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RESUMO 
 

A biodigestão anaeróbia (BA) figura como alternativa sustentável para evitar o lançamento de 

dejeto bovino (DB) no meio ambiente, resultando em biogás e biofertilizante. A bioconversão 

anaeróbia de biomassa em metano (CH4) via BA requer um processo biológico de múltiplas etapas, 

incluindo microrganismos com funções distintas. Estudou-se a dinâmica de populações bacterianas 

acidogênicas por microbiologia clássica, bem como a produtividade de biogás por gasômetro e 

cromatografia, no processo de co-digestão anaeróbia (co-AD). Este trabalho apresenta uma 

avaliação de desempenho de sistemas co-AD para a produção de biogás utilizando DB em conjunto 

com resíduos da Estação de Tratamento de Esgoto (ETE) de uma cervejaria e soro de queijo ricota 

(RCW). O maior rendimento de CH4 foi observado nos biodigestores (RCW1, RCW2 e RCW3) 

alimentados com DB em adição ao RCW. Esses resultados foram geralmente coerentes com as 

comunidades bacterianas ativas observadas, afirmando a estabilidade do processo. A pesquisa 

revelou que o tipo de substrato adicionado no co-AD, a relação carbono/nitrogênio (C:N) e o 

nitrogênio amoniacal (NH3-N) foram os fatores mais influentes que explicaram muitas das 

variações da microbiota nos biodigestores (BRE1, BRE2 e BRE3) alimentado com DB com 

resíduos do ETE de uma cervejaria. Este estudo demonstrou que existe um bom potencial para o 

uso do RCW na produção de biogás e sua posterior conversão em energia. Essas descobertas podem 

fornecer algumas informações fundamentais e técnicas para o co-tratamento de resíduos derivados 

de indústrias em instalações com BA centralizadas, de forma sustentável com alta capacidade de 

processo e recuperação de metano. 

 

Palavras-chaves: Co-digestão anaeróbia; Rendimento de metano; Produção de biogás; Dejeto 

bovino leiteiro; Resíduos; Microrganismos. 

 
 
 
 
 
 



ABSTRACT 
 

Anaerobic biodigestion (AB) figures as a sustainable alternative to avoid discharge of cattle manure 

(CM) in the environment, which results in biogas and biofertilizer. The anaerobic bioconversion 

of biomass to methane (CH4) via AB requires a multi-step biological process, including 

microorganisms with distinct roles. Here, the dynamics of acidogenic bacterial populations by 

classical microbiology, as well as biogas productivity by gasometer and chromatography, in the 

anaerobic co-digestion (co-AD) process were studied. This paper presents a performance 

evaluation of co-AD systems for the production of biogas using CM together with wastes from the 

Sewage Treatment Station (STS) of a brewery and ricotta cheese whey (RCW). The highest CH4 

yield was observed in the biodigesters (RCW1, RCW2 and RCW3) fed with CM in addition to 

RCW. These results were generally coherent with the observed active bacterial communities 

affirming the stability of the process. The search revealed that the type of substrate added in co-

AD, Carbon/Nitrogen (C:N) ratio and Ammonia Nitrogen (NH3-N) were the most influential 

factors that explained many of the variations of the microbiota in the biodigesters (BRE1, BRE2 

and BRE3) fed with CM in addition to wastes from the STS of a brewery. This study demonstrated 

that there is a good potential for the use of RCW in the production of biogas and its further 

conversion into energy. These findings could provide some fundamental and technical information 

for the co-treatment of industrial derived wastes in centralized AB facilities, in a sustainable 

manner with high process capacity and methane recovery. 

 

Keywords: Anaerobic co-digestion; Methane yields; Biogas production; Dairy cattle manure; 
Wastes; Microorganisms. 
 
 
 
 
 
 
 
 
 
 
 
 
 



LIST OF FIGURES 
 

Figure 1 - Cylindrical continuous anaerobic biodigester, adapted image from RESENDE et al.     

(2016), details of gasometer ........................................................................................ 14 

 

Figure 2 - Microbiological performance of biodigesters during co-AD process. Mean value +/- 

standard deviation of viable microbial counts (log CFU mL-1) of the two-bacteria 

Escherichia coli and Pseudomonas aeruginosa during the experiment time .............. 19 

 

Figure 3 - CH4 yield in the co-AD biodigesters operated under different conditions (Treatment). 

