through the L-type channels into the intracellular medium. This

inward calcium current not only prolongs the action potential duration, but also

promotes a slight increase in the intracellular concentration of Ca2+, which activates

ryanodine receptors (RyR) that trigger a much larger release of Ca2+ from the

sarcoplasmic reticulum (SR) (Hall - Guyton, 2006). The resulting transient increase

in intracellular calcium concentration initiates the sarcomere contraction when cytosolic

calcium binds to myofilaments called troponin, actin and myosin. As the cell membrane

is repolarized, calcium ions are stored back into the SR by the SERCA pump and
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intracellular/extracellular balance of Ca2+ is restored by the Na+ − Ca2+ exchanger

located in the cell membrane.

Detailed modeling of calcium cycling had not been included in cardiac models until

recently. As an example, the model proposed by ten Tusscher - Panfilov (2006) computes

Ca2+ dynamics considering two different compartments in the SR: the JSR (junctional

sarcoplasmic reticulum) and the NSR (network sarcoplasmic reticulum). They also

consider a separated compartment for the region of the cytoplasm that is vicinal to the

L-type calcium channels and the RyR receptors. Ions of calcium transit between adjacent

compartments via simple diffusion. A schematic diagram of the model is shown in Figure

2.9.

Figure 2.9: Schematic diagram of the ion fluxes described by the ten Tusscher - Panfilov
(2006) mathematical model of the human ventricular myocyte.

2.2 Electrical alternans

Cardiac electrical alternans is a dynamical state where the action potential alternate

between two periods despite a constant - and typically fast - pacing rate. The study

of alternans is particularly important because it is frequently associated with dangerous
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conditions such as myocardial ischemia (Kléber et al., 1978; Kwofie et al., 2011) and

cardiac arrhythmia (Weiss et al., 2011; Bayer et al., 2016). This phenomenon is illustrated

in Figure 2.10, where action potentials start to alternate between long and short in a

cardiac fiber when the pacing period is reduced from 270 ms to 250 ms.

Figure 2.10: Occurrence of alternans at a fast pacing rate in a cardiac fiber (adapted from
Garzón et al. (2011)): (a) action potentials with constant duration for a pacing period
of 270 ms; (b) action potentials with period-doubling for a constant pacing period of 250
ms.
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2.3 Restitution analysis

Restitution analysis - also known as APD restitution analysis - consists of determining

a map that relates the action potential duration (APD) with the preceding diastolic

(DI) interval by obtaining steady-state solutions using different pacing periods - cycle

lengths (CL) or basic cycle lengths (BCL) - as originally described by Nolasco - Dahlen

(1968). The APD is the time an action potential takes to repolarize the membrane after

depolarization. The DI is the time elapsed from the end of an action potential to the

beginning of the next one, i.e., DI = CL− APD, as shown in 2.11.

Figure 2.11: Measurements for performing a restitution analysis: action potential duration
(APD), diastolic interval (DI) and cycle length (CL).

Restitution curves with APD as a function of DI can be utilized to analyze the

conditions for occurring alternans. A number of studies indicate that a restitution curve

with slope greater than 1 is somehow associated with the occurrence of instabilities and

voltage-driven alternans (Guevara et al., 1984; Garfinkel et al., 2000a). Moreover, a non-

monotonic restitution curve can indicate the occurrence of chaos at the tissue level (Qu

et al., 1997). Figure 2.12 shows an example where the steep region of a restitution curve

(i.e. slope greater than 1) is associated with the occurrence of period-doubling (alternans)
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in the model proposed by Fox et al. (2002).

Figure 2.12: Relation between a steep restitution curve and period-doubling (adapted
from Fox et al. (2002)): (A) bifurcation diagram, where APD is plotted as a function of
the basic cycle length (BCL); (B) restitution plot of APD as a function of the diastolic
interval (DI) alongside with a solid line with a slope of 1.

APD alternans can also arise from non voltage-driven mechanisms, such as calcium

cycling instabilities (Dı́az et al., 2004). Therefore, restitution analysis is not always a

reliable tool for assessing the manifestation of alternans, since it can occur even when the

restitution slope is not greater than 1 (Goldhaber et al., 2005).

2.4 Tissue Models

The bidomain model (Tung, 1972) is the main framework for simulating the electrical

activity of cardiac tissue. The model describes electrical potential propagation in both

intracellular and extracellular media. It is deduced from the volume conductor theory

for quasi-static electric and magnetic fields, and divides the tissue into two continuum

domains (intracellular and extracellular). For each point of the tissue an electrical

potential is associated in each of the two domains, and it is defined as a quantity averaged

over a small volume.

If ue is the extracellular potential, ui is the intracellular potential, Me and Mi are

the conductivities tensors in the two domains, and V = ui − ue is the transmembrane
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potential, then the bidomain model can be written as:

∇ · (Mi∇V ) +∇ · (Mi∇ue) = χCm
∂V

∂t
+ χIion(V (x, t),y, t), (2.13)

∇ · (Mi∇V ) +∇ · ((Mi + Me)∇ue) = 0, (2.14)

∂y

∂t
= f(V (x, t),y, t), (2.15)

where χ is the ratio of membrane area to volume, Cm is the transmembrane capacitance

by unit of membrane area and Iion is the ion current crossing the membrane, which

is determined by the state variables y from a myocyte model. Assuming the heart is

surrounded by an insulating medium, the boundary conditions are

n · (Mi∇V + Mi∇ue) = 0, (2.16)

n · (Me∇ue) = 0. (2.17)

The bidomain model is a nonlinear system of partial differential equations. One can

reduce the model to a single partial differential equation by assuming that both domains

have equal anisotropy rates. So if Me = λMi, it is possible to deduce the monodomain

model, which is given by

λ

1 + λ
∇ ·Mi∇V = χCm

∂V

∂t
+ χIion(V (x, t),y, t), (2.18)

∂y

∂t
= f(V (x, t),y, t), (2.19)

n · (Mi∇V ) = 0, (2.20)

V (x, 0) = V0(x), (2.21)

y(x, 0) = y0(x). (2.22)
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For an isotropic medium, the model can be simplified into the following formulation:

∂V

∂t
= D∆V − 1

Cm
Iion(V (x, t),y, t), (2.23)

n · ∇V = 0, (2.24)

∂y

∂t
= f(V (x, t),y, t), (2.25)

where D is the constant diffusion coefficient given by D = λ
1+λ

σ
χCm

, where σ is the

medium’s conductivity.

The monodomain model is not as realistic or physiologically accurate as the bidomain

model, especially in situations where the extracellular potential is essential, e.g.,

applications involving data collected from electrocardiograms. On the other hand, the

monodomain model has reduced computational complexity and is still adequate for

studying wave propagation dynamics and even complex types of arrhythmia (Potse et al.,

2006), such as fibrillation.

Cardiac fibrillation is a dangerous form of arrhythmia that is thought to be caused by

breakups of initial reentrant waves in cardiac tissue (Weiss et al., 2002). The underlying

mechanism of spiral breakups is often associated with steep restitution of action potential

duration and electrical alternans (Qu et al., 2000; Garfinkel et al., 2000b). Figure 2.13

shows snapshots from a monodomain simulation where alternans induce spiral wave

breakup in the two-variable model proposed by Karma (1994). This two-dimensional

experiment illustrates the transition from an arrhythmic state of tachycardia to cardiac

fibrillation.
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Figure 2.13: Voltage snapshots of a 2D simulation of the Karma (1994) model. A single
spiral wave (a) is destabilized by electrical alternans (b) and breaks up into multiple
spiral segments (c) that evolve into spiral turbulence (d). Image adapted from Byrne
et al. (2015)
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3 Methods

This chapter addresses the numerical schemes applied in this research with the objective of

performing computationally efficient DDE-based tissue simulations. It also describes the

techniques we applied to modify action potential models with DDE-based formulations.

3.1 Methods for ODE-based models

The following subsections describe methods that are classically utilized for the numerical

solution of models based on the Hodgkin-Huxley formulation.

dy

dt
= f(y, t), (3.1)

y(t0) = y0. (3.2)

3.1.1 Forward Euler method (FE)

The traditional forward Euler method is the simplest among the classical explicit schemes.

It has first-order accuracy and its stability is conditioned to the size of the time step ∆t.

Given an initial condition y0 = y(t0), the approximated solution at each step n + 1 is

computed by:

yn+1 = yn + ∆tf(yn, tn), (3.3)

where yn+1 is the discretization of the ODE at step n+ 1, yn is its value at the previous

step n, tn is given by t0 + n∆t, and f(yn, tn) is the right-hand-side function.

The system of ODEs may be very stiff in realistic models of excitable systems

(SUNDNES et al., 2002). In this case, the Euler method may need a large number

of very small time steps to finish a simulation without losing numerical stability.
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3.1.2 Rush-Larsen method (RL)

The method proposed by Rush - Larsen (1978) aims to improve the stability of

the traditional Euler scheme when applied to models based on the Hodgkin-Huxley

formulation for ion channels. The model is partitioned between gating variables - which

are also called quasi-linear variables - and fully nonlinear variables. The last group of

variables is integrated with the traditional FE scheme, while the equations associated

with the first group are considered locally linear at each time step and are solved by an

exponential integrator. For a gating variable pj associated with the ODE

dpj

dt
=
pj∞ − pj

τpj
, (3.4)

which can be written as

dpj

dt
= ajpj + bj, (3.5)

with aj and bj being nonlinear functions of the membrane potential or a certain

intracellular concentration, the following formulation is applied at each step n+ 1:

pjn+1 =


ea

j
n∆tn

(
pjn + bjn

ajn

)
− bjn

ajn
, if |ajn| ≥ δ

pjn + ∆tn(ajnp
j
n + bjn), otherwise,

(3.6)

where ajn and bjn are previously computed approximations for aj(tn) and bj(tn),

respectively.

3.2 DDE-based formulations for ion channels

The traditional modeling techniques for describing an action potential are either based on

the Hodgkin-Huxley formalism or Markov models for ion channels. Markov models are

particularly useful to describe delayed activation or inactivation of ion channels through

the use of intermediate discrete states of channel conformation. It has been recently

shown that it is possible to approximate action potential models with a single delay
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differential equation (Rameh et al., 2019), which makes DDEs a candidate alternative

tool for describing ion channel dynamics in modern models of electrophysiology.

In this research, we focus on introducing DDEs into preexisting action potential models

in order to aggregate new dynamical features while preserving physiological properties.

We propose a DDE-based technique to perturb Hodgkin-Huxley formulations with delays.

