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RESUMO

As videoaulas são muito populares hoje em dia. Seguindo as novas tendências de ensino,

estudantes procuram cada vez mais por vídeos educacionais na Web com os mais diferentes

propósitos: aprender algo novo, revisar conteúdo para exames ou apenas por curiosidade.

Infelizmente, encontrar conteúdo específico nesse tipo de vídeo não é uma tarefa fácil.

Muitas videoaulas são extensas e abrangem vários tópicos, sendo que nem todos são

relevantes para o usuário que encontrou o vídeo. O resultado disso é que o usuário acaba

gastando muito tempo ao tentar encontrar um tópico de interesse em meio a conteúdo que

é irrelevante para ele. A segmentação temporal de videoaulas em tópicos pode resolver

esse problema ao permitir que os usuários naveguem de maneira não-linear entre os tópicos

existentes em uma videoaula. No entanto, se trata de uma tarefa dispendiosa que precisa

ser automatizada. Por esse motivo, neste trabalho, propomos um framework de otimização

para o problema de segmentação temporal de videoaulas. Nossa proposta utiliza apenas

informações da fala do professor, portanto, não depende de recursos adicionais, como slides,

livros didáticos ou legendas geradas manualmente. Isso a torna versátil, pois podemos

aplicá-la a uma ampla variedade de videoaulas, uma vez que requer apenas que o discurso

do professor esteja presente. Para fazer isso, formulamos o problema como um modelo

de programação linear, onde combinamos recursos prosódicos e semânticos da fala que

podem indicar transições de tópicos. Para otimizar esse modelo, usamos um algoritmo

genético elitista com busca local. Através dos experimentos, fomos capazes de avaliar

diferentes aspectos de nossa abordagem, como sua sensibilidade à variação de parâmetros

e comportamento de convergência. Além disso, mostramos que nosso método foi capaz

de superar métodos do estado da arte, tanto em Recall quanto em F1-Score, em dois

conjuntos diferentes de videoaulas. Por fim, disponibilizamos a implementação de nosso

framework para que outros pesquisadores possam contribuir e reproduzir nossos resultados.

Palavras-chave: Videoaulas. Segmentação Temporal de Videoaulas. Programação Linear.

Processamento de Linguagem Natural. Processamento de Fala.



ABSTRACT

Video lectures are very popular nowadays. Following the new teaching trends, students

are increasingly seeking educational videos on the web for the most different purposes:

learn something new, review content for exams or just out of curiosity. Unfortunately,

finding specific content in this type of video is not an easy task. Many video lectures are

extensive and cover several topics, and not all of these topics are relevant to the user who

has found the video. The result is that the user spends so much time trying to find a topic

of interest in the middle of content irrelevant to him. The temporal segmentation of video

lectures in topics can solve this problem allowing users to navigate of a non-linear way

through all topics of a video lecture. However, temporal video lecture segmentation is a

time-consuming task and must be automatized. For this reason, in this work we propose

an optimization framework for the temporal video lecture segmentation problem. Our

proposal only uses information from the teacher’s speech, therefore it does not depend

on any additional resources such as slides, textbooks or manually generated subtitles.

This makes our proposal versatile, as we can apply it to a wide range of different video

lectures, as it only requires the teacher’s speech on the video. To do this, we formulate

this problem as a linear programming model where we combine prosodic and semantic

features from speech that may indicate topic transitions. To optimize this model, we

use a elitist genetic algorithm with local search. Through the experiments, we were able

to evaluate different aspects of our approach such as sensibility to parameter variation

and convergence behavior. Also, we show that our method was capable of overcoming

state-of-the-art methods, both in Recall and in F1-Score, in two different datasets of

video lectures. Finally, we provide the implementation of our framework so that other

researchers can contribute and reproduce our results.

Key-words: Video Lectures. Temporal Segmentation of Video Lectures. Linear Program-

ming. Natural Language Processing. Speech Processing.
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1 INTRODUCTION

With the continued proliferation of e-learning, video lectures have been an effective

way to convey educational content. Video lectures offer several advantages for students,

for instance, the possibility of the student review the content taught in regular classes or

filling the gap due to absence. In addition, video lectures allow students to follow their

own learning pace by pausing and moving the video forward or backward (RONCHETTI,

2010). Despite the high availability of video lectures online, students still have a lot of

trouble locating the appropriated material for their studies, because too much irrelevant

content is returned in their searches due to the overload of information that exists on the

Web (MITRA; SRIVASTAVA, 2020).

Also, it is common for students to still have difficulty accessing the desired content,

even when they finally find a video lecture that supposedly addresses it. This because it is

very common for students to search for a specific topic within the main subject of the video

lecture, and so they want to go directly to the point when it begins. But unfortunately,

videos usually do not provide navigation that allows users to access instantly a specific

topic. Thus, to find the beginning of a specific topic in an extensive video lecture, they

must to watch the entire video or try to forward or rewind the video until they find

what they want. That process is time-consuming and negatively contributes to the user’s

experience (YANG; MEINEL, 2014).

Improvements in video lecture search can be made in a repository. For instance, it is

necessary to provide means for students to instantly access specific topics in video lectures

and also to navigate non-linearly across topics. This type of instantaneous and non-linear

navigability between the main topics of the video lecture is ideal for learning and can

significantly improve the student experience in e-learning systems (PAVEL; HARTMANN;

AGRAWALA, 2014). The most common way to accomplish this is to segment video

lectures into topics. That is, to partition the video lecture into smaller units, where each

of these units represents a specific subject addressed in the video (i.e. topics). Although

human-made topic segmentation is the most accurate, it is very time-consuming and

difficult to do in large existing video repositories (LIN et al., 2005a). Therefore, it is

important to automate this task to make it feasible in practice. The automatic temporal

segmentation of video lectures has been a challenge for the multimedia and information

retrieval areas due to the nature of the problem involving both content processing and

semantic understanding.

Although there are many approaches in the literature to automate this task, most

of them rely on features from manually generated materials such as slides, textbooks,

and subtitles. This makes those approaches very dependent on the availability of specific

resources, which limits the universe of video lectures where they can be applied. For this
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reason, the motivation of this work is to remove these barriers by proposing a framework

able to work on circumstances where none of these resources are present using only the

teacher’s speech to segment the video lectures.

Our main contribution in this work is the proposal of a novel optimization framework

capable of obtaining temporal segmentation of video lectures in topics, using only features

automatically extracted from the audio track. Thus, our proposal can be applied to

different types of video lectures, without human effort and without relying on any other

resource that may or may not be available. The framework proposed combines both

prosodic and semantic features into a linear programming model that we optimize to

find a solution. Also, as a minor contribution, we make available the implementation of

our framework as a distributed software architecture that can be easily deployed on the

server-side.

1.1 PROBLEM DEFINITION

The problem of temporal segmentation of video lectures may have different defini-

tions depending on the author. This difficulty comes mainly from the subjective concept

of the topic. One of the most widespread definitions and assumed in this work is that a

topic consists of a logical and semantically meaningful unit of the video lecture that is

contiguous in time (GALANOPOULOS; MEZARIS, 2019; TUNA et al., 2015).

Therefore, assuming that definition, we can represent a topic by its time boundaries.

That is, assuming a set of topics T of a video lecture V , we can represent each topic ti ∈ T

as the closed interval [initi, endi], where initi and endi are the beginning and end time of

ti in the video lecture, respectively, also, endi > initi and initi+1 > endi. So, the problem

this work approaches can be simplified as: given a video lecture V as input, automatically

find the time boundaries [initi, endi] of all topics ti of the V , where i = 1, 2, 3, 4, ..., N and

N is the number of topics in V .

1.2 OBJECTIVES

The main objective of this work is to propose and validate through experiments an

optimization framework able to segment the video lectures into topics by combining into a

linear programming (LP) model the semantic and prosodic features from the teacher’s

speech.

In our proposal, the semantic features are extracted from automatic speech recog-

nition (ASR) transcripts while the prosodic ones are extracted from physical aspects of

speech such as pause duration, loudness and fundamental frequencies. With this, we want

to evidence that our framework provides a versatile approach for the problem of temporal
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segmentation of video lectures and it is capable of obtaining good solutions even without

using any human-made resources to guide the segmentation.

1.3 OUTLINE

This work is organized as follows. Chapter 2 provides the theoretical fundamentals

needed to understand this work. Chapter 3 presents the related work. In Chapter 4, we

describe our proposal. The experiments and obtained results are presented in Chapter 5.

Finally, in Chapter 6, we give our conclusions and discuss future works.
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2 FUNDAMENTALS

In this chapter, we present the main fundamentals and concepts needed for a full

understanding of this work.

2.1 LINEAR PROGRAMMING (LP)

LP is a method that aims to find the values of a set of variables, called decision

variables, that maximize or minimize a linear objective function (VANDERBEI et al.,

2015). Suppose we have a linear model with m decision variables, they can be represented

by the vector X = [x0, x1, x2, x3, ...xm]. Where m ∈ N and x0 = 1.

In LP problems, a objective function consists in function f : Rm 7→ R that follows

the formulation (VANDERBEI et al., 2015; MURTY, 1980):

f(x0, x1, x2, x3, ..., xm−1) = c0 + x1 · c1 + x2 · c2 + x3 · c3 + ... + xm · cm (2.1)

Or in a vectorized form:

f(X) = XT C (2.2)

Where XT is the transposed of the vector X and C is the vector of constants

C = [c0, c1, c2, c3, ..., cm], m ∈ N.

Besides of the objective function, LP problems may have some constraints involving

the decision variables. These constraints can be related to the domain of decision variables

or can be more complex such a linear equality or inequality (VANDERBEI et al., 2015).

The equation bellow shows an example of a LP constraint.

m
∑

i=1

xi · ci ≤ b (2.3)

To summarize, the LP approach is often used to model a real-life problem by

optimizing a linear function without compromising any constraints. For example, the

classic Travelling Salesman Problem (TSP) of finding the route that includes all points

without repetition, returning to the point of origin (constraints), while minimizing the

total distance traveled (objective function).