The CH4 (%) was representing the variation of values of CH4 productivity ............... 21 

 

Figure 4 - Effect of ammonia accumulation during the experiment time. The trend in ammoniacal 

nitrogen concentration was presented in lines ............................................................... 25 

 

 

 

 

 

 

 

 

 

 

 

 

 



LIST OF TABLES  
 

Table 1 - CH4 production in biodigesters, mean value, standard deviation and statistical test ...... 22 

 

Table 2 - pH measured during the time of the experiment ............................................................. 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LIST OF ABBREVIATION AND ACRONYMS 
 

AB Anaerobic Biodigestion 

ANOVA 

ANVISA 

BRE1 

BRE2 

BRE3 

CFU 

CO-AD 

CH4 

CM 

Analysis of Variance 

National Health Surveillance Agency 

Wastes from the Sewage Treatment Station of a brewery with 20% 

Wastes from the Sewage Treatment Station of a brewery with 40% 

Wastes from the Sewage Treatment Station of a brewery with 80% 

Colony-Forming Unit 

Co-digestão Anaeróbia 

Methane 

Cattle Manure  

C:N 

CON 

CSL 

EMB 

HRT 

IBGE 

NH3-N 

RCW 

RCW1 

RCW2 

RCW3 

SIM 

STS 

 

Carbon:Nitrogen 

Biodigesters Control 

Eirelli Environmental Laboratory 

Eosin Methylene Blue Agar 

Hydraulic Retention Time 

Brazilian Institute of Geography and Statistics 

Ammonia Nitrogen 

Ricotta Cheese Whey  

Ricotta Cheese Whey with 20% 

Ricotta Cheese Whey with 40% 

Ricotta Cheese Whey with 80% 

Sulfate, Indole and Motility 

Sewage Treatment Station 

 

             

 

 

   

 

 

 



SUMMARY 

1 INTRODUCTION .............................................................................................. 11 

2 MATERIALS AND METHODS ....................................................................... 13 

2.1 Mixture of waste ................................................................................................... 13 

2.2 Biodigesters characterization ................................................................................ 14 

2.3 Outline of the experiment ..................................................................................... 15 

2.4 Chemical physical analysis ................................................................................... 15 

2.5 Microbiological analysis ....................................................................................... 16 

2.6 Biochemical tests .................................................................................................. 17 

2.7 Statistical analysis ................................................................................................. 18 

3 RESULTS ............................................................................................................ 18 

3.1 Microbiological performance of biodigesters during co-AD process .................. 18  

3.2 Methane productivity ............................................................................................ 20 

3.3 Temperature, pH and C:N ratio ............................................................................ 22 

3.4 Ammonia Nitrogen (NH3-N) ................................................................................ 24 

4 DISCUSSION ...................................................................................................... 26 

5 CONCLUSIONS ................................................................................................. 28 

 REFERENCES .................................................................................................... 29 

  

  

 

 

 

 

 

 

 

 



11 
 

1. INTRODUCTION 
 

The intensive breeding of dairy cattle is expanding strongly worldwide (Mao et al. 2015). 

In Brazil, during the first trimester of 2019, milk procurement in the country reached 6.2 billion 

liters, representing a growth of 3% in relation to the production of the year 2018 (IBGE 2019). 

Intensive breeding of dairy cattle produces large amount of cattle manure (CM), which provides 

additional gains for the productive system.  Due to the high proportion of biomass, the CM is an 

interesting raw material for biogas production in Anaerobic biodigestion (AB) process, which 

additionally reduces their pollutants load. AB is a natural and controlled process that occurs in the 

absence of oxygen, in which anaerobic microorganisms degrade organic matter, converting it 

mainly into biogas (MENDONÇA et al. 2017; CORREA et al. 2018). 

According to Iwasaki et al. (2019), there is a huge variety of biodegradable organic 

compounds, resulting in the existence of microorganisms such as intestinal and environmental 

bacteria in CM. Understanding how diversity and dynamics of microbial communities in AB 

contribute to the stability of this system is a big challenge. Furthermore, the high adaptability of 

the microbial communities in AB is a key factor for process stability and productivity (ZEALAND 

et al. 2018). 

The performance of microorganisms and biogas yield from AB may vary mainly in function 

to the quality of the residue added to the digester, the degree of dilution and the retention time. 

However, other factors may also contribute to a better process response, such as the addition of 

another substrate that complements the waste composition (HIDALGO and MARTIN--

MARROQUÍN, 2014). The co-digestão anaeróbia (co-AD) process consists of the simultaneous 

treatment of two or more biodegradable substances by AB. It is considered a current technique 

being explored intensively due to the individual characteristics of the waste, that when associated 

can maximize the potential of biogas production, increasing the system efficiency 

(ZAMANZADEH et al. 2017). 

