Please use this identifier to cite or link to this item: https://repositorio.ufjf.br/jspui/handle/ufjf/9172
Files in This Item:
File Description SizeFormat 
Low temperature static behavior of the two-dimensional.pdf171.98 kBAdobe PDFThumbnail
View/Open
Full metadata record
DC FieldValueLanguage
dc.creatorLeonel, Sidiney de Andrade-
dc.creatorPires, A. S. T.-
dc.date.accessioned2019-02-22T13:28:38Z-
dc.date.available2019-02-21-
dc.date.available2019-02-22T13:28:38Z-
dc.date.issued2000-06-
dc.citation.volume30pt_BR
dc.citation.issue2pt_BR
dc.citation.spage428pt_BR
dc.citation.epage431pt_BR
dc.identifier.doihttp://dx.doi.org/10.1590/S0103-97332000000200027pt_BR
dc.identifier.urihttps://repositorio.ufjf.br/jspui/handle/ufjf/9172-
dc.description.abstractWe use the self-consistent harmonic approximation (SCHA) to study static properties of the two-dimensional quantum Heisenberg model with easy-axis anisotropy. We calculate the critical temperature as a function of the spin value, and compare with classical results. Specifically, we compare how the ratio of critical temperatures varies as a function of the spin S in the quantum and classical cases, for afixed anisotropy parameter. We see that, for values of spin near 5/2, the classical result approximates to the quantum results and the classical calculation is justified. We have also studied the behavior of the magnetization for very small anisotropies. We have shown that our magnetization curves do not present a plateau in the limit of very small anisotropies, as predicted by the real-space renormalization-group calculations.pt_BR
dc.description.resumo-pt_BR
dc.languageengpt_BR
dc.publisher-pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.initials-pt_BR
dc.relation.ispartofBrazilian Journal of Physicspt_BR
dc.rightsAcesso Abertopt_BR
dc.subject-pt_BR
dc.subject.cnpq-pt_BR
dc.titleLow temperature static behavior of the two-dimensional quantum easy-axis Heisenberg modelpt_BR
dc.typeArtigo de Periódicopt_BR
Appears in Collections:Artigos de Periódicos



Items in DSpace are protected by Creative Commons licenses, with all rights reserved, unless otherwise indicated.