2.1.1 Multi-objective Problems

A multi-objective problem is one that has more than one objective function to be

optimized. That is, we want to optimize a set of functions f = {f1(X), f2(X), ..., fn(X)},

n > 1, instead of a single function (JONG; SPEARS, 1992).
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When optimizing a multi-objective model, there are some challenges we may face.

The main issue is to approximate the global Pareto optimized set (GPOS), as the search

space grows dramatically with the number of objective functions and variables (SCHÜTZE

et al., 2019). GPOS is the state that it is impossible to improve the solutions of any

objective function without making others worse. Therefore, the task of approximating

the entire GPOS can be very computationally burdensome. This is why, in some cases,

heuristic approaches can be very effective in approaching GPOS without requiring so much

computational effort, as opposed to exact methods.

2.1.2 Metaheuristics

A metaheuristic can be defined as an iterative method that applies high-level

procedures to explore solution space by escaping local optima (GENDREAU; POTVIN et

al., 2010). Generally, metaheuristics are employed to find solutions to problems for which

we do not know efficient algorithms (NP-complete).

One of the main characteristics of the metaheuristics is to be independent of the

problem. Therefore, it is easy to be adapted for different optimization problems. Also, a

metaheuristic can be defined as a general purpose framework that guides a more specific

heuristic, that is problem dependent, through the solution space in an efficient way (BLUM;

ROLI, 2003). Examples of metaheuristics are: Ant Colony Optimization (ACO), Genetic

Algorithm (GA), Iterated Local Search (ILS), Particle Swarm Optimization (PSO), Tabu

Search (TS), among others.

2.1.3 Genetic Algorithm (GA)

GA is a bio-inspired metaheuristic presented by John Holland in 1975 (HOLLAND,

1975). GA works with multiple solutions by iteration (generation). In GA, the set of

solutions found by the algorithm is called population. And, each member of the population

is an individual. GA mechanisms are based on natural selection, where the most adapted

individuals are more likely to survive and generate offspring, transmitting parts of their

genes, while the less fit die. Also, as with natural selection, each individual has a chance of

suffering mutation in its genes. The mutation is an indispensable mechanism of GA, as it

is responsible for introducing variability in the population, preventing the algorithm from

getting stuck prematurely in the local optima. The mutation allows genes not present in

the population to appear, which makes the algorithm able to exploit other neighborhoods

in the solution space (MAN; TANG; KWONG, 1996).

In GA, each individual is represented by an array that encodes a solution to the

problem we are solving. This array is called “chromosome” and each position of this array

is a “gene” (WHITLEY, 1994). Suppose we have an LP problem with 4 binary decision

variables. We can then represent each individual of the GA as a binary chromosome array,
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The mutation is essential to the proper functioning of the GA, preventing its

early convergence. That is because there is a tendency for individuals in the population

to become very similar over the generations. This lack of genetic variability makes the

algorithm not to be able to improve the solutions. The mutation step is responsible

for introducing variability into the population by applying a slight perturbation to the

individual’s genes (MAN; TANG; KWONG, 1996; WHITLEY, 1994; HOLLAND, 1975).

There are many mutation operators that can be found in the literature. One of the most

common when dealing with binary chromosome representations is the bit inversion, which

consists of inverting an individual’s gene given a small probability.

Given the main concepts behind the GA, in the Algorithm 1, we can summarize

the steps of the standard GA according to (MAN; TANG; KWONG, 1996).

Algorithm 1: Standard Genetic Algorithm
Data: population size, number of generations, crossover rate, mutation rate

Result: The individual with best fitness value

1 set the population size ‖P‖;

2 set the number of generations G;

3 set the crossover rate C;

4 set the mutation rate M;

5 randomly initialize the population P;

6 evaluate(P);

7 iterations := 0;

8 while iterations < G do

9 P := select_parents();

10 recombine(P , C);

11 mutate (P , M);

12 evaluate (P );

13 select_survivors(P , P)

14 iterations := iterations + 1

15 end

16 return the best individual

2.1.4 Local Search

Before defining the concept of local search, we need to define what is a neighborhood

of a solution. Suppose we have an optimization problem P , for example, the TSP. We

define as an instance of P the tuple (S, f), where S is the set of all feasible solutions and

f is the objective function. A neighborhood is defined by a function Φ that maps each

solution si ∈ S in a set Ni of solutions that are somehow close to si (AARTS; AARTS;

LENSTRA, 2003). For example, consider a solution to a problem that can be represented
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domain transformation to extract relevant vectors of features to be used by the acoustic

model (YU; DENG, 2016; LEE; SOONG; PALIWAL, 2012).

2.2.2 Acoustic Model (AM)

AM is a centerpiece of ASR architecture. It is responsible for modeling the likelihood

of a sequence of speech units (e.g., phonemes) occurring based on the acoustic features

extracted from the audio signals. Also, the AM maps these sequences into vocabulary

words with the help of a phonetic dictionary called the lexical model. Usually, the lexical

model consists of a plain text file containing all the words of vocabulary and their respective

phonetic transcription (JAIN; RASTOGI et al., 2019; GRUHN; MINKER; NAKAMURA,

2011). Mathematically, we say that an acoustic model A gives us the conditional probability

of occurrence of a sequence of feature vectors O given a word sequence W . This definition

is shown in Equation 2.4.

A = P (O|W ) (2.4)

Nowadays, two of the main algorithms used to train acoustic models are the Hidden

Markov Models (HMMs) (HADIAN et al., 2018) and the Deep Neural Networks (DNNs)

(HINTON et al., 2012). Although these algorithms can perform the phonetic recognition

task very well, training them requires large labeled data sets of audio.

2.2.3 Language Model (LM)

Essentially, LM gives us the probability that a sequence of words W from a

vocabulary will occur (i.e., P (W )). To do this, LM takes the previous N words in

sequence to calculate the probability of the next. The value of N determines the type

of LM. For example, if N equals 3, we say it is a 3-gram model (SONG; CROFT, 1999),

and so on. The importance of LM for ASR architecture is to prevent non-grammatical

sentences from being recognized by giving a low probability of occurrence to not usual

word sequences. As a result, LM significantly improves the accuracy of ASR systems by

solving acoustic ambiguities and reducing the search space (GULZAR et al., 2014). Let

Wr = {w1, w2, w3, w4, ..., wk}, k ∈ N, be a word sequence already recognized by the ASR

system and wk+1 a arbitrary word from the vocabulary. Considering a N-gram LM, the

probability of wk+1 be the next word recognized in Wr is given by the Equation 2.5.

P (wi) = P (wk+1|wk, wk−1, wk−2, ..., wk−N+1) (2.5)
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2.2.4 Hypothesis Search

Finally, the Hypothesis Search (HS) unit is responsible for finding the word sequence

W that is most likely to occur, given a sequence of acoustic vectors O (Equation 2.6).

argmaxW P (W |O) (2.6)

Applying the Bayes Rule (VANAJAKSHI; MATHIVANAN, 2017):

argmaxW P (W |O) = argmaxW

P (O|W ) · P (W )

P (O)
(2.7)

Note that in the Equation 2.7, after we applied the Bayes Rule, two already known

terms appeared: P (O|W ) and P (W ). These terms are correspondent to the acoustic and

language models, respectively. Therefore, given an acoustic vector sequence as input, the

hypothesis search unit generates as output the W word sequence that maximizes the

combination of the AM and LM probabilities (VANAJAKSHI; MATHIVANAN, 2017; YU;

DENG, 2016).

2.3 VOICE ACTIVITY DETECTION (VAD)

Voice Activity Detection (VAD) is the problem of determining which audio segments

contain speech and which do not. In other words, VAD is the task of discriminating audio

segments with speech from those with background noise only (PASAD; SABU; RAO, 2017;

HUGHES; MIERLE, 2013; SOHN; KIM; SUNG, 1999).

Several applications use VAD algorithms as an audio preprocessing step. For

example, ASR systems tend to be very sensitive to background noise, so being able to

differentiate between speech and noise segments can significantly improve the performance

of those systems. Also, VAD can be used to optimize bandwidth in voice call applications

(PASAD; SABU; RAO, 2017; SOHN; KIM; SUNG, 1999).

VAD approaches use features extracted from the audio signal as input to a

speech/non-speech classifier. Several classification algorithms have been employed in

the literature to perform the VAD, such as Gaussian Mixture Models (GMMs), HMMs,

Recurrent Networks (RNNs), rule-based approaches, and others (PASAD; SABU; RAO,

2017; HUGHES; MIERLE, 2013; SOHN; KIM; SUNG, 1999).

2.4 TEXT REPRESENTATION AND COMPARISON MEASURES

When dealing with Natural Language Processing (NLP) and Information Retrieval

(IR), one of the main topics is how to represent text corpora in a way that facilitates

their manipulation and extraction of knowledge from it. For this reason, researchers have
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vector space R
n. In this context, the cosine similarity is one of the most popular measures

(TAKANO et al., 2019; BAEZA-YATES; RIBEIRO-NETO et al., 1999).

The cosine similarity between two text documents is defined as the cosine of the

angle between the vectors representing these documents, where the smaller this angle, the

more similar the documents are. Given two text documents represented by the vectors ~d1

and ~d2, their cosine similarity is defined by (HUANG, 2008):

cos(~d1, ~d2) =
~d1 · ~d2

∥

∥

∥

~d1

∥

∥

∥ ×
∥

∥

∥
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∥

∥

(2.8)

where ~d1 · ~d2 is the inner product between ~d1 and ~d2 and
∥
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multiplication of their norms. Since each dimension of ~d1 and ~d2 contains a non-negative

weight, the cosine ranges from 0 (angle of 90 degrees) to 1 (angle of 0 degrees).

As cosine similarity considers only the angle between document vectors, it is

invariable for document length. For example, consider d1 = “hold the door” and d2 =

“hold the door hold the door” as two text documents. Possible BoW vector representations

for them are ~d1 = (1, 1, 1) and ~d2 = (2, 2, 2), respectively. Calculating the cosine similarity

between ~d1 and ~d2 will result in 1. That is, in terms of cosine similarity they are equal

(HUANG, 2008).

2.4.5 Word Mover’s Distance (WMD)

As already mentioned before, Word2Vec is a way of representing semantic relations

between words in a vector space. However, documents may contain several words. So from

a Word2Vec perspective, a document di is an M × N matrix, where M is the number of

dimensions of Word2Vec representation and N the number of words in di.

