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RESUMO

O problema de mapeamento de um ambiente real e reconhecimento dos objetos
contidos neste ambiente é um problema da area de Visao Computacional e tem recebido
atencdo com o avanc¢o de solugdes SLAM e solugoes robustas de reconhecimento de
objetos. O problema da robética de Localizagdo e Mapeamento Simultdneos (Simultaneous
Localization and Mapping - SLAM) consiste em criar um mapa (geralmente geométrico) da
cena ao mesmo tempo em que estima a pose do observador. As solugoes para este problema
sao utilizadas em diversas areas onde se deseja mapear um ambiente e extrair informagoes
geométricas deste. O reconhecimento de objetos permite identificar o objeto na cena
conforme as classes de objetos da base de dados de referéncia. Para o reconhecimento
em imagens 2D, as melhores solugbes sao baseadas em redes neurais convolucionais.
Entretanto, para a obtencao das informacoes geométricas 3D dos objetos na cena, sao
necessarias outras técnicas que variam conforme o modelo do objeto 3D de referéncia.
Neste trabalho, sera apresentada uma nova abordagem para lidar com a estimativa de
pose de objetos 3D a partir de imagens de cenas estaticas de ambientes internos. Para isso,
uma integracao entre um detector de objetos em imagens e uma solucao SLAM monocular
baseada em keyframes foi desenvoldida. Como resultados, demonstramos uma melhoria
na estimativa da trajetéria da camera em relagao ao método original e uma utilizacao do

sistema implementado na criagao de ambientes virtuais.

Palavras-chave: SLAM. Dete¢ao de objetos. Realidade Virtual.






ABSTRACT

The problem of mapping a real environment and recognizing the objects contained
in this environment is a problem in the Computer Vision area and has received attention
with the advances of SLAM solutions and robust object recognition solutions. The problem
with Simultaneous Localization and Mapping (SLAM) robotics is to create a (generally
geometric) map of the scene while estimating the viewer’s pose. The solutions to this
problem are used in several areas where a map of the environment is desirable and extract
geometric information from it. Object recognition allows us to identify the object in the
scene according to the object classes of the reference database. For recognition in 2D
images, the best solutions are based on convolutional neural networks. However, to obtain
the 3D geometric information of the objects in the scene, other techniques are necessary
that vary according to the model of the reference 3D object. In this work, we present
a new approach to deal with the pose estimation of 3D objects from images of static
scenes of indoor environments. We also propose a new integration between an object
detector and a monocular SLAM solution based on keyframes. As results we demonstrate
an improvement in the estimation of the camera’s trajectory in relation to the original

method and a use of the system implemented in the creation of virtual environments.

Keywords: SLAM. Object detection. Virtual Reality.
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1 INTRODUCTION

A robotic system needs to simultaneously extract information from the environment,
build a map, and localize itself in this map when moving in an unknown environment
autonomously. This computational challenge is known as SLAM, an abbreviation for
Simultaneous Localization and Mapping. SLAM was initially proposed (1) to perform
autonomous control of mobile robots. The SLAM solutions follow the technological
advances in sensors and algorithms, and nowadays there are a diversity of solutions applied
in a variety of uses. When a SLAM solution uses only a camera (monocular, RGB-D
or stereo) as sensor device the problem is called visual SLAM or vSLAM, and are well
summarized in (2, 3). vSLAM is broadly researched due to the simple configuration of
hardware, but the technical challenges are higher than others because the only environment

information is visual.

One of the steps of SLAM solutions is to map the environment and store it in
some structure, for example, a point cloud. This map is a representation of the real world
and only contains geometric information, such as point positions. It is essential to add
a semantic meaning into this map to allow the computational systems to improve the
interaction of the real world. This semantic assignment can be accomplished, for example,
by identifying the real-world objects on the map. One of the applications of a semantic
mapping of an environment is the possibility to reconstruct this environment in a virtual

reality world. The virtual world would contain the objects of the recorded scene.

Object detection is the task of locating and labeling objects in an image, and it
is an important and non-trivial task in the field of computer vision. There is a wide
variety of object detection methods, mainly using machine learning approaches, especially
convolutional neural networks. To identify real-world objects in the map, as mentioned
before, it is necessary a technique to transform the 2D visual information into a 3D object

representation.

The union of object detection and vSLAM techniques has great importance in the
field of robotics, virtual and augmented reality, autonomous driven, among others. In
literature, there are many visual SLAM solutions integrated with object detectors, but
the majority of the studies use RGB-D cameras. The use of RGB-D cameras facilitates
some steps of the SLAM solution due to additional pixel-depth information in every
frame. However, RGB-D cameras are still expensive and limited to equipment with high
value-added. On the other hand, monocular cameras are cheaper and more common than
RGB-D cameras. Nevertheless, its use adds more complexity in the SLAM because of two

frames are necessary to achieve the depth information.

Our main contribution in this work is to provide an integration of a 2D object

detector, a 2D-to-3D object recover technique, and a monocular vSLAM solution. In short,
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we record an environment, with the frames we identify the objects and, at the same time,
we build a map and estimate the 3D pose of objects in the environment. To the best of
our knowledge, we are the first to propose an object-aware monocular SLAM system that
recognizes and reconstructs the 3D pose of objects using only RGB images and apply it to

build a virtual world.

1.1 PROBLEM DEFINITION

The problem of identifying and determining the 3D positioning of objects in a
static indoor environment is the focus of the present work, with the restriction that only
RGB images should be used. The challenge in this work is to estimate the 3D position,
scale, and rotation of the objects with only RGB images as input and integrates them in a
SLAM map. In our hypothesis, it is possible to build a virtual environment from a real

scene filmed by a monocular camera.

1.2 OBJECTIVES

The main objective of this work is the research and development of a method,
coupled with the state of the art of SLAM techniques, to map a real environment using a
monocular camera, identifying the objects in this environment according to a database,
and determining their positions in real time. The secondary objective is to develop an
application of this method in the area of virtual reality by building a virtual environment

based on the mapped real environment.

1.3 OUTLINE

The remainder of this work is organized as follows. Chapter 2 presents a systematic
literature review of researches related in the field. The main concepts needed to understand
our work are the subject of Chapter 3. Our proposal and develop system are presented
in Chapter 4. Chapter 5 shows our experimental results. Finally, the conclusion and

suggestions for future works are the topics of Chapter 6.
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2 RELATED WORKS

As explained in Chapter 1, one of the objectives of this work is to develop a method
to map a real scene with a monocular camera to determine the pose of objects in a scene.
Thus, a Systematic Literature Review (SLR) was conducted to summarize the relevant
works in the field where object detection techniques were combined with vSLAM solutions.
At the end of the review, we evaluated what methods and techniques would be used to

achieve the objective of this work.

2.1 SYSTEMATIC LITERATURE REVIEW

This SLR followed the steps on (4), which is an adaptation for research in Computer
Science and related areas based on the work of (5). The steps of this SLR are presented in

Figure 1.

Figure 1: Steps followed in this SLR.

?

Formulate search questions

{

Keywords definition

!

Databases definition

!

Search for studies

!

Studies selection

!

Quality evaluation of selected studies

!

Data extraction

|

Draw conclusions

!

Results

.

Source: Elaborated by the author (2020).
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2.1.1 Research questions

As the first step, we defined what we want to know about the subject, and we
formulate questions about it. These research questions guided this SLR, and Table 1 listed

the formulated research questions as well as their goals.

Table 1: Research questions and their aims.

Id Research question Aim

RQ1 What 3D object detection methods were Learning what methods were used
applied with a visual SLAM approach? with SLAM solutions and their spe-

cificities.
RQ2 How the methods affected the SLAM Understanding how the object detec-
approach? tor 3D output was used to improve
the SLAM.
RQ3 What techniques are used with these Understanding what basic techniques
approaches? were used to develop an object-SLAM

approach in practice.
RQ4 What are the premisses of these appro- Understanding the approaches limita-
aches? tions and their applicability.

Source: Elaborated by the author (2020).

2.1.2 Keywords definition

The next step was to extract keywords from the questions to guide the search on
databases. These keywords, combined with Boolean operators, synonyms, and related
words, will form query strings that we use in databases to select studies. The keywords

were visual, SLAM, object, and detection.

2.1.3 Databases definition

We used the main electronic databases in the field to retrieve the papers which
were IEEE Xplore!, Scopus?, Science Direct®, Web of Science* and ACM?®. The advanced
search page was used in all databases filtering the search, preferably by title, abstract, and

keywords.

2.1.4 Search for studies

The search for studies consists of iterative steps, as shown in Figure 2 and explained

in the next subsections.

https://ieeexplore.ieee.org
https://www.scopus.com/
https://www.sciencedirect.com/
http://www.webofknowledge.com/
https://dl.acm.org/

g W N =
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Figure 2: Steps for search for studies.

e

Initial query string

Search for papers

|

Superficial rele- Query string
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Satisfactory

Save papers

.

Source: Elaborated by the author (2020).

The initial query string was a simple concatenation of chosen keywords: “visual
AND SLAM AND Object AND detection” and 466 studies were retrieved. In this set, we
noticed studies that use non-camera sensors like laser rangers, sonar, inertial measurement
unit (IMU), combining or not with cameras, and these studies were out of our scope.

Besides, some reference studies were left out of the set.

The query string was successively refined, and the final query string was “SLAM
AND Object AND (Recognition OR Tracking) AND (Image OR Visual OR Camera)”,
and 1435 studies were retrieved. After that, the duplicated studies were removed, and
we ended up with 867 candidate studies for the primary studies. Table 2 lists the search

results on databases before and after removing duplicates.

Table 2: Search results before and after removing duplicates.