The technique consists of imposing delays on the voltage (or calcium) sensing of ion

channels. Given a gating variable n with time constant τn(V ) and steady-state value

n∞(V ), the following method applies a delay δ to the membrane potential V , converting

the ODE

dn

dt
=
n∞(V (t))− n
τn(V (t))

, (3.7)

into the DDE:

dn

dt
=
n∞(V (t− δ))− n
τn(V (t− δ))

. (3.8)

Some gating variables are assumed to have a very small time constant, so they are

mathematically described as algebraic functions of V . As an example, the inward rectifier

potassium current (IK1) in the Luo - Rudy (1991) model is modeled by:

IK1 = gK1
K1∞(V (t))(V − EK), (3.9)

where gK1
is the maximum conductivity of IK1 channels and K1∞ is the associated

activation gate, which is described as a nonlinear function of V . A delay δ can be applied

to this gating variable if V (t) is replaced by V (t− δ) when evaluating K1∞(V (t)):

IK1 = gK1
K1∞(V (t− δ))(V − EK). (3.10)

In this case, the ODE associated with V is directly converted into a DDE, since IK1

contributes to the total ion current Iion in

dV

dt
= − 1

Cm
Iion. (3.11)
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3.3 Methods for DDE-based single cell models

3.3.1 Forward Euler adaptation for a DDE

Let us consider the initial value problem (IVP) given by

dy

dt
= f(t, y(t), y(t− δ)), t > 0, (3.12)

y(t) = g(t), t ≤ 0, (3.13)

where δ is a fixed positive value and g is a function that provides a initial history for

y. Equation (3.12) is a delay differential equation with a single constant delay δ. The

MATLAB package dde23 (Shampine - Thompson, 2001) implements an adaptive time

step method based on an m-stage Runge-Kutta (RK) formulation. A fixed time step

version of the method, when applied to the IVP (3.12) with ∆t < δ, is given by

yn+1 = yn + ∆t
m∑
i=1

cifni, (3.14)

where

fni =


f(tni, yni, g(tni − δ)), if tni ≤ δ

f(tni, yni, ỹ(tni − δ)), otherwise,

(3.15)

yni = yn + ∆t
i−1∑
j=1

dijfnj, (3.16)

tni = tn + ei∆t, (3.17)

where yn is the previously computed approximation for y(tn), ci and di are predefined

weights of the chosen Runge-Kutta scheme, tni are the corresponding predefined

intermediate times with 0 ≤ ei ≤ 1, and ỹ is a history function obtained from previously

computed values of y.

In order to compute ỹ(tni − δ), we must consider generalizing the formulation given
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by Eq.(3.14) to a point tp+σ in [tp, tp+1], taking the coefficients ci as polynomials in σ:

yp+σ = yp + ∆t
m∑
i=1

ci(σ)fpi. (3.18)

Then, with the previously computed values y1, y2, ..., yn−1 and f1i, f2i, ..., f(n−1)i available

in memory, we can obtain an approximation to any y(τ) for tp ≤ τ ≤ tp+1 and p in

{0, 1, ..., n− 1} with the use of Equation (3.18).

We could derive a first-order version of this scheme, which would be an adaptation of

the forward Euler method to DDEs:

yn+1 =


yn + ∆tf(tn, yn, g(tn − δ)), if tn ≤ δ

yn + ∆tf(tn, yn, ỹ(tn − δ)), otherwise,

(3.19)

where ỹ(tn − δ) can be written as yp+σ if tn − δ = tp + σ∆t. If fp is the right-hand side

evaluated at the p-th step, then

ỹ(tn − δ) = yp+σ = yp + ∆tσfp, (3.20)

which is equivalent to

ỹ(tn − δ) = yp+σ = (1− σ)yp + σyp+1. (3.21)

Therefore, it is not needed to store the right-hand side values in this case, since each past

value of y can be obtained by direct linear interpolation of pre-evaluated values of y.

3.3.2 Rush-Larsen method for DDE-based cardiac models

The forward Euler adaptation for DDEs can be easily extended to systems composed

of ODEs and DDEs, such as the cardiac models we modified in this research using the

formulation described in Section 3.2. Also, the Rush-Larsen integrator can be naturally

applied to the Hodgkin-Huxley equations.

Let us consider an action potential model with the DDE formulation (3.8) applied to
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np voltage-dependent gating variables p = [p1, p2, ..., pi, ..., pnp ]ᵀ and to nq intracellular

calcium-dependent gating variables q = [q1, q2, ..., qj, ..., qnq ]ᵀ described by

dV

dt
= − 1

Cm
Iion, (3.22)

dCai
dt

= fCai(V,p,q,y, t), (3.23)

dpi

dt
= aip(V (t− δpi))pi + bip(V (t− δpi)), i ∈ {1, 2, ..., np}, (3.24)

dqj

dt
= ajq(Cai(t− δqj))qj + bjq(Cai(t− δqj)), j ∈ {1, 2, ..., nq}, (3.25)

dyk

dt
= fk(V,p,q,y, t), k ∈ {1, 2, ..., nnl}, (3.26)

where δpi and δqj are fixed delay sizes associated with the gates pi and qj, respectively;

V is the membrane potential, Cm is the membrane capacitance, and Iion is the total

transmembranic current; Cai is the intracellular calcium concentration and fCai is its

associated right-hand-side function; yk represents any remaining nonlinear variable of the

model with fk being its associated right-hand-side function.

The non-gating variables of the model are all described by the ODEs (3.22), (3.23),

and (3.26), and can be solved via direct application of the forward Euler method. The

DDEs (3.24) and (3.25) can be solved by an adapted version of the Rush-Larsen integrator

proposed in this work, which is given by

aip,n = aip(Ṽ (tn − δpi)), (3.27)

bip,n = bip(Ṽ (tn − δpi)), (3.28)

pin+1 =


ea

i
p,n∆tn

(
pin +

bip,n
aip,n

)
− bip,n

aip,n
, if |aip,n| ≥ δ

pin + ∆tn(aip,np
i
n + bip,n), otherwise,

(3.29)

ajq,n = ajq(C̃ai(tn − δqj)), (3.30)

bjq,n = bjq(C̃ai(tn − δqj)), (3.31)

qjn+1 =


ea

j
q,n∆tn

(
qjn +

bjq,n

ajq,n

)
− bjq,n

ajq,n
, if |ajq,n| ≥ δ

qjn + ∆tn(ajq,nq
j
n + bjq,n), otherwise,

(3.32)
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where Ṽ (tn− δpi) and C̃ai(tn− δqj) are obtained from historical data, as described in the

previous section.

3.4 Methods for wave propagation in tissue

In this work we present 1-dimensional (1D) and 2-dimensional (2D) wave propagation

simulations in order to assess the proposed DDE formulations and the efficiency of the

applied numerical techniques at the tissue level. In order to perform these experiments,

we applied the finite differences method to discretize the monodomain model described

by Eq. (2.25) and obtain explicit numerical schemes of simple parallel implementation.

The resulting scheme for 1D experiments in a ring geometry is given by

V i
n+1 − V i

n

∆t
=D

V i+1
n − 2V i

n + V i−1
n

∆x2
− 1

Cm
Iionf(V i

n,yn, tn) =⇒

=⇒ V i
n+1 =V i

n +D
∆t

∆x2
(V i+1

n − 2V i
n + V i−1

n )−

−∆t
1

Cm
[Iion(V i

n,yn, tn) + Istim(x, t)],

i ∈ {1, 2, ..., N − 1}, (3.33)

where ∆x is the spatial discretization, ∆t is the time discretization, V i
n is the discretized

membrane potential at t = tn and x = i∆x, N is the total number of discrete nodes, and

Iion is determined by the myocyte model. In this case the boundary condition is periodic,

i.e.,

V 0
n+1 = V N

n+1. (3.34)

For the 2D case, a finite differences scheme with 9-point stencil was applied to the
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approximate Laplacian operator, which results in the following formulation:

V i
n+1 = V i

n+
2

3
D

∆t

∆x2
(V i+1,j

n − 2V i,j
n + V i−1,j

n )

+
2

3
D

∆t

∆y2
(V i,j+1

n − 2V i,j
n + V i,j−1

n )

+
1

6
D∆t

(
1

∆x2
+

1

∆y2

)
(V i−1,j−1

n + V i−1,j+1
n − 4V i,j

n + V i+1,j−1
n + V i+1,j+1

n )

−∆t
1

Cm
[Iion(V i

n,yn, tn) + Istim(x, t)],

(i, j) ∈ {1, 2, ..., Nx − 1} × {1, 2, ..., Ny − 1}. (3.35)

The no-flux boundary conditions was imposed through the use of the ghost points

technique (Holmes, 2006).

3.4.1 Initiation of spiral waves in 2D

To initiate reentrant spiral waves in monodomain experiments, we applied an S1-S2

protocol. Consider a square two-dimensional domain of isotropic tissue. The protocol

consists of (i) the application of a stimulus current to all cells located at the left border

(S1), which initiates a planar wave that propagates towards the right edge, and (ii) the

application of a second stimulus current (S2) after the refractory tail of the first wave

reaches the middle of the media. This second stimulus is applied to all cells located in

a rectangular region that is adjacent to the refractory tail of the first wave, as shown in

Figure 3.1.

The bottom-left panel of Figure 3.1 shows that the refractory tail of the first wave

blocks the right edge of the wave initiated by S2. Still, the second wave starts to propagate

upwards. When the refractory tail of the first wave gets further to the right, the second

wavefront is allowed to propagate rightwards, and a spiral wave is initiated, as shown in

the bottom-right panel of Figure 3.1.
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Figure 3.1: S1-S2 protocol for initiating a spiral wave in 2D.

3.5 Handling historical data in DDE-based

simulations

As described in Section 3.3.1, the numerical solution of DDEs requires to maintain

histories of variables that are referenced at previous times. In this research, these past-

referenced variables are usually voltage or intracellular calcium. In tissue simulations, each

node of the discretized spatial domain is required to keep its own version of history for each

of the past-referenced variables, which significantly impacts the memory requirements of

the computational experiment. In this section we propose history management algorithms
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for reducing these memory requirements while keeping numerical errors under control.

3.5.1 Simple linear interpolation algorithm (SLIA)

This straightforward scheme consists of updating the history using a different time step

∆thist that is a multiple of the integration time step ∆t. With this approach, which we

refer to as the simple linear interpolation algorithm (SLIA), the history is updated less

often and interpolation must be used even if the delay is a multiple of the integration time

step, thereby resulting in the addition of error through the approximation of past values.

3.5.2 Adaptive history management algorithm (AHMA)

This novel adaptive algorithm dynamically reduces the resolution of the delayed variable

history while maintaining acceptable numerical accuracy. The method relies on two

simultaneous strategies: the first one is to avoid adding new values to the history if

the associated variable is changing slowly; the second one is to remove values from the

history when they can be well approximated by linear interpolation.

Figure 3.2: Values present in the history (blue dots) and newly computed value yn+1

with |yn+1 − yk| > φpush. The adaptive algorithm decides if yk can be approximated with
sufficient accuracy by a linear interpolation of yl and yn+1.

At each step an approximation to y(tn − δ) is computed from the history by linearly
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interpolating between the two nearest stored values in time. After yn+1 is obtained from

numerical integration, the first strategy is implemented by not storing yn+1 if |yn+1−yk| is

smaller than a predefined tolerance φpush, where yk is the most recently stored value in the

history. Before storing yn+1 to the history, the second strategy is used to check whether

yk could be approximated within some tolerance φlin by linear interpolation between yl

and yn+1, where yl is the second most recently stored value (Fig. 3.2). If so, yk is replaced

by yn+1 in the history. Otherwise, yk is maintained and the algorithm then determines

whether the oldest value in the history, yq, remains within the length of the delay at the

new time. If not (that is, tq < (tn+1 − δ)), yq is discarded and the history size remains

constant. Otherwise, the history size is increased to accommodate the new value. This

procedure is described by the algorithm in Fig. 3.3, which is executed after every step of

numerical integration.

Figure 3.3: Algorithm illustrating how the AHMA handles local histories updates.

In order to take advantage of the fact that action potentials have a brief depolarization

phase followed by a longer repolarization phase, our implementation of the AHMA utilizes

three distinct tolerances (instead of two) when voltage V is the delayed variable. In that
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case, φlin is split into an upstroke tolerance φlin,u and a downstroke tolerance φlin,d.

Since the update rate of the history is not constant, the AHMA requires that each

value yp is stored alongside with its associated time tp, which will increase the memory

needed. Thus, it is important to ensure that the added memory requirement of storing

the time is overcome by the savings provided by the scheme.