WMD is a metric proposed by Kusner et al. (2015) that uses the Word2Vec

representation to get the distance between two text documents. Basically, the WMD

is formulated as a Transportation Problem (LING; OKADA, 2007), where the distance

between two documents di and dj is given by the minimum cumulative cost to move all

words (Word2Vec representation) from di to dj (KUSNER et al., 2015). Unlike the cosine

distance, the WMD ranges in [0, +∞), where the lower the value, the more similar the

documents.

The results reported by Kusner et al. (2015) showed that WMD was able to reduce

errors in classification tasks compared to other text distance metrics. Which makes WMD

a promising approach for measuring the distance between text documents.
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2.5 PROSODIC FEATURES

Prosodic features are commonly defined as any nonverbal speech features such as

pitch, volume, pause duration, rhythm, and others (FRICK, 1985). Prosodic features are

an important part of speech in many languages. For example, logical structures of speech,

such as sentences, paragraphs, and topics, are often demarcated by prosodic features, such

as long pauses or pitch variations (HIRSCHBERG; LITMAN; SWERTS, 2004; SHRIBERG

et al., 2000; FRICK, 1985). Also, prosodic features may express emotions in speech such

as anger, stress, sadness, happiness, among others (FRICK, 1985). Thus, prosodic features

carry useful speech information that is invariable concerning language. The main prosodic

features explored by literature researchers are:

• Pitch: is a prosodic feature related to the perception of fundamental frequency

variations (F0) in the speaker’s voice. Researchers agree that speakers tend to

increase their pitch range by introducing a new subject or emphasizing parts of

speech (MAYER; JASINSKAJA; KÖLSCH, 2006; ARONS, 1994; WILLIAMS, 1985).

Thus, a higher pitch is a powerful tip about transitions between topic or sub-topics.

• Loudness: is another prosodic feature intimately related to the prominence of words

and sentences. It is the perception caused by the variation in air pressure produced

by the energy used in speech (CHE et al., 2016; OLIVEIRA, 2000; FRICK, 1985).

Some authors like Kochanski et al. (2005) argue that loudness may play a more

important role than pitch in detecting highlights on the speech.

• Pause Duration: when we speak, we often use pauses to delimit units of information,

such as words, phrases, paragraphs, or topics. As with pitch and loudness, research

in computational linguistics has concluded that the length of these pauses is longer in

parts of the speech where the speaker introduces a new subject or wants to emphasize

something (CHE et al., 2016; MAYER; JASINSKAJA; KÖLSCH, 2006; FRICK,

1985).
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3 RELATED WORK

Literature proposals for temporal segmentation of video lectures segmentation can

be classified according to some key characteristics: the domain of video lectures they are

applied, the nature of features extracted from video lectures and the way these features

are combined to generate the topic segmentation. In this chapter, we present the main

research on the temporal segmentation of video lectures, separated by the type of feature

used by the algorithm. Thus, we intend to give an overview of the existing lines of research

on this topic.

3.1 TEXT-BASED APPROACHES

The research of Galanopoulos and Mezaris (2019) proposes a fully text-based

method for temporal segmentation of video lectures using word embeddings to calculate

the semantic similarity between text windows of the video lectures subtitles and, thus, to

identify possible points of transition between topics. The authors used humanly generated

subtitles to perform the experiments. Therefore, they did not evaluate the impacts of

using automatically generated subtitles by ASR in their proposal.

Previous research, such as (BALAGOPALAN et al., 2012) and (TUNA et al.,

2015), also have proposed methods for the segmentation of video lectures in topics that

makes exclusive use of textual features. In (BALAGOPALAN et al., 2012), a Naive Bayes

classifier is trained to separate key-phrases from other terms in the audio transcript of

video lectures. Those key-phrases are later used to segment the video lectures into topics.

In the work of Tuna et al. (2015) a investigation about the impact of the use of textual

sources for video lecture segmentation was conducted. The authors’ conclusion is that

the use of optical character recognition (OCR) in video lecture slides provides better data

for topic segmentation than Automatic Speech Recognition (ASR), in large part because

the ASR has many errors involved. However, ASR outperformed OCR as the best data

source for video lecture segmentation when the authors manually corrected the automatic

transcripts.

One of the main shortcomings of these purely textual approaches is that not all

relevant information present in the video lecture is in textual form. This means that

these approaches are not able to detect more subtle cues about the transitions of topics in

the video lecture. Therefore, this may compromise the quality of temporal segmentation

obtained by them.
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3.2 VISUAL APPROACHES

Research such as (DAVILA; ZANIBBI, 2017; LEE et al., 2017) and (SUBUDHI

et al., 2017) focus on video lectures segmentation where the manuscript is shown on the

screen. These papers use visual features to perform a temporal segmentation that is used

later to create a video lecture summary. In (DAVILA; ZANIBBI, 2017), the key-frames of

the video lecture are extracted and binarized. Then, the binarized frames are segmented

to separate the background of the whiteboard from the handwritten content and obtain

content regions. Next, the topic segmentation is done in order to minimize the conflict

between content regions in the whiteboard. Content regions are in conflict if they occupy

the same space in the whiteboard at different time intervals. Thus, they cannot be on the

same topic and need to be segmented.

Similarly, Lee et al. (2017) also proposes an approach for video lecture segmentation

that is based on the extraction of handwriting from the board. First, the board region

is segmented through k-means and next, a connected component technique is applied to

replenish the area of the board covered by the teacher’s body. Then, adaptive threshold

and denoising methods are employed to extract the handwriting. Finally, the extracted

handwritings are used to structure the video lecture in topics.

Although the proposal of Subudhi et al. (2017) uses only visual features, it is a

little bit different from those in Davila and Zanibbi (2017) and Lee et al. (2017) because

its focus is on classifying video shots according to their importance. First of all, abrupt

and gradual visual transitions in the video are detected through histogram calculations

to obtain the shot boundaries. After that, each video shot is classified in low-content,

average-content, content, high-content or non-content based on some visual features that

represent the amount of handwritten content appearing on the screen. For example, a video

shot where the camera is focused on the speaker’s face would be classified as non-content.

Otherwise, a video shot where the white/blackboard or a paper note are shown fully filled

with equations would be classified as high-content. This classification is used later to

obtain a summary of the video lecture, which makes possible for students to go directly to

the most important parts of the video.

These purely visual approaches, in essence, are based on detecting significant visual

transitions between frames in the video. One of the great gaps of these approaches is that

they depend on very specific types of video lectures so that they can extract the necessary

features for their segmentation. Since many video lectures are recorded in a single shot,

without major visual changes.
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3.3 SPEECH-BASED APPROACHES

Another research line is the exploration of different features from the teacher’s

speech to perform the topic segmentation task. The works of Che, Yang and Meinel (2018)

and Soares and Barrére (2018), for example, spoken sentences in textual form and prosodic

features are used to obtain a topic segmentation.

In the work of Che, Yang and Meinel (2018), the sentences may be obtained from

subtitle or automatic speech recognition. Then, prosodic features of each sentence like

pitch, loudness, pause rate, and duration are extracted to obtain highlight points in the

video lecture. As each sentence has a timestamp associated, a temporal segmentation

can be obtained. On other hand, Soares and Barrére (2018) proposes a data processing

pipeline to obtain a temporal topic segmentation in video lectures. Three kinds of features

are extracted from audio’s track over this pipeline: prosodic, transcripts, and the semantic

annotation of transcripts. Next, those features are used to calculate affinity matrices that

are linearly combined and given as input to a clustering algorithm. The clusters formed

by this algorithm are sequential parts of a video that corresponds to topics. One of the

advantages of using only audio features is because most of the video lectures have an

audio track where the teacher’s speech predominates. Thus, these kinds of proposals can

cover a greater amount of video lectures than those that depend on the presence of slides,

whiteboards or textbooks to work.

Continuing in the line of research of the audio approaches, the works of (MAO et

al., 2014) and (STOWELL et al., 2015) can be mentioned. In (MAO et al., 2014), the

authors have presented an approach for speech emotion recognition using convolutional

neural networks, while in (STOWELL et al., 2015) the state-of-the-art of methods for

audio event detection is reported. Although none of the articles deals directly with the

issue of temporal segmentation of video lectures, it can be seen an application of them in

this problem. For example, the recognition of emotions in speech can be used to detect

moments of emphasis in the teacher’s speech, which may indicate the transition of topics.

In the same way that audio event detection algorithms can be trained to find important

moments in video lectures, such as the sound of the click of remote control to pass slides

or the sound of the teacher erasing the blackboard, for example.

One of the great advantages of speech-based approaches is that, as the vast majority

of video lectures contain the teacher’s speech in the foreground, these methods can be

applied satisfactorily in virtually all types of video lectures. On the other hand, these

approaches, by not using other sources of information, are not able to take advantage of

other resources present in the video lecture that could improve the quality of the temporal

segmentation.
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3.4 MULTIMODAL APPROACHES

Proposals that use different sources of information to perform the topic segmentation

task are very common in the literature. In (SHAH et al., 2014), the authors present the

ATLAS system as solution to the ACM Multimedia 2014 Grand Challenge on automatic

temporal segmentation and annotation. The approach of ATLAS is based on the fusion of

visual and textual transition cues. To obtain the visual transition cues, two SVM models

were trained. For the extraction of textual cues, a N-gram language model was employed.

In the experiment section, we can see that the fusion of the visual and textual cues perform

better than use them separately. Similarly, another system for temporal segmentation of

video lectures was proposed in (FURINI; MIRRI; MONTANGERO, 2018). This system

uses visual transitions in the video and audio energy to obtain cut points in order to

generate a topic-based playlist to improve navigability through video lecture content.

In (BISWAS; GANDHI; DESHMUKH, 2015), the authors proposed a method to

automatically generate table of contents for video lectures. However, to achieve this goal,

the temporal video lecture segmentation is needed. For this, the authors first calculate an

importance score for each word from slides based on visual features (location, boldness,

underlineness, capitalization and isolation). Next, the importance of spoken words is

calculated through a graph-based model. Lastly, the temporal segmentation problem is

modeled as a dynamic programming problem combining both visual and spoken features.