Database Before After
ACM 90 26
IEEE Xplore 473 274
Science Direct 23 4
Scopus 496 489
Web of Science 353 74
Total 1435 867

Source: Elaborated by the author
(2020).
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2.1.5 Studies selection

Inclusion and exclusion criteria were defined to align the candidate studies to the
goal of the SLR. These criteria could be extracted from the questions and restrict other

aspects, for example, field studies, surveys, article language, year of study, and others.

The inclusion criteria were:

a) Studies which used some rigid and static object detection technique combined with
some SLAM solution;

b) Studies which used only monoculars, RGB-D or stereo cameras;
¢) Studies which proposed approaches designed to indoor environments;

d) Papers written in English.
The exclusion criteria were:

a) Studies which did not use some rigid and static object detection technique combined
with some SLAM solution;

b) Studies which did not use only monoculars, RGB-D or stereo cameras;
¢) Studies which proposed approaches designed for outdoor environments;
d) Studies which the aim was not object detection;

e) Papers not written in English;

f) Short papers or papers with less than five pages.

The inclusion and exclusion criteria formulated previously were applied to the
candidate studies in two phases. The objective of this step is to remove works that are not
in line with the SLR. The criteria were applied in the title and abstract of all candidate
studies in the first phase. In phase two, the criteria were applied in the full text of
remaining candidate studies. The results are shown in Table 3. Since all studies in the
ACM and Web of Science databases have been deleted, these databases will not appear in

the results from now on.

2.1.6 Quality assessment (QA)

In this step, the quality criteria were defined to provide weight to the remaining
studies to reach the goals described in (5) and the objective of this SLR. The QA was
designed as a checklist with six questions to evaluate the quality of the study and the

paper. The questions presented in the checklist, their possible answers, and the score scale
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Table 3: Results of application of inclusion and exclusion criteria

Database Before First s tljsd%(iijn d step Remaining
ACM 26 26 0 0
[EEE Xplore 274 257 9 8
Science Direct 4 2 1 1
Scopus 489 408 41 40
Web of Science 74 70 4 0
Total 867 763 55 49

Source: Elaborated by the author (2020).

are shown in Table 4. Each question was formulated with a purpose, and these purposes

are presented in Table 5.

The final score of each study is the sum of points in each question. Consequently,
the studies could reach between 0 to 12 points. For adherence with the review purpose,
the studies which had 8 points or more were included in the final list of primary studies.
After a full reading of the studies, the checklist was applied. The results are shown in

Table 6. The scores of selected papers in each question are presented in Table 7.

2.2 ANALYSIS AND DISCUSSION OF SELECTED PAPERS

In this section, the results in this SLR are presented and analyzed. The 30 studies
were discussed to answer the research questions. The next subsections will discuss the

answers to the research questions formulated in Section 2.1.1.

Some questions in the quality checklist were designed to select relevant studies that
had features that were only possible through recent accomplishments. For example, public
large-scale image datasets and collaborative repository hosting services. This selection is

visible in Table 8, and the selected papers were restricted to the last decade.

2.2.1 RQ1l: What 3D object detection methods are applied with a visual
SLAM approach?

The purpose of this question is to understand what are the features of the 3D
object detection methods used with SLAM in the selected studies. The methods in the

selected studies can be grouped under several aspects as follows.

The majority of the selected studies, 69.0% (20), used RGB-D cameras (A1, A2,
A5, A7, A9, A10, A11, A13, A16, A17, A18, A19, A20, A23, A24, A25, A26, A27, A28,
A29) and 31.0% (9) used monocular cameras (A3, A4, A6, A8, A12, A14, A15, A21, A22).
This result is expected because the RGB-D cameras have the advantage of the pixel-wise
depth information, and this facilitates the SLAM modeling. Also, the RGB-D sensors
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Table 4: Quality assessment checklist.

Id Question Answer Value
The authors did not describe or jus-
tify properly 0
Is the methodology clearly The authors described and justified
Qa . Lo . .
described and justified? in a simple way 1
The authors described and justified
broadly 2
Are the tracked objects The' objects are not ir.lcorporated 0
. A simple representation of the ob-
Qb incorporated on the SLAM map . .
ts? jects is incorporated 1
poin A full representation of the objects
is incorporated 2
Only one object is used in the expe-
riments 0
Qc Are there more than one object  Two or three objects are used in the
for tracking in the experiments? experiments 1
More than three objects are used in
the experiments 2
A public dataset is not used in the
. experiments 0
Qd Are pubhc datasets used for A public dataset is used in the expe-
evaluation? .
riments 1
The results are not compared with
other techniques 0
Qe Are the results compared with ~ The results are compared with only
other techniques? one technique 1
The results are compared with more
than one technique 2
The results are described and not
discussed 0
Are the results extensively T'he results are described and poorly
Qf discussed? discussed 1
) The results are described and discus-
sed 2
The results are described and broa-
dly discussed 3

Source: Elaborated by the author (2020).
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Table 5: Justification of questions in the quality assessment.

Id Justify

Qa The methods has to be comprehensively described and justified to answer the
research questions

Qb Having a satisfactory integration with SLAM, the objects detected should have a
representation in the SLAM map

Qc  More than one object must be detected in the experiments to avoid bias

Qd  The use of public datasets or turning their own datasets public allows the compa-
risons of the results

Qe The comparison of techniques allows us to evaluate the evolution in the field

Qf The results analyzes allow us to evaluate the benefits and limitations of each
technique

Source: Elaborated by the author (2020).

Table 6: Quality assessment result.

Database Excluded Selected
IEEE Xplore 2 6
Scopus 18 22
Science Direct 0 1
Total 20 29

Source: Elaborated by the author (2020).

became cheaper and accessible over the last years. However, the depth sensor is restricted

to use in indoor environments, and the depth range is limited.

One way to classify 3D object detectors is how the method achieves the object
detection. Based on the work of Cheng and Han (6), the object detection methods
in the selected studies can be divided into three non-independent categories: template
matching-based methods, knowledge-based methods, and machine learning-based methods.
In template matching-based methods, there is a previous generation of templates for
each object to be detected and a matching technique to measure the similarity among
objects detected in the scene and the templates. The knowledge-based object detection
methods test hypotheses by establishing heuristics through the previous knowledge of
the problem. This knowledge is usually geometric and has context information. The
machine learning-based methods utilize the recent advances in machine learning techniques
reducing the object detection problem to a classification problem. These categories are not
independent, and Figure 3 shows the division of the selected studies by their predominant

classes according to the classification previously defined.

Among the select studies, those that use machine learning approaches stand

out. The principal method of machine learning used in the selected studies was Deep
Convolutional Neural Network as 2D object detector, 13 studies, (A2, A8, A9, A10, A12,
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Table 7: Quality assessment of studies.

Reference Qa Qb Qc Qd Qe Qf Total
(A1) 2 2 2 1 0 2 9
(A2) 2 1 2 1 2 3 11
(A3) 2 2 2 1 0 2 9
(A4) 2 2 2 0 0 2 8
(A5) 2 2 2 1 0 2 9
(A6) 2 2 2 1 2 3 12
(A7) 2 2 2 0 1 2 9
(A8) 2 2 2 1 2 1 10
(A9) 2 2 2 1 1 2 10
(A1) 2 2 2 1 0 1 8
(A11) 2 2 2 1 1 2 10
(A12) 2 2 2 0 1 1 38
(A13) 2 2 2 0 0 2 8
(A14) 2 2 2 0 0 3 9
(A15) 2 2 2 1 2 3 12
(A16) 2 2 1 0 0 3 8
(A17) 2 2 2 1 0 3 10
(A1I8) 2 2 2 1 2 3 12
(Al9) 2 2 2 1 2 3 12
(A20) 2 2 2 1 2 3 12
(A21) 2 2 0 1 1 3 9
(A22) 2 2 2 1 2 3 12
(A23) 2 1 2 1 2 1 9
(A24) 2 2 1 1 2 2 10
(A25) 2 2 2 1 0 2 9
(A26) 2 2 2 1 2 2 11
(A27) 2 1 2 0 2 3 10
(A28) 2 2 2 1 2 2 11
(A2) 2 2 2 1 0 2 9

Source: Elaborated by the author (2020).

Table 8: Publication years in this SLR.

Year Studies References

2011 1 (A3)

2013 1 (Ap)

2014 3 (A16, A24, A29)

2015 2 (Al4, A22)

2016 5} (A1, A4, A6, A11, A26)

2017 1 (A25)

2018 8 (A7, A10, A15, A17, A18, A19, A21, A28)
2019 8 (A2, A8, A9, A12, A13, A20, A23, A27)

Source: Elaborated by the author (2020).
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Figure 3: Selected studies divided by detection method classes.

Knowledge-based

Machine
learning-based

Template
matching-based

Source: Elaborated by the author (2020).

A13, A17, A18, A19, A20, A23, A25, A27, A28). It is interesting to note in Figure 3 that
all methods dealing with machine learning in the selected studies are connected to other
classes. This observation is expected since the output of these object detection methods is
the estimation of the pose of the object in 2D image coordinates and a label, and other
methods transform the amount of 2D data in 3D information. The majority of these
methods used rules based on the knowledge of the application context to build the object

model.

The object detection methods in the selected studies can also be classified according
to three paradigms (7): object level, generic model, and category-specific. These paradigms
are based on how the objects are characterized within SLAM. In the object-level paradigm,
there are models of the objects previously constructed, or the models are constructed
individually during the execution of the method. In the second paradigm, generic model,
all objects detected fit in a representation regardless of their category. In the category-
specific paradigm, an average object model is constructed for each object category to
be detected. The vast majority of the selected studies, 26 studies (89.7%), uses object
detection approaches with the object-level paradigm. Two studies (A13, A20) uses object
detectors with the generic model paradigm. Only one study (A21) uses the category-specific

paradigm.