3.5.2.1 Memory management implementations

Since the AHMA requires a variable number of stored values at runtime, a possible data

structure to use is a linked list. However, its use could increase the computational cost

of tissue simulations due to the high number of memory jumps occurring as multiple

computational nodes retrieve values from their local histories. In addition, more memory

would be required to store the linking pointers of the data structure.

An alternative to linked lists would be the use of fixed-size contiguous arrays. The

predefined length of the local histories should be greater than the maximum number of

entries the algorithm would require with the use of linked lists, which could be determined

by previous experimentation.

In the case of action potential models it can be observed that voltage-dependent

variables undergo rapid changes during the depolarization phase when the voltage changes

on the order of 100 mV. For this reason it would be both useful and efficient to use

two types of history: (i) a short local history for each node of the discretized spatial

domain with sufficient memory for the repolarization phase (which represents most of

the action potential; for large mammals it is about two orders of magnitude longer than

depolarization) and (ii) a set of long arrays that are shared amongst the nodes only during

the depolarization phase. Given that the cardiac wavelength is long relative to the width

of the wave front, only a fraction of the total tissue will contain wave fronts, so that the

number of required long shared arrays is much lower than the total number of nodes. The

algorithm does not require determining the locations of wave fronts; instead, when a new

value is being added to the short local history array and it is already fully utilized, the

algorithm makes the transition to a long shared array. Note that in these cases, because
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their lengths are fixed, the arrays may include entries farther back in time than the delay

value.

In summary, we designed four implementations to manage memory used to store

historical values:

1. Linked List Implementation (LLI): This version implements a circular linked list for

the history associated with the delayed variable. Each entry of the list contains a

mesh value yk and its corresponding time tk. The list is always ordered from oldest

to newest, with the newest entry pointing back to the oldest. Each node of the

spatial domain has a pointer to the newest entry in its history, which gives fast

access to the newest values for adding entries and to the oldest values for accessing

and removing entries. Every time a value is stored in the list, the algorithm removes

any old entry that is not longer needed because its time is earlier than the delayed

time value currently needed.

2. Simple Contiguous Array Implementation (SCAI): The algorithm utilizes a

contiguous array with a predefined length based on the maximum number of entries

that would be required by the AHMA. The array is ordered from oldest to newest,

but the starting position pointer changes as new entries are added: a new entry

replaces the oldest entry and the next location in the array is set to be new starting

position of the history. When the new entry is added to the last array location, the

new starting position in the history will be the first location in the array.

3. Shared Memory Pool Implementation (SMPI): This implementation applies the

same idea as SCAI, but two types of array are utilized: (i) a short local array

for each computational node of the discretized domain, with enough entries for

storing values during the repolarization phase; and (ii) a long shared array that

is used during the depolarization phase. The number of arrays in the shared pool

is typically much smaller than the number of computational nodes because only a

small fraction of the tissue requires depolarization history at the same time. The

algorithm must manage the transitions between local arrays and shared arrays and
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vice versa.

4. Dynamic Array Implementation (DAI): In this approach, contiguous arrays are

utilized as in SCAI, but the algorithm switches between two predefined lengths

(short and long) as needed. When the algorithm demands more frequent history

updates (depolarization), a long array is dynamically created, the values from the

short array are copied to it and the short array is dynamically destroyed. When the

long array is no longer needed, a short array is created, the needed values are copied

to it and the long array is destroyed. Figure 3.4 illustrates this process of dynamic

allocation in a scenario where a single wave is propagating through a cable.

Figure 3.4: Schematic of a DDE-based wave propagation simulation on a cable using the
Dynamic Array Implementation (DAI) for the Adaptive History Management Algorithm
(AHMA).

3.6 Parallel implementations

Computing the electrical activity of the cardiac tissue involves the numerical solution of

nonlinear partial differential equations in complex spatial domains and represents a big

challenge in terms of computational performance. With the use of parallel computing,
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it is possible to distribute such complex workload across multiple processing units in

order to obtain significant gains in performance (Petersen - Arbenz, 2004). In this work

we developed parallel implementations of the proposed techniques for DDE-based tissue

simulations, aiming for efficiency both in terms of memory and computation time.

3.6.1 OpenMP implementations

OpenMP is an open application programming interface (API) that provides support for

shared memory multiprocessing computing in C, C++ and Fortran. The use of OpenMP

allows for simple portable parallel implementations for a wide variety of multi-CPU

environments.

We developed OpenMP implementations for all the presented 2D experiments of the

monodomain model that were performed on a CPU, so that a sufficiently large domain

could be computed in an acceptable amount of time. Since the applied numerical scheme

given by Equation 3.35 is explicit, distributing the workload among multiple threads was

as simple as partitioning the domain into equally sized tissue slices across either the x-axis

or y-axis.

All OpenMP experiments were performed on a computer with a 16-core AMD

Threadripper processor clocked at 4GHz and 32GB of memory, running Linux Debian.

3.6.2 GPU implementations

The use of graphical processing units (GPUs) in computational cardiac modeling has

become increasingly popular in the past few years as significant gains in performance

have been reported in recent studies involving the monodomain model (Sato et al., 2009;

Rocha et al., 2010; Oliveira et al., 2016) and the bidomain model (Neic et al., 2012;

Amorim - dos Santos, 2013).

CUDA from NVIDIA is one of the most popular platforms and programming models

for GPU computing, since it includes several toolkits and libraries for developing efficient

massively parallel applications for both professional and consumer graphics cards. A

typical GPU includes from several hundreds to a few thousands of floating-point units
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Figure 3.5: Microarchitecture of the NVIDIA Pascal (NVIDIA, 2016) streaming
multiprocessor, including 64 single-precision units (cores), 16 special function units
(SFUs), and 32 double-precision units (adapted from NVIDIA (2016)).

(FPUs) that are grouped into a number of streaming multiprocessors (SMs). This large

number of FPUs is well suited for arithmetic-intense and highly parallel workloads. Figure

3.5 shows how these FPUs are organized in a stream multiprocessor of the Pascal GPU

microarchitecture from NVIDIA.

The CUDA programming model requires the developer to divide their workload into

multiple threads and to group them into structures called blocks. Each block must

contain a number of threads that is multiple of 32, since the SMs schedulers always

issue instructions in groups of 32 threads called warps. As shown in Figure 3.6, each

thread block is executed in a single SM, which means its threads share some memory

resources of that block, including L1 cache and shared memory. Communication between

different blocks is established through the GPU global memory and L2 cache.

In this work we developed NVIDIA CUDA implementations of the history management

algorithms presented in Section 3.5 in order to assess the performance of DDE-based tissue
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Figure 3.6: NVIDIA CUDA programming model and blocks scheduling (adapted from
NVIDIA (2016)).

simulations on standard GPU devices. All 2D simulations of electrophysiological activity

were performed on a Pascal GPU (GTX 1080 Ti). The kernels were organized into blocks

of 64 threads each, since using 128 or more threads per block resulted in lower performance.

The shared memory of the streaming multiprocessors, which has lower latency than the

global memory, was used to accommodate the nodes’ histories in DDE-based experiments.

3.7 Metrics

3.7.1 APD restitution analysis

In order to assess how the many models studied in this research behave in terms of

APD as a function of CL, we applied a down-sweep pacing protocol (Tolkacheva et al.,

2003) starting from a sufficiently large CL that allowed full repolarization between action



58

potentials and then reducing the CL in steps of ∆CL after reaching steady-state. The

step size ∆CL varies from 2 to 5 ms depending on how the model is sensitive to CL

changes. The process stops when the pacing rate is so fast that action potential blocks

start to occur. The action potential duration was measured using the APD80 metric,

which is the time it takes for the membrane to repolarize in 80% since the upstroke.

3.7.2 Period distributions

In this work, we have computed period distributions (or period spectra) from two-

dimensional spiral wave simulations in order to quantify the effects of delays in terms

of dominant frequency and period range. The period samples for a distribution plot were

obtained by computing the time between depolarizations of each domain node during the

entire simulation (Bueno-Orovio et al., 2008).

Figure 3.7 shows the period distribution obtained from 5 seconds of spiral wave activity

using the ten Tusscher et al. (2004) model on a 24 cm × 24 cm isotropic tissue. The plot

indicates a dominant period of about 274 ms and a period range of approximately 12.5

ms.

3.7.3 Spiral wave tip tracking

The tip of a spiral wave can be defined as the point of zero normal velocity along

an isopotential boundary that separates the tissue between depolarized and repolarized

regions (Fenton - Karma, 1998). In this work, we used the zero-normal-velocity method

proposed by Fenton - Karma (1998) to determine spiral wave tip locations for plotting and

comparing the trajectories of spiral waves from different scenarios of tissue simulation.

As an example, Figure 3.8 shows spiral wave tip trajectories from different configurations

of the FitzHugh-Nagumo model (FitzHugh, 1961).
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(a)

(b)

Figure 3.7: Two-dimensional simulation of 5 seconds of spiral wave activity from the
model by ten Tusscher et al. (2004): (a) snapshot of membrane potentials at t = 5 s and
(b) the obtained period distribution across the entire domain.
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Figure 3.8: Spiral tip trajectories from simulations of the FitzHugh-Nagumo system
(FitzHugh, 1961) with varying parameter β (adapted from Foulkes - Biktashev (2010)).

3.7.4 Error calculation

In the present work, every numerical error of a variable y from a given test solution with

respect to a reference solution was calculated using the relative l2-norm:

errory =

√√√√ N∑
k=1

(yRefk − yk)2

√√√√ N∑
k=1

(yRefk )2

, (3.36)



61

where yk and yRefk are samples of the test solution and the reference solution, respectively,

and N is the total number of samples for each solution. The chosen sampling step was

∆tsave = 1 ms.

3.7.5 Measuring performance

All computation times presented in this manuscript were obtained from the average of

three identically configured runs. Information regarding the memory use of historical data

in DDE-based simulations was obtained by monitoring the number of data structures that

were allocated at runtime.
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4 Results

4.1 DDE-induced alternans in single cell models

In this section we cover an important application of the DDE-based formulations presented

in Section 3.2, which is alternans induction in single cell models through delays. The

section is divided into two parts: (i) experiments with models that are naturally able to

exhibit alternans and this behavior is either restored or enhanced by the use of DDEs, and

(ii) alternans promotion in models that are not originally able to produce this phenomena.

4.1.1 Alternans restoration in Hodgkin-Huxley-based models

4.1.1.1 DDE implementations for the Fox et al. model

The canine ventricular model proposed by Fox et al. (2002) exhibits stable alternans in

its originally published parameter configuration, but the alternans can be suppressed by

modifying ion channel maximum conductances. Figure 4.1 compares the original model

with an alternans-suppressed version in which the maximum conductivity gKr of the rapid

delayed rectifier potassium current IKr is doubled. Fig. 4.1A compares steady-state action

potentials from both versions at a pacing period of 180 ms, where the alternans-suppressed

version exhibits a constant action potential shape and duration, while strong alternans

can be noticed for the original version. Figure 4.1B shows a range of cycle lengths that

produces alternans in the original model, while the APDs of the alternans-suppressed

version are monotonically decreased as the pacing rate is increased.

We analyzed the effects of applying the DDE-based formulation presented in Section

3.2 to the previously described alternans-suppressed version of the Fox et al. model.