Besides, the method proposed may work with only speech or visual features, however

results showed that the combination of the two kinds of features can deliver a better

segmentation.

In (MAHAPATRA; MARIAPPAN; RAJAN, 2018) the final objective is the genera-

tion of a table of contents for video lectures. Although, there is an important difference in

relation to the work of (BISWAS; GANDHI; DESHMUKH, 2015). Basically, the proposal

of (MAHAPATRA; MARIAPPAN; RAJAN, 2018) uses OCR technology and speech

features to find the time the teacher starts talking about the bullet points that appear over

slide-show. The authors proposed modeling of the problem as a knapsack tree problem,

where there is a budget constraint that determines the maximum number of topics that a

solution can contain. That is, if one slide has four bullet points, the algorithm may segment

up to four topics from one single slide. It can be a problem, because over-segmentation

can have the opposite effect in relation to improving the information retrieval in the video

lecture. Another issue is in the case of an addressed topic that does not appear explicitly

in the slide as a bullet point or title. In this case, it will not be segmented. This strong

dependence of well-structured slides makes this method be applicable only in a reduced

set of video lectures.

These multimodal approaches are capable of obtaining excellent results when taking

advantage of different sources of information present in the video lectures. Despite this,



33

the quality of the solutions obtained by these methods can be compromised in cases where

not all sources of information are available.

3.5 CONCLUDING REMARKS

This chapter presented the main research related to this work. With this, we can

place our work in the area of temporal segmentation of video lecture through a survey of

the main techniques used by the top-notch researches.

In the literature, there are several approaches for the task of temporal segmentation

of video lectures. And just as important as the algorithm used to decide the temporal

segmentation, are the features it uses. The choice of features directly affects the algorithm’s

ability to find topic boundaries in video lectures, as each contributes to different levels

and types of information. Furthermore, some features used by the approaches may set

limits on the domain of video lectures where they can be applied, depending on the feature

fusion method employed. Since, This limitation of most literature methods influenced

our choice by using only features extracted from the teacher’s speech and thus to cover a

larger number of video lectures. Another important aspect is that, unlike most approaches

that only take into account the syntactic characteristics of the extracted texts, our method

uses the Word2Vec model to represent the textual features and extract relationships that

would not be possible through mere syntactic comparisons. The use of prosodic features is

also a crucial point of our approach since not all information contained in speech is verbal.

The choice of an optimization model is because we believe this type of approach is

more general when it comes to finding solutions to an instance of the problem. Although,

depending on the algorithm used for optimization, there may be a lot of parameter

adjustment at the beginning. In contrast, threshold-based approaches tend not to generalize

well when there is too much variability between instances.

To close this chapter, we chose the main works of this literature review to compare

the techniques and features used by each of them:

• Research 1: Our Proposal

• Research 2: (GALANOPOULOS; MEZARIS, 2019)

• Research 3: (SOARES; BARRÉRE, 2018)

• Research 4: (BISWAS; GANDHI; DESHMUKH, 2015)

• Research 5: (LEE et al., 2017)

Table 1 shows a compiled comparison between our proposal and the researches

above.
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Table 1 – Comparison between techniques/features used by the main literature researches
in temporal segmentation of video lectures

Research 1 Research 2 Research 3 Research 4 Research 5
OCR x
ASR x x
Manual Subtitles x
Word Embeddings x x
Prosodic features x x x
Visual features x x
Optimization approach x x
Clustering approach x
Threshold approach x x

Source: The author (2020)
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4 PROPOSAL

As stated before, one of the main problems in the temporal segmentation of video

lectures is the dependence on the existence of additional manually generated materials

(e.g. slides, textbooks, subtitles, among others) to be used as input for algorithms. Also,

even those that do not depend on external material for segmentation are very specific to

certain types of video lectures. For this reason, in this work, we propose a method for

temporal segmentation of video lectures that uses only features obtained automatically

from speech. Our proposal, in general, can be seen as a complete processing pipeline

ranging from feature extraction to the segmentation algorithm itself.

In our pipeline, the video lecture audio track goes through a series of processing to

extract both semantic and prosodic features from the teacher’s speech. We then use these

features to model the temporal segmentation of video lectures as an LP problem that we

optimize to find a solution. For a better understanding of the overview of our proposal,

we break it down into 4 processing stages where each one receives input and produces an

output. We briefly describe each one below:

• (i) All the information we need is present in the teacher’s speech. Therefore, in

the first stage of processing, we extract the audio track from the video lecture and

provide input for the next step.

• (ii) Although the audio track has all the useful information for our algorithm, it

also has a lot of irrelevant information, such as background noise. To alleviate this

problem, we have applied a process we call silence removal so that we can have audio

chunks that contain as much continuous foreground speech as possible.

• (iii) At this stage, we extract semantic and prosodic features from the audio chunks

obtained from the silence removal stage.

• (iv) We then use the extracted features to compose an LP model that we optimize

with a metaheuristic to obtain a temporal segmentation for the video lecture.

With this processing pipeline, we can obtain a temporal segmentation of video

lectures through only features of their audio track. Furthermore, all stages of this pipeline

are fully automated. Figure 6 illustrates the overview of our proposal.

4.1 AUDIO EXTRACTION

The audio of video lectures is a major source of information. Since in most of them,

the teacher’s speech is present and carries a lot of meaning related to the video lecture

content (HUSAIN; MEENA, 2019; LIN et al., 2005b).
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In our proposal, we extract different features from the audio track to perform

segmentation. Thus, audio extraction is the first and most fundamental step. Because

of this, we must ensure that the extracted audio is compatible with the other processing

steps. Therefore, we standardize the extracted audio format as single-channel audio using

16-bit uncompressed PCM encoding (GOODMAN, 1969) and 16 kHz sampling rate.

As previously stated, the decision to choose this audio format was based on technical

criteria to fully meet the needs of the following steps of our proposal. Since our purpose

is to capture features from the teacher’s speech, we need to choose the minimum audio

settings that allow us to achieve this fully. Therefore, we chose the sample rate and the

number of representation bits according to the literature recommendation for wideband

speech applications (CHRISTENSEN, 2019). In this way, we guarantee that we can extract

all features satisfactorily while saving computational resources.

4.2 SILENCE REMOVAL

Silence removal is applied to the extracted audio track and is responsible for

separating useful information for our framework (foreground teacher speech) from useless

information (background noise only or silence). To do this, we use a VAD algorithm

to classify audio frames as voiced/unvoiced. This VAD model receives a threshold

parameter that determines the aggressiveness of the algorithm to classify an audio frame

as unvoiced (we will detail parameter values in the Experimentation chapter). With a

less aggressive threshold, the VAD algorithm will be more likely to classify frames that

contain hesitation pauses after expressions like “Um”, “Er”, “Uh” and “So” as voiced,

for example. The opposite happens with a more aggressive threshold. Figure 7 illustrates

how some audio frames that were classified as voiced become classified as unvoiced if we

set a more aggressive threshold.

After applying VAD, we can discriminate which audio frames have useful informa-

tion for our algorithm and which do not. We then put together consecutive audio frames

that were classified as voiced to form what we call audio chunks. A more formal definition

of an audio chunk can be given as follows: let q(t) be a sequence of audio frames in time,

and suppose that each audio frame in q(t) was classified as voiced or unvoiced. An

arbitrary audio chunk si can be defined as a sub-sequence of q(t) represented by the open

intervals (b, e) where q(b) and q(e) are both audio frames classified as unvoiced. Figure 8

illustrates the concept of audio chunk.

At the end of this stage, we ensure that we have audio chunks fully composed

by the teacher’s speech, which is important for our feature extraction since VAD is a

proven effective preprocessing for noise removal which may reduce the error rate in several

applications (PASAD; SABU; RAO, 2017).
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4.3 OBTAINING PROSODIC FEATURES

Not all relevant information in the teacher’s speech is present in the form of

words. As stated earlier, it is common for people to demarcate logical units of speech

nonverbally (prosodically). Hence, prosodic features are capable of giving us additional

information about speech structure, which can be very useful to achieve a more accurate

temporal segmentation to video lectures. Some specific prosodic features, such as pitch,

pause duration, and loudness, have been successfully applied over the years to perform

the speech segmentation task (CHE; YANG; MEINEL, 2018; MAYER; JASINSKAJA;

KÖLSCH, 2006; HIRSCHBERG; LITMAN; SWERTS, 2004; SHRIBERG et al., 2000;

OLIVEIRA, 2000; KOCHANSKI et al., 2005; ARONS, 1994). Because of this, we have

incorporated these prosodic features into our framework to take advantage of the valuable

information they can provide to solve our problem.

Therefore, at this stage, we extract the pitch, pause duration, and loudness estima-

tions for each audio chunk si, i = 1, ..., C, generated by the silence removal preprocessing.

We represent then the prosodic features of an audio chunk si as a tuple (ρi, τi, ωi), where

ρi, τi and ωi are the pitch, pause duration and loudness estimations, respectively.

To obtain the pitch value (ρi) for an audio chunk si, we first apply the YIN method

(CHEVEIGNÉ; KAWAHARA, 2002) to obtain the pitch contour of the speech in si.

As result of this, we obtain a N dimensional array Fi that contains the fundamental

frequencies of the signal. We then calculate the average of Fi values to get ρi:

ρi =
1

N

N
∑

j=1

Fij (4.1)

This average value can provide a good representation of the feature pitch for our

model, since the larger the range of fundamental frequency values in the audio chunk, the

higher it is the average.

The pause duration is another prosodic feature that may provide strong cues about

topic transitions (CHE; YANG; MEINEL, 2018). In our proposal, we assume the pause

duration of an audio chunk si as the total consecutive silence time detected before the

beginning of si. In other words, suppose z is the index of the first audio frame of a voiced

audio chunk si and w the index of the first audio frame of the voiced audio chunk before

si. Suppose also that the function d(x) gives the duration in seconds of arbitrary audio

frame x. So, τi is calculated through the Equation 4.2 below:

τi =
z−1
∑

k=w+1

d(k) (4.2)

Where the audio frames in the interval [w + 1, z − 1] were classified as unvoiced by
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the VAD algorithm from the previous section.