The object models that will be incorporated in the SLAM solution can be generated
by online or offline processing. In online processing, the models of the objects are built
during the algorithm execution using some heuristic from information given by the object

detector. Therefore, in selected studies, this processing is most used when the interest
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is in a 3D scene reconstruction with individual object representation (8) with semantic
understanding of the scene (A11, A18, A19, A22, A25, A28) or detecting duplicate objects
in the scene without previous knowledge (A4). In offline processing, the object models
are already built in a previous step, and they are matched using some strategies during
algorithm execution. In many cases there must be a prior knowledge of the scene to
build the models database (A1,A3,A5 A6,A7,A14,A15,A16,A24,A26). Figure 4 shows the

paradigms and the processing type of selected studies.

Figure 4: Object detection paradigms and processing types in the selected studies.

| Object detection approach |
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Source: Elaborated by the author (2020).

2.2.2 RQ2: How the methods affected the SLAM approach?

The purpose of this question is to understand which aspects of the integration
between 3D object detector and SLAM solution benefited each other.

As mentioned in Section 3.2, the SLAM approaches can be separated in frame-
based or keyframe-based. The choice between frame-based and keyframe-based SLAM
approaches influences how the object detection methods will be integrated with SLAM.
The option to process all frames leads to choose computationally efficient object detectors
to achieve real-time processing. On the other hand, object detection methods that use
keyframes can be more elaborated because they have more time for processing available
since a keyframe generation rate can be adaptable. In the 29 selected studies, 17 used
object detection methods that process every frame (A1, A3, A6, A10, A11, A13, A16,
A17, A19, A18, A20, A21, A22, A23, A24, A26, A27), but this does not mean that the
SLAM associated approach has to be frame-based. Twelve studies used keyframes as

object detection input (A2, A4, A5, A7, A8, A9, A12, A14, A15, A25, A28, A29).

All selected studies added some semantic information on the SLAM map. Only 9
(31.0%) studies did not relate any SLAM improvement. The main improvement given by
3D object models was in the localization SLAM task with 19 (65.5%) studies. This was
achieved mainly by adding data to the bundle adjustment cost function (Section 3.3) (Al,
A4, A5, A6, Al14, A15) and SLAM cost function (A8, A9, A16, A17, A20, A21, A25).



31

2.2.3 RQ3: What techniques are used with these approaches?

The goal of this question is to know the most used techniques among the selected

studies and their dependencies.

The main vSLAM system was ORB-SLAM2 (9) used in 7 studies (A2, A8, A9, A12,
A23, A25, A28) and his previous version, ORB-SLAM (10) used in 2 studies (A21, A22).
The ORB-SLAM2 is an open-source vSLAM for monocular, RGB-D, and stereo camera
while ORB-SLAM is only monocular. Twelve studies developed their SLAM system, (A1,
A4, A5, A7, A10, A11, A16, A17, A20, A24, A26, A29).

In the researches that use some machine learning techniques, 15 studies used
DCNNs, (A2, A8, A9, A10, A12, A13, A17, A18, A19, A20, A21, A23, A25, A27, A28).
The most used DCNNs were Mask R-CNN (11) and YOLOv2 (12), with three studies each
(A2, A13, A17) and (A19, A21, A28) respectively. Mask R-CNN has three outputs for
each object detected, a class label, a bounding box, and a pixel-level mask. YOLOvV2 is a
fast DCNN capable of real-time processing, and its output is a class label, and a bounding

box for each object detected.

The structure most used to represent the object were 3D point clouds. Point cloud
is a group of points in a coordinate system, and a point is a structure that storage its
position in the space and other relevant data. The 3D point cloud is also the main SLAM
map representation in the selected studies, and it is used as object representation in 9

studies (A2, A3, A7, A8, A19, A23, A25, A28, A29).

2.2.4 RQ4: What are the premisses of these approaches?

This question aims to understand the limitations of the methods. The first limitation
of all approaches is the hardware. The computational cost of SLAM methods is high,
and the hardware should be very robust to achieve real-time performance. In all selected
studies, the experiments were made in some of the best CPU and GPU available at that
time, when informed in the paper. This fact is most evident in the studies that use neural

networks as part of the method.

The performance of vSLAM approaches are affected by image noise, dynamic
lighting, motion blur, video defocus, uniform texture image, occlusions, and moving
objects. Concerning moving objects, some works went beyond this limitation, developing

strategies to remove the features of moving objects, improving the SLAM odometry (A23,
A28).

In the template matching-based methods, the first limitation is the prior existence
of the object models to be detected. Consequently, there must be prior knowledge of
the scene, and it is a limitation in applications that deal with unknown environments.
The methods in (A14, A15, A21), the object model was 3D textureless meshes previously
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generated. Particularly in (A4), the scene must contain duplicate objects to be detected.

In the machine learning-based approaches, the possible object types to be detected
are limited by the training dataset. For example, the MS COCO (13) dataset used to
CNN training contains 80 distinct classes, and a small subset of 10 of them is applied in
tested indoor scenes (A25). A fine-tuning operation can overcome this limitation, but it

demands another image set of the interest class.

2.3 CONCLUSIONS

All the selected studies evidence the complexity of the integration of the two fields.
Many methods and heuristics are necessary to achieve a full integration that benefits both
approaches, and each study sought to use the best methods available at that time based

on its purpose.

According to analyses performed, the most common method was who has the
follows features: RGB-D image as input, machine learning-based, object-level output

characterization with online processing type.

Among all studies, we assessed what would be the most suitable methods and
techniques to achieve the objective of this work. The chosen method and techniques and

the its main reasons are listed below:

e« ORB-SLAM2 as vSLAM solution:
ORB-SLAM2 is a state-of-art SLAM system for monocular, RGB-D, and stereo
cameras with real-time processing. It has superior performance and accuracy com-
pared to other vSLAM solutions, it has an open-source code available, and we have

previous experiences using it.

« YOLOV2 (12) as object detector:
YOLOv2 was chosen because it is a fast DCNN with the potential for real-time
processing, and it has public source code in the same programming language as
ORB-SLAM2, which allows us an easy integration. Besides, its recognition results

are near to the state-of-art DCNNs in an indoor environment.

o The works of Rubino (14) and Rubino et al. (15) as object pose estimator:
This pose estimator is based on the conversion of ellipses in different views to an
ellipsoid without considering details of surface and shape of objects. This method has
a clear description in the doctoral thesis (14), which allowed us a full understanding
of the math involved, and we consider the ease of implementation and integration
with other chosen solutions. This method is used in the work of Nicholson et. al.
(A20) present in this SLR.
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Researching the 3D object estimator, we evaluated the use of bounding boxes to
estimate a cube that fits the object in (16). However, we chose to use ellipses considering
the following aspects. First, the projection of the ellipsoid in an image, independently of
perspective, is always an ellipse. There is a linear mathematics relation between ellipses
and ellipsoids (Section 3.4), while to reconstruct a cube from bounding boxes, some
heuristics are required. Secondly, in the (15) and (A20), the method using ellipses was
broadly used in indoor environment, which is aligned with our objectives. While in (16),
the method was more applied and discussed in outdoor environments. Finally, we judged,
based in the papers, that the method in (15) deals better with a more variability of object
shapes than the method in (16).
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3 FUNDAMENTALS

In this chapter it is presented the main fundamentals of this work.

3.1 OBJECT DETECTION

Object detection is the task of locating and labeling instances of objects in images.
First, an object is any structure in real world with a classification, such as inanimate
objects (e.g., bicycle, chair and traffic sign), buildings (e.g., walls, roads, and houses),
living beings (e.g., people, dogs, and trees), and micro or macro body structures (e.g.,

cells, organelles, eyes, and face).

The task of locating is to determine the limits of object instances detected in the
image. There are three main representations of these limits (17): (a) bounding boxes, (b)
semantic segmentation, and (c) object instance segmentation (Figure 5). A bounding box
is a rectangle aligned with the axes and it fits the object instance detected. In semantic
segmentation, each pixel in the image is assigned to a semantic object class, and in object

instance segmentation the pixels are grouped in instances.

Figure 5: Examples of object detection types.

(a) Bounding box (b) Semantic segmentation (c) Instance segmentation
Source: Elaborated by the author (2020).

Labeling is the task to determine which object class the instance detected belongs.
According to Zhang et al.(18), this task can be divided into two types: assigning the object
instances detected according to a predefined set of object classes or detection of specific

object instances which is basically a matching problem (17), as illustrated in Figure 6.

Until the early years of the 2010s, the object detection researches with better
performance were based on handcrafted features detectors, local descriptors, and statistical

classifiers (17). A broad survey of these researches is given by Zhang et al.(18).

Nowadays, the majority of researches in object class detection has deep convolutional
neural networks (DCNNis) as the core method. The recent advances in object class detection

with deep learning are well summarized in the following papers (17, 19, 20).
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Figure 6: Example of object labeling. (a) labeling all object instances present in images
by a predefined set of object classes. (b) labeling the object instances by a specific object
label.

(a) Category labeling (b) Specific object labeling
Source: Adapted from (17).

3.2 VISUAL SIMULTANEOUS LOCALIZATION AND MAPPING

A basic SLAM framework involves the extraction of environment features, 3D map
construction, localization estimation, and upgrade of 3D map. The features extraction
method is dependent on the sensor devices to explore the environment, such as acoustic
sensors, laser rangefinders, GPS, inertial measurement units, and cameras (21). A SLAM
solution using only a camera is referred to as visual SLAM (vSLAM). vSLAM algorithms
have been widely proposed using different camera types, such as monocular, RGB-D, and

stereo in recent years.