Delays were introduced into each of the ten gating variables of the model: the L-

type calcium current ICa activation gate d and inactivation gates f and fCa; the fast

sodium current INa activation gate m and inactivation gates h and j; XKr and XKs, the

activation gates for the rapid and slow components IKr and IKs of the delayed rectifier
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Figure 4.1: (A) Action potentials from the model by Fox et al. (2002) for 10s at a
constant cycle length of 180 ms: original model versus version with doubled gKr. (B)
Bifurcation diagrams of the original Fox et al. (2002) model and of the version with
alternans suppressed by doubling gKr.

potassium current, respectively; the activation and inactivation gates of the transient

outward potassium current Xto and Yto, respectively; and K∞1 , the steady-state activation

function of the inward rectifier potassium current IK1 .

By implementing DDEs for the ICa voltage-dependent gates f and d, it was possible

to restore alternans in the version with doubled gKr, as shown in Figure 4.2. For the case

with delayed f gate, it was possible to induce alternans using a delay as short as 9 ms, as

shown in Figure 4.3. Also, the alternans most closely resembled the original version for a

delay of about 15 ms, but the APDs remained shorter in general because of the increased

repolarizing current IKr (Fig. 4.1A). For the version with delayed d gate, alternans could

be induced by using smaller delays (about 4 ms, as shown in Fig. 4.3), but the action
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Figure 4.2: Alternans promotion by introducing delays into the f and d gates of the Fox
et al. model: (A,E) bifurcation diagrams from the original Fox et al. models against
alternans-suppressed version with DDE implementation for the f gate (A) and the d gate
(E); (B,F) steady-state successive action potentials at a cycle length of 180 ms; (C,G)
ICa corresponding to the successive action potentials in panels (B) and (F); (D,H) gating
variables from the original and alternans-suppressed versions compared to the versions
using delays of 15 ms and 12 ms, respectively.

potential shape was more severely altered since the delayed activation of ICa allowed a

greater initial repolarization following the action potential upstroke (Fig. 4.1F,G). It was

also possible to initiate alternans by delaying the calcium-dependent inactivation gate of

the ICa current. The model was more sensitive to delays in this variable, with alternans

beginning at a delay of 3 ms, as shown in Fig. 4.3.

We have also tested delaying the three ICa gating variables as a group rather than

separately. Delays were added to all possible pairings of two of these variables as well

as to all three, using the same delay value in each DDE. Alternans could be initiated in
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Figure 4.3: Alternans magnitude (A) and CL range exhibiting alternans (B) for delaying
f , d, and fCa gates in Fox et al. model with doubled gKr. The gray lines indicate the
values for the original model.

each of the four resulting combinations, as shown in Fig. 4.4. The minimum delay value

for giving rise to alternans in each of the cases was 3 ms for all groups that included fCa,

except for the case where only the d and f gates were delayed, where a minimum delay

of 4 ms was necessary to initiate alternans.

Delaying the steady-state activation gate IK1 also promoted alternans, but for a very

small range of delays (from 1.3 ms to 2.5 ms). In the original model, the gate responds

instantaneously to changes in voltage, so even small delays can produce significant

physiological effects. Delaying the other gating variables associated with potassium

currents (XKr, XKs, Xto, and Yto) by up to 20 ms did not produce alternans since these

modifications all resulted in significant action potential shortening, which led to stronger

diastolic intervals and complete recovery of the gating variables.

Delaying the sodium inactivation gates h and j also shortened the action potential,

and adding delays to the INa activation gate m impaired the development of the action



66

Figure 4.4: Alternans magnitude (A) and CL range exhibiting alternans (B) for delaying
groups of ICa gates in Fox et al. model with doubled gKr. The gray lines indicate the
values for the original model.

Figure 4.5: Bifurcation diagrams for the Fox et al. (2002) model comparing the original
version with the an alternans-suppressed suppressed version using the DDE formulation
for (A) ICa inactivation gate f ; (B) ICa activation gate d; (C) ICa calcium-dependent
inactivation gate fCa; (D) IK1 gate K∞1 ; (E) INa gates m, h and j.
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Figure 4.6: Robustness of the DDE-based formulation to promote alternans for different
alternans suppression methods. Delays were added to the f gate in the following alternans-
suppressed versions: (A) doubled gKr; (B) gto increased by a factor of 1.22; (C) gKs
increased by a factor of 25; (D) gK1

increased by a factor of 1.2; (E) gKp increased by a
factor of 9; and (F) doubled gNa.

potential by reducing overall current. The same result was observed when delaying

all sodium gating variables as a group. However, increasing the fast sodium current

conductance gNa in the original model consists of an alternative method for suppressing

alternans, as described in the original manuscript (Fox et al., 2002). Therefore, we

considered an alternans-suppressed version of the model with doubled gNa and applied

delays to all sodium gates simultaneously, which successfully restored alternans for delays

in the range of 2-6 ms. Figure 4.5 presents bifurcation diagrams from cases where alternans

could be restored by delaying the calcium-dependent ICa inactivation gate, the IK1 steady-

state activation gate K∞1 , and all the sodium gating variables as a group.

In order to asses the robustness of the DDE-based technique for promoting alternans,

we produced a total of six alternans-suppressed versions of the Fox et al. model by
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modifying different maximum conductances and applied delays to the calcium voltage-

dependent inactivation gate f . The results are shown in Figure 4.6, where the different

alternans-suppressed versions are compared to versions with DDE implementation of the

f gate and the original model. We published these and other results for the Fox et al.

model in Eastman et al. (2016) where more details can be found.

4.1.1.2 Adding delays to other five HH-based models

In order to verify if the results presented in the previous section are model-specific, we

applied the proposed DDE-based formulation to other five different Hodgkin-Huxley-based

models: the action-potential and pacemaker model for cardiac Purkinje fibers proposed

by Noble (1962), the mammalian ventricular action-potential models by Beeler - Reuter

(1977) and Luo - Rudy (1991), the electrophysiology model of the canine Purkinje cell

proposed by Li - Rudy (2011), and the reduced human ventricular cell model by Tusscher

- Panfilov (2006).

The Noble (1962) model can generate pacemaker potentials in response to an initial

stimulus with a frequency of about 1.2 Hz. It is possible to force the system to oscillate

with higher frequencies by applying a periodic stimulus current. The model exhibits

alternans if a fast pacing rate is applied and it can be suppressed by increasing the

maximum conductance of the time-dependent potassium current gK2
by a factor of 1.2,

as shown in Fig. 4.7a-b. It is possible to restore alternans in the alternans-suppressed

model by applying a DDE formulation to the variable K1∞ , which is the quasi-gate of the

time-independent potassium current IK1 (see Fig. 4.7c-d). Alternans can be initiated for

delays greater than 10 ms, although the action potential is blocked if delays greater than

15 ms are applied. Figures 4.8a and 4.8b show the maximum alternans magnitude and

the CL range of alternans as a function of delay size with a DDE formulation for K1∞. It

can be seen that for δ > 10 ms, both quantities increase monotonically for the range of

delays shown.

Using a DDE for the n gate (IK2 current) did not give rise to alternans. Delays were

also added to the sodium gates m and h. Delaying m did not produce alternans and for
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Figure 4.7: (a) Action potentials from the Noble model with a cycle length of 200
ms: original version (solid) and alternans suppressed version (gK2

× 1.25, dashed). (b)
Bifurcation plots for the original and alternans-suppressed versions. (c) Action potentials
for the original and suppressed version with a DDE for K1∞ , with CL = 210 ms. (d)
Bifurcation plots for the original Noble model and suppressed version with a DDE for
K1∞ .

δ ≥ 10 ms, the development of action potentials was impaired. Delaying h with by up to

20 ms did not result in alternans. We also applied delays to both m and h together, and

the results are similar to those obtained with m delayed separately.

The Beeler - Reuter (1977) model exhibits alternans when stimulated with a pacing

period lower than 265 ms, and alternans can be suppressed in the model by increasing

potassium conductivities, and ergo shortening the APDs. As in previous cases, the

alternans-suppressed version can give rise to alternans by the introduction of delays in

the ion channel formulations. Figure 4.9 shows the two cases where alternans could be

produced by using delays: delaying the Is inactivation gate (f) and delaying the Ix1
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Noble model: alternans vs delay size

Figure 4.8: Alternans properties of the suppressed Noble model with a DDE for the K1∞

variable. (a) Maximum alternans magnitude as a function of delay. (b) Alternans CL
range as a function of delay.

activation gate (x1). In both cases, the APDs were only slightly changed with respect

to the suppressed version in the pre-alternans phase. Alternans could not be induced by

delaying the Is activation gate d with delay values up to 20 ms, but delaying the f gate

promoted strong alternans. Figure 4.9b shows the maximum alternans magnitude as a

function of delay from the DDE versions of the model that were successful at inducing

alternans. The magnitude and the CL range increase with delay size for both cases in the

given range of delays (Fig. 4.9b-c).

By delaying the sodium current activation gate m with delays greater than 1 ms, the

action potential amplitude and duration were severely reduced, so that no alternans was
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Figure 4.9: (a) Bifurcation plots for the Beeler-Reuter model using DDEs for the gating
variables f and x1. (b) Maximum alternans magnitude as a function of delay. (c)
Alternans CL range as a function of delay.

produced. If the sodium gates m, h, and j are simultaneously delayed as a group, then

the AP amplitude is preserved and no alternans is observed, but for δ ≥ 5 ms the AP

shape presented superposed oscillations. Alternans could not be induced when the sodium

inactivation gates were delayed separately either.

The Luo - Rudy (1991) model in its original description exhibits relatively large APDs,

so it is not possible to pace the model fast enough in order to observe alternans. Therefore,

we increased the maximum conductivity (gK) of the time-dependent potassium current

(IK) from 0.282mS/cm2 to 0.705mS/cm2 to reduce the APD and enable faster pacing

to be applied. In this modified version of the model (mLR1), alternans occurs for CLs

smaller than 240 ms. Alternans can be suppressed if the maximum conductivity (gs) of

the slow inward current (IS) is decreased. Alternans in the mLR1 model was suppressed

for any tested pacing period by reducing gs by a factor of 0.8.
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Figure 4.10: (a) Bifurcation plots of the alternans-suppressed mLR1 model with DDE
formulations for the gating variable f , gating variable x, and gating variables f and d
together. (b) Maximum alternans magnitude as a function of delay. (c) Alternans CL
range as a function of delay.

By delaying different gating variables, it was possible to restore alternans in the

alternans-suppressed version in few scenarios. Figure 4.10a shows bifurcation plots from

versions with DDE implementation for the Is inactivation gate f , the Is activation gate

d and f gate simultaneously, and the time-dependent potassium current activation gate

x. The most pronounced alternans was achieved by delaying both the d and f gates,

as shown in Fig. 4.10. The alternans magnitude and CL range are shown as functions

of delay size in Figures 4.10b and 4.10c. As with the Noble and Beeler-Reuter models,

the alternans magnitude and CL range are monotonically increased with delay size for all

cases, showing that delays consistently enhanced alternans in this model for the considered

range of delays. Cases where alternans could not be induced are detailed in our published
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article (Gomes et al., 2017).

Figure 4.11: (a) Bifurcation plots of the alternans-suppressed Li-Rudy model with delayed
gates i and K1∞ . (b) APs from the original model and the alternans-suppressed version
with delayed K1∞ (CL = 245 ms) using a delay of 8 ms, which produced AP shapes very
close to those of the original model. (c) Maximum alternans magnitude as a function of
delay. (d) Alternans CL range as a function of delay. Action potential blocks occur when
delaying K1∞ by values greater than 9 ms.