The performance of AB is related to the bacterial populations diversity present in the 

biodigester, and acts in four phases: hydrolysis, acidogenesis, acetogenesis and methanogenesis. 

The microorganisms in a biodigester directly determine the performance of anaerobic reactors just 

as environmental changes. Associating the performance of the AB process and the bacterial 

populations at different stages of operation helps to effectively manage the anaerobic bioreactor 

(QIN et al. 2019). In this regard, of large quantities of CM in dairy cattle farming is frequently 

https://www.sciencedirect.com/science/article/pii/S0960852417315456#!
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considered as a reservoir for potentially pathogenic and antimicrobial resistant bacteria or also, 

reservoir of antibiotic resistance genes. (RESENDE et al. 2014) 

Nowadays, different methodologies for treatment of industrial effluents are gaining an 

increasing attention. For instance, dairy effluent treatment (ROSA et al. 2014; ANTONELLI et al. 

2017; GHASEMI et al. 2017) and effluents with high nitrogen load (THIEN et al. 2019) like the 

brewing industries are already implemented. 

For the dairy effluent treatment, the biological processes are the most widely used due to 

their effluent composition, which are generally rich organic biodegradable load (SILVA, 2010). 

Among the various biological valorization technologies, AB of ricotta cheese whey (RCW) is 

proposed as a sustainable process which can exploit the high organic load from dairy industries for 

bioenergy production. Thus, the same process of AB can be applied for the treatment of brewery 

effluents, as the waste has a high concentration of organic load and high content of suspended 

solids, its composition includes the remaining sugars from the fermentation process that provide a 

fermentable substrate (CORSINO et al. 2016; ARANTES  2018). 

In the present study we tested the versatility of wastes from the Sewage Treatment Station 

(STS) of a brewery and RCW, both wastes constituted of biodegradable materials and can be 

availed for the production of biogas for various purposes, associated with the co-AD process with 

CM. The anaerobic co-digestion is a well-known method for bioconversion of wastes for the past 

few decades in domestic as well as industrial sectors (BI et al. 2020; WEI et al. 2020). In order to 

make AB technologies more attractive and profitable for industries, co-AD of manure with 

industrial byproducts can increase methane yield. The microbiological analysis becomes an ally in 

the evaluation productivity process. 

The objective of this work was to evaluate the effect of bacterial populations with biogas 

productivity during the full co-AD process adding as an alternative for the production of biogas 

two industrial residues with cattle manure in the biodigesters, supporting sustainable development. 
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2. MATERIALS AND METHODS 

 

The CM used in the experiment to supply the biodigesters was collected in the milk 

production system of the José Henrique Bruschi Experimental Farm, located in the municipality of 

Coronel Pacheco, Minas Gerais, Brazil (21° 33′ 58″ S; 43° 15′ 21″ W and altitude de 445 m). The 

climate in the region is classified as tropical (Cwa) on the scale of Köppen and Geiger, with mean 

annual temperature of 22 °C, maximum of 35 °C, and minimum of 18 °C, and average yearly 

rainfall of 1516 mm. The climate data were obtained from an automatic weather station located 

200 m from the experimental site. 

The collected CM was preserved in properly closed drums and transported to Embrapa 

Dairy Cattle research unit (Embrapa Gado de Leite), in the municipality of Juiz de Fora, Minas 

Gerais state, Brazil. There, it was manually homogenized and the substrates were prepared from 

the dilution of bovine feces with washing water of the floors of the “free stall”, up to total solids 

content of 6%. In this scenario, besides the CM, wastes from the STS of a brewery and RCW were 

collected in industries located in the region, and stored weekly to supply daily load. The pH of the 

RCW was corrected with 59 mL/L of calcium hydroxide (Ca(OH)2) at 4.24% to maintain a near-

neutral pH, between 6.5 and 7.0. According to tests performed with RCW of different initial pH 

values, this concentration was the one that was most suitable for pH correction of the residue. 

 

2.1 Mixture of waste 

 

For the daily supply of the seven biodigesters in the full co-AD phase, two types of mixtures 

were prepared as affluent. Three of the biodigesters RCW1, RCW2 and RCW3 were filled with 

CM mixed at concentrations of 20%, 40% and 80% of RCW, respectively. Another three 

biodigesters BRE1, BRE2 and BRE3 were fed with CM mixed at concentrations of 20%, 40% and 

80% of brewery residue, respectively. One of the biodigesters control (CON) was only fed with 

CM, kept for better process control. 
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2.2 Biodigesters characterization 

 

The present experiment was performed in seven cylindrical anaerobic biodigesters a in 

laboratory scale with a capacity of 60 L of substrate, designed as continuous feed reactors and 

operated under mesophilic conditions. All biodigesters were installed in the Embrapa Dairy Cattle.  