As stated in the fundamentals section, loudness is an important feature used to

detect highlights in speech because it is associated with the energy contained in the speech

signal. Hence, it is possible to have a good estimation of the instantaneous loudness values

in speech signal by calculating the energy in short segments, such as audio frames. One of

the ways to calculate this is through the Short Term Energy (STE) equation (NANDHINI;

SHENBAGAVALLI, 2014), which we use to estimate the loudness for each audio chunk.

Let ξji(m), m = 1, ..., WL be the discrete speech signal of the jth frame of an audio

chunk si, where WL is the frame length. First, for each frame of si, we calculate the STE

using the equation:

e(j) =
1

WL

WL
∑

m=1

|ξji(m)|2 (4.3)

In Equation 4.3, e(j) is the STE for a audio frame j and 1

WL

is a normalization factor

inserted to remove the dependency of frame length (GIANNAKOPOULOS; PIKRAKIS,

2014).

Lastly, to obtain our loudness feature (ωi) for an audio chunk si, we calculate the

average of STE values of its frames:

ωi =
1

N

N
∑

j=1

e(j) (4.4)

Where N is the number of frames in the audio chunk si.

4.4 OBTAINING SEMANTIC FEATURES

The words and sentences spoken by the teacher are full of meaning about the

content of a video lecture. Therefore, through them, we can get important information

about the structure of the video lecture and thus improve the quality of our temporal

segmentation. Although it may seem, it is not trivial to obtain or represent these words

to capture that meaning.

As we did for prosodic features, we also obtain semantic features for each audio

chunk si. To do this, we send each audio chunk si to a processing pipeline (see Figure 9)

that outputs the representation of the semantic features of si:

1. First, we transcribe the speech for each audio chunk using ASR. Although ASR

transcripts are not accurate as manual subtitles, not all video lectures have subtitles

available. So, using ASR is a good alternative to work around this problem and

automatically extract the textual content of the teacher’s speech.
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2. Next, for each audio chunk, we perform a POS (part-of-speech) tagging in its tran-

scripts generated by the ASR. The POS tagging consists of labeling each word

or token from a text according to its morphosyntactic function in a given context

(MÀRQUEZ; RODRÍGUEZ, 1998). Usual labels are: DT (Determiner), IN (Prepo-

sition), JJ (Adjective), NN (Noun, singular), NNS (Noun, plural), RB (Adverb),

RP (Particle), VB (Verb, base form), VBD (Verb, past form) and VBN (verb,

past participle). With this, we can understand the role of each word in sentences

and treat them differently according to their importance to speech semantics.

3. Not all words or phrases in audio chunk transcripts are meaningful to understand

the video lecture content. For example, prepositions and particles are important

for connecting words and expressions, but they do not have information about the

content of the speech itself. This kind of word is called stopword. For this reason,

we first remove all stopwords from the transcripts. Next, we get only the words that

compose Noun Phrases (NP) and remove the others. NP is composed of a noun as

its core plus words that modify it or give additional information about it, such as

adjectives, among others. For example, in the sentence “Now, we will talk about

artificial intelligence”, the part that appears in bold is a NP. The reason we do

this is that studies have shown that using NP as textual features can perform better

than others (GALANOPOULOS; MEZARIS, 2019; LIN et al., 2005a).

4. Traditional methods for text representation, such as BoW models, are based on word

occurrence statistics and hence only represent the syntactic nature of text documents,

failing to capture the semantics behind them. For this reason, at the end of all

text processing, we represent the processed transcript of each audio chunk using a

Word2Vec model because of its properties already discussed. Since in Word2Vec

each word is represented as a vector, the semantic features of each audio chunk is

given by a matrix NxM , where N is the dimension of the word vector representation

and M the number of words in the resulting text.

4.5 LP MODEL

After we extract both prosodic and semantic features from each audio chunk, we

model the problem of temporal segmentation of video lectures in the function of these

features. We choose to model our problem as an LP problem due to the fact that there

are several efficient algorithms and solvers for this kind of problem. In our model, we map

the temporal segmentation problem into the problem of selecting the audio chunks that

are more likely to contain a topic boundary. Since audio chunks follow temporal order, we

can map it back to the original problem.
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Our LP model has originally two objectives: (1) maximize the sum of utility score of

audio chunks chosen as topic boundary, and (2) minimize the number of partitions (topics).

With this, we want to select the most prominent audio chunks while avoid under/over-

segmentation, which would have the opposite effect of a good temporal segmentation. The

utility score ui of an audio chunk si is given by Equation 4.5 and is a measure of how likely

an audio chunk si contains a topic transition, where ρi, τi, ωi are pitch, pause duration

and loudness estimates, respectively. The term ∆i represents the difference of distances

(two distance measures will be evaluated in Experiments section) between the

semantic features of the audio chunk si and of its two immediate neighbors in time si−1

and si+1, as shown in Equation 4.6.

ui = C0 · ρi + C1 · τi + C2 ·
(

1 +
i − 1

SL − 1

)

· ωi + C3 · ∆i (4.5)

∆i = dist(i − 1, i) − dist(i, i + 1) (4.6)

The constants C0, C1, C2, and C3 are inserted to scale the features, since their

values vary on different ranges. Also, as we calculate the loudness feature using an energy

measure, we incorporate the term
(

1 + i−1

SL−1

)

in Equation 4.5, where SL is the total

number of audio chunks, to compensate for the fact that the speaker gets tired throughout

the lecture and consequently the energy level in the speech also decreases (CHE; YANG;

MEINEL, 2018). Furthermore, the intuition behind the term ∆i given by the Equation

4.6 is that we believe that, due to the temporal characteristic of a topic, the audio chunks

with more chance to be a topic boundary tend have much greater semantic distances with

the previous chunk (i − 1) than with the next one (i + 1).

With the utility function and its components defined, we can mathematically write

our LP formulation as follow:

maximize
SL
∑

i=1

uixi (1)

minimize
SL
∑

i=1

xi (2)

subject to
SL
∑

i=1

xi > 0

xi ∈ {0, 1}, i = 1, ..., SL

Where the variables xi, i = 1, 2, 3, ..., SL, are binary decision variables that indicates

whether an audio chunk si has been selected (1) or not (0) as topic boundary. The only

restriction we impose on our model is that there must be at least one partition in the
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solution for it to be feasible. As we state in the Fundamentals chapter, the biggest challenge

in multi-objective problems is to find the optimal solutions for all objective functions

simultaneously. Thus, instead of dealing with two separate objective functions, we rewrite

our formulation with a single objective maximization function. We do this by subtracting

the objective function (2) from (1):

maximize κ
SL
∑

i=1

uixi − (1 − κ)
SL
∑

i=1

xi

subject to
SL
∑

i=1

xi > 0

xi ∈ {0, 1}, i = 1, ..., SL

In this final formulation, the constant κ, 0 < κ ≤ 1, controls the importance of each

objective to the problem. For example, if κ = 0.5 both objective functions will be equally

important to the problem. If instead, the value of κ is too large (κ = 0.9), this means that

the objective function (1) will be of much greater importance than (2). As a result, the

best solutions to our problem will tend to have many partitions (over-segmentation). And,

the opposite will happen if the value of κ is too small (under-segmentation). Figure 10

shows a geometric interpretation of the value of κ in our objective function. In this Figure,

we show the trend lines of both objective functions.

4.6 OPTIMIZATION ALGORITHM

Because our model may have thousands of variables, depending on how many audio

chunks we found for a video lecture, we chose to approach the problem with a heuristic

method instead of an exact one. In our proposal, we use a GA to find solutions that

optimize our LP model. This choice is because the GA is one of the most successfully

used metaheuristics by researchers for solving linear optimization problems (CAMPOS;

JIMÉNEZ-BELLO; ALZAMORA, 2020; RASHEED, 2019; LEE; YANG, 1998; DAVIS,

1985).

In our GA, we randomly build an initial population of P size and represent each

individual as a binary chromosome array, where the gene in the ith position corresponds

to the decision variable xi of our LP formulation. Besides, we use the modified objective

function presented in the previous section as our fitness function. That is, we use the

objective function of the problem itself to evaluate how good each individual is for solving it.

Furthermore, each individual of the population has a probability m of suffering mutation,

which we defined as a bit-flipping of a random gene in its chromosome. That is, if the

gene has the value 1, it becomes 0 and vice-versa.

Unlike standard GA, we employ elitism in selecting individuals who will be parents
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and survive for the next generation (SOREMEKUN et al., 2001). In other words, we

select the best E individuals (elite) to generate offspring and survive along with them

for the next generation while other individuals die. In the crossover stage, we select with

equal probability pairs of elite individuals to generate new individuals by combining their

chromosomes. These chromosomes are combined using a two-point crossover operator

(MAN; TANG; KWONG, 1996) (see subsection 2.1.3). In our case, the number of performed

crossovers is equal to the number of individuals who died since new individuals will replace

them in the next generation. Therefore, we define as crossover rate (C), the number of

performed crossovers over the population size:

C =
P − E

P
(4.7)

Also, to improve the solutions found, we perform a local search on the top-10%

best individuals. As this process is computationally costly, it is applied only in the

most prominent individuals. To perform the local search, we use the Tabu Search (TS)

algorithm (GLOVER; LAGUNA, 1998). In TS, each movement ηi, i = 1, 2, 3, ..., M , defines

a neighborhood, so the algorithm starts from an initial solution Q0 and finds the best

neighbor Qi = Q0

⊕

ηi such that the movement ηi is not in the Tabu List. After, we add

ηi in the Tabu List and, if Qi is better than Q0, assign Qi to Q0. We repeat this process

until a stopping criterion is reached. The Tabu List is a data structure used to avoid the

algorithm to be trapped in local optima by forbidding some movements that have been

applied in the last k iterations (EDELKAMP; SCHROEDL, 2011). In our case, we define

k equals 2 and as stop criterion 10 iterations without improvement or 50 iterations in total.

We chose these values so that they are sufficient for local search to find improvements in

the neighborhood of the solutions, without using much computational effort in the attempt.