The Li - Rudy (2011) model exhibits alternans for pacing periods lower than 340 ms, as

shown in Fig. 4.11a. We suppressed alternans by increasing the maximum conductivity

of the delayed rectifier potassium current (IKr) by a factor of 2, which produced only

minor alterations on the AP shape and duration. When applying DDE formulations, the

only time-dependent gating variable that produced alternans was the inactivation gate

i of the transient outward potassium current Ito. Delaying the remaining gates either

did not induce alternans or, in the case of delaying the sodium current gates, produced

unphysiological action potential shapes for delay values greater than 2 ms. Alternans
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could also be produced by delaying V in the algebraic formulation of the quasi-gate K1∞

of the inward-rectifier potassium current IK1 . Figure 4.11a shows the bifurcation plots

for these two successful cases, and Figures 4.11c and 4.11d present the corresponding

alternans magnitude and CL range as a function of delay, respectively. In both scenarios,

both the maximum alternans magnitude and the CL range of alternans increased with

the use of longer delays.

Figure 4.12: Bifurcation plots of the alternans-suppressed Tusscher - Panfilov (2006)
model by using DDE formulations for f and for both f and f2.

The Tusscher - Panfilov (2006) model produces alternans when paced with cycle

lengths lower than 275 ms. In this work, we increased the delayed rectifier potassium

current IKr conductance by a factor of 1.9 in order to inhibit alternans, producing an

alternans-suppressed version of the model with a minor impact on the AP shape. Figure

4.12 shows bifurcation plots from scenarios where alternans could be restored with the

use of delays. Alternans were successfully produced when DDEs were applied to the ICaL

inactivation gate f or to both ICaL gates f and f2. The point of bifurcation becomes

closer to the original model as the delay value is increased (see Fig. 4.12).

As with the other models, delaying sodium gates produced unphysiological upstrokes

in the AP. They appear when delaying the activation gate m with δ ≥ 3 ms. Delaying
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the inactivation gates h and j did not result in alternans, as observed for the other four

models. When all three gates are delayed as a group, extra upstrokes occur before the

repolarization phase for δ ≥ 5 ms and no alternans is produced. Using a DDE formulation

for the activation gate xs (slow delayed rectifier potassium current IKs), activation gate xr1

(rapid delayed rectifier potassium current IKr), or inactivation gate s (transient outward

potassium current Ito) did not result in alternans. In addition, alternans can be produced

when DDEs are used for both the calcium inactivation gates f and f2, but not when only

f2 is delayed.

Figure 4.13: Membrane potential, calcium inactivation gating variable f and calcium
current during alternans in the suppressed Beeler-Reuter model with DDE for f, using δ
= 20ms and CL = 200 ms.

In every case where alternans could be restored, the gating variable modified with

the DDE formulation had a significant influence on the action potential duration and its

recovery was significantly impaired by the delay. As an example, Fig.4.13 shows how

the calcium current inactivation gate f has its recovery affected by the imposition of a

20 ms delay, which leads to the long-short alternation in the resulting action potentials

of the Beeler - Reuter (1977) model, since its associated current (IS), like most inward

calcium currents, plays a significant role in modulating the length of the plateau phase
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and, consequently, the APD.

We concluded from the results that there are two possible requirements for a gating

variable to induce alternans when modified with the DDE formulation: (i) the associated

ion current must have significant influence on the APD and (ii) the delay must significantly

impair the recovery of the gate between two consecutive APs. The establishment of these

two requirements suggests a general approach when promoting alternans through DDEs

in a Hodgkin-Huxley-based model of cardiac AP. All results presented in this section were

published and described with more details in Gomes et al. (2017).

4.1.2 DDE-induced alternans in cardiac myocyte models

A number of models for cardiac myocytes are not originally capable of reproducing

alternans in single cell simulations, even when fast paced stimuli are applied. In this

section, we present and discuss results obtained from DDE-based modifications in two of

these models.

4.1.2.1 ten Tusscher et al. model (2004)

The model of the action potential of human ventricular cells proposed by ten Tusscher

et al. (2004) has been widely used to simulate reentrant arrhythmias in human

ventricular tissue. It includes parameter configurations for endocardial, epicardial, and

midmyocardial cells and it has a basic description of intracellular calcium dynamics.

The original model settings do not exhibit steady state APD alternans in single cell

simulations, as shown in the CL versus APD curve of Figure 4.14A. For all three parameter

settings, it can be observed that if the imposed CL is decreased below certain value, the

APD starts increasing up to a point where action potential blocks occur, as shown in

Figure 4.14B.

We analyzed the sensitivity of the APD with respect to the model’s ion current

maximum conductances to determine which gating variables would be more prone to

induce alternans if delayed. In Figure 4.15 we show how the APD responds to changes in

maximum conductances of ion currents of the model. It can be observed that increasing
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Figure 4.14: (A) CL versus APD curves for the three original parameter settings of the ten
Tusscher et al. (2004) model. (B) Action potential blocks that occur in the endocardial
setting of the ten Tusscher et al. (2004) model for CL = 250 ms.

Figure 4.15: CL versus APD curves for assessing the APD sensitivity to ion current
maximum conductivities. Each curve results from a single modification in the epicardial
cell model by ten Tusscher et al. (2004): (A) Modifications to potassium maximum
conductivities; (B) modifications to sodium and calcium maximum conductivities.
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potassium conductances leads to lower values of APD, and the opposite effect can be

obtained by decreasing the potassium conductances. This behavior is expected since

potassium currents are generally responsible for promoting the repolarization phase.

On the other hand, calcium currents tend to postpone the repolarization phase, which

contributes to increasing the APD as can be evidenced when modifying gCa,L. Increasing

the sodium conductance leads to stronger upstroke, which could potentially delay

repolarization, but the opposite behavior can be observed in 4.15B because repolarizing

currents are increased in response to the higher depolarization peak. The potassium

currents IK1 , IKr, Ito, and IKs all have a noticeable influence on the APD, and that is also

true for the L-type calcium current ICa,L, as doubling the original value of gCa,L promotes

a strong increase in the APD. Modifications in the sodium current conductance do not

produce great APD changes in terms of magnitude.

We tested applying the DDE formulation described in Section 3.2 to the following

gating variables: the sodium current (INa) activation gate m and inactivation gates j

and h; the L-type calcium current (ICa) activation gate d, voltage-dependent inactivation

gate f , and intracellular calcium-dependent inactivation gate fCa; the inward rectifier

potassium current (IK1) time-dependent activation gate K1∞; the rapid delayed rectifier

current (IKr) activation gate xr1 and inactivation gate xr2; the slow delayed rectifier

current (IKs) activation gate xs; and the transient outward current Ito activation gate r

and inactivation gate s.

Delays from 2 ms to 20 ms were applied to each calcium and potassium gate separately.

None of these DDE-based modifications could promote steady-state APD alternans before

action potential blocks started to occur. We applied small delays values from 0.5 ms

to 2 ms to each sodium gating variable, since applying greater delay values produced

degenerated or unphysiological action potentials. This also resulted in action potential

blocks at fast pacing rates and no alternans. The next step was to apply the DDE

formulation simultaneously to groups of gating variables, where each group consisted of

all gating variables of given ion current. Figure 4.16A shows APD x CL diagrams resulting

from some of these experiments, showing it is possible to induce moderate alternans in
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Figure 4.16: Delaying groups of gating variables in the ten Tusscher et al. (2004) model:
(A) APD x CL diagrams of scenarios with DDEs applied to gates of the IKr current (xr1
and xr2), the ICa,L current (d, f , and fCa), and the INa current (m, h, and j); (B) action
potentials exhibiting moderate steady-state alternans when sodium inactivation gates are
delayed (CL = 224 ms).

this model by applying certain combinations of delay values to the sodium inactivation

gates h and j (Fig. 4.16B). Alternans could not be induced by delaying groups of calcium

or potassium gates separately by values from 2 ms to 20 ms.

In order to enhance the observed DDE-induced alternans of Fig.4.16B, we tested

combining the use of DDEs to sodium inactivation gates with delaying other groups of

gating variables. Simulations were performed in three different scenarios, each of them

varying δh and δj from 0 to 2 ms in steps of 0.5 ms: (i) delaying δxr1 and δxr2 by up to

20 ms; (ii) delaying d, f , and fCa by up to 20 ms; and (iii) delaying r and s by up to

20 ms. Figure 4.17 shows that some of these modifications produced strong steady-state

alternans at the expense of affecting the morphology of restitution curves.

Understanding the underlying mechanism of alternans in these experiments can be a

complex challenge, since it involves the use of DDEs in multiple ion channel formulations

using delay sizes of different orders of magnitude. As shown in Figure 4.16, delaying

sodium inactivation gates destabilizes the APD to a certain degree, and adding delays to

gating variables associated with repolarization currents seems to amplify these instabilities
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Figure 4.17: Bifurcation diagrams from experiments associating delayed sodium
inactivation gates with the use of delays for ICa,L gates (A), IKr gates (B), and Ito gates (C)
in the ten Tusscher et al. (2004) model. Action potentials from selected cases exhibiting
steady-state alternans using stimulus periods of 242 ms (D), 252 ms (E), and 275 ms (F).

and produce strong steady-state alternans (Fig. 4.17). In addition, it is possible to

observe how delaying sodium inactivation gates can produce a favorable condition for other
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Figure 4.18: Original ten Tusscher et al. (2004) model for epicardial cells versus version
with delayed sodium inactivation gates.

gating variables to induce alternans when delayed, as this kind of DDE-based modification

strengthens the upstroke and reduces the action potential duration (Fig. 4.18A), which

allows the use of lower CLs before action potential blocks start to occur. The APD is

reduced because some outward currents are increased in response to the stronger upstroke,

as shown in Figure 4.18B where the Ito current is more than six times greater than that

of the version with no DDEs.
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Figure 4.19: Bifurcation diagrams from DDE-based experiments with the ten Tusscher
et al. (2004) model: version with delayed calcium gates d and f versus version with DDE
implementation for sodium gates h and j and calcium gates d and f .

To illustrate how these features facilitate the initiation of alternans, let us consider

one of the cases of Fig. 4.17 where both sodium gates and calcium gates are delayed with

δh = 0.5 ms, δj = 2 ms, δd = 5 ms and δf = 20 ms. Figure 4.19 shows that if only calcium

gates are delayed, it is not possible to apply stimulus periods lower than 294 ms, but if

the sodium inactivation gates are also delayed, it is possible to use CLs as low as 232 ms,

and steady-state alternans starts to occur at CL = 236 ms. From that point, alternans is

sustained by a mechanism similar to that of the Beeler - Reuter (1977) model with delayed

calcium inactivation gate (Fig. 4.13), i.e. an incomplete recover of the calcium gates that

shortens the AP followed by a complete recover of the calcium gates that increases the

AP and causes the cycle to repeat.

4.1.2.2 Grandi et al. model (2010)

The mathematical model for the human ventricular action potential proposed by Grandi

et al. (2010) describes the intracellular calcium handling and how it relates to the

excitation-contraction coupling mechanism. The model also aims to describe adaptation
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Figure 4.20: (A) CL versus APD curves for both original settings of the Grandi et al.
(2010) model. (B) Action potential blocks and chaos that occur in the original setting
of the Grandi et al. (2010) model, despite constant pacing at CL = 252 ms and a small
integration step of 10−4 ms.

mechanisms for APD shortening at fast pacing rates for both epicardial and endocardial

cells. Experiments in the literature (Elshrif - Cherry, 2014) involving this model were

not able to reproduce alternans. As shown in Figure 4.20A, the model in its original

parameter configuration exhibits APD shortening as the CL decreases from 400 ms to

290 ms, but if the CL is decreased further the APD starts increasing up to a point where

action potential blocks start to occur (Fig. 4.20B) and the model becomes highly sensitive

to perturbations in the stimulus current, leading to a chaotic behavior despite constant

pacing at CL = 252 ms.