The biodigester is divided into two parts: (i) a horizontal cylinder for the storage of the 

material in the AB process, with three fixed taps located at the bottom where the samples are 

collected; (ii) a vertical cylindrical tank, called gasometer. The complete biodigester functioning 

scheme is shown in Figure 1 a. 

In the horizontal cylindrical tank, there are two ends, a main entrance where the supply of 

the mixtures of the affluent is carried out, and an outlet for the effluent disposal. The biodigesters 

have a piston flow system, also called Plug-flow. This system is unheated and unmixed. The 

mixture of affluent has continuous input at one end of the biodigester, passes through it and is 

discharged at the other end in the same sequence as it entered. The gases produced are reserved in 

the gasometer, connected by a properly sealed hose to absorb all the generated gas (Figure 1 b). 

 

Figure 1 - Cylindrical continuous anaerobic biodigester, adapted image from RESENDE et al. 

(2016), details of gasometer 

Source: Author 
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2.3 Outline of the experiment 

 

The experiment began in November 2018 and ended in April 2019, 165 days total, divided 

into 3 phases: (i) the first phase lasted 15 days and resulted in the anaerobic establishment of the 

seven biodigesters exclusively supplied with CM; (ii) the second phase occurred to inoculum 

acclimatization of hydraulic retention time (HRT) of 30 days, in this phase each biodigester was 

specifically supplied with its mixture; and (iii) the third phase is called full co-AD, in each 

treatment there was a daily supply of the mixture for 120 days. 

During the full co-AD phase, seven samples were collected of each of the treatments from 

the three taps located at the bottom of the biodigesters within a 15 days analysis interval, the 

samples were used for chemical physical and microbiological analysis. Through microbiological 

analysis two species of bacteria, Escherichia coli and Pseudomonas aeruginosa, representing the 

acidogenic phase were characterized and monitored. The two species of bacteria were selected and 

sub-cultivated through literature review according to other previous studies performed in Embrapa 

Dairy Cattle (RESENDE et al. 2014; FERNANDES 2016; MOURA 2017). In the pre-tests carried 

out with CM and the residues were found the bacteria Escherichia coli and Pseudomonas 

aeruginosa, both presented easy isolation in Microbiological analysis performance of biodigesters. 

Quantification of the volume of biogas produced was measured on a graduated scale on the 

gasometers. To monitor the quality of the gas produced and the yield calculation, gas 

chromatography was performed. 

 

2.4 Chemical physical analysis 

 

Raw material biogas production depends on substrate concentration, pH, temperature and 

Carbon/Nitrogen (C:N) ratio (TUFANER and AVSAR, 2016). Temperature is one of the main 

factors for survival of microorganisms during AB process (JOHNSON 2017). Temperature is the 

important parameter for the microorganisms to grow based on the optimum requirement and to 

improve the biogas production. The ambient temperature was recorded daily, for 120 days, with 

the aid of a portable digital thermometer. 

The pH value is one of the main operational factors which greatly affect the AB process 

most microorganisms prefer a neutral pH. The favorable range of pH to obtain maximal biogas 
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production in AB is 6.8 – 7.2 (APPELS et al. 2018). Thus, during the experiment time (120 days), 

routine monitoring of the analysis to measure the pH of effluents was performed. 

During the time of the experiment, once every 15 days, elemental analyses were carried out to 

obtain the chemical physical characterization of effluents of each biodigester. A sample of effluent 

was collected in each biodigester and sent to Eirelli Environmental Laboratory – EPP (CSL). The 

following parameters were evaluated: total carbon, total nitrogen, C:N ratio and Ammonia Nitrogen 

(NH3-N). At the same moment of the experiment, analysis of the composition of biogas was 

performed on each biodigester by gas chromatography in order to determine the composition of 

the gaseous products. In total, 19 analyses were taken every 7 days during the experiment time 

(120 days). 