Besides, we define three movements: Merge, Split and Move Bound. In Merge, two

adjacent topics are merge into one. The Split movement is the opposite of merge: a topic

is divided into two new topics. Finally, in Move Bound movement, a topic boundary is

moved to another audio chunk. We use these local search movements to try to correct

the main errors existing when defining the limits of topics in a video lecture. Figure 11

illustrates examples of these movements and the Algorithm 2 describes the TS used in

this work.
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Algorithm 2: Tabu Search
Data: Q0, fobj(.)

Result: Q∗

1 T := ∅;

2 iter := 0;

3 Q∗ := Q0;

4 while stop criterion not true do

5 η∗ = η;

6 (Qi, ηi) := best_neighbor(η∗);

7 while ηi ∈ T do

8 η∗ = η∗ \ {ηi};

9 (Qi, ηi) := best_neighbor(η∗);

10 end

11 T := T ∪ {ηi};

12 if length(T ) > 2 then

13 T := remove_first_element(T )

14 end

15 if fobj(Qi) > fobj(Q
∗) then

16 Q∗ := Qi

17 end

18 iter := iter + 1

19 end

20 return Q∗

To summarize, in our proposal, we use an elitist GA with local search as an

optimization method to find solutions that maximize our objective function (see Algorithm

3). Each decision variable of our problem, represented in the GA by chromosome genes, is

related to an audio chunk, and each audio chunk has a timestamp of when it begins in

the video lecture. Thus, we can map the solutions found by GA directly to the original

problem by just getting the beginning timestamps of the audio chunks selected as topic

boundaries. Figure 12 shows an example of possible solution found by the GA. In this

case, there are two topics delimited by the audio chunks si and si+4. Suppose we have

a function b(.) that outputs the time of beginning of any audio chunk si, hence we can
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represent the topic j by the interval [b(si), b(si+4)) and the topic j + 1 by [b(si+4), b(sn))

Algorithm 3: Elitist Genetic Algorithm with Local Search
Data: population size, number of generations, crossover rate, mutation rate

Result: The individual with best fitness value

1 set the population size ‖P‖;

2 set the number of generations G;

3 set the crossover rate C;

4 set the mutation rate M;

5 randomly initialize the population P;

6 evaluate(P);

7 iterations := 0;

8 while iterations < G do

9 P := select_parents_with_elitism(1-C);

10 recombine(P , C);

11 mutate (P , M);

12 evaluate (P );

13 top_ten_percent := select_top(P );

14 local_search(top_ten_percent);

15 select_survivors_with_elitism(P , P, C)

16 iterations := iterations + 1

17 end

18 return the best individual
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5 EXPERIMENTAL RESULTS

In this chapter, we evaluate our proposal through experiments that explore different

aspects of it. In the first experiment, we explored different GA parameter values for 5

versions of our objective function. By doing so, we want to show that, with the best

set of parameters, the combination of prosodic and semantic features makes our method

perform better than using them separately. Next, we analyze the convergence behavior

of our algorithm over iterations and discuss the advantages and disadvantages of using

local search in this case. Lastly, we compare the performance of our approach with two

other literature proposals: a fully text-based and a multimodal algorithm that relies on

features extracted from slideshows. With these comparisons, we can give evidence that

our approach provides good segmentation in two distinct scenarios even when compared

to specifically designed approaches.

Due to the stochastic nature of our method, each experiment was performed 10

times for each of the 5 random seeds used. Therefore, we present the results as the mean

and standard deviation of the evaluation measures over these runs. For this, we used a

machine with 8GB of RAM and an Intel® Core™ i5-8265U processor with 6MB of cache

and a maximum frequency of 3.9 GHz to perform all experiments presented in this chapter.

5.1 IMPLEMENTATION DETAILS

We implemented our framework proposed in the previous chapter as a distributed

software architecture. In this architecture, each processing stage of our framework is a

fully independent module that works in a producer/consumer schema (ZHANG; ZHANG;

ZHANG, 2009). Each process that performs the tasks of a module is a worker that

consumes messages from a task queue and, at the end of processing, inserts the results

into an output queue (that can be a task queue of another module). The main advantage

of using this design pattern is that we can more easily manage processes that produce and

consume data asynchronously at different speeds.

We mainly use the Python programming language to implement our architec-

ture. For the implementation of producer/consumer queues, we use the message broker

RabbitMQ1. We also use the databases PostgreSQL2 and MongoDB3 to store data. In

PostgreSQL, we store processing metadata to enables us to track the steps of a segmenta-

tion request from a client and, thus, detect possible bugs. Also, these metadata can be used

to keep a history of processing for further analysis. In turn, we use MongoDB’s GridFS to

store and retrieve video, audio and text files generated by the processing performed by
1 https://www.rabbitmq.com/
2 https://www.postgresql.org/
3 https://www.mongodb.com/
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workers.

Regarding architecture modules, they are all shipped in Docker4 containers to

facilitate the reproducibility and deployment of our proposal. In total, our architecture

has 7 modules:

• REST API: The entry point of our architecture. Responsible for receiving from

users the video lecture to be segmented through HTTP POST. After receiving the

segmentation request, the REST API module stores the video in MongoDB and

inserts a request message in the Audio Extractor module task queue.

• Audio Extractor: Module that extracts audio from the incoming video lecture. To

perform the extraction, we use the multimedia framework FFmpeg5. At the end of

the extraction, the Audio Extractor stores the video lecture audio in the MongoDB.

Also, it inserts a request messages in the task queue of the VAD module.

• VAD: Performs the voice activity detection in the extracted audio file to remove

silence and noise. To do this, we use a Python implementation available on GitHub6

of the VAD algorithm of Google’s WebRTC (GOOGLE, 2020). This implementation

allows us to define a level of aggressiveness to be used by the algorithm to detect the

absence of speech. These levels range from 0 (less aggressive) to 3 (more aggressive).

In the implementation carried out in this work, we chose empirically the value 1. At

the end of the processing, the VAD stores the voiced audio chunks generated in the

database. Also, the VAD inserts request messages in the task queues of the ASR

and Prosodic Extractor modules.

• ASR: Automatically transcribes the speech contained in each chunk audio generated

by VAD. To build this module, we use the toolkit Kaldi (POVEY et al., 2011) with

the ASpiRE Chain Model7 for English. We chose this specific model due to its low

word error rate (WER) of 15.60%. The ASR module generates and stores a text file

in the database for each transcribed audio chunk. After that, it produces a request

message in the Flow Aggregator task queue.

• Prosodic Extractor: It is responsible for extracting the prosodic features of each

chunk audio. To obtain the pitch contour, we use the implementation of the YIN

method from the Python library aubio8. To extract the other features, we use

only standard Python. Like the ASR module, this module stores the result of its
4 https://www.docker.com/
5 https://www.ffmpeg.org/
6 https://github.com/wiseman/py-webrtcvad
7 https://kaldi-asr.org/models/m1
8 https://aubio.org/
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processing in the database and inserts a request message in the Flow Aggregator

task queue.

• Flow Aggregator: As the segmentation algorithm requires both semantic and

prosodic features that are processed asynchronously by their respective modules,

there must be a module responsible for aggregating the two types of features extracted

from the same video lecture. When a message arrives at its task queue (from the

ASR or Prosodic Extractor module), the Flow Aggregator module starts a worker

to wait for the missing features to finish processing and then aggregate them in a

single message to dispatch it to the segmentation algorithm. The Flow Aggregator

module identifies messages from the processing of a video lecture using a unique ID

generated for each video lecture given as input by the user.

• Segmentation: Implements our segmentation algorithm (elitist GA with local

search) and some other processes like the POS Tagging, stopword removal and the

Word2Vec representation of audio transcripts. To perform the POS Tagging and

stopword removal, we use the NLTK Toolkit9. Besides that, to represent the audio

transcripts, we use the Google’s Word2Vec model10. This model was trained on

Google News dataset with about 100 billion words and represents each of them in a

vector space of 300 dimensions using the approach from (MIKOLOV et al., 2013b).

Regarding the parameters of our LP model, we choose the values of the constants C0,

C1, C2 and C3 from Equation 4.5 such as 0.01, 1, 0.1 and 10, respectively. In this way,

we scale all features to vary on the same scale and thus have the same importance.

Also, we set the value of κ of our objective function to 0.4, since, analytically, it is a

reasonable value to avoid over-segmentation, but without the opposite occurring.

Figure 13 illustrates the queuing communication scheme between the architecture

modules. Furthermore, we make all the code of our implementation available on GitHub11

for all those interested in contributing or reproducing the results reported in this work.

5.2 DATASETS

To evaluate our proposal and provide experimental evidence on the quality of

our proposal, we carried out experiments on two datasets of video lectures with different

characteristics. The first dataset, which we call “audio-based”, consists of video lectures in

English about exact science subjects. In these video lectures, a teacher speaks from a stage

to an audience without any visible slide show or other text on the screen. Thus, they are

video lectures where the information is predominantly in the audio, more specifically in the
9 https://www.nltk.org/
10 https://code.google.com/archive/p/word2vec/
11 https://github.com/eduardorochasoares/easytopic
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Figure 14 – Example of JSON containing a ground-truth segmentation. The JSON keys
represent the start times of the topics of the video lecture while the values
represent their respective titles.

1 {

2 226: 'ACM Highlights',

3 274: 'Generator Power',

4 311: 'Iteration',

5 611: 'Iterables',

6 945: 'Reduction Functions',

7 1005: 'Sort x Sorted',

8 1257: 'The Iterator Pattern',

9 1764: 'Generator Function',

10 2283: 'Bult-in Generators',

11 2525: 'GENEXPS',

12 2701: 'Case Study',

13 3007: 'Subjects for another day...',

14 3113: 'ThoughtWorks'

15 }

Source: The author (2020)

5.3 EVALUATION MEASURES

To measure the quality of the proposal, we compare the temporal segmentation

obtained by our algorithm with the ground-truth segmentation provided for each video

lecture. Thus, it is possible to estimate how far the results are from the ideal. We

choose three measures to perform this evaluation: Precision, Recall and F1 Score

(GOUTTE; GAUSSIER, 2005). Through them, we can analyze many aspects of the

solutions for temporal segmentation problem, such as how accurate the segmentation is

and how comprehensive it is according to topic numbers.

We define Precision as the number of algorithm hits over the number of hits plus

the number of misses. Precision gives us a good idea of the algorithm’s assertiveness when

determining the existence of a topic transition at a given moment in the video lecture.