As with the ten Tusscher et al. (2004) model, we investigated the APD sensitivity of

the Grandi et al. (2010) model to ion currents to determine candidate gating variables

for being delayed in order to promote alternans. For each maximum conductance of

the model’s membrane currents, we tested both reducing up to 50% and increasing up

to double its value and measured the resulting changes in APD. Figure 4.21 shows the

APD x CL diagrams from tests that resulted in more than 5 % change in the APD with

respect to the original model. The APD is strongly sensitive to both the inward-rectifier
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Figure 4.21: CL versus APD curves for assessing the APD sensitivity to maximum ion
current conductivities of the Grandi et al. (2010) model (epicardial cell version): (A)
Modifications to potassium maximum conductivities; (B) modifications to sodium and
calcium maximum conductivities.

potassium current (IK1) and the L-type calcium current (ICa,L), so that moderate changes

in their maximum conductivities can lead to early action potential blocks.

The DDE implementation was applied to: the fast sodium current (INa,f ) activation

gate m and inactivation gates j and h; the L-type calcium current (ICa,L) activation

gate d and voltage-dependent inactivation gate f ; the inward rectifier potassium current

(IK1) time-dependent activation gate K1∞; the rapid delayed rectifier current (IKr)

activation gate xkr; and the fast transient outward current Ito,fast activation gate xto,f

and inactivation gate yto,f .

The sodium-related gates were delayed by up to 2 ms as in previous experiments,

whereas the other gating variables were delayed by values up to 20 ms. The preliminary

experiments consisted of delaying each gating variable separately, and no alternans was

observed in any of them. The next step was to delay all gating variables associated with

each ion current simultaneously, which did not produce alternans either, despite changes

in APD dynamics were observed, as shown in Figure 4.22.

Finally, we tested applying the DDE formulation simultaneously to the fast sodium
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Figure 4.22: APD versus CL curves from experiments delaying groups of gating variables
in the Grandi et al. (2010) model.

Figure 4.23: DDE-induced alternans from experiments delaying various combinations of
gates in the Grandi et al. (2010) model. Bifurcation diagrams from experiments applying
the DDE formulation to: (A) INa,f and ICa,L gates; (B) INa,f gates and the IK1 activation
gate; and (C) INa,f and Ito,f gates. Action potentials from selected cases exhibiting
steady-state alternans using stimulus periods of 367 ms (D), 330 ms (E), and 254 ms (F).

current gates and to groups of gating variables associated to other ion currents. The

experiments were performed in four different scenarios, each of them varying δm, δh, and

δj from 0 to 2 ms in steps of 0.5 ms: (i) delaying d and f by up to 20 ms; (ii) delaying

K1∞ by up to 20 ms; (iii) delaying xkr by up to 20 ms; and (iv) delaying xto,f and yto,f by
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up to 20 ms. Alternans was successfully induced in some instances of scenarios (i), (ii),

and (iv), as shown in Figure 4.23.

4.2 DDE-based simulations of cardiac tissue

4.2.1 History management algorithms in ring simulations

In order to assess the efficiency and accuracy of the adaptive algorithms described in

Section 3.5, we performed 1D simulations of the Fox et al. model with doubled gKr in

a ring geometry so that both conduction velocity and gating variable accuracy could be

measured with respect to a reference solution, using the DDE formulation described in

Sec. 3.2. The performance of the algorithm only depends on how fast the delayed variables

change, so the results should provide useful insight into more general applications of DDEs

to cardiac models.

The length of the ring was 12 cm and the spatial discretization was ∆x = 0.02

cm. A single stimulus pulse was applied at the beginning of the simulation and the

wave propagated periodically with a period of approximately 200 ms for all tested

DDE implementations. The reference solutions were obtained by updating local history

information at all spatial locations every time step.

Table 4.1 shows the results in terms of memory use for different scenarios of DDE-

based implementations. Each case consists of applying Equation (3.8) to one or more

voltage-dependent gating variables, so that only voltage is stored in history, even if more

than one gate is delayed. The memory use is presented through the number of values per

history node (VPHN). For the SLIA, the VPHN is fixed and given by the ratio of the

delay size to the history time step ∆thist. Since the history size changes dynamically when

the AHMA is applied, both the average and maximum VPHN are shown for each case

in the table. The average memory usage of the AHMA is always significantly lower than

that of the SLIA, while the maximum memory usage - which occurs only during specific

short periods - is higher in a few scenarios.

The parameters were chosen to provide minimum history length and numerical errors
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Table 4.1: Number of values per node history (NVPNH) in simulations of a 12 cm ring
using the Fox et al. model with delays used for different gating variables. Gating variable
choices included the L-type calcium current activation gate d, the L-type calcium current
voltage-dependent inactivation gate f , the combination of d and f , and the three gates
of the sodium current with the same delay. The parameters ∆thist, φpush and φlin were
chosen based on achieving a 2% tolerance for the gating variable and conduction velocity
errors with respect to the reference solution. The highlighted numbers indicate the most
memory-efficient results of each scenario in terms of maximum NVPNH, although the
AHMA always exhibits the lowest average memory use.

Reference SLIA AHMA
DDE formulation NVPNH ∆thist NVPNH φpush φlin,u φlin,d avg. NVPNH max. NVPNH

δd = 5 ms 250 0.1 ms 50 0.5 mV 0.125 mV 0.25 mV 6.01 66
δd = 10 ms 500 0.1 ms 100 0.5 mV 0.125 mV 0.125 mV 9.19 74
δd = 20 ms 1000 0.1 ms 200 0.5 mV 0.125 mV 0.125 mV 14.9 76
δd = 30 ms 1500 0.1 ms 300 1.5 mV 0.15 mV 0.15 mV 21.2 68
δf = 5 ms 250 0.5 ms 10 1.5 mV 0.375 mV 0.75 mV 5.41 26
δf = 10 ms 500 0.5 ms 20 1 mV 0.25 mV 0.5 mV 7.28 30
δf = 20 ms 1000 0.5 ms 40 2 mV 0.5 mV 0.5 mV 11.4 38
δf = 30 ms 1500 0.5 ms 60 1 mV 0.25 mV 0.25 mV 15.9 54

δd = δf = 5 ms 250 0.2 ms 25 1 mV 0.25 mV 0.25 mV 5.95 50
δd = δf = 10 ms 500 0.2 ms 50 1 mV 0.25 mV 0.25 mV 7.78 54

δd = 12 ms, δf = 20 ms 1000 0.2 ms 100 1 mV 0.25 mV 0.25 mV 11.9 52
δd = δf = 20 ms 1000 0.2 ms 100 1 mV 0.25 mV 0.25 mV 12.2 52
δd = δf = 30 ms 1500 0.2 ms 150 1 mV 0.25 mV 0.25 mV 15.3 52

δm = δh = δj = 0.5 ms 25 0.04 ms 13 1.5 mV 0.375 mV 0.75 mV 4.03 10
δm = δh = δj = 1 ms 50 0.04 ms 25 0.5 mV 0.125 mV 0.125 mV 4.14 20

below 2% for the gating variables and the conduction velocity with respect to the reference

solution. For determining each parameters configuration, we tried to set the highest

possible value to φpush first while maintaining the other two parameters set to zero, since

φpush directly limits the maximum history size to ceil[(Vmax − Vmin)/φpush], where Vmax

and Vmin are the maximum and the minimum computed voltage values, respectively.

Once we determined φpush, we set φlin,u and φlin,d to a quarter of the φpush value and

then progressively increased both values until the error tolerance was reached. Finally,

since numerical errors are usually more sensitive to φlin,u than to φlin,d, we tested whether

doubling only φlin,d would reduce the average history size while maintaining the numerical

error below the 2% tolerance.

The results indicate that tolerances must be chosen based on how the gating variable

is sensitive to the upstroke and to the repolarization phase. Activation gates, like the

d gate, are usually sensitive to the depolarization phase, so the corresponding φpush and

φlin,u needed to obtain good accuracy tend to be small. On the other hand, repolarization-

sensitive gates allow for greater φpush and φlin,u, while tending to require a lower φlin,d
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value to meet accuracy requirements.

The average NVPNH for the AHMA is always significantly lower than the history size

required by the SLIA, because the repolarization phase is much longer than the upstroke,

which is the phase where the history is updated more often. In most cases, the AHMA

outperforms the SLIA in terms of maximum history length, especially for large delays

or cases where sodium gates are delayed, since it performs better in terms of conduction

velocity accuracy. The exception are the cases where δf = 5 ms or δd ≤ 10 ms.

4.2.2 Spiral wave dynamics in 2D

The proposed techniques now allow memory-efficient DDE-based tissue simulations and

this is the first application of the DDE formulation presented in Section 3.2 to wave

propagation experiments in 2D.

As presented in the previous section, these DDEs are capable of promoting instabilities

and alternans in single-cell simulations of cardiac models based on the Hodgkin-Huxley

formalism for ion channels. Therefore, it is natural to consider the effects of these

DDE-based modifications on spiral wave dynamics in 2D, including stability, dominant

frequency, and period distribution. In addition, these studies provide an opportunity to

analyze the performance of the AHMA in a large domain for a range of conditions.

We performed 2D simulations of the Fox et al. in a 30 cm × 30 cm tissue uniformly

discretized into an 1500 × 1500 grid. The experiments consist of the simulation of 10

seconds of electrical activity, using a single stable spiral wave obtained from 30 seconds of

simulation of the alternans-suppressed version of the model (gKr× 2) as initial condition.

Four cases were considered: (A) the original Fox et al. model; (B) the alternans-

suppressed version of the model, obtained by doubling gKr; (C) the alternans-suppressed

version with a DDE implementation for the f gate using δf = 20 ms; and (D) the

alternans-suppressed version with a DDE implementation for both the f and d gates,

using δf = 20 ms and δd = 12 ms. Figure 4.24 shows voltage snapshots of all four cases

at different instants of time. In single cell experiments, it is possible to restore alternans

by either delaying the f gate, or the d gate, or both (Eastman et al., 2016). At the tissue
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Figure 4.24: Snapshots of membrane potentials from simulations of a 30 cm × 30 cm tissue
using of the Fox et al. model and a stable spiral wave as initial condition, in four different
scenarios: (A) the original model; (B) the model with doubled gKr; (C) the model with
doubled gKr and the f gate delayed by 20 ms; and (D) the model with doubled gKr, the
f gate delayed by 20 ms, and the d gate delayed by 12 ms. The spiral wave tip trajectory
is shown in white whenever there is a single spiral wave.

level, spiral breakups occurred only by delaying both voltage-dependent calcium gates in

case D, where the single spiral wave started to break at t = 0.2 s, and multiple spiral

waves were generated, leading to a sustained chaotic behavior.

We also performed experiments to analyze how the dynamics changed as the delay sizes

were increased. For that purpose, we simulated 20 seconds of electrical activity, starting
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(a)

(b)

Figure 4.25: Period distributions across a 2D tissue for different configurations of the Fox
et al. model: (a) DDE implementation for the f gate versus non-DDE versions and case
D; (b) DDE implementation for the d gate versus non-DDE versions and case D.

from the same initial condition as before but applying different delay values to each

voltage-dependent calcium gate. We measured the period distribution across the tissue

during the last 10 seconds of each simulation. Figure 4.25 shows the period distributions
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obtained for different values of the delay δ compared to the original model, the alternans-

suppressed version of the model, and the version that produces spiral breakups (case D).