We used the Agilent 7820A Gas Chromatograph System and the EzChrom Elite interface 

software (COLLINS; BRAGA; BONATO, 1997). According to the adaptation of the method 

Collins; Braga; Bonato (1997) been used a split-splinter type 50:1 injector at a temperature of 

120°C. The separation system consists of two columns: (i) an HP-Plot/Q 30m x 0.530 mm x 40.0 

µm; (ii) the other HP-Molesieve 30m x 0.530mm x 25.0 µm, using H2 as carrier gas at a flow of 

8.3 mL/min. The detection system consists of: TCD Detector – conditions: 250°C heating; 25 

mL/min reference flow; 0.5 mL/min complement flow (H2); 8.8 mL/min column + constant 

complementation. FID Detector – conditions: 270°C heating; 15 mL/min flow H2; 350 mL/min 

synthetic air flow; 20 mL/min flow complement. Metanador at 375°C heating. The temperature of 

the oven is maintained at 55°C for 4.5 minutes, time required for the elution of the expected 

constituents. The calibration of the chromatograph is performed with reference standards, certified 

by Linde™ at methane (CH4) concentrations: 5.05; 10.2; 14.7; 20.1 and CO2: 20.2; 39.7; 58.3; 

79.9. 

 

2.5 Microbiological analysis 

 

Samples of each tap in the biodigesters were collected in autoclaved glass vials and 

identified. Analyses of the samples were performed at the Rumen Microbiology Laboratory located 

at Embrapa Dairy Cattle, using classical microbiology method to the cultivable microorganisms. 

Microbial analysis of the samples was performed on the same day “on time” of sample 

collection. The washed petri plates were sterilized by autoclaving (121 ºC, 15 psi) and oven dried 
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(171 ºC) for 60 minutes. The selective agars including Eosin Methylene Blue Agar (EMB) to count 

Escherichia coli and MacConkey Agar to count Pseudomonas aeruginosa were prepared and 

poured into sterile petri plates according to the manufacturer’s instructions. 

The cultivation medium EMB is a differential culture medium that inhibits the growth of 

Gram-positive bacteria and indicates if the bacteria ferment lactose or not, and is used as a medium 

for slightly selective differentiation for isolation and differentiation of gram-negative enteric 

bacilli. The colonies of Escherichia coli are easily identifiable by their metallic green coloring in 

the middle of EMB. MacConkey Agar is a culture medium intended to grow gram-negative bacteria 

and to indicate lactose fermentation. Bacterial colonies that ferment lactose make the medium light 

pink and bacteria that are not lactose fermenting make the medium light yellow. The colonies of 

Pseudomonas aeruginosa has a coloration ranging from colorless to green (ANVISA 2004).  

Serial dilutions of the samples of 10-1, 10-2 and 10-3 in saline (0,9%NaCl) were performed, 

the dilutions were fixed in these values to meet the objectives of the experiment. The dilutions were 

homogenized, and aliquots of 0,1 ml (100 μL) were seeded with the aid of a Drigalski loop in the 

aerobic selective culture media. 

After inoculation, the plates were incubated an incubator for 24 hours at 37 ºC. According 

to Divya et al. 2015, the mesophilic process (around 35 ºC) often involves a more stable diversity 

of microorganisms compared to the thermophilic process (around 55 ºC). 

After the incubation period, the petri dish with lowest dilution (between 20 and 200 

colonies) was used to estimate by counting the colony-forming unit (CFU) of bacteria in the 

samples, with the help of the Phoenix® colony counter. The results were converted to CFU mL-1 

and log CFU mL-1. 

 

2.6 Biochemical tests  

 

Biochemical tests were performed on isolates for the identification of Escherichia coli and 

Pseudomonas aeruginosa. The colonies cultivated in the two-agar media have undergone analysis 

of Gram staining, catalase test, oxidase, SIM (Sulfate, Indole and Motility) and citrate to prove and 

confirm the isolated bacteria. 
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2.7 Statistical analysis 

 

The statistical analyses were performed using the JMP 14.0 software. The differences in 

the means were evaluated through analysis of variance (ANOVA) followed by a comparison of 

means test (student’s t). Prior the analyzes all data were checked for a normal distribution. 

 

3. RESULTS  

 

The present work resulted in the following results from the analysis of microbiological 

performance of biodigesters during co-AD process, methane productivity, temperature, pH and 

C:N ratio, e ammonia Nitrogen (NH3-N). 

 

3.1 Microbiological performance of biodigesters during co-AD process  

 

The biodiversity of microorganisms within a biodigester is of great significance due to the 

large contribution of microbial interactions in the production of biogas (MANYI-LOH et al. 2019). 