Recall, instead, is the number of algorithm hits divided by the number of topics in the

ground-truth segmentation. It provides a measure of how well covered the existing topics

in the ground-truth were by the algorithm. Lastly, we use the F1 Score, which is defined

as the harmonic mean between Precision and Recall, to get a single evaluation measure

for an algorithm. In this work, based on other literature researches (MAHAPATRA;

MARIAPPAN; RAJAN, 2018; BISWAS; GANDHI; DESHMUKH, 2015), we assume that

a hit occurs when the start time of a topic (ti) from the algorithm’s solution differs at
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BRANICKY; LINDEMANN, 2004). The GS is an exhaustive search algorithm that tests

all possible combinations of parameters from a predefined subset of values. To guide the

GS in the search for the best parameters, we used the metrics defined in Section 5.3.

Then, we evaluated the effects of the variation in the mutation rate (m), crossover rate

(c), population size (p) and number of generations (g) on the quality of the temporal

segmentation of each version. The subsets of parameter values tested were:

• m ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}

• c ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

• p ∈ {50, 100, 200}

• g ∈ {50, 100, 200, 300, 400, 500}

We tested all possible combinations of parameters above to determine which one

performs better in both datasets. Tables from 2 to 6 show the top-3 parameter combinations

for each objective function and evaluation measure mean.

Table 2 – Results of hyperparameter tuning using Grid Search - PROS

p g c m Precision Recall F1 Score
1 200 300 0.4 0.01 0.51 0.25 0.30
2 200 200 0.5 0.07 0.51 0.26 0.30
3 200 300 0.7 0.01 0.51 0.26 0.32
4 50 50 0.3 0.03 0.31 0.57 0.38
5 50 50 0.3 0.02 0.28 0.55 0.36
6 50 50 0.3 0.01 0.30 0.53 0.36
7 50 50 0.5 0.05 0.32 0.51 0.38
8 100 50 0.7 0.05 0.34 0.43 0.38
9 50 50 0.6 0.06 0.32 0.49 0.38

Source: The Author (2020)

It is possible to see in the GS results that each evaluated model has different

characteristics. One point to highlight is that the versions with only semantic features

(COS and WMD) obtained the most unbalanced results between Precision and Recall.

While the COS version achieved the highest recall average of 86%, the WMD obtained

75% of Precision. However, these values are associate with low Precision (20%) and Recall

(13%) values, respectively. Therefore, we can note that COS tends to over segmenting the

video lectures and WMD does the opposite. The most plausible hypothesis to explain this

is that the COS version uses the cosine distance between the average word vectors of the

audio chunk transcripts, which leads to weaker semantic relations between them. Hence,

the algorithm tends to segment too much the video lecture to optimize the objective
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Table 3 – Results of hyperparameter tuning using Grid Search - COS

p g c m Precision Recall F1 Score
1 50 100 0.9 0.03 0.24 0.72 0.34
2 50 500 0.5 0.02 0.23 0.72 0.34
3 50 400 0.7 0.01 0.23 0.69 0.32
4 200 300 0.9 0.06 0.20 0.86 0.32
5 200 500 0.9 0.06 0.21 0.85 0.32
6 200 300 0.8 0.07 0.21 0.85 0.32
7 100 50 0.8 0.01 0.22 0.77 0.34
8 50 200 0.6 0.06 0.23 0.75 0.34
9 50 500 0.8 0.03 0.23 0.71 0.34

Source: The Author (2020)

Table 4 – Results of hyperparameter tuning using Grid Search - WMD

p g c m Precision Recall F1 Score
1 200 400 0.6 0.06 0.75 0.13 0.21
2 200 400 0.7 0.01 0.67 0.05 0.10
3 200 400 0.8 0.02 0.67 0.07 0.12
4 50 50 0.3 0.05 0.27 0.39 0.29
5 50 50 0.3 0.07 0.29 0.39 0.29
6 100 50 0.3 0.07 0.31 0.39 0.29
7 50 50 0.3 0.03 0.32 0.37 0.31
8 200 50 0.3 0.06 0.32 0.33 0.30
9 50 50 0.7 0.01 0.28 0.39 0.30

Source: The Author (2020)

function. And the opposite occurs with WMD, since it uses a more sophisticate algorithm

to relate different word vectors.

Another point of attention is concerning the performance of objective functions

that use prosodic features (PROS, PROS + COS, and PROS + WMD). One thing

they all have in common is that they have more balanced results between Precision and

Recall, which makes them able to obtain a higher F1 Score than the purely semantic

versions. But, although they have a lot in common, we can note some differences. While

PROS and PROS + WMD show a decrease of about 20% in maximum Precision when

achieving maximum Recall, in PROS, this decrease is only 10%. Hence, as we can see

in results, the PROS + COS obtains the best F1 Scores among all other objective

functions by balancing the good Precision and Recall averages provided by PROS and

COS, respectively.

Regarding the independent variation of the GA parameters, we show in Figure 17

how the F1 Score average and its standard deviation are affected by it. In this Figure, we

can see that the versions PROS, COS and WMD need a small population size to obtain
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Table 5 – Results of hyperparameter tuning using Grid Search - PROS + COS

p g c m Precision Recall F1 Score
1 50 400 0.7 0.01 0.50 0.23 0.26
2 50 500 0.7 0.01 0.50 0.23 0.26
3 50 400 0.4 0.01 0.50 0.27 0.30
4 200 400 0.8 0.06 0.40 0.53 0.41
5 200 500 0.8 0.06 0.40 0.53 0.41
6 200 400 0.9 0.06 0.40 0.52 0.41
7 200 300 0.5 0.07 0.41 0.51 0.42
8 100 400 0.8 0.06 0.41 0.51 0.42
9 100 500 0.8 0.06 0.41 0.51 0.42

Source: The Author (2020)

Table 6 – Results of hyperparameter tuning using Grid Search - PROS + WMD

p g c m Precision Recall F1 Score
1 50 500 0.7 0.01 0.50 0.23 0.27
2 50 400 0.5 0.01 0.48 0.23 0.28
3 50 300 0.6 0.01 0.47 0.23 0.29
4 100 50 0.3 0.01 0.28 0.54 0.34
5 50 50 0.3 0.02 0.29 0.53 0.35
6 100 50 0.3 0.05 0.29 0.53 0.36
7 100 400 0.4 0.04 0.44 0.31 0.38
8 100 50 0.6 0.07 0.33 0.47 0.38
9 50 50 0.7 0.02 0.34 0.47 0.38

Source: The Author (2020)

a higher F1 Score. On other hand, composite methods (PROS + COS and PROS +

WMD) increase their F1 Score with larger populations. We can also notice that the

F1 Score obtained by the PROS + COS version increase significantly along with the

number of generations, while with the PROS, WMD and PROS + WMD versions,

the inverse happens.

Crossover and mutation are two essential operators for the genetic algorithm to

be able to find good solutions since they are responsible for introducing variability in the

population. In Figure 17, we can see that the objective functions that obtained the best

F1 Scores used a moderate crossover rate (between 0.3 and 0.6) and a high mutation rate

(0.05 to 0.07). This result demonstrates that a stronger elitism (represented by moderate

crossover rates) helps the algorithm to find better solutions. However, this strong elitism

leads to the need for a high mutation rate to prevent individuals in the population from

becoming too similar with few iterations, which would lead to an early convergence of the

algorithm.

Based on all results presented in this section, we conclude that the objective function
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a late convergence can be problematic if the model spends too iterations to converge or if

it ends up not converging, which would represent a computational expense for nothing.

The local search is responsible for preventing GA from being trapped at local

maxima by doing perturbations in the best solutions found so far to explore their neigh-

borhood and find new solutions (LOURENÇO; MARTIN; STÜTZLE, 2019). Therefore,

it is necessary to analyze the impacts of this process in the GA convergence. To do this,

the objective function value obtained by the GA in each generation (iteration) for each

video from the two datasets were collected. The data collection contains the values for

each dataset with the local search on and off.

Since each data set has multiple videos, the results were grouped by generation

number. Thus, the mean and standard deviation of the objective function values at each

generation were calculated. For that, previously, these values were normalized between 0

and 1 for each video lecture. Thus, 0 and 1 represent the lowest and the highest value

obtained, respectively, in each video lecture, according to Equation 5.4, where F (tj
i ) is the

fitness value of the j-th test instance in the i-th iteration (which corresponds to the i-th

generation of the genetic algorithm). The GA was run for 300 iterations for each instance,

as defined in the hyperparameter tuning.

F (tj
i ) =

F (tj
i ) − min(F (tj

1)...F (tj
300))

max(F (tj
1)...F (tj

300)) − min(F (tj
1)...F (tj

300))
(5.4)

Figures 18 and 19 show the convergence results for each data set. The lines represent

the mean of the objective function over generations, while the shaded areas represent

the standard deviation. It can be noted a slight improvement in average when using the

local search in both data sets, especially when it is analyzed the area of the standard

deviation. It is possible to see that the blue area (local search off) reaches smaller values

than the orange one (local search on) in most of the time. Also, the local search tends to

be advantageous with a smaller number of iterations because it accelerates the algorithm

convergence. This behavior can also be seen in specific cases of video lectures, as shown in

Figures 20 and 21.

Also, in convergence charts, it is possible to see that the algorithm with local

search obtains the best objective function values in most of the generations, but ends

up being reached at the end by the algorithm without local search. The elitist nature

of the GA used in this work can explain it. In the early generations, the solutions are

still very random, so local search helps the algorithm to find, with few generations, better

solutions in the neighborhood through local search movements. But as the number of

generations advance, GA elitism will select the best solutions for the crossover stage, while

discarding the worst ones. Therefore, as is common in any evolutionary algorithm that

employs elitism, the populations of the final generations tend to be very similar. This
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Table 7 – Comparison between temporal segmentation quality between Local Search Off
and On in audio-based dataset

Precisionm Precisions Recallm Recalls F1 Scorem F1 Scores

Local Search Off 0.31 0.17 0.69 0.20 0.38 0.14
Local Search On 0.49 0.20 0.50 0.26 0.44 0.15

Source: The author (2020)

Table 8 – Comparison between temporal segmentation quality between Local Search Off
and On in slide-based dataset

Precisionm Precisions Recallm Recalls F1 Scorem F1 Scores

Local Search Off 0.30 0.20 0.75 0.18 0.38 0.12
Local Search On 0.41 0.18 0.51 0.16 0.42 0.13

Source: The author (2020)

individuals to last for more generations and be passed through the crossover step. Thus,

it is more likely that, at the end of the process, the best individuals have more partitions

than when we use local search, which favors Recall.