The visual extraction information can be either direct, indirect, or a hybrid of both.
Direct methods use a gradient-based approach to extract information of each pixel in the
image generating dense environment information. On the other hand, indirect methods
are handcrafted design to extract salient image locations. Indirect methods use feature
extractors such as SIFT (22), SURF (23) and ORB (24). Taketomi et al.(3) discuss that
direct methods are more robust than indirect methods because they exploit all information
available in the image, but they are more sensitive to illumination changes. Besides,
modern feature extractors are designed to minimize the sensibility of light conditions,

viewpoint variation, and to be computationally efficient.

The SLAM approaches can be separated in frame-based or keyframe-based concer-
ning which information is processed and stored. A keyframe is a frame that is slightly
different from its predecessor through a set of rules to represent a new location (25).
In the frame-based SLAM, all frames are used in all SLAM steps. The keyframe-based
SLAM approaches use the keyframe to reduce information redundancy and to decrease the
computational cost. Therefore, the choice between frame-based or keyframe-based SLAM

approaches influences in how the object detection methods will be integrated with SLAM.
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3.3 BUNDLE ADJUSTMENT

Bundle Adjustment (BA) is a batch optimization method to collectively estimate
camera parameters and the 3D scene structure to minimize cost function (26). This method
can be applied to minimize the local or global camera localization error, i.e. improving the
odometry. Odometry is the use of sensor data for a mobile computer system to determine
and update its position over time in an environment. The terms in this cost function are
the geometric relationships among the SLAM elements. Typically, these terms use the
camera pose parameters and the parameters involving the scene geometry domain changes

like the re-projection error of the entities in the SLAM map.

3.4 CONIC SECTIONS AND QUADRIC SURFACES

As presented in conclusion of Chapter 2, the 3D object pose estimator chosen uses
ellipses in different views to reconstruct ellipsoids. And the ellipses are obtained from
object detector output (Figure 7). Therefore, it is essential to formalize the concepts of
conics sections and quadrics surfaces. These concepts will be important to the method
description in Chapter 4. The fundamentals presented in this section are based on the
thesis of Rubino (14).

Figure 7: Basic steps of 3D object pose estimator. The object detector process the images
and generates bounding boxes as output (a), the ellipses that fits the bounding boxes are
calculated (b), and the ellipsoids are estimated (c).

Source: Elaborated by the author (2020).

3.4.1 Conic sections

A right circular cone is a 3D surface that has a circle as a base and the vertex is
right above the center of the circle (Figure 8a). Generators are the lines that intercept the
vertex and the base (27) (Figure 8b).

The conic sections, or conics, are 2D surfaces in Euclidean spaces generated in the
intersection between a double right circular cone and a plane in different orientations. The
conics can be divided into degenerated and non-degenerated groups depending on how the

plane intercepts the double cone. A degenerate conics arises when a plane intercepts a
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Figure 8: The right circular cone and example of generators.

generators

(a) Right circular cone (b) Generators in a right circular cone

Source: Elaborated by the author (2020).

double right circular cone in the vertex. The main types of degenerate conics are a point,

line and cross line. Degenerate conics will not be discussed in this work.

The main types of non-degenerate conics are the ellipse, parabola and hyperbole.
If a plane fully intercepts all generators of one of two right circular cones, the closed curve
generated is an ellipse (Figure 9a). When a plane intercepts the double right circular cone
and it is parallel to one generator, the curve in the interception is a parabola, Figure 9b.
A hyperbole arises when a plane intercepts the dual right circular cone and it is parallel

to two generators (Figure 9c).

Figure 9: The three non-degenerate conics in the intersection of a double right circular
cone and plans.

(a) Ellipse (b) Parabola (c) Hyperbole

Source: Elaborated by the author (2020).
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A conic curve can be represented analytically by the following second-order equation:

az} + br1wy + cx3 + dry +exy + f = 0. (3.1)

where {a,b,c,d, e, f} € R are the coefficients of the equation. Equation 3.1 also represents

a set of points using homogeneous coordinates:
C={xecR¥x"cx =0}, (3.2)

where x is a homogeneous 2D point belonging to the conic and C € R**? is the symmetric

coeflicient matrix of the conic in the form:

a b/2 d/2
C=1b/2 ¢ ¢€/2]. (3.3)
d/2 e/2 f

The matrix C has five degrees of freedom: two for magnitude of semi-axes, two for
position and one for orientation. The coefficient matrix C associated with the conic will

represent the conic itself in the following parts of this work.

3.4.1.1 Ellipse

It is possible to determine the type of a conic from matrix C. An ellipse, in

particular, should fulfill the following requirements:

detC #0 [

a b/2
det Cyy > 0, where Cyy = / , (3.4)
det C O b/2 ¢
det Cao <

where det C and det Cyy are the determinants of the matrices C and Coq, respectively.

Some geometric elements of an ellipse (Figure 10) can be computed from the matrix

C. The center x,. = [x;. X2 of the conic is obtained as follows:

d/2
X, = —Cop - , 3.5
7] .
The sizes of semi-axes &€ = [£; &]T are calculated as follows:
detc At
= |- 3.6

where \; and )\, are the eigenvalues of the matrix Coy. The orientation matrix R € R?*2 is

obtained by computing the normalized eigenvectors v; and v, of the matrix Coo as follows:

R—[ }_ cosf) —sind (3.7)
BRI sinf cosf |’ '

where v; = [v;1 V3|7 and 0 is the angle relative to the abscissa axis about the origin of a

two-dimensional Cartesian coordinate system.
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Figure 10: Conic geometric elements exemplified in an ellipse. & and &, are the semi-axes,
0 is the angle relative to abscissa axis and x,. is the center vector.

A
X2

»
|

X1

Source: Elaborated by the author (2020).

3.4.2 Quadric Surfaces

A quadric is a 3D surface which can be defined by the following second-order

analytical equation:
ax? + brixo + cxixs + das + exyxs + fai + gry + hay 4 iz +j = 0. (3.8)

where {a,b,c,d,e, f,g,h,i,j} € R are the coefficients of the equation. Examples of
quadrics are ellipsoid, elliptic paraboloid, hyperbolic paraboloid and hyperboloid of one
or two sheets, and cylinders. Equation 3.11 can be rewritten as a set of points using

homogeneous coordinates:
Q={xeR*|x"qx =0}, (3.9)

where x is a homogeneous 3D point belonging to the quadric and Q € R*** is the symmetric

coefficient matrix of the quadric in the form:

a b/2 ¢/2 g/2
b2 d e/2 h)2
c/2 e/2 f /2
92 b2 if2 ]

(3.10)

The matrix Q has nine degrees of freedom: three for magnitude of the semi-axes,
three for position and three for orientation. The coefficient matrix Q associated with the

quadric will represent the quadric itself in the following parts of this work.
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3.4.2.1 Ellipsoid

Likewise for conics, it is possible to determine the type of quadric from the matrix

Q. An ellipsoid, in particular, should fulfill the following requirements:

detQ <0 a b/2 ¢/2
detQss #0 , where Qz3 = |b/2 d e/2], (3.11)
|/A\_i| = |;\—§| = |:\\Jg—| c/2 e/2 f

det Q and det Q33 are the determinants of matrix Q and Qs3, respectively, and A;, Ay and A3

are the eigenvalues associated with Qss.

As with the ellipse, some geometric elements of the ellipsoid can be computed from

the matrix Q. The center of the ellipsoid x, = [X;. X2, X3.]T is obtained as follows:

9/2
x. = —Q3 - |h/2] . (3.12)
i/2

The size of semi-axes & = [£; & &]T can be calculated as follows:

-1

detQ !

= |- -1 3.13
5 detQ33 /\2_1 ’ ( )

3

where A\, Ay and A3 are the eigenvalues of the matrix Qs3. The orientation matrix R € R3*3
is obtained by computing the normalized eigenvectors v, v, and v3 of the matrix Q33 as

follows:

[Cosﬂcosy sin asin 3 cosy — cos asiny cosasin,é’cosy—l—sinasiny]
R= [vl Uy Ug] = |cos Bsiny sinasinBsiny + cosacosy cosasinBsiny —sinacosy|, (3.14)

—sin sin « cos 3 cos a. cos 3
where v; = [v;1 Vi v3|T and a, B and 7 are the angles relative to the X-axis, Y-axis and
Z-axis, respectively, about the origin of a three-dimensional Cartesian coordinate system.
3.4.3 Dual conics and dual quadrics

A conic can be represented by an equation of points, primal representation (Equa-
tion 3.2), or lines, dual representation (27). To achieve the line representation, each point

X in the conic has a tangent line 1 given by:
1 =Cx. (3.15)
Using the inverse of 3.15, x = C™'1, in 3.2 we find the equation of a line conic as follows:

() e(c) =1"c"cc 1 =1"c"1=0. (3.16)
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The matrix C is symmetric and therefore ¢~ = ¢! and the set of tangent lines £ can be

defined as an equation of lines:
L={leR*|1"Dl =0}, (3.17)

where D = C™! and D € R**? is the dual conic of C. The adjoint matrix often represents
the dual conic instead of its inverse because of C™! = adjoint(C) \ det(C). The advantage of

the adjoint compared to the inverse is that it is also computable if C is not invertible (28).

Figure 11: (a) Points x satisfying x*Cx = 0 lie on a point conic. (b) Lines 1 satisfying
17Dl = 0 are tangent to the point conic C. The conic C is the envelope of the lines 1.

0

(a) Point conic (b) Line conic d

Source: Hartley and Zisserman(27).