Generally speaking, the behavior of the two bacteria Escherichia coli and Pseudomonas 

aeruginosa in the biodigesters was different among the studied waste. There was no significant 

difference in the count of both bacteria in each tap. An average of the taps was performed in each 

biodigester in its respective treatment in order to follow the behavior during the experimental time. 

In the biodigesters BRE2 and BRE3 from the third and fourth analysis showed no growth 

for the microorganisms (Figure 2 a-b). In the biodigester BRE3, the supply was ceased after the 

sixth week of analysis because it was no longer producing CH4. It should be noted that in the 

biodigester BRE1 (Figure 2 a-b), up to the 120-day trial period, the two bacteria were present 

during all seven analyses performed although in a smaller number in the subsequent weeks than at 

the start of the experiment. 

In contrast, the biodigesters RCW1, RCW2 and RCW3 showed better results and the two 

bacteria were present in all seven performed analyses (Figure 2 c-d). Over time in the three 

biodigesters there was a constant reduction of both bacteria of approximately 2 log CFU mL-1. The 

mixture of the substrates of CM with RCW obtained a higher chance of containing all components 

that are important for microbial growth. Therefore, there was a stability in the process. 
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In the biodigester CON the analyzes performed maintained equivalent values of both 

bacteria throughout the experiment (Figure 2 e-f). There was no significant reduction in the count 

from first to last analysis. 

 

Figure 2 - Microbiological performance of biodigesters during co-AD process. Mean value +/- 

standard deviation of viable microbial counts (log CFU mL-1) of the two-bacteria Escherichia 

coli and Pseudomonas aeruginosa during the experiment time 

                        

Source: Author 

Note: (a) and (b) indicate biodigesters in the co-AD process with CM in addition to wastes from the Sewage 

Treatment Station (STS) of a brewery; (c) and (d) indicate biodigesters in the co-AD process with CM in 

addition to Ricotta cheese whey (RCW); (e) and (f) indicate biodigester control (CON). 
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3.2 Methane productivity 

 

It has been observed that co-AD of CM and other waste may enhance biogas production, 

and lead to more stable biodigestion processes (GUILLAUME and LENDORMI 2015). Here, we 

also observed an increase on the CH4 production efficiency when the RCW was used in co-AD 

with CM. However, a decrease on CH4 production efficiency was observed by adding the STS of 

a brewery in a co-AD with CM. 

Comparing the efficiency of CH4 production in biodigesters we obtained different results 

(Figure 3). The CH4 productivity for biodigesters RCW1, RCW2 and RCW3 during the 120 days 

of measurement showed a very low variation of values, thus maintaining a stable standard in the 

production of CH4 in biodigestion process as well as the biodigester CON. Overall, both 

biodigesters showed high efficiency in CH4 production. 

Our results showed that the yields of biodigester CH4 BRE1 during the 120 days of 

measurement maintained a stable production, presenting low variation of the measured values. 

However, CH4 productivity in biodigesters BRE2 and BRE3 revealed a very different behavior 

presenting a high variation of the values, thus resulting in relatively low yields of CH4 

concentration. When we increase the concentration of wastes from STS of a brewery from 20% to 

40% the biodigester BRE2 is infeasible with time, when we increase from 40% to 80% the 

biodigester BRE3 is completely infeasible. 

Notably, the support limit of co-AD between the biodigesters BRE1, BRE2 and BRE3 

during the experiment time was the biodigester BRE1 that had a mixture of 80% the CM and 20% 

of wastes from STS of a brewery. 

Concerning productivity, the CH4 (biogas), application of wastes from the STS of a brewery 

at concentrations above 20% in co-AD process for 120 days is not recommended, once a significant 

drop in productivity was observed. Significant differences were found (P ≤ 0.001) between 

biodigesters (Table 1). Levels not connected by same letter are significantly different (Figure 3). 

 

 

 

 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Guillaume%2C+S%C3%A9bastien
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Table 1 - CH4 production in biodigesters, mean value, standard deviation and statistical test 

Treatment Methane 

Average Standard 
deviation 

Statistical 
teste 

RCW1 57.71 3.02 a,b 

RCW2 56.11 3.41 a,b 

RCW3 56.72 6.94 a,b 

CON 57.96 2.81 a,b 

BRE1 59.26 3.05 a 

BRE2 53.81 11.74 b 

BRE3 32.77 14.60 c 

                            Source: Author 

 

3.3 Temperature, pH and C:N ratio  

 

Over the 120 days of hydraulic retention time, the co-AD biodigesters under different 

conditions (Treatment) operated in the ambient temperature range, between 18 and 26°C average 

of 22°C and temperatures inside the biodigester, between 14 and 33°C average of 25°C. Ambient 

temperature was in the mesophilic range. 