As expected, the version with doubled gKr and no DDE had its period profile displaced

to the left with respect to that of the original model, since increasing gKr reduced the

action potential duration (APD) and thus the wavelength. As delays were added to the

calcium gates of the alternans-suppressed model, the period distribution shifted to the

right (longer periods), and the dominant frequency moved closer to that of the original

model. We also observed that as the delay sizes were increased, the period spectrum

became broader even in scenarios with no spiral wave breakups, which suggests that

delays may have intensified the hypermeandering of the spiral wave.

4.2.3 Computational performance in 2D

Table 4.2: Computation times and history memory usage of different memory management
implementations for simulating 1 second of electrical activity of the Fox et al. model in a
2D tissue. The alternans-suppressed version with DDE implementation for the f and d
gates was used in order to assess the algorithms in a situation of sustained chaos.

Implementation Computation time (CPU) Max. hist. memory Computation time (GPU)
Reference 293 minutes 17.3 GB

SLIA 273 minutes 1.73 GB 4.28 minutes
AHMA w/ LLI 334 minutes 667.0 MB

AHMA w/ SCAI 277 minutes 880.1 MB 4.46 minutes
AHMA w/ SMPI 287 minutes 648.4 MB
AHMA w/ DAI 291 minutes 648.4 MB

To assess the computational performance of the adaptive algorithm in a situation

of complex dynamics, we simulated 1 second of electrical activity with configuration D,

which resulted in spiral wave breakup, using OpenMP and the memory management

implementations described in Section 3.5. Table 4.2 shows the computation time and

history memory usage measured for all implementations of the adaptive algorithm. It

also shows the results of a reference implementation that uses the standard first-order

DDE solver. Double precision was used for real values and the code was compiled in

x64 mode, which makes the size of each linked list pointer 4 bytes. The performance

of all implementations is quite similar, with the linked list implementation (LLI) being

the slowest one due to its more irregular memory operations. The memory usage is also
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similar across all implementations and represents a 90% to 97% reduction with respect to

the reference implementation and 50% to 63% compared to the SLIA.

The differences in terms of both memory and performance were not large across the

various implementations of the AHMA: the fastest implementation (SCAI) was about 20%

faster than the slowest (LLI), and the most memory-efficient implementations (SMPI and

DAI) used 26% less memory than the least memory-efficient (SCAI). Therefore, ease of

implementation could play a significant role in determining which memory-management

scheme should be applied.

We also studied the performance of two of our history optimization algorithms on a

graphics processing unit (GPU). The simple linear interpolation algorithm (SLIA) and

the adaptive history management algorithm with contiguous arrays (AMHA+SCAI) were

implemented in CUDA with the alternans-suppressed model and DDE implementations

for the f and d gates (δf = 20 ms, δd = 12 ms). We limited our GPU implementations to

these methods because the others involve irregular memory operations that dramatically

impact the performance on the GPU and, for this reason, were not implemented.

Since δf = 20 ms and δd = 12 ms, ∆thist = 0.2 ms was used for the SLIA

implementation (Table 4.1). The tolerances for the AMHA+SCAI version were also

chosen according to Table 4.1. The AMHA+SCAI implementation used about 50% less

history memory than the SLIA implementation, but its performance (4.46 minutes) was

4% slower (4.28 minutes), as shown in Table 4.2. Both GPU implementations exhibited

performance gains of about 63 times over the 16-thread CPU implementations and about

756 times over the single-thread version. Despite the AMHA+SCAI version being the

most memory-efficient, it is important to notice that its implementation is considerably

more complex when compared to the SLIA version.

We also simulated the non-DDE alternans-suppressed version of the model (case B)

on the GPU in order to assess the performance impact of a DDE implementation on

such environment. The simulation took 3.98 minutes to complete 1 second of electrical

activity, representing a performance gain of 7.5% over the SLIA implementation for case D.

In terms of memory use, the non-DDE version required about 223 MB of global memory,
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while the DDE version with the AMHA+SCAI implementation required an additional

440 MB, for a total of 663 MB of global memory.

4.2.4 DDE-induced alternans and spiral breakup

In order to assess the potential of DDEs to produce spiral wave instabilities, we performed

wave propagation experiments in 2D using the ten Tusscher et al. (2004) model with some

of the DDE-based configurations described in Section 4.1.2.1 that were able to induce

steady-state alternans in single cell simulations, as the model in its original configurations

does not produce breakups when a spiral wave is generated by the stimulus protocol

applied in the original manuscript.

The simulations were performed in a 24 cm × 24 cm uniformly discretized piece of

isotropic tissue using the model configuration for epicardial cells. A single stable spiral

wave was generated by the S1-S2 stimulation protocol described in ten Tusscher et al.

(2004), which consisted of: the application of a 1 second stimulus at all nodes located

at x = 0, which produced a single planar wave propagating in the x-axis direction; and

the application of a 2 seconds stimulus at all nodes located in the rectangle defined by

0 ≤ x ≤ 12 cm and 0 ≤ y ≤ 18 cm after the refractory tail of the first wave reached the

middle of the domain. The state of the 17 variables after 10 seconds of simulation was

used as initial condition for the subsequent experiments.

We considered four different scenarios for this model: (A) original version with

parameter settings for epicardial cells; (B) original version for epicardial cells with DDE

implementation for the sodium inactivation gating variables h and j, using δh = 2 ms

and δj = 0.5 ms; (C) original epicardial cell version with DDE implementation for the

inactivation gate of the rapid delayed rectifier current (xr2), using δxr2 = 15 ms; and (D) a

version that combines the DDE implementations of cases (B) and (C), which corresponds

to one of the scenarios where alternans could be induced in single cell experiments (see

Fig. 4.17B).

Snapshots of membrane potentials from simulations of all four cases are presented

in Fig. 4.26 alongside with the corresponding spiral wave trajectories whenever a single
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Figure 4.26: Snapshots of membrane potentials from simulations of a 24 cm × 24 cm tissue
using the ten Tusscher et al. (2004) model and a stable spiral wave as initial condition,
in four different scenarios: (A) the original model for epicardial cells; (B) the model with
the h gate delayed by 2 ms and the j gate delayed by 0.5 ms; (C) the model with the xr2
gate delayed by 15 ms; and (D) the model with the h gate delayed by 2 ms, the j gate
delayed by 0.5 ms, and the xr2 gate delayed by 15 ms. The spiral wave tip trajectory is
shown in white whenever there is a single spiral wave.

stable spiral wave is present. The spiral wave remains stable in cases A, B, and C, despite

modifications to the trajectory and wavelength in cases B and C. In case D, the spiral

wave started to breakup at t = 0.5 s and subsequent breakups continued to occur even
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Figure 4.27: Period distributions obtained from simulations of the four scenarios presented
in Figure 4.26. The period information was collected from t = 5 s to t = 10 s of each
simulation.

after 10 s of simulation.

In Figure 4.27, we show the period distribution obtained from the entire domain for 5

seconds after the first 5 seconds of simulation of each four scenarios. As previously stated,

adding delays to the sodium inactivation gates in the ten Tusscher et al. (2004) model

shortens the APD, which results in the dominant period being displaced to the left with

respect to the original model. On the other hand, delaying the inactivation gate of the

rapid delayed rectifier current increases the APD and the wavelength, so the dominant

period is displaced to the right with respect to the version with no DDEs. If the sodium

inactivation gates are also delayed, the dominant period remains virtually the same, but

the period distribution becomes broader, and the spiral waves are destabilized.
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5 Discussion

5.1 DDE-induced alternans and spiral wave breakup

The presented results showed that it is possible to induce/enhance arrhythmia-related

instabilities in cardiac models by adding discrete delays to Hodgkin-Huxley formulations

for ion channels.

Our first experiments with the proposed DDE-based formulation were performed using

the Fox et al. (2002) model, which naturally exhibits cardiac alternans in its original

description. The proposed technique of perturbing Hodgkin-Huxley models with delays

proved to be robust by successfully restoring alternans in 6 different alternans-suppressed

versions of the Fox et al. (2002) model.

The results presented in Section 4.1.1.2 and published in Gomes et al. (2017)

demonstrated that our findings using the Fox et al. (2002) model were not model-specific,

since delays could promote alternans in other five HH-based models of cardiac cells. In

general, it was possible to initiate alternans by delaying calcium or potassium gates of

currents that have a significant influence on the APD. In addition, we observed that

alternans only occurred in cases where the delayed gate had its recover impaired by

increasing the delay size.

We could also observe that one must be careful when delaying fast sodium current

gates since even small delays in the range of 2-5 ms can either produce unphysiological

action potential shapes or even impair the initiation of action potentials. For all models

tested, 1-2 ms seemed to be a safe upper-bound for delaying sodium gating variables in

terms of physiological behavior.

In Section 4.1.2, we investigated two models that are not originally able to reproduce

electrical alternans. Giving rise to alternans in those models using DDEs was not as

simple as in the previous cases: it was necessary to apply small delays to fast sodium

gating variables, which seemed to destabilize the dynamics but not enough to produce
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solid steady-state alternans. We had to amplify these instabilities by also adding delays

to calcium or potassium gating variables in order to successfully observe alternans. It was

also observed that delaying sodium inactivation gates promotes stronger depolarization

and shorter APDs, which facilitates the application of faster pacing periods.

Since we were able to induce alternans in single-cell experiments using the ten Tusscher

et al. (2004) model, we applied one of the successful DDE-based configurations to wave

propagation experiments in 2D in order to assess its effects on spiral wave dynamics. By

using a stable spiral wave as the initial condition, we were able to destabilize the wave and

produce breakups by adding delays to INa inactivation gates and the IKr inactivation gate.

As shown in Figure 4.27, delaying the sodium inactivation gates allowed the existence of

shorter activation periods because of the reduced refractory periods. This behavior is

aligned with the conclusions we gathered from single-cell experiments involving delayed

sodium inactivation gates.

5.2 Methods for DDE-based tissue simulations

In order to assess the performance of the proposed methods for memory-efficient

simulation of DDE-based models, we performed tissue experiments using the Fox et al.

(2002) model with DDE implementations for the voltage-dependent gating variables of

the calcium current ICa. The preliminary ring experiments presented in Table 4.1 helped

to tune the AHMA tolerances in terms of numerical error. The values depend on the

sensitivity of the gating variable with respect to the upstroke and the downstroke phases,

but using tolerances in the range from 0.5 mV to 1 mV generally provided acceptable

results in terms of numerical accuracy.

By performing 2D simulations using a large mesh of about 2.4 million nodes, we

could assess the performance of the different memory management implementations for

the AHMA. Since differences in terms of memory use and computation time are rather

small, the Linked List Implementation should be preferred on CPU-based solvers due

to the simplicity of implementation. On the GPU side, linked-lists-based codes can be

extremely complex and not likely to provide efficient results, so the SCAI is recommended
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when applying the AHMA in this case. The DDE-based tissue simulations using the

AHMA were up to 11% slower than the version with no DDEs on the GPU. On the

CPU, the penalty in performance for using a DDE-based approach was lower than 5%.

In both scenarios, using a 20 ms delay required about 200% of additional memory when

the AHMA was applied. This amount of memory dedicated to historical values would be

approximately 20-fold greater if a standard DDE solver was applied instead.

5.3 Limitations and future work

In this thesis, we have proposed a new mathematical formulation based on DDEs that can

simulate the phenomenon of alternans and of spiral breakup, which are essential in studies

of cardiac arrhythmia. The simulations used different cell models and were performed in

0D (cell model), 1D (cable model) and 2D (tissue model) geometries. A natural next step

is to test the new formulations and new numerical methods in 3D, especially for whole

heart simulations. In addition, in the near future, we intend to improve the numerical

methods used here and to perform other studies using DDEs for cardiac modeling, such

as to describe calcium handling mechanisms that can lead calcium-driven alternans, and

to reproduce other cardiac diseases at the cellular level.