As with the dual conics, a quadric can be represented by an equation of points,
primal representation (Equation 3.8), or an equation of planes, dual representation. To
achieve the plane representation, each point x in homogeneous coordinates in the quadric
has a tangent plane p given by:

p=Qx. (3.18)

The same mathematical manipulation seen in Equation 3.16, can be done using Equation 3.9

and we obtain the following set of tangent planes P:
P={peR'[p"Ep=0}, (3.19)

where P is the set of planes that envelopes the quadric, E € R*** is the dual quadric of Q.

The adjoint matrix can be used as dual quadric likewise dual conic.

The relation between conic and quadric is nonlinear in primal space. But between
dual conic and dual quadric, the relation is linear (29). Demonstrating this relation, consider
a dual quadric Q in four-dimensional space and a dual conic D in a three-dimensional
space (Figure 12). For each line tangent 1 to D, which satisfies Equation 3.17, can be

back-projected to a plane p, which satisfies Equation 3.19, throw a linear transformation:

p =P, (3.20)
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where P € R34 is a projection matrix of a four-dimensional subspace to three-dimensional

subspace. Applying the last result in Equation 3.19, we obtain:
p'Ep=1"PEP'1 =1"D1=0, (3.21)
and we derive the expression:
D=PEP'. (3.22)

Equation 3.22 describes the linear relation between the dual space of conics and the dual

space of quadrics.

Figure 12: Relation between dual conics and dual quadrics. The ellipse D is tangent to
three generic lines 1;, I and 13, which belong to three generic planes p,, p, and p5 tangent
to the ellipsoid E.

Source: Rubino(14).

3.4.4 Rigid transformations

In dual space, to apply a rigid transformation in a line [, it is necessary to multiply

with a roto-translation matrix H given by:
I =H"1, (3.23)

where the matrix H € R**3 is in the form
R t
H($, t2) = [ Q(f) 2] , (3.24)
of 1

where ty = [t, ,]" is the translation vector and Ry(¢) € R2*? is the rotation matrix.

Applying Equation 3.23 on Equation 3.16 we have:

1'"pl' = (8"1)"D(H"1) = 1"HDH"1 = 0, (3.25)
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then the dual conic roto-translated D’ is given by:
D' = HDH'. (3.26)

Using Equation 3.26, the function D(¢, t9, €5) can represent an ellipse as follows:

Ro(0) tz] [»52 02] {sz) 02], (3.27)

D(¢7t27€2):
o 1|0l —1]]| tT 1

where &, = [¢; &]T is the vector of semi-axes of D.

The same logic can be applied on dual quadrics. In this case, the matrix associated

with the rigid transformation is Z € R** as:

(3.28)

2(0. t5) = [R3(9) t3] 7

07 1

where t3 = [t, t, t,] is the translation vector and R3(0) € R**3 is the rotation matrix
R(6) = R.(03)R,(02)R,(1). The roto-translated dual quadric E' € R*** is calculated by the
equation:

E =ZEZ'. (3.29)

Using Equation 3.29, the function E(8,t3, £;) can represents any ellipsoid as follows:

R(0) t3] [53 03] [Rg(@) 03]

3.30
0; 1]]|0; —1|| tf 1 (3:30)

E(Oa t37 5) = l

where &; = [£; & &]7 is the vector of semi-axes of E.
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4 PROPOSED METHOD

In this chapter, we describe our solution for the problem of monocular object
SLAM. This solution was developed over the work of Rubino (14) and Rubino et al.(15)
as object pose estimator and ORB-SLAM2 (9) as SLAM solution. The main reasons for
using these methods are described in Section 2.3. The monocular ORB-SLAM2 will be
referred as ORB-SLAM2 in the following parts of this work.

The ORB-SLAM?2 has three main parallel threads: Tracking, Local Mapping,
and Loop Closing. The Tracking thread is responsible for extracting the features from
frames, matching the features to the local map, execute motion-only BA, localize the
camera, and decide the new keyframe. The Local Mapping thread manages the points
map and optimizes it, creating new points or culling it, performing the local BA and
culling keyframes. Finally, the Loop Closing thread detects loop closing and performs
a pose-graph optimization. This thread launches a fourth thread when a loop closed is
detected to execute a full BA.

The proposed method adds two other threads to ORB-SLAM2. The first thread
executes the 2D object detection on every keyframe, creates the ellipses associated with
each region detected, and executes the full BA (Section 4.3). The second thread performs
the object association strategy (Section 4.2), executes the 3D pose optimization for objects
which new data was added on it (Section 4.1) and updates the objects map. Figure 13
shows an overview of the developed system. The red labels highlight our developments or

modifications. The next sections describe the developments and modifications.

4.1 3D OBJECT POSE ESTIMATION AND OPTIMIZATION

The method described in this section, emphasizing once again, is entirely part
of the work presented in Rubino (14, 15). We just added a better detail of the algebra

involved.

Consider a static scene as a sequence f = 1,..., F of multiple image frames from
different perspectives. After the processing by a generic object detector, each image frame
contains a set of regions ¢ = 1,..., N. Each region is delimited by bounding boxes by;
and has a set of classes with its respective probabilities. The bounding box is defined
as by = {wy;, hyi, cip}, where wy; and hy,; are respectively the width and height, and the
vector cy; is the center. For each bounding box by;, there is an ellipse Cy; inscribed in the
bounding box, as illustrated in Figure 14, where the centers are matched, and wy; and hy;

are the axes of ellipsoid aligned with the image axes.

The core of the proposed object detection is to reconstruct an ellipsoid Q; from
a set of ellipses C; = {Cy;} of different views of the same object i. As already stated

in Section 3.1, the relation between Q; and Cy; is nonlinear in primal space. However,
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Figure 13: Overview of the system developed. The red labels highlights our developments
or modifications in ORB-SLAM?2.
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Source: Adapted from (10).

the relation between the dual quadric, represented by the matrix E;, and the dual conic,
represented by the matrix Dy;, is linear in dual space. Consider a set of frames F =1,..., f
taken with a calibrated camera, i.e., there is a camera matrix for each frame. In the

Equation 3.22, P; € R*** is the camera matrix and it can be written:
Py = K[Rys[ty], (4.1)

where K € R**3 is the camera intrinsic parameters matrix, while Ry € R**3 and t; € R?
are respectively the rotation matrix and translation vector for each frame f, which are
known from the SLAM solution. Thus, the Equation 3.22 can be reformulated to:

ByiDyi = PfEP} (4.2)

where 3y; € R is a scale factor.

To achieve the linear relation between Dy; and E;, we used the following well-know

vectorization operations over a symmetric matrix X € R™*:

'U€C(X) = [117171, P ,a:m’l, $172, Ce ,xmg, P ,a:l’n, P ,xm’m]T
T (4.3)
UGCh(X) = [551,1, T21,22,2,231,%32,T33,---,Tm]1,--- ,fEm,m]

b
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Figure 14: Example of bounding boxes (yellow) and corresponding fitted ellipses (red) for
a set of objects.

Source: Adapted from (14).

and the following property (30):
vec(ABC) = (CT ® A)vec(B), (4.4)

where A, B, and C are suitable dimensioned matrices, and ® is the Kronecker product.

Applying the property 4.4 in Equation 4.2 gives us:

vec(ByiDyi) = vec(PsE; P};)

Brivec(Dyi) = (Py ® Py)vec(E;)

Brivec(Dy;) = (Py ® Py) Uvech(E;) (4.5)
Bri Jvec(Dy;) = I (Py ® Py) Uvech(E;)
Brivech(Dy;) = J (Py @ Py) Uvech(E;).

Simplifying the result in 4.5, we have:

Bricri = Gpvy, (4.6)

where ¢;; € R® and v; € R0 are respectively the vectorized forms of the dual symmetric
matrices Dy; and E; using vech operation, J € R%? and U € R'®*1? are two matrices
such that vech(X) = Jvec(X) and vec(Y) = Uvech(Y) respectively, where X € R?*? and
Y € R0 are two symmetric matrices. The matrix G € R®*** where G; = J(P; @ P;)U

has a patterned structure and it is made explicit in Equation 4.7.

Ph 2p1ipra iy 2puipis 2p12pis Pis 2p1pua 2p12p1a 2p13pua P
P21P11 P2aapr2 +Paepir PePr2 PapPis +P2spu PPz + PasPiz P2sPiz PaPia + PaaPir P2ePia + PaaPr2 Paspia + PuPi3 P2aPia
G— 3 2po1P22 D3y 2po1P23 2paaPas D33 2P21D2s 2p22Pas 2pa3Pas D3y ( 4 7)

)
P31P11 PsiPi2 +P32Pii P32Pi2 P3iPis + P3sPii P32Pi3 + P33Pi2 P3sPiz PaiPia + P3aPii P32Pia T P3aPiz P33Pia + P3aPis P3aPia
P31P21 P31P22 + P3aPa1 P32P22 P31P23 + PasPa1 Pa2P2s + P3sPo2  P3sP2s PasiPa + P3aPor PsaPoa + P3aP2 P33P2a + P3aPas P3aP2a
p§1 2p31p32 P§2 2p31ps3 2p32pss P§3 2p31p3a 2p32psa 2p33p3a P§4
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At least three images in different views of object 7 are necessary to obtain a unique
solution for v; (31). Thus, we can stacking the Equation 4.6 for f =1,..., F, with F' > 3

to the following system of equations:

G1v; — Bric; = Og

Gov; — [Baica; = Og

(4.8)
Grvi — Bricri = Og
The system of equations can be rewritten as a matricial equation:
M;w; = O, (4.9)

where Ogp is a column vector of length 6F, the matrix M; € R6F*(10+F) and the vector

w € R+ are defined as follows:

Gi —cui Og O -+ Os
G2 0 —co3 0 -+ O
M= |G 05 05 —cz - O |, w,—= !V] , (4.10)
. Os Os Og - Os &
Gr 06 06 O -+ —Cpif
where the vector 3; = [Py, - - - ,BFZ-}T.

Using the first ten elements of w;, we have the vector v; which is used to generate
the dual matrix E;:
E, = vech ' (v;), (4.11)

where vech™ computes the vector and obtain a symmetric matrix. Then the matrix Q;

can be computed by the inverse of E..

The approach presented so far is enough in the ideal scenario. However, many
errors can lead to weak solutions in real scenarios, such as camera calibration errors, 2D
object location errors caused by occlusions, for example. Thus, we have a minimization

problem to find the near solution to the ideal of Equation 4.9:
W, = arg min My w3 |2 (4.12)

Computing the Singular Value Decomposition (SVD) of the M;, the solution of Equation 4.12
is the singular vector related to the smallest singular value. Thus, E; = vech™*(v!) is the

first value of the quadric.

4.1.1 Normalization

As mentioned, measurement errors embed the vector w;. Even small errors can

propagate and may lead to an inaccurate solution due to the variety of the magnitude of
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the entries of M;. The solution proposed by Rubino (14) to attenuate the influence of those
errors is to extract the translation matrix Hy;, which applied to dual conic normalized and

centralized in the origin D,, gives the dual conic D', as follows:

D; = Hy; DY, Hﬁ., (4.13)
where:
h 0 t di, di5 O
0 0 1 0 0 -1

where #{, and t;, are the coordinates of the ellipse center, h = /& + &3, and £ and & are
the semi-axes. The values of D}, may vary depending on the operation to obtain it, either

inverse or adjoint.
After that, applying the inverse of the Hy; and H}; on both sides of Equation 4.2:
BpiDyi = Hy Py E[PLH,. (4.15)
The same transformation of Equation 4.13 can be performed in the dual quadric:
E; = T,E T, (4.16)
and the transformation matrix T, € R*** is applied in the Equation 4.15 as follows:
BriDp =H; Py T, T E; T, DT PR H,T, (4.17)
which leads to:
BriDyi = P ECPY, (4.18)

where P}; = H;' Py T;. The value of matrix T; is calculated from E; (Equation 4.11). Then,

the Equation 4.18 is used to solve a new linear optimization problem:
Ww¢ = arg min ||Mw;|?, (4.19)
w

where W¢ is the vectorized form of the dual quadric E;. The conversion of w§ to E; is
achieved using first 10 elements of 0§ and Equation 4.11. After, the following equation is
applied:

T . (4.20)

4.1.2 Nonlinear optimization

Errors on bounding box estimation can lead to unsatisfactory solutions, such as
degenerate ellipsoids and different quadrics. A non-linear cost function was designed to
force the dual quadric matrix E; to be a correct estimation of an ellipsoid and satisfy the

conditions on Section 3.4.2.1.
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As described in Section 3.4.4, the function E(@,t, &) can represent the dual quadric

matrix E. Using the vech operation (Equation 4.3) on E(0,t,&), we obtain the vector
v(0,t,8):

r(0)EF +115(0)85 + 115(0)63
r11(0)721(0)&7 + 112(0)122(0)&5 + 713(0 7“23( )&; — tits
751 (0)EF 4+ 135(0)85 + 135(0)€5 —

(

(

)

—t%

(6)
)&3
r11(0)731(0)E? + 1r12(0)1r32(0)E3 + r13(9)7~33( )E2 — tits
v(0,t,€) = 121(0)731(0)E? + 1ro9(0)r32(0)E3 + r23§0)r33( )E2 — Lot

5 , (4.21)
7”31( )51 + 7"32( 52 + 7”33( &3

where 0 = [0; 0, 03] is the vector of angles, t = [t; ¢ t3]T is the vector of translated terms,
€ = [& & &|T is the vector of semi-axes, and 7,,, | m,n = {1, 2, 3} are the elements
of the rotation matrix R(8). Consequently, the vector v is a element of the vector w

(Equation 4.9) and the inputs of vector w can be expressed by a vector e € R as
follows:

e=1[010s05t tat3& EE By -+ BrlT, (4.22)

and the functional form of the vector w(e) is:

r1(0)EF +175(0)83 + 135(0)65 — 7
r11(0)r21(0)EF + 712(0)r22(0)&5 + 7“13(9)7"23( )E5 — tity

15 (0)EF + 135(0)835 +135(0)&5 —
r11(0)731(0)EF + 112(0)732(0)E5 + 7’13(9)7“33( V€5 — tits
721(0)731(0)&F + 122(0)r32(0)E3 + 7"23(9)7”33( )&3 — tats

131 (0)EF + 13,(0)835 +135(0)&5 —

w(e) = —t . (4.23)

i Br

Thus, a new optimization problem can be formulated and the solution forced to be a
ellipsoid:

& = arg min M w(e;)|”. (4.24)
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The vector e needs to be initialized to achieve a good solution. The initial values
for e are from the result of Equation 4.20. Using the Equations 3.12, 3.13 and 3.15 in
Section 3.4.2.1, we recover the values of the rotation vector 89, translation vector t9 and
semi-axes vector £€2. The scale factors 3, are from wS (Equation 4.19). Thus, the initial e
is:

" =07 t) & B,). (4.25)
The final dual quadric E is calculated from the result of the non-linear optimization €;

using Equation 3.30.

The non-linear optimization can be constrained by the prior geometric knowledge
of the elements in the scene. We can add these constraints in the scale £ and position t.
The lower and upper bounds on the semi-axis ¢ are the smaller and larger semi-axis size
of the conic that originate the quadric. The bound of position is a threshold distance of

the initial position tJ.

4.2 OBJECT ASSOCIATION

The method proposed in this work supports any object detection method whose
outputs are the classes and the bounding boxes that fit the perspective of the objects for
each frame. Moreover, the method described in Section 4.1 uses ellipses already grouped to
estimates an ellipsoid. However, so far, we do not have a method to associate the bounding
boxes relative to the same real object to produces an ellipsoid. Thus, we developed a

method to group the ellipses using geometric features representing an object.

Consider a static scene as a sequence f = 1,..., F of multiple frames from different
perspectives with a set of detected objects O = {o0; | 7 € N and 0; = {¢;,Q;}} in the scene,
where ¢; and Q; are the class and the quadric of o;, respectively. Also, consider each frame
has a set of detected regions i = 1,..., N, and each region is associated with an object
ori = {cyi, kj, Cypi }, where ¢y and Cy; are respectively the class and the conic that fits the

bounding box of object of;. The object 0; can be defined as a set of objects oy; as follows:
0; ={og; | ¢; = cpi and f(og;) > d}, (4.26)

where f(oy;) is a function which evaluate if a observable object oy; in an image @ is a view

of object 0; in the map through a set of rules based on our knowledge of the problem.

We first considered creating a set of rules based on the common projected map
points inside the detected conics of all objects oy; with the same class, similar to (8).
However, § would be dependent on the scene due to factors that interfere in the number
of features detected by ORB, such as textureless environment and poor illumination

conditions, among others.

The second set of rules was formulated based on geometric relationships among the

conics of o; and their related keyframes. This strategy takes into account that an object
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in the scene is detected in sequential frames, and the respective conics are close together

in 3D world coordinates. These rules are described as follows:

Step 1: With the detected object o/, containing only one conic C%;, the subset of detected
objects OF C O; and Of = {0} | ¢j = c};} is obtained.

Step 2: The midpoint x7 of all conics center of each object in Of is calculated.

Step 3: If the distance between x’;; and the nearest x” is less than a threshold, the objects
fi J )

0y; and 0} are merged into an object d;; otherwise, the object o/; is added to O;.

Step 4: The center of the object ¢; is calculated as the nearest point of lines passing
through each center of the conic éj and the center of the associated keyframe
(Figure 15). This center is used as initial position in nonlinear optimization
(Equation 4.25).

Step 5: The quadric [jj is calculated as described in Section 4.1.

Figure 15: Example of geometric elements in a scene. Ky, Ky11 and Kyi9 are sequential
keyframes, Cy;, C(s41); and C(s42); are the conics related with each keyframe from a generic
region ¢ in each keyframe, and Q; is the quadric related to object o;.

IXKJ“H

Ky

Source: Adapted from (14).
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4.3 FULL BUNDLE ADJUSTMENT

As explained in Section 3.3, Bundle adjustment (BA) is a batch optimization
method for collectively estimating camera extrinsic parameters and the structure of the

3D scene while minimizing a cost function.

In the monocular ORB-SLAM2, BA is performed in three points of the system.
The first point, called motion-only, optimizes only the camera pose for each frame and
it is executed in tracking thread. The second, called local BA, iteratively optimizes the
poses of currently processed keyframe and map points connected within and it is executed
in the local mapping thread. The third, called global BA, iteratively optimizes the poses
of all keyframes and map points after closing the trajectory and it is executed after a loop

closure detection in the loop closing thread.

The addition of new geometric entities can benefit BA (26). Thus, we choose to
use the ellipses due to the high number of them compared with ellipsoids to add to BA
performed by ORB-SLAM2. The object optimization thread creates the ellipses after
keyframe optimization, i.e. after local BA. Therefore, the choice was to add the ellipses
to the global BA and execute it after processing of a new keyframe by optimizing the

position of all ellipses and improving the ellipsoids position.

The cost function of full BA performed by our method is defined as follows:

{X,R,t} =argmin»_ > p (Hxl — 7 (R X; + tk)HQL> , (4.27)

Xi Rt jex kek
where X € R3 is the position of points in world coordinates, R and t are the rotation
matrices and position vector of keyframes, x € R? is the positions of the corresponding
points to X in image coordinates, X is the set of map points and ellipses center, K is the

set of keyframes, p is the robust Huber loss function:

2 if |z] <42

T
, (4.28)
20\/|z| — 6%  otherwise

(z) =

> is the covariance matrix associated with the scale of the point and 7 is the monocular

projection function:

X
T |Y =
A

Jol+ e

: , (4.29)
ffy; + Cy

where (f;, f,) is the focal distance and (¢, ¢,) is the principal point.