The pH levels remained stable in the biodigesters in co-AD with CM and RCW with min-

max value of: RCW1: 6,98-7,27; RCW2: 6,90-7,20; and RCW3: 6,93-7,17. However, the 

biodigesters in co-AD with CM and wastes from the STS of a brewery showed values outside the 

recommended standard, with min-max value of: BRE1: 7,06-7,58; BRE2: 6,95-7,89; and BRE3: 

6,44-7,27 (Table 2). The active production of biogas depends on maintaining an optimum 

fermentation pH. Previous researches report that a low pH may induce an inhibition of 

methanogenesis, still reflecting on overload of organic matter that corroborates the inhibition of 

the bioprocess (ALKAYA and DEMIRER 2011; ZUO et al. 2013). 
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In the biodigesters RCW1, RCW2, RCW3, CON and BRE1 the C:N ratio was maintained 

in stable values during all the experimental period. Whereas the biodigesters BRE2 and BRE3 

presented low values in C:N ratio during the experiment time. It is important to highlight BRE3 

had extremely low C:N ratio after 80 days, and for that reason the BRE3 needed to be finalized 

after that period. 

 

Table 2 - pH measured during the time of the experiment 

Days Treatment 

RCW1 RCW2 RCW3 CON BRE1 BRE2 BRE3 

1 7.05 6.91 6.93 7.22 7.06 7.20 7.27 

16 7.14 7.08 7.10 7.25 7.35 7.48 7.16 

31 7.13 7.05 7.03 7.26 7.50 7.73 6.68 

46 7.10 7.00 6.97 7.29 7.48 7.75 6.86 

61 7.11 7.13 7.14 7.21 7.58 7.89 7.08 

76 7.11 7.02 6.99 7.26 7.46 7.62 7.04 

91 6.98 6.90 6.91 7.16 7.46 6.95 6.68 

106 7.27 7.20 7.17 7.30 7.47 7.15 6.44 

120 7.13 6.98 6.94 7.10 7.50 7.01 * 

Average 7.11 7.03 7.02 7.23 7.43 7.42 6.90 

Standard 
deviation 

0.077 0.097 0.095 0.064 0.150 0.349 0.284 

        Source: Author 

        Note: * Biodigester BRE3 has been finalized 
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3.4 Ammonia Nitrogen (NH3-N)  

 

It is understood that while no growth of the microorganisms in the biodigesters BRE2 and 

BRE3 was verified, low CH4 yield was provided. This agrees with the higher ammonia 

concentrations in the co-AD systems in biodigesters with wastes from the STS of a brewery (Figure 

4 a). It was noted that the biodigesters BRE2 and BRE3 had an increasing trend in ammoniacal 

nitrogen concentration. The low performance of biodigesters in terms of microbial decay and CH4 

production can be partially explained by the inhibition of ammonia. Furthermore, in biodigester 

BRE1 the impacts of ammonia inhibition on the microbial population showed no significant change 

during the experiment time. 

In the biodigesters RCW1, RCW2 and RCW3 (Figure 4 b), the concentration of NH3-N 

during the experiment remained stable, with one exception of the biodigester RCW3 in which was 

observed an increase in 45-60 days, possibly justified due to a change in the receiving of the RCW 

wastes during these days. 

In the biodigester CON, there should be an increase in the concentration of NH3-N from 

the first days (Figure 4 c). However, the increase did not affect the production of CH4 and the 

inhibition of microorganisms. 
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Figure 4 - Effect of ammonia accumulation during the experiment time. The trend in NH3-N 
concentration was presented in lines 

 

           Source: Author 
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4. DISCUSSION 

 

The co-AD of different materials presents better results, using nutrients and bacterial 

diversities in various wastes to optimize the digestion process. When the substrates are mixed, they 

have higher chance to contain all components that are important for microbial growth 

(KARLSSON et al. 2014). Thus, co-AD may be a perspective option to improve the economic 

viability due to increased biogas production (PIÑAS et al. 2018). Protein-rich substrates are rich in 

energy and produce a relatively high amount of CH4 in the biogas (WAGNER et al. 2013, 

KALLISTOVA et al. 2014). 

The hydrolytic, acidogenic and acetogenic bacteria, together with methanogens, are the key 

players acting at specific phases of the AB process and depend on each other for proper functioning. 