5.3.1 Numerical Methods

During this research, we developed an article describing adaptive-step methods based on

the uniformization method (Melamed - Yadin, 1984) for models that impose substantial

restrictions on time step size due to stability requirements. These are known as stiff

models and they usually include Markov formulations for ion channels (Marsh et al.,

2012). However, they have not been applied to the DDE-based simulations of this

thesis, since the presented experiments were limited to models that only include Hodgkin-

Huxley formulations for describing the ion channel dynamics. Our recently submitted

article (Gomes et al., 2019b) contains a complete description of these methods that can

potentially provide numerical efficiency to future experiments involving DDEs in Markov-
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based models. The proposed adaptive technique called ADP GRL1+UNI was up to 350

times faster than the tradition Rush-Larsen method for single-cell simulations.

The here proposed adaptive history management algorithm was mainly based on

heuristics developed from previous knowledge about the dynamical properties of an action

potential. Another promising approach would be to improve upon the ADP GRL1+UNI

method to include numerical step adaptivity for past variables. That would allow memory-

efficient DDE-based experiments with stiff models that could include Markov descriptions

for ion channels.

5.3.2 DDEs for cardiac models

The present thesis has shown how models that include DDEs can produce complex

dynamics by promoting electrical alternans and spiral-wave breakup. The scope of this

project was limited to perturbing preexisting Hodgkin-Huxley equations with time delays.

Rameh et al. (2019) have demonstrated it is possible to replace HH-based equations with

a purely DDE-based formulation. Therefore, this is yet another suggestion that DDEs

have a potential for replacing the delayed processes that are traditionally described by

Markov models for ion channels. Therefore, these possible applications and extensions

deserve further investigation.
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6 Conclusion

Over 17 million people die of cardiac arrhythmias worldwide. In the emerging

era of precision medicine, where treatments and medicaments are to be developed

in a personalized fashion, computational models play an essential role. Electrical

alternans is an important phenomenon that is closely associated with cardiac arrhythmia.

Unfortunately, many modern models of cardiac electrophysiology can not reproduce this

phenomenon.

In this thesis, we modified existing modern models of cardiac electrophysiology that

could not generate alternans by introducing a new mathematical formulation based on

delay differential equations. After extensive studies, we were able to find combinations

of parameters of the new modified models that enabled the reproduction of alternans in

single-cell simulations. In addition, these studies revealed different mechanisms by which

alternans could be generated, such as the interplay of small delays in sodium variables

with larger delays in calcium or potassium variables.

However, the new proposed formulation comes at a price. The management of past

values of the variables, or history, due to the delay differential equations, poses new

challenges to numerical methods. Therefore, in this thesis, we have also proposed and

tested different numerical methods to solve the new DDE-based formulations efficiently.

The new methods are based on adaptive schemes and were able to decrease memory

usage by up to 97%. These enabled us to perform, for the first time, a series of cardiac

tissue simulations with DDE-based models using a sizeable two-dimensional mesh with

2.4 million nodes.

Using our new DDE-based formulations and new methods, we were able to reproduce

the phenomenon of spiral breakup, a mechanism strongly associated with ventricular

fibrillation and sudden cardiac death. These simulations were also performed using a

model that could not, before our modifications, reproduce these complex phenomena. We

have also studied how the parameters of the new modified models affected the dynamics
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of spiral wave, spiral breakup, and chaos.

In the future, further studies will be conducted to understand how the new DDE-

based models differ from the traditional ODE-based models. In this way, we will continue

to contribute to the development of models that can unravel complex mechanisms that

underly fatal cardiac arrhythmias.
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Muñoz, L. M., Stockton, J. F., Otani, N. F., Sep 2010. Applications of control theory

to the dynamics and propagation of cardiac action potentials. Annals of biomedical

engineering 38 (9), 2865–76.

Neic, A., Liebmann, M., Hoetzl, E., Mitchell, L., Vigmond, E. J., Haase, G., Plank, G.,

Aug 2012. Accelerating cardiac bidomain simulations using graphics processing units.

IEEE transactions on bio-medical engineering 59 (8), 2281–90.

Noble, D., Feb 1962. A modification of the Hodgkin–Huxley equations applicable to

Purkinje fibre action and pace-maker potentials. The Journal of physiology 160, 317–52.

Nolasco, J. B., Dahlen, R. W., Aug 1968. A graphic method for the study of alternation

in cardiac action potentials. Journal of applied physiology 25 (2), 191–6.

NVIDIA, 2016. NVIDIA Tesla P100. Available at: https://images.nvidia.com/

content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

Oliveira, R. S., de Barros, B. G., Gomes, J. M., Lobosco, M., Alonso, S., Bär, M.,

dos Santos, R. W., 2016. Reactive Interstitial and Reparative Fibrosis as Substrates

for Cardiac Ectopic Pacemakers and Reentries. In: Bioinformatics and Biomedical

Engineering. Springer International Publishing, pp. 346–357. Available at: https:

//doi.org/10.1007/978-3-319-31744-1_31

Petersen, W. P., Arbenz, P., 2004. Introduction to parallel computing. No. 9. Oxford

University Press.

Potse, M., Dube, B., Richer, J., Vinet, A., Gulrajani, R., Dec. 2006. A Comparison

of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential

Propagation in the Human Heart. IEEE Transactions on Biomedical Engineering

53 (12), 2425–2435. Available at: https://doi.org/10.1109/tbme.2006.880875

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://doi.org/10.1007/978-3-319-31744-1_31
https://doi.org/10.1007/978-3-319-31744-1_31
https://doi.org/10.1109/tbme.2006.880875


109

Qu, Z., Garfinkel, A., Chen, P. S., Weiss, J. N., Oct 2000. Mechanisms of discordant

alternans and induction of reentry in simulated cardiac tissue. Circulation 102 (14),

1664–70.

Qu, Z., Weiss, J. N., Garfinkel, A., 1997. Spatiotemporal Chaos in a Simulated Ring of

Cardiac Cells. Physical Review Letters 78 (7), 1387–1390.

Rameh, R. B., Cherry, E. M., dos Santos, R. W., Oct. 2019. Single-variable delay-

differential equation approximations of the FitzHugh-Nagumo and Hodgkin-Huxley

models. Communications in Nonlinear Science and Numerical Simulation, 105066.

Available at: https://doi.org/10.1016/j.cnsns.2019.105066

Rappel, W. J., Fenton, F., Karma, A., 2009. Spatiotemporal control of wave instabilities

in cardiac tissue. Phys. Rev. Lett. 83, 456–459.

Restrepo, J. G., Karma, A., 2009. Spatiotemporal intracellular calcium dynamics during

cardiac alternans. Chaos 19 (3), 037115. Available at: http://dx.doi.org/10.1063/

1.3207835

Rocha, B. M., Campos, F. O., Amorim, R. M., Plank, G., dos Santos, R. W., Liebmann,

M., Haase, G., Dec. 2010. Accelerating cardiac excitation spread simulations using

graphics processing units. Concurrency and Computation: Practice and Experience

23 (7), 708–720. Available at: https://doi.org/10.1002/cpe.1683

Rudy, Y., Silva, J. R., feb 2006. Computational biology in the study of cardiac ion channels

and cell electrophysiology. Quarterly Reviews of Biophysics 39 (01), 57. Available at:

https://doi.org/10.1017%2Fs0033583506004227

Ruiz-Herrera, A., Oct. 2012. Chaos in delay differential equations with applications in

population dynamics. Discrete and Continuous Dynamical Systems 33 (4), 1633–1644.

Available at: https://doi.org/10.3934/dcds.2013.33.1633

Rush, S., Larsen, H., jul 1978. A Practical Algorithm for Solving Dynamic Membrane

Equations. IEEE Transactions on Biomedical Engineering BME-25 (4), 389–392.

Available at: http://dx.doi.org/10.1109/TBME.1978.326270

https://doi.org/10.1016/j.cnsns.2019.105066
http://dx.doi.org/10.1063/1.3207835
http://dx.doi.org/10.1063/1.3207835
https://doi.org/10.1002/cpe.1683
https://doi.org/10.1017%2Fs0033583506004227
https://doi.org/10.3934/dcds.2013.33.1633
http://dx.doi.org/10.1109/TBME.1978.326270


110

Saad, M., Mahmoud, A., Elgendy, I. Y., Conti, C. R., oct 2015. Ranolazine in Cardiac

Arrhythmia. Clinical Cardiology 39 (3), 170–178. Available at: https://doi.org/10.

1002/clc.22476

Sato, D., Bers, D. M., Shiferaw, Y., dec 2013. Formation of Spatially Discordant Alternans

Due to Fluctuations and Diffusion of Calcium. PLoS ONE 8 (12), e85365. Available at:

http://dx.doi.org/10.1371/journal.pone.0085365

Sato, D., Xie, Y., Weiss, J. N., Qu, Z., Garfinkel, A., Sanderson, A. R., Sep 2009.

Acceleration of cardiac tissue simulation with graphic processing units. Medical &

biological engineering & computing 47 (9), 1011–5.

Seo, D., Ginsburg, G. S., Goldschmidt-Clermont, P. J., 2006. Gene Expression Analysis of

Cardiovascular Diseases: Novel Insights Into Biology and Clinical Applications. Journal

of the American College of Cardiology 48 (2), 227 – 235. Available at: http://www.

sciencedirect.com/science/article/pii/S073510970601134X

Shampine, L., Gahinet, P., Mar. 2006. Delay-differential-algebraic equations in control

theory. Applied Numerical Mathematics 56 (3-4), 574–588. Available at: https://

doi.org/10.1016/j.apnum.2005.04.025

Shampine, L., Thompson, S., 2001. Solving ddes in matlab. Applied Numerical

Mathematics 37 (4), 441–458.

SUNDNES, J., LINES, G., TVEITO, A., 2002. ODE Solvers for a Stiff System Arising in

the Modeling of the Electrical Activity of the Heart. International Journal of Nonlinear

Sciences and Numerical Simulation. 3 (3).

ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., Panfilov, A. V., Apr. 2004.

A model for human ventricular tissue. American Journal of Physiology-Heart and

Circulatory Physiology 286 (4), H1573–H1589. Available at: https://doi.org/10.

1152/ajpheart.00794.2003

ten Tusscher, K. H. W. J., Panfilov, A. V., may 2006. Alternans and spiral breakup in

https://doi.org/10.1002/clc.22476
https://doi.org/10.1002/clc.22476
http://dx.doi.org/10.1371/journal.pone.0085365
http://www.sciencedirect.com/science/article/pii/S073510970601134X
http://www.sciencedirect.com/science/article/pii/S073510970601134X
https://doi.org/10.1016/j.apnum.2005.04.025
https://doi.org/10.1016/j.apnum.2005.04.025
https://doi.org/10.1152/ajpheart.00794.2003
https://doi.org/10.1152/ajpheart.00794.2003


111

a human ventricular tissue model. AJP: Heart and Circulatory Physiology 291 (3),

H1088–H1100. Available at: http://dx.doi.org/10.1152/ajpheart.00109.2006

Thompson, R., 2013. Using Delay-Differential Equations for Modeling Calcium Cycling in

Cardiac Myocytes. Master Thesis, Rochester Institute of Technology, Rochester, NY.

Timour, Q., Frassati, D., Descotes, J., Chevalier, P., Christé, G., Chahine, M., 2012.
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