The full BA is executed in our system after all ellipses of a keyframe were processed,

and respective ellipsoids calculated.
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5 EXPERIMENTAL RESULTS

In this chapter, we present the results obtained with our system. We compare
the results of the camera trajectory estimation of our system over the original ORB-
SLAM2. We did not find in the literature a dataset for object pose estimation with SLAM
support. Thus, we evaluate the object pose estimation qualitatively. Finally, we present
an application of our system in the construction of a virtual environment populated with

the objects of a static indoor scene.

5.1 IMPLEMENTATION DETAILS

The implementation of our system, called VEM-SLAM, was in C++ programming
language, with the ORB-SLAM?2 implementation available on GitHub!, the open source
neural network framework Darknet, also available on GitHub?, and the DCNN Yolov2
(12) as object detector with the weights distributed on the official webpage?®, which was
trained on the MS COCO dataset (13).

5.2 YOLOV2 AND ORB-SLAM2 INTEGRATION

The object detection could be made in images on frames or keyframes. We evaluate
the advantages and disadvantages of each option, and we chose to process the images
in keyframes for the following reasons. The computational cost of processing images
on frames could compromise the real-time processing due to the number of posterior
calculations to estimate the ellipsoids. Moreover, the matrix of the camera associated with
the frame is not optimized by local bundle adjustment, only the keyframes matrices. Thus,
the matrix Py in Equation 4.1 is already optimized on ellipsoid estimation. Another reason
is the keyframes has minimum difference of perspective to each other, which minimizes
the redundancy of ellipses with a near pose and decrease the errors associated with the

camera matrix (Equation 4.2).

Yolov2 bounding boxes output with edges closer than a threshold to the image
boundaries was discarded to minimize the errors of occlusions related to limits of the

image. This threshold was empirically defined as 10 pixels.

5.3 NONLINEAR OPTIMIZATION THROUGH GENETIC ALGORITHM

A nonlinear optimizer is needed in the last ellipsoid optimization (Section 4.1.2).

This nonlinear optimizer is processed in every addition of ellipse in an object and with more

https://github.com/raulmur/0RB_SLAM2
https://github.com/pjreddie/darknet
3 https://pjreddie.com/darknet/yolov2/
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than three ellipses. Among the many nonlinear methods available on literature (32, 33),
we chose the genetic algorithm due to be suitable for our problem, easy to implement, and
flexible to constraints. We implemented the classic genetic algorithm with GPU processing

using the library Hemi?.

One of the disadvantages of the genetic algorithm is the number of parameters to
configure. In our implementation, there were only three parameters for determining their
optimum values, population size, crossover and mutation rate. Finding the optimum values
with a greedy strategy has a high computational cost. Thus, we use the Irace (34) to
determine the optimal values for all the eight parameters. The Irace package implements
the iterated racing procedure, which is an extension of the Iterated F-race procedure, for
the statistical environment R. The inputs of Irace were instances of our problem, the
list of parameters to be optimized and their search ranges, and also the programming
to process the instances who generates a value to be minimized. The instances of the
problem were made using the sequences in TUM RGB-D Dataset (35). The programming
was the nonlinear genetic optimizer implemented. The output was the optimal value of
each parameter, and other equivalent values for them, (Figure 16). Table 9 presents the

values of inputs and outputs of Irace optimization.

Figure 16: The output of Irace execution on optimization of nonlinear genetic algorithm
parameters.

# Elite confiqurations (first number is the configuration ID; listed from best to
worst according to the sum of ranks):
maxgeneration population mutation
126 200 400 0.1

izl 350 440
TiE; 250 410
a1z 260 460

Source: Elaborated by the author (2020).

Table 9: Search range and optimum values of each parameters on Irace optimization

Parameter Irace search range Optimum Value
Population 50 - 500 400
Max generation 10 - 1000 200
Mutation ratio 0.10 - 0.90 0.10

Source: Elaborated by the author (2020).

The optimized values obtained in Irace execution were influenced by the number of
ellipses used to estimate the ellipsoids. In the instances inputs used in the test presented
above, the maximum number of ellipses used to ellipsoid estimation was nine. Thus, the

optimized values obtained could not e suitable for large scenes.

1 http://harrism.github.io/hemi/
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5.4 THREADS TIMING EVALUATION

In order to evaluate the computational cost of each step in the threads of the
proposed system and compare it to the original ORB-SLAM2, we executed each system
ten times using the freiburg3 long office_household TUM RGB-D dataset sequence.
Both systems processed 2504 frames in each execution, the frame rate was set in 30 FPS,

and the ORB features extraction was remaining default in 1000 features.

Table 10 shows the mean and standard deviation execution time and the frequency
(per frame) of execution of each step for both systems. The mean FPS achieved was 43.02
+ 1.17 for ORB-SLAM?2 and 32.10 + 2.21 for VEM-SLAM. Comparing the results, the
inclusion of two threads in VEM-SLAM and the execution of Full BA at the end of every
new keyframe processing, Local Mapping thread, raises the time execution comparing
with the original ORB-SLAM2 threads. However, this raising did not impact enough
to lose the real-time processing. The concurrent execution of 2D object detection and
3D object optimization steps in GPU impacts time execution in respective threads. In
VEM-SLAM, the mean processing frequency of keyframe by Local Mapping thread was
4.10 FPS while the processing in Object Detection and Object Optimization threads was,
respectively, 1.67 and 5.50 FPS. Therefore, there is an accumulation of keyframes in the
processing queue of the last two cited threads, and this accumulation is the bottleneck of
our processing. Another point is the large standard deviation of times, and this was due
to the increasing of elements number to process in each thread. This observation leads
us to believe that with longer sequences in number of frames, the real-time processing

capacity will be lost.

5.5 CAMERA LOCALIZATION

In order to evaluate the impact on camera localization accuracy due to our mo-
dification in the global bundle adjustment function cost (Section 4.3), we executed our
system and two versions of ORB-SLAM?2 in same conditions. The systems was executed
on a machine with Intel® Core™ i7-6700 CPU 3.40GHz, Nvidia Titan XP GPU, and 16
GB of RAM. We used eight sequences of the TUM RGB-D dataset (35) for SLAM systems
evaluation, and the Root-Mean-Square Error (RMSE) of Absolute Trajectory Error (ATE)

calculated using the tool available on-line® as evaluation criteria.

ATE is the main evaluation criteria for SLAM solutions to evaluate the camera
trajectory estimation, and it directly measures the difference of the camera positions
between ground truth and estimated. The camera positions are associated using the
timestamps of each data and aligned using the method of Horn (36). However, the ATE is

an absolute measure, and not consider the length of the trajectories. The ATE calculation

° https://github.com/raulmur/evaluate_ate_scale
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Table 10: ORB-SLAM?2 and VEM-SLAM timing results of each stage in proposed pipeline
in milliseconds (mean + std deviations) and frequency of execution (per frame). Bold
figures denote the lower mean time processing for each stage.

ORB-SLAM2 VEM-SLAM
Thread Step
Frequency Time Frequency Time
Tracking Extract ORB Features 1.00 12.79 £ 1.42 1.00 15.46 £+ 7.76
Map Initialization 0.01 20.16 + 4.58 0.01 28.78 £ 15.10
Initial Pose Estimation 0.99 2.33 + 0.71 0.99 2.99 + 3.15
Track Local Map 0.99 8.20 + 3.32 0.99 10.07 £ 6.80
New Keyframe Decision 0.99 0.07 + 0.13 0.99 0.11 £ 0.67
Total 1.00 23.5 + 4.42 1.00 28.81 + 12.28
L. Mapping Keyframe Insertion 0.12 9.41 £ 3.04 0.11 12.60 + 6.87
Recent MapPoints Culling 0.12 0.07 £ 0.02 0.11 0.12 £ 0.79
New Points Creation 0.12 12.55 + 2.87 0.11 19.00 % 9.00
Local BA 0.12 149.06 + 102.98 0.11 18.78 +£ 9.07
Local Keyframes Culling 0.12 7.96 + 6.18 0.11 10.13 + 9.16
Total 0.12 177.7 £ 113.15 0.11 243.83 + 155.72
L. Closing Query Database 0.12 3.05 £ 2.03 0.11 3.45 £+ 3.24
Compute SE3 0.06 0.45 £ 0.99 0.06 0.90 £ 4.00
Loop Fusion 0.0004 362.02 £ 40.01 0.0004 508.63 £ 180.30
Optimize Essential Graph 0.0004 195.65 + 22.92 0.0004 302.99 £ 63.76
Total 0.12 5.16 £+ 33.42 0.11 7.48 + 54.75
Full BA Full BA 0.0004 1411.26 + 268.41 0.11 378.64 + 347.94
Map Update 0.0004 118.62 + 38.99 0.11 82.40 4+ 58.79
Total 0.0004 1509.84 + 266.87 0.11 460.89 + 395.81
Ob. Detection 2D Object Detection 0.11 598.02 + 767.00
Total 0.11 598.02 + 767.00
Ob. Optimizer Object 3D Pose Estimation 0.05 0.16 £ 0.60
Object3D Pose Optimization 0.03 488.43 + 121.22
Map Object Update 0.08 0.04 £ 0.04
Total 0.08 181.78 + 247.61

Source: Elaborated by the author (2020).

ignores the camera positions without association and, therefore, not always representing an
evaluation for the whole trajectory. Figure 17 shows differences in the estimated trajectory
between two executions of ORB-SLAM?2 for the same TUM frames sequence, showing
differences at the beginning of trajectory estimation (orange rectangles) and a loss of
localization (green rectangle). A simple comparison of ATE results could lead to wrong
interpretations in this case. Thus, for a better evaluation, we calculate a distance ratio
being the percentage of the total distance covered by the estimated trajectory over the
total distance of the ground truth trajectory for each sequence. In all tests, the value
of the frequency of frames processing was fixed in 30 FPS setting a input parameter of
ORB-SLAMZ2. This was necessary because this value of FPS was the same condition that
the sequences in TUM RGB-D dataset were recorded. But, the values of FPS in the

experiments varied between 41.2 and 48.6 FPS achieving real-time processing.

To isolate the influence of ellipses addition in full BA execution in VEM-SLAM,
we implemented a variation of ORB-SLAMZ2, called ORB-SLAM2BA, which executed
the original full BA at the same point that VEM-SLAM performs. We executed the
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ORB-SLAM2, ORB-SLAM2BA and VEM-SLAM two hundred times for each sequence in
the dataset and we took the one hundred results with higher distance ration to the final
calculation of ATE. This selection was necessary due to the non-deterministic character of
the monocular vSLAM solutions involved, varying the map initialization point and the

distance of estimated trajectory.

Table 11 shows the average of RMSE ATE and the distance ratio for each sequence
executed using the original ORB-SLAM2, the ORB-SLAM2BA and our system. The
differences in distance ratio results among the systems are due to some aspects. The
map initialization step depends on a significant parallax between two frames, and its
processing is executed independently of the frame capture, varying the beginning of camera
trajectory estimation between executions. Furthermore, some sequences of the dataset
have an abrupt change of camera position, which creates motion blur and leads to the
SLAM system to lose the localization. Comparing the RMSE ATE results in Table 11,
the number of frames in the sequence influenced the improvement with the addition of
ellipses in BA. For sequences with few number of frames, equal or lower than 2359, there
was no evidence to support the improvement of camera trajectory estimation with the
addition of new elements in the BA. For sequences with more frames, equal or higher
than 2504, the difference between the results of ORB-SLAM2BA and VEM-SLAM showed
that there was an improvement of camera trajectory estimation with the addition on new
elements in BA. With more frames, the number of keyframes generated increase, and this

leads to an increasing number of elements in BA calculation, improving the optimization.

Table 11: Average localization errors and distance ratios on TUM sequences. The impro-
vement of camera trajectory estimation was significant for sequences with a high number
of frames, below the dotted line. Bold figures denote the lower value of RMSE ATE of
each sequence.

Number of ORB-SLAM2 ORB-SLAM2 BA VEM-SLAM
Sequence frames / Distance , Distance Distance

processed RMSE ATE (m) ratio (%) RMSE ATE (m) ratio (%) RMSE ATE (m) ratio (%)
fr1_360 755 0.0914 + 0.0213 14.3 0.0926 + 0.0231 13.5 0.0729 + 0.0252 13.7
fr1 desk 595 0.0176 £ 0.0026 474 0.0159 £ 0.0017 46.7 0.0144 + 0.0017 68.9
fr1_desk2 639 0.0236 £ 0.0018 22.0 0.0208 + 0.0015 34.0 0.0232 % 0.0035 53.9
frl room 1360 0.0276 % 0.0058 40.9 0.0207 + 0.0018 38.9 0.0270 % 0.0055 36.3
frl xyz 797 0.0072 + 0.0005 52.4 0.0074 4 0.0005 52.8 0.0076 % 0.0004 54.2
fr2 desk 2359 0.0114 £ 0.0006 40.5 0.0091 +£ 0.0006 38.7 0.0081 + 0.0006 43.3

B2 xyz 3665 0.0054 £ 0.0002" 60.1  0.0055 £ 0.0002 60.6  0.0029 £ 0.0003 572

fr3 long 2504 0.0225 + 0.0022 98.2 0.0199 + 0.0013 97.7 0.0156 + 0.0009 98.2

Source: Elaborated by the author (2020).

5.6 OBJECT 3D POSE ESTIMATION

We did not find any dataset in the literature for the evaluation of 3D pose of
indoor objects compatible with our object-SLAM system. The majority of works cited in

Chapter 2 produced their datasets and only for qualitative evaluation. Nicholson et al.
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Figure 17: Example of errors (red) on estimated trajectory (blue) and ground truth (black)
in same TUM sequence. There are differences in camera trajectory initialization and loss
of localization. The green rectangles emphasizes the initialization differences between the
executions and the orange rectangle emphasis the localization loss.
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Source: Elaborated by the author (2020).

(37) used UnrealCV plugin (38) to build a virtual world with the ground truth of objects
3D pose on it. We tried to use this plugin, and the DCNN Yolov2 detected objects in the
tested scene, but the ORB-SLAM?2 did not recognize enough features to initialize a map,
even changing the predefined parameters relative to the initialization map. Thus, we were

not able to perform a quantitative evaluation of 3D object pose estimation.

We demonstrate a qualitative evaluation for TUM RGB-D dataset sequences
(Figure 18). The 3D object map has been put in the same perspective has the keyframe
image (green rectangle). These images show how accurately the ellipsoids represent the
geometry of some objects in the scene. The object pose is directly dependent on the
quality of map initialization, since the the camera pose estimation is used to reproject
the quadric from the conic (Equations 4.2). The position estimation of the objects has a
more stable behavior than rotation and scale. We believe that this feature is due to the

constraining in nonlinear optimization.

5.7 PROVE OF CONCEPT: GENERATING A VIRTUAL ENVIRONMENT

With the purpose to demonstrate the applicability of our system, we developed a
software to reconstruct a virtual environment of a scene filmed by a monocular camera. The
software was built using the open-source javascript framework for 3D computer graphics
Three.js® in a web browser. Figure 19 shows images of a scene virtually reconstructed by
the application. We used the VEM-SLAM estimated 3D objects position of a scene as
input to create the virtual environment. The software has an object model library, so the

detected objects must have their respective virtual models.

6 https://threejs.org/
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Figure 18: Objects pose and shape estimation of objects in an sequences of TUM dataset.
The pose of the keyframes are represented by the green rectangle in the objects map.

cup

“~monitor 2

chair
book 1
book 2

(a) Sequence fbl xyz. In this particular processing, the cup position was wrong
estimated. In the second image, the third monitor to the right, did not have enough
detections to be represented.

teddy bear
potted plant

monitor

monitor
mouse

cup

keyboard

(b) Sequence fb2 desk. In this particular processing, the keyboard and monitor
were wrong estimated by two ellipsoids.

Source: Elaborated by the author (2020).
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Figure 19: Application developed to generating a virtual environment from TUM dataset
sequences. The desk was fixed in both environments.

(a) Virtual environment for sequence fbl xyz

(b) Virtual environment for sequence fb2 desk.

Source: Elaborated by the author (2020).

Some real scenes have objects that 2D object detector does not be able to find.
Thus it needs to add manually in the virtual environment, per example, the table in

Figure 19.

We used only the position of 2D objects detected because there was no correlation
between the orientation and scale of the ellipsoids and the models in the library. The
rotation and scale ellipsoid parameters are only to fit the ellipsoid onto the volume of
objects. Thus, the size and rotation of objects in the virtual environment have to be

defined in advance.

Another limitation is the hierarchical structure of the objects. As the virtual
environment has collision and gravity, once the objects are inserted in the environment,
their positions can vary. Objects can be on top of each other, as the size of the model

may not reflect the size of the real object.
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6 CONCLUSION AND FUTURE WORKS

This work presented a new approach to deal with 3D object pose estimation from
images of an indoor scene. We propose a new integration of a 2D object detector and a
keyframe-based monocular vSLAM solution. We hypothesized that is possible to build
a virtual environment from a real scene filmed by a monocular camera. To verify our
hypothesis, we develop an integration of state-of-the-art monocular vSLAM solution (9)
with an object detector based on a deep convolutional neural network (12), using a 3D
object pose recover from 2D images (15). The system developed uses conics fitted in
the bounding boxes extracted by the object detector to reconstruct quadrics with the
information of position, rotation, and scale of the objects. To verify the quality of pose
estimation, we used the public TUM RGB-D dataset (35).

A prove of concept of our system was achieved with the construction of a virtual
environment from a real scene with accurate positioning of objects. Besides, the addition
of the conics in the full bundle adjustment (BA) benefited the camera localization and led

to a better object pose estimation.

Our system has limitations inherent to the methods used. Regarding the 3D object
pose estimation, since a full observation of the object in most of the scene is necessary for
a good 3D reconstruction, our system fails on partially occluded objects in the scene. Also,
scenes with few variations of perspective throughout the camera trajectory lead to a few
keyframes on SLAM and, consequently, few objects data. Another aspect is the modeling
the 2D perspective of objects in the image by an ellipse fitted in the bounding box aligned
with the image axes. This modeling is not a good representation of all possible object

perspectives in an image, and it impacts the quality of quadric pose estimation.

As future works, we propose the use of an instance semantic object detector instead
of an object localization detector. The information about the contour of the object can
be used to estimate the orientation of conics and benefits the quadric optimization. As
far as we know, there is no public dataset for 3D object pose estimation evaluation. The
UnrealCV plugin cited in Section 5 is an attempt to fill this void, but it is not working with
all SLAM systems. Thus, relevant future work for the field is the construction of a dataset
for 3D object pose estimation compatible with SLAM, contained camera and objects
ground truth. Furthermore, other proposals for future work are our system generalization
for stereo and RGB-D SLAM and the enhancement of our system to dynamic indoor and

outdoor scenes.
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