During this investigation, the Escherichia coli and Pseudomonas aeruginosa acidogenic bacteria 

were chosen to indicate the microbial population involved in the fermentation of the co-AD 

process. These acidogenic bacteria play a primary role in producing major substrates such as 

hydrogen, carbon dioxide, acetate, and short-chain organic acids, for methanogenesis (KIM et al. 

2010). 

The mixture of carbon-rich substrates with nitrogen-rich by-products, such as CM and 

industrial waste can improve process stability, providing nutrients needed for microbial population 

and biogas production. According to Hagos et al. (2017), it is important when selecting the 

substrate and the proportion to be used in co-AD, stating that the C:N ratio is the main factor to 

increase process performance in biogas production. The imbalance of nutrient contents, associated 

with low or high C:N ratio, decreases the microorganism activity, it causes the instability, failure 

of the system and reduction of biogas production (ZESHAN et al. 2012, NAIK et al. 2014). 

The biodigesters RCW1, RCW2 and RCW3 presented the best results for the dynamics of 

microorganisms, the bacteria Escherichia coli and Pseudomonas aeruginosa were present 

throughout the experiment. Therefore, they had high efficiency and stability in CH4 production. 

The co-AD of CM and RCW waste are an attractive option because CM can buffer the low pH of 

RCW and its rapid acidogenesis from readily fermentable sugars (LI et al. 2015). Continued studies 

have been reported on co-AD of dairy wastewater with CM in different operating conditions which 

confirmed that the biogas production is improved compared to single substrate feed (TOUMI et al. 

2015). The concentration of NH3-N in biodigesters RCW1, RCW2 and RCW3 remained relatively 

https://www.sciencedirect.com/science/article/pii/S0961953414000828#!
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stable during the experiment period. The C:N ratio presented ideal values to satisfy the process 

stability, and to give continuity to fermentation. 

Similar results were observed by Treu et al. (2019), it was verified that the co-AD of the 

CM with wastes from dairy industries can reduce potential acidification incidents, which 

deteriorate the biomethanization process, where the microbial profile of the reactors was 

adequately correlated with the recorded biochemical parameters. These are the results in an even 

greater production of bioenergy. 

According to our findings, the biodigesters BRE2 and BRE3 have demonstrated a failure 

in the co-AD process when the proportion of wastes from the STS of a brewery was ≥ 40%. The 

reason for bacterial non-growth states in both biodigester is explained due to the increase in NH3-

N. The brewery residue has significant concentrations of nitrogen and protein in its constitution. 

Existence of nitrogen in the feedstock is necessary for the synthesis of amino acids, proteins, and 

nucleic acids. However, an excess of nitrogen in the feedstocks can result in toxic effects to bacteria 

because of extreme ammonia formation. Therefore, a suitable amount of nitrogen is required to 

provide sufficient nutrients while avoiding ammonia toxicity (VINDIS et al. 2014; HAGOS et al. 

2017). 

The biodigesters BRE2 and BRE3 presented a lower C:N ratio during the time of the 

experiment. The substrates characterized by low C:N ratios result in accumulation of ammonia that 

are toxic to methanogenic bacteria, given the high buffer capacity that leads to microbial growth 

inhibition due to increased concentration of ammonia in the fermentation process (RABII et al. 

2019). In addition, the lowest production of CH4 in these biodigesters is also related to the presence 

of higher concentrations of NH3-N, potentially causing inhibition of the methanogenesis process. 

This is in agreement with the observation made by Vanwonterghem et al. (2014) that microbial 

group dynamics and CH4 production tend to respond poorly to changes of operational conditions. 

Our results revealed that ammonia accumulation was the main parameter that shapes the 

bacterial community composition. Previous studies are mainly focused on ammonia inhibition 

effects on methanogens (SUN et al. 2016; HAGEN et al. 2017). 
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5. CONCLUSIONS 

 

This study showed that the biodigesters in co-AD of CM with RCW had a better 

performance in bacterial populations diversity. The mixture of these two residues are advantageous 

in nutrition balance, microorganism enrichment, reduction in the accumulation of inhibitors, 

making the process possible and feasible. The permanence of the studied acidogenic bacteria was 

fundamental to the process stability as a result of high biogas production efficiency and CH4 yield. 

In contrast, the performance of the biodigesters in anaerobic co-AD of CM with STS of a brewery 

demonstrated inefficiency in the process due to the increase in NH3-N. However, the capacity to 

support brewery waste in a co-AD biodigester with CM is 20%. We concluded that a microbial 

diversity often is associated with an environment recalcitrant, subject to changes and stress, co-AD 

could potentially increase the robustness of the AB process. 
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