Regarding the execution time of the algorithm, the Tables 9 and 10 show the

difference of using or not the local search on each dataset. As expected, the use of local

search requires a greater computational effort than not using. Despite this, the local search

process, as well as the GA itself, are easily parallelized, which can speed up significantly

the algorithm execution.

Table 9 – Execution time (in seconds) comparison between Local Search Off and On in
audio-based dataset

Timem Times

Local Search Off 49.33 31.58
Local Search On 63.50 33.92

Source: The author (2020)

Table 10 – Execution time (in seconds) comparison between Local Search Off and On in
slide-based dataset

Timem Times

Local Search Off 23.06 16.87
Local Search On 26.75 11.04

Source: The author (2020)
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5.6 COMPARISON WITH OTHER APPROACHES

In this section, we compare the performance of our proposal with other two from

the literature. For this, we use the version of our algorithm from the previous section with

local search enabled since it obtains better F1 scores than when disabled. This comparison

is divided in two parts: in the first, the performance of our proposal in the audio-based

dataset was compared with the results obtained by the proposal of (GALANOPOULOS;

MEZARIS, 2019); in the second part, the performance of our proposal was compared with

the proposal of (BISWAS; GANDHI; DESHMUKH, 2015) on the slide-based dataset.

As mentioned in Section 3, the work of (GALANOPOULOS; MEZARIS, 2019)

(VFWE) proposes a method for temporal segmentation of video lectures fully based on

using a Word2vec model in the audio subtitles. Since the method of (GALANOPOULOS;

MEZARIS, 2019) only uses information extracted from audio to perform its segmentation,

it is appropriate to evaluate its performance on the audio-based dataset. Whereas we did

not find an implementation of this method available, we coded our own version that can

be accessed at the URL14.

In turn, the method proposed in (BISWAS; GANDHI; DESHMUKH, 2015) (MM-

TOC) is a multimodal algorithm that fuses information from slide presentation and audio

subtitles. Although it has been some years since its publication, this work has become a

baseline of comparison for methods of temporal segmentation of video lectures. As it is a

method designed to work in video lectures with slide presentation, its performance was

evaluated on the slide-based dataset.

Tables 11 and 12 present the performance comparison among the approaches. The

results are presented as mean and standard deviation of evaluation measures (subsection

5.3) on each data set.

Table 11 – Performance comparison on audio-based data set between our proposal and
VFWE

Method Precisionm Precisions Recallm Recalls F1 Scorem F1 Scores

Our proposal 0.41 0.18 0.51 0.16 0.42 0.13
VFWE 0.41 0.22 0.14 0.18 0.20 0.10

Source: The author (2020)

Before drawing any comparative conclusion about the results from Tables 11 and

12, we have first calculated the statistical significance of them through two-tailed Student’s

t test for two independent samples (LAKENS, 2017). This test is used to determine if

two independent means are different from each other, by assuming the null hypothesis

that they are equal. Thus, we applied the Student’s t-Test for each evaluation measure,
14 https://github.com/eduardorochasoares/video_fragmentation
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Table 12 – Performance comparison on slide-based data set between our proposal and
MMTOC

Method Precisionm Precisions Recallm Recalls F1 Scorem F1 Scores

Our proposal 0.49 0.20 0.50 0.26 0.44 0.15
MMTOC 0.83 0.22 0.21 0.14 0.31 0.14

Source: The author (2020)

considering the results of the methods that we are comparing. Applying the t-Test, we

obtain the p-values showed in Table 13.

Table 13 – Results of Student’s t test for the mean of evaluation measures

Audio-based p-value Slide-based p-value
Precision 1.00 2.87 × 10−11

Recall 5.10 × 10−15 8.40 × 10−7

F1 Score 8.53 × 10−13 9.00 × 10−3

Source: The author (2020)

Setting a confidence interval of 95%, we can state, by convention, that the null

hypothesis is rejected if the p-value is less than 0.05 (GREENLAND et al., 2016). Therefore,

according to the results in Table 13, we can say that the differences between the results

obtained by the algorithms from the literature and our proposal are statistically significant.

The only exception concerns the comparison between the average Precision of our proposal

and that of VFWE in the audio-based dataset, from which we cannot reject the null

hypothesis that they are equal.

Thus, we can say that our proposal outperformed VFWE and MMTOC in both

Recall and F1-Score. Regarding Precision, we cannot conclude anything about the

comparison with the VFME method. However, our proposal got beaten by MMTOC in

the slide-based dataset. These results can be explained by the main characteristics of

each method. In the audio-based dataset, VFWE uses a Word2Vec model to identify cut

points in video lectures subtitles that can possibly be topic transitions. However, when

the topic transition is not abrupt, VFWE may fail to identify it. For example, VFWE

would hardly be able to identify a transition between subtopics of the same main topic,

because the method depends on a drastic change of the context of words in subtitles. In

(GALANOPOULOS; MEZARIS, 2019), the authors conducted experiments with VFWE

on an artificially generated data set build through the concatenation of subtitles from

different video lectures to represent the topics. That is, in their data set, the video lectures

have abrupt topic transitions unlike the real video lectures used in our experimentation.

As our method achieved a better Recall in the audio-based data set, we can say that it

is able to identify topics that VFWE can not. The approach proposed in this work uses
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semantic similarity information combined with prosodic features that helps the algorithm

to identify topic transitions that are not perceptible by verbal means.

About the comparisons with MMTOC, some points must to be highlighted. As

can be seen at Table 12, the MMTOC outperformed our proposal in relation to Precision,

but it was outperformed in Recall and F1-Score like the proposal of (GALANOPOULOS;

MEZARIS, 2019). That occurs because (BISWAS; GANDHI; DESHMUKH, 2015) proposes

a greedy cost function where importance of words from slides and speech are combined,

and then, a dynamic programming algorithm finds the solution by minimizing this cost

function. In their approach, topic transitions are a subset of the slide transitions. Hence,

the proposal of (BISWAS; GANDHI; DESHMUKH, 2015) is unable to identify topic

transitions on the same slide. For example, if the teacher uses a slide to explain various

topics through an image of a diagram, the (BISWAS; GANDHI; DESHMUKH, 2015)

approach would fail to segment those topics; For that reason, in (BISWAS; GANDHI;

DESHMUKH, 2015), the Precision is preferred over Recall. Unlike that, our approach

balances Precision and Recall by maximizing the sum of a utility function that combines

both semantic and prosodic features (that provides good cues about topic transitions)

while minimizing the number of topics to avoid over-segmentation.
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6 CONCLUSION AND FUTURE WORKS

In this work, we propose an optimization framework for temporal segmentation of

video lectures. Our approach consists of the combination of prosodic and semantic features

extracted from a teacher’s speech into a linear programming model that we optimize to

obtain the temporal segmentation. We based the use of prosodic features on the premise

that some of the most prominent tips on topic transition in video lectures are expressed

non-verbally. On the other hand, we use semantic features to detect topic transitions

based on changing the meaning of words and sentences spoken by the teacher. To do

this, we use a pre-trained Word2Vec model to represent the audio transcripts obtained

through ASR. Furthermore, in our proposal, we use an elitist genetic algorithm with local

search to optimize the linear programming model and obtain the solutions for the temporal

segmentation for the video lectures. The use of only features automatically extracted from

teacher’s speech makes it a versatile approach that can be employed in a large universe

of video lectures, as it does not depend on the availability of other sources such as slide

shows, textbooks, or manually generated subtitles. This implies that our proposal can be

used in real scenarios to improve search in video lecture repositories without any human

effort.

As there are many processes involved in our framework, we implemented it as a

distributed software architecture composed of modules responsible for performing specific

tasks. Within each of these modules, there are processes, called workers, that are responsible

for performing these tasks. As each module has a different processing complexity, one of

the advantages of our implementation is that it allows us to scale the number of these

workers to meet the processing needs of each one. Furthermore, our architecture follows a

producer/consumer design pattern, in which module workers consume messages from a task

queue when they are available and produce in an output queue at the end of processing.

In this way, the processing of the video lecture datasets occurs asynchronously, which

improves time performance. Finally, we also shipped each module of our architecture in a

Docker container to facilitate tests and the deployment on production servers.

Through the experiments carried out in this work, we were able to present evidence

that the combination of prosodic and semantic features provide better solutions to the

problem treated in this work than to use them separately. We also show that with a given

set of GA parameters, the use of the cosine distance applied to the average word vectors

combined with the prosodic features obtained the better F1 Score among all objective

functions tested.

Also, we analyze the effects of local search on the convergence of the algorithm

and the quality of the solutions found by it. The results showed that, in terms of the

objective function, the use or not of the local search leads to close results at the end of
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generations. But, when we look at the quality of the found solutions, we can see that the

use of the local search makes the algorithm find more balanced solutions between Precision

and Recall and with a better F1 score than not using it.

Regarding the versatility of our method, the results endorsed that it is capable of

obtaining competitive results in datasets of video lectures with different characteristics.

By comparing our proposal with two others from the literature in datasets for which they

were specifically designed, we show that our method has outperformed them both in Recall

and F1 Score.

As the main weakness of our proposal, we can mention the need to adjust many

parameters to obtain the best performance. We may need to adjust them according to the

dataset of video lectures that we are applying the method, which can be a complicated

task.

As future work, we want to improve our method by considering other prosodic

features such as rhythm and syllabic duration in our LP model. Besides, we would like to

experiment with other meta-heuristics like Ant Colony (DORIGO; STÜTZLE, 2019) and

Particle Swarm (MICHIMURA et al., 2018) to optimize it. Finally, we would also like to

carry out experiments with students to assess the quality of our proposal when applied in

real e-learning environments, such as Moodle1.

1 https://moodle.